SYSTEM CONCEPTS

“H EDITION <

51 LBERSQE-ATZ KORTH & SUDARSHZN

""lr-'hh:l?-.‘"

DATABASE

SYSTEM CONCEPTS

e e RN N

T

o]

)

“

12v0

g

,

2

o

“ . e b

Py - I .
-~ ._- -I .— - -
- N ¥ [. . 1
= n_* - N E -
W = =y i 1
R ok .
- " ow I B o - LI -
I_-l . . =
r o " . 5 L B
N o hd m mp B a = «F g
i m B
11 L. i -
- -
. Y - .— F -
¥ ||..L|v.H|l._) B =mige = .-“.1 A g B &

DATABASE

SYSTEM CONCEPTS

FIETH EDITION ,

The McGraw:Hill Companies

Nic

el Higher Education

DATABASE SYSTEM CONCEPTS, FIFTH EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New
York, NY 10020. Copyright © 2006, 2002, 1999, 1991, 1986 by The McGraw-Hill Companies, Inc. All rights reserved.
No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not limited to,
in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside
the United States.

This book is printed on acid-free paper.
567890DOC/DOC 09

ISBN: 978-0-07-295886-7
MHID: 0-07-295886-3

Publisher: Alan R. Apt

Developmental Editor: Melinda D. Bilecki
Executive Marketing Manager: Michael Weitz
Lead Project Manager: Peggy |. Selle

Senior Production Supervisor: Kara Kudronowicz
Designer: Laurie B. Janssen

Cover Designer: JoAnne Schopler

(USE) Cover Image: ©Craig Aurness/Corbis
Typeface: 10/12 Palatino

Printer: R. R. Donnelley Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Silberschatz, Abraham.
Database system concepts / Avi Silberschatz, Hank Korth, S. Sudarshan. — 5th ed.
p. cm.
Includes bibliographical references and index.
ISBN 0-07-295886-3 (hard copy : alk. paper)
1. Database management. 1. Korth, Henry E. IL Sudarshan, S. 1L Title.

QA76.9.D355637 2006

005.74—dc22 2005006392
cIP

www.mhhe.com

In memory of my father Joseph Silberschatz
my mother Vera Silberschatz
and my grandparents Stepha and Aaron Rosenblum

Avi Silberschatz

To my wife, Joan
my children, Abigail and Joseph
and my parents, Henry and Frances

Hank Korth

To my wife, Sita
my children, Madhur and Advaith
and my mother, Indira

S. Sudarshan

- ' e N p
o - - .)
tl H I |:| :..

SR
roigdf e fFu s

el ey o
1y

. ' " wi
fpecioal g Jws
: ugfl ppp gl yp, -
R B b

: L B ‘ alk i
o ankl uagw ye g -
i- aw Ly h_: s

;I I | r‘q e -

U
- -I
1) WETER LTI | lk |

Contents

Preface xvii

Chapter1 Introduction

1.1 Database-System Applications 1

1.2 Purpose of Database Systems 3

1.3 View of Data 5

1.4 Database Languages 9

1.5 Relational Databases 11

1.6 Database Design 14

1.7 Object-Based and Semistructured
Databases 19

1.8 Data Storage and Querying 20

1.9 Transaction Management 22
1.10 Data Mining and Analysis 23
1.11 Database Architecture 24
1.12 Database Users and Administrators 26
1.13 History of Database Systems 28
1.14 Summary 30
Exercises 31
Bibliographical Notes 32

PART1 HE RELATIONAL DATABASES

Chapter 2 Relational Model

2.1 Structure of Relational Databases 37

2.2 Fundamental Relational-Algebra
Operations 46

2.3 Additional Relational-Algebra
Operations 55

2.4 Extended Relational-Algebra
Operations 60

2.5 Null Values 66
2.6 Modification of the Database 68
2.7 Summary 70

Exercises 71

Bibliographical Notes 73

Contents

Chapter3 SQL

3.1 Background 75

3.2 Data Definition 77

3.3 Basic Structure of SQL Queries 80
3.4 Set Operations 87

3.5 Aggregate Functions 89

3.6 Null Values 91

3.7 Nested Subqueries 93

Chapter4 Advanced SQL

4.1 SQL Data Types and Schemas 121

4.2 Integrity Constraints 126

4.3 Authorization 133

4.4 Embedded SQL 134

4.5 Dynamic SQL. 137

4.6 Functions and Procedural
Constructss* 145

3.8 Complex Queries 97
3.9 Views 99
3.10 Modification of the Database 103
3.11 Joined Relations#= 110
3.12 Summary 115
Exercises 116
Bibliographical Notes 120

4.7 Recursive Queries*= 151
4.8 Advanced SQL Featuresx* 155
4.9 Summary 158

Exercises 159

Bibliographical Notes 162

Chapter 5 Other Relational Languages

5.1 The Tuple Relational Calculus 163
5.2 The Domain Relational Calculus 168
5.3 Query-by-Example 171

5.4 Datalog 180

5.5 Summary 194
Exercises 195
Bibliographical Notes 198

PART2 HE DATABASE DESIGN

Chapter 6 Database Design and the E-R Model

6.1 Overview of the Design Process 201

6.2 The Entity-Relationship Model 204

6.3 Constraints 210

6.4 Entity-Relationship Diagrams 214

6.5 Entity-Relationship Design Issues 220

6.6 Weak Entity Sets 225

6.7 Extended E-R Features 227

6.8 Database Design for Banking
Enterprise 236

6.9 Reduction to Relational Schemas 241
6.10 Other Aspects of Database Design 248
6.11 The Unified Modeling Language
UML#x 251

6.12 Summary 254
Exercises 256
Bibliographical Notes 261

Contents

Chapter 7 Relational Database Design

7.1 Features of Good Relational 7.6 Decomposition Using Multivalued
Designs 263 Dependencies 293

7.2 Atomic Domains and First Normal 7.7 More Normal Forms 298
Form 268 7.8 Database-Design Process 299

7.3 Decomposition Using Functional 7.9 Modeling Temporal Data 302
Dependencies 270 7.10 Summary 304

7.4 Functional-Dependency Theory 278 Exercises 306

7.5 Algorithms for Decomposition 288 Bibliographical Notes 310

Chapter 8 Application Design and Development

8.1 User Interfaces and Tools 311 8.7 Authorization in SQL 335
8.2 Web Interfaces to Databases 314 8.8 Application Security 343
8.3 Web Fundamentals 315 8.9 Summary 350

8.4 Servlets and JSP 321 Exercises 352

8.5 Building Large Web Applications 326 Bibliographical Notes 357

8.6 Triggers 329

PART3 HE OBJECT-BASED DATABASES AND XML

Chapter 9 Object-Based Databases

ix

9.1 Overview 361 9.7 Implementing O-R Features 378
9.2 Complex Data Types 362 9.8 Persistent Programming Languages 379
9.3 Structured Types and Inheritance in 9.9 Object-Oriented versus
SQL 365 Object-Relational 387
9.4 Table Inheritance 369 9.10 Summary 388
9.5 Array and Multiset Types in SQL 371 Exercises 389
9.6 Object-Identity and Reference Types in Bibliographical Notes 393
SQL 376

Chapter 10 XML

10.1 Motivation 395 10.6 Storage of XML Data 421
10.2 Structure of XML Data 399 10.7 XML Applications 428
10.3 XML Document Schema 402 10.8 Summary 431

10.4 Querying and Transformation 408 Exercises 433

10.5 Application Program Interfaces to Bibliographical Notes 436

XML 420

X

Contents

PART4 HE DATA STORAGE AND QUERYING

Chapter 11 Storage and File Structure

11.1 Overview of Physical Storage
Media 441

11.2 Magnetic Disks 444

11.3 RAID 450

11.4 Tertiary Storage 458

11.5 Storage Access 460

11.6 File Organization 464
11.7 Organization of Records in Files 468
11.8 Data-Dictionary Storage 472
11.9 Summary 474
Exercises 476
Bibliographical Notes 478

Chapter 12 Indexing and Hashing

12.1 Basic Concepts 481

12.2 Ordered Indices 482
12.3 B*-Tree Index Files 489
12.4 B-Tree Index Files 501
12.5 Multiple-Key Access 502
12.6 Static Hashing 506

12.7 Dynamic Hashing 511

Chapter 13 Query Processing

13.1 Overview 531

13.2 Measures of Query Cost 533
13.3 Selection Operation 534
13.4 Sorting 539

13.5 Join Operation 542

Chapter 14 Query Optimization

14.1 Overview 569

14.2 Transformation of Relational
Expressions 571

14.3 Estimating Statistics of Expression
Results 578

12.8 Comparison of Ordered Indexing and
Hashing 518

12.9 Bitmap Indices 520

12.10 Index Definition in SQL 523

12.11 Summary 524
Exercises 526
Bibliographical Notes 529

13.6 Other Operations 555
13.7 Evaluation of Expressions 559
13.8 Summary 563

Exercises 566

Bibliographical Notes 568

14.4 Choice of Evaluation Plans 584
14.5 Materialized Views#x 593
14.6 Summary 598

Exercises 599

Bibliographical Notes 602

Contents

PART5 B TRANSACTION MANAGEMENT

Chapter 15 Transactions

15.1 Transaction Concept 609

15.2 Transaction State 612

15.3 Implementation of Atomicity and
Durability 615

15.4 Concurrent Executions 617

15.5 Serializability 620

Chapter 16 Concurrency Control

16.1 Lock-Based Protocols 635

16.2 Timestamp-Based Protocols 648
16.3 Validation-Based Protocols 651
16.4 Multiple Granularity 653

16.5 Multiversion Schemes 656

16.6 Deadlock Handling 659

Chapter 17 Recovery System

17.1 Failure Classification 683

17.2 Storage Structure 684

17.3 Recovery and Atomicity 688

17.4 Log-Based Recovery 689

17.5 Recovery with Concurrent
Transactions 697

17.6 Buffer Management 699

15.6 Recoverability 626
15.7 Implementation of Isolation 627
15.8 Testing for Serializability 628
15.9 Summary 630

Exercises 632

Bibliographical Notes 633

16.7 Insert and Delete Operations 664
16.8 Weak Levels of Consistency 667
16.9 Concurrency in Index Structuressx
16.10 Summary 673
Exercises 676
Bibliographical Notes 680

17.7 Failure with Loss of Nonvolatile
Storage 702

xi

669

17.8 Advanced Recovery Techniques=+ 703

17.9 Remote Backup Systems 711
17.10 Summary 713
Exercises 716
Bibliographical Notes 718

PART6 E DATA MINING AND INFORMATION

RETRIEVAL

Chapter 18

18.1 Decision-Support Systems 723
18.2 Data Analysis and OLAP 725
18.3 Data Warehousing 736

18.4 Data Mining 739

Data Analysis and Mining

18.5 Summary 752
Exercises 754
Bibliographical Notes 756

xii Contents

Chapter 19 Information Retrieval

19.1 Overview 759 19.7 Web Search Engines 771
19.2 Relevance Ranking Using Terms 761 19.8 Information Retrieval and Structured
19.3 Relevance Using Hyperlinks 763 Data 772
19.4 Synonyms, Homonyms and 19.9 Directories 773
Ontologies 768 19.10 Summary 776
19.5 Indexing of Documents 769 Exercises 777
19.6 Measuring Retrieval Effectiveness 770 Bibliographical Notes 779

PART7 B SYSTEM ARCHITECTURE

Chapter 20 Database-System Architectures

20.1 Centralized and Client-Server 20.5 Network Types 801
Architectures 783 20.6 Summary 803

20.2 Server System Architectures 786 Exercises 805

20.3 Parallel Systems 790 Bibliographical Notes 807

20.4 Distributed Systems 797

Chapter 21 Parallel Databases

21.1 Introduction 809 21.6 Interoperation Parallelism 824
21.2 1/0O Parallelism 810 21.7 Design of Parallel Systems 826
21.3 Interquery Parallelism 814 21.8 Summary 827

21.4 Intraquery Parallelism 815 Exercises 829

21.5 Intraoperation Parallelism 816 Bibliographical Notes 831

Chapter 22 Distributed Databases

22.1 Homogeneous and Heterogeneous 22.7 Distributed Query Processing 859
Databases 833 22.8 Heterogeneous Distributed

22.2 Distributed Data Storage 834 Databases 862

22.3 Distributed Transactions 837 22.9 Directory Systems 865

22.4 Commit Protocols 840 22.10 Summary 870

22.5 Concurrency Control in Distributed Exercises 873
Databases 846 Bibliographical Notes 876

22.6 Availability 854

Contents xiii

PART8 B OTHER TOPICS

Chapter 23 Advanced Application Development

23.1 Performance Tuning 881 23.5 Summary 900
23.2 Performance Benchmarks 891 Exercises 902
23.3 Standardization 895 Bibliographical Notes 903

23.4 Application Migration 899

Chapter 24 Advanced Data Types and New Applications

24.1 Motivation 905 24.5 Mobility and Personal Databases 922
24.2 Time in Databases 906 24.6 Summary 927

24.3 Spatial and Geographic Data 908 Exercises 929

244 Multimedia Databases 919 Bibliographical Notes 931

Chapter 25 Advanced Transaction Processing

25.1 Transaction-Processing Monitors 933 25.7 Transaction Management in

25.2 Transactional Workflows 938 Multidatabases 956

25.3 E-Commerce 944 25.8 Summary 959

25.4 Main-Memory Databases 947 Exercises 962

25.5 Real-Time Transaction Systems 949 Bibliographical Notes 964

25.6 Long-Duration Transactions 950

PART9 B CASE STUDIES

Chapter 26 PostgreSQL

26.1 Introduction 967 26.5 Storage and Indexing 988
26.2 User Interfaces 968 26.6 Query Processing and

26.3 SQL Variations and Extensions 971 Optimization 991

26.4 Transaction Management in 26.7 System Architecture 994

PostgreSQL 979 Bibliographical Notes 995

Xiv

Contents

Chapter 27 Oracle

27.1 Database Design and Querying
Tools 997
27.2 SQL Variations and Extensions 999
27.3 Storage and Indexing 1001
27.4 Query Processing and
Optimization 1010
27.5 Concurrency Control and
Recovery 1017

27.6 System Architecture 1019
27.7 Replication, Distribution, and External
Data 1022
27.8 Database Administration Tools 1024
27.9 Data Mining 1025
Bibliographical Notes 1026

Chapter 28 IBM DB2 Universal Database

28.1 Overview 1027
28.2 Database-Design Tools 1029
28.3 SQL Variations and Extensions 1029
28.4 Storage and Indexing 1034
28.5 Multidimensional Clustering 1037
28.6 Query Processing and

Optimization 1040
28.7 Materialized Query Tables 1045
28.8 Autonomic Features in DB2 1047

28.9 Tools and Utilitites 1048

28.10 Concurrency Control and
Recovery 1050

28.11 System Architecture 1052

28.12 Replication, Distribution and External
Data 1053

28.13 Business Intelligence Features 1054
Bibliographical Notes 1055

Chapter 29 Microsoft SQL Server

29.1 Management, Design, and Querying
Tools 1057
29.2 SQL Variations and Extensions 1062
29.3 Storage and Indexing 1066
29.4 Query Processing and
Optimization 1069
29.5 Concurrency and Recovery 1074
29.6 System Architecture 1078
29.7 Data Access 1080

29.8 Distributed Heterogeneous Query
Processing 1081
29.9 Replication 1082
29.10 Server Programming in .NET 1084
29.11 XML Support in SQL Server 2005 1089
29.12 SQL Server Service Broker 1094
29.13 Data Warehouse and Business
Intelligence 1096
Bibliographical Notes 1100

PART 10 B APPENDICES

Appendix A Network Model (contents online)

A.1 Basic Concepts Al

A2 Data-Structure Diagrams A2

A.3 The DBTG CODASYL Model A7
A4 DBTG Data-Retrieval Facility A13
A5 DBTG Update Facility A20

A.6 DBTG Set-Processing Facility A22
A7 Mapping of Networks to Files A27
A8 Summary A31

Exercises A32

Bibliographical Notes A35

Contents

Appendix B Hierarchical Model (contents online)

B.1 Basic Concepts Bl B.6 Mapping of Hierarchies to Files B22
B.2 Tree-Structure Diagrams B2 B.7 The IMS Database System B24

B.3 Data-Retrieval Facility B13 B.8 Summary B25

B.4 Update Facility B18 Exercises B26

B.5 Virtual Records B21 Bibliographical Notes B29

Appendix C Advanced Relational Database Design (contents
online)

C.1 Multivalued Dependencies C1 C4 Summary C10
C.2 Join Dependencies C5 Exercises C10
C.3 Domain-Key Normal Form C8 Bibliographical Notes C11

Bibliography 1101
Index 1129

xv

wu T 7

di
¥t h-wh

= = e i1 «pup F.".-ll r

SR TR S N B
X

= il “ M e . B
i can s STigl| 1 ¥ AUy W 14
me sl L1 [_‘r 2 "! !1! vilie & ahei i
[ST regunfa T 'T N - - 1 Ellv' |||J_

S . S

1
i
|11'l'||‘_|'li"| T 'IUH‘;‘“AL

13 ey [
1 rislpye .J, &

¥

Eedi= Sa 1

o

I‘ i Yyal @l

0T RE R L LR

o . I,.-'Illp
] pirolbps $w il
nl'l oy hb Py .

K = pamafdgy 5 il -

. 11 | TS
| . . ra s
]

-
[.
[|'
| E N

PETIRTY ST —_

1 i
S e —

.
K

Ak

Preface

Database management has evolved from a specialized computer application to a
central component of a modern computing environment, and, as a result, knowl-
edge about database systems has become an essential part of an education in com-
puter science. In this text, we present the fundamental concepts of database manage-
ment. These concepts include aspects of database design, database languages, and
database-system implementation.

This text is intended for a first course in databases at the junior or senior under-
graduate, or first-year graduate, level. In addition to basic material for a first course,
the text contains advanced material that can be used for course supplements, or as
introductory material for an advanced course.

We assume only a familiarity with basic data structures, computer organization,
and a high-level programming language such as Java, C, or Pascal. We present con-
cepts as intuitive descriptions, many of which are based on our running example of
a bank enterprise. Important theoretical results are covered, but formal proofs are
omitted. In place of proofs, figures and examples are used to suggest why a result is
true. Formal descriptions and proofs of theoretical results may be found in research
papers and advanced texts that are referenced in the bibliographical notes.

The fundamental concepts and algorithms covered in the book are often based
on those used in existing commercial or experimental database systems. Our aim is
to present these concepts and algorithms in a general setting that is not tied to one
particular database system. Details of particular database systems are discussed in
Part 9, “Case Studies.”

In this, the fifth edition of Database System Concepts, we have retained the overall
style of the prior editions while evolving the content and organization to reflect the
changes that are occurring in the way databases are designed, managed, and used.
We have also taken into account trends in the teaching of database concepts and
made adaptations to facilitate these trends where appropriate. Before we describe the
content of the book in detail, we highlight some of the features of the fifth edition.

., §

xviii

Preface

e Earlier coverage of SQL. Many instructors use SQL as a key component

of term projects (see our Web site, www.db-book.com, for sample projects).
In order to give students ample time for the projects, particularly for universi-
ties and colleges on the quarter system, it is essential to teach SQL as early as
possible. With this in mind, we have undertaken several changes in organiza-
tion:

1. Deferring the presentation of the entity-relationship model to Part 2, enti-
tled “Database Design.”

2. Streamlining the introduction of the relational model by deferring cover-
age of the relational calculus to Chapter 5, while retaining coverage of the
relational algebra in Chapter 2.

3. Devoting two early chapters to SQL. Chapter 3 covers basic SQL features
including data definition and manipulation. Chapter 4 covers more ad-
vanced features, including integrity constraints, dynamic SQL, and pro-
cedural constructs. New material in this chapter includes expanded cov-
erage of JDBC, procedural constructs in SQL, recursion in SQL, and new
features from SQL:2003. The chapter also includes a short overview of au-
thorization; detailed coverage of authorization is deferred to Chapter 8.

These changes allow students to begin writing SQL queries early in the
course, and gain familiarity with the use of database systems. This also al-
lows students to develop an intuition about database design that facilitates
the teaching of design methodology in Part 2 of the text. We have found that
students appreciate database-design issues better with this organization.

A new part (Part 2) that is devoted to database design. Part 2 of the text
contains three chapters devoted to the design of databases and database ap-
plications. We include here a chapter (Chapter 6) on the entity-relationship
model that includes all of the material from the corresponding chapter of the
fourth edition (Chapter 2), plus several significant updates. We also present in
Chapter 6 a brief overview of the process of database design. Instructors who
prefer to begin their course with the E-R model can begin with this chapter
without loss of continuity, as we have strived to avoid dependencies on any
prior chapter other than Chapter 1.

Chapter 7, on relational design, presents the material covered in Chapter 7
of the fourth edition, but does so in a new, more readable style. Design con-
cepts from the E-R model are used to build an intuitive overview of relational
design issues, in advance of the presentation of the formal approach to design
using functional and multivalued dependencies and algorithmic normaliza-
tion. This chapter also includes a new section on temporal issues in database
design.

Part 2 concludes with a new chapter, Chapter 8, that describes the de-
sign and development of database applications, including Web applications,
servlets, JSP, triggers, and security issues. In keeping with the increased need
to secure software from attacks, coverage of security has been significantly
expanded from the fourth edition.

Preface xix

e Thoroughly revised and updated coverage of object-based databases and
XML. Part 3 includes a heavily revised chapter on object-based databases that
emphasizes SQL object-relational features, replacing the separate chapters on
object-oriented and object-relational databases from the fourth edition. Some
of the introductory material on object-orientation which students are famil-
iar with from earlier courses has been removed, as have syntactic details of
the now defunct ODMG standard. However, important concepts underlying
object-oriented databases have been retained, including new material on the
JDO standard for adding persistence to Java.

Part 3 includes also a chapter on the design and querying of XML data,
which is significantly revised from the corresponding chapter in the fourth
edition. It includes enhanced coverage of XML Schema and XQuery, coverage
of the SQL/XML standard, and more examples of XML applications including
Web services.

e Reorganized material on data mining and information retrieval. Data min-
ing and online analytic processing are now centrally important uses of data-
bases—mno longer only “advanced topics.” We have, therefore, moved our cov-
erage of these topics into a new part, Part 6, containing a chapter on data min-
ing and analysis along with a chapter on information retrieval.

e New case study covering PostgreSQL. PostgreSQL is an open-source database
system that has gained enormous popularity in the past few years. In addition
to being a platform on which to build database applications, the source code
can be studied and extended in courses that emphasize database internals. A
case study of PostgreSQL is therefore added to Part 9, where it joins three case
studies that appeared in the fourth edition (Oracle, IBM DB2, and Microsoft
SQL Server). The latter three case studies have been updated to reflect the
latest versions of the respective software.

The coverage of topics not listed above, including transaction processing (concur-
rency and recovery), storage structures, query processing, and distributed and par-
allel databases are all updated from their fourth-edition counterparts, though their
overall organization is relatively unchanged. The coverage of QBE in Chapter 5 has
been revised, removing syntactic details of aggregation and updates that do not cor-
respond to any actual implementation, while retaining the key concepts behind QBE.

Organization

The text is organized in nine major parts, plus three appendices.

e Overview (Chapter 1). Chapter 1 provides a general overview of the nature
and purpose of database systems. We explain how the concept of a database
system has developed, what the common features of database systems are,
what a database system does for the user, and how a database system inter-
faces with operating systems. We also introduce an example database applica-
tion: a banking enterprise consisting of multiple bank branches. This example

xx

Preface

is used as a running example throughout the book. This chapter is motiva-
tional, historical, and explanatory in nature.

Part 1: Relational Databases (Chapters 2 through 5). Chapter 2 introduces the
relational model of data, covering basic concepts as well as the relational al-
gebra. The chapter also provides a brief introduction to integrity constraints.
Chapters 3 and 4 focus on the most influential of the user-oriented relational
languages: SQL. While Chapter 3 provides a basic introduction to SQL, Chap-
ter 4 describes more advanced features of SQL, including how to interface be-
tween a programming language and a database supporting SQL. Chapter 5
covers other relational languages, including the relational calculus, QBE, and
Datalog,.

The chapters in this part describe data manipulation: queries, updates, in-
sertions, and deletions, assuming a schema design has been provided. Schema
design issues are deferred to Part 2.

Part 2: Database Design (Chapters 6 through 8). Chapter 6 provides an over-
view of the database-design process, with major emphasis on database design
using the entity-relationship data model. The entity-relationship data model
provides a high-level view of the issues in database design, and of the prob-
lems that we encounter in capturing the semantics of realistic applications
within the constraints of a data model. UML class-diagram notation is also
covered in this chapter.

Chapter 7 introduces the theory of relational database design. The theory
of functional dependencies and normalization is covered, with emphasis on
the motivation and intuitive understanding of each normal form. This chapter
begins with an overview of relational design and relies on an intuitive under-
standing of logical implication of functional dependencies. This allows the
concept of normalization to be introduced prior to full coverage of functional-
dependency theory, which is presented later in the chapter. Instructors may
chose to use only this initial coverage in Sections 7.1 through 7.3 without loss
of continuity. Instructors covering the entire chapter will benefit from students
having a good understanding of normalization concepts to motivate some of
the challenging concepts of functional-dependency theory.

Chapter 8 covers application design and development. This chapter em-
phasizes the construction of database applications with Web-based interfaces.
In addition, the chapter covers application security.

Part 3: Object-Based Databases and XML (Chapters 9 and 10). Chapter 9 cov-
ers object-based databases. The chapter describes the object-relational data
model, which extends the relational data model to support complex data types,
type inheritance, and object identity. The chapter also describes database ac-
cess from object-oriented programming languages.

Chapter 10 covers the XML standard for data representation, which is see-
ing increasing use in the exchange and storage of complex data. The chapter
also describes query languages for XML.

Preface xxi

e Part 4: Data Storage and Querying (Chapters 11 through 14). Chapter 11 deals
with disk, file, and file-system structure. A variety of data-access techniques
are presented in Chapter 12, including hashing and B*-tree indices. Chapters
13 and 14 address query-evaluation algorithms and query optimization. These
chapters provide an understanding of the internals of the storage and retrieval
components of a database.

e Part 5: Transaction Management (Chapters 15 through 17). Chapter 15 fo-
cuses on the fundamentals of a transaction-processing system, including trans-
action atomicity, consistency, isolation, and durability, as well as the notion of
serializability.

Chapter 16 focuses on concurrency control and presents several techniques
for ensuring serializability, including locking, timestamping, and optimistic
(validation) techniques. The chapter also covers deadlock issues.

Chapter 17 covers the primary techniques for ensuring correct transaction
execution despite system crashes and disk failures. These techniques include
logs, checkpoints, and database dumps.

e Part 6: Data Mining and Information Retrieval (Chapters 18 and 19). Chap-
ter 18 introduces the concept of a data warehouse and explains data mining
and online analytical processing (OLAP), including SQL:1999 support for OLAP
and data warehousing. Chapter 19 describes information-retrieval techniques
for querying textual data, including hyperlink-based techniques used in Web
search engines.

Part 6 uses the modeling and language concepts from Parts 1 and 2, but
does not depend on Parts 3, 4, or 5. It can therefore be incorporated easily into
a course that focuses on SQL and on database design.

e Part 7: Database-System Architecture (Chapters 20 through 22). Chapter 20
covers computer-system architecture, and describes the influence of the un-
derlying computer system on the database system. We discuss centralized sys-
tems, client—server systems, parallel and distributed architectures, and net-
work types in this chapter.

Chapter 21, on parallel databases, explores a variety of parallelization tech-
niques, including I/O parallelism, interquery and intraquery parallelism, and
interoperation and intraoperation parallelism. The chapter also describes para-
llel-system design.

Chapter 22 covers distributed database systems, revisiting the issues of
database design, transaction management, and query evaluation and opti-
mization, in the context of distributed databases. The chapter also covers is-
sues of system availability during failures and describes the LDAP directory
system.

e Part 8: Other Topics (Chapters 23 through 25). Chapter 23 covers performance
benchmarks, performance tuning, standardization and application migration
from legacy systems.

xxii

Preface

Chapter 24 covers advanced data types and new applications, including
temporal data, spatial and geographic data, multimedia data, and issues in
the management of mobile and personal databases.

Finally, Chapter 25 deals with advanced transaction processing. Topics cov-
ered include transaction-processing monitors, transactional workflows, elec-
tronic commerce, high-performance transaction systems, real-time transaction
systems, long duration transactions, and transaction management in multi-
database systems.

e Part 9: Case Studies (Chapters 26 through 29). In this part we present case
studies of four leading database systems, including PostgreSQL, Oracle, IBM
DB2, and Microsoft SQL Server. These chapters outline unique features of each
of these systems, and describe their internal structure. They provide a wealth
of interesting information about the respective products, and help you see
how the various implementation techniques described in earlier parts are used
in real systems. They also cover several interesting practical aspects in the de-
sign of real systems.

e Online Appendices. Although most new database applications use either the
relational model or the object-relational model, the network and hierarchi-
cal data models are still in use in some legacy applications. For the benefit
of readers who wish to learn about these data models, we provide appen-
dices describing the network and hierarchical data models, in Appendices A
and B respectively; the appendices are available only online (http://www.db-
book.com).

Appendix C describes advanced relational database design, including the
theory of multivalued dependencies, join dependencies, and the project-join
and domain-key normal forms. This appendix is for the benefit of individuals
who wish to study the theory of relational database design in more detail, and
instructors who wish to do so in their courses. This appendix, too, is available
only online, on the Web page of the book.

The Fifth Edition

The production of this fifth edition has been guided by the many comments and
suggestions we received concerning the earlier editions, by our own observations
while teaching at Yale University, Lehigh University, and IIT Bombay, and by our
analysis of the directions in which database technology is evolving.

Our basic procedure was to rewrite the material in each chapter, bringing the older
material up-to-date, adding discussions on recent developments in database technol-
ogy, and improving descriptions of topics that students found difficult to understand.
As in the fourth edition, each chapter has a list of review terms that can help readers
review key topics covered in the chapter. Most chapters also have a tools section at
the end of the chapter that provides information on software tools related to the topic
of the chapter. We have also added new exercises and updated references.

Preface xxiii

In the fifth edition, we have divided the exercises into two sets: practice exercises
and exercises. The solutions for the practice exercises are publicly available on the
Web page of the book. Students are encouraged to solve the practice exercises on
their own, and later use the solutions on the Web page to check their own solutions.
Solutions to the other exercises are available only to instructors (see “Instructor’s
Note,” below, for information on how to get the solutions).

Instructor’s Note

The book contains both basic and advanced material, which might not be covered in
a single semester. We have marked several sections as advanced, using the symbol
**. These sections may be omitted if so desired, without a loss of continuity. Exercises
that are difficult (and can be omitted) are also marked using the symbol “+x.”

It is possible to design courses by using various subsets of the chapters. We outline
some of the possibilities here:

e Sections of Chapter 4 from Section 4.6 onward may be omitted from an intro-
ductory course.

e Chapter 5 can be omitted if students will not be using relational calculus, QBE
or Datalog as part of the course.

e Chapters 9 (Object-Based Databases), 10 (XML), and 14 (Query Optimization)
can be omitted from an introductory course.

e Both our coverage of transaction processing (Chapters 15 through 17) and our
coverage of database-system architecture (Chapters 20 through 22) consist of
an overview chapter (Chapters 15 and 20, respectively), followed by chap-
ters with details. You might choose to use Chapters 15 and 20, while omitting
Chapters 16, 17, 21, and 22, if you defer these latter chapters to an advanced
course.

e Chapters 18 and 19, covering data mining and information retrieval, can be
used as self-study material or omitted from an introductory course.

e Chapters 23 through 25 are suitable for an advanced course or for self-study
by students.

e The case-study Chapters 26 through 29 are suitable for self-study by students.

Model course syllabi, based on the text, can be found on the Web home page of the
book (see the following section).

Web Page and Teaching Supplements

A Web home page for the book is available at the URL:

http://www.db-book.com

xxiv

Preface

The Web page contains:

e Slides covering all the chapters of the book

e Answers to the practice exercises

Laboratory material

The three appendices

An up-to-date errata list

¢ Supplementary material contributed by users of the book
The following additional material is available only to faculty:

e An instructor manual containing solutions to all exercises in the book

e A question bank containing extra exercises

For more information about how to get a copy of the instructor manual and the ques-
tion bank, please send electronic mail to customer.service@mcgraw-hill.com. In the
United States, you may call 800-338-3987. The McGraw-Hill Web page for this book
is

http://www.mhhe.com/silberschatz

Contacting Us and Other Users

We have endeavored to eliminate typos, bugs, and the like from the text. But, as in
new releases of software, bugs probably remain; an up-to-date errata list is accessible
from the book’s home page. We would appreciate it if you would notify us of any
errors or omissions in the book that are not on the current list of errata.

We would be glad to receive suggestions on improvements to the books. We also
welcome any contributions to the book Web page that could be of use to other read-
ers, such as programming exercises, project suggestions, online labs and tutorials,
and teaching tips.

Email should be addressed to db-book@cs.yale.edu. Any other correspondence
should be sent to Avi Silberschatz, Department of Computer Science, Yale University,
51 Prospect Street, P.O. Box 208285, New Haven, CT 06520-8285 USA.

We also provide a mailing list through which users of our book can communicate
among themselves and with us, and receive updates on the book and other related
information. The list is moderated, so you will not receive junk mail on the list. Please
follow the mailing list link from the book’s home page to subscribe to the mailing list.

Acknowledgments

This edition has benefited from the many useful comments provided to us by the
numerous students who have used the prior four editions. In addition, many people

Preface xxv

have written or spoken to us about the book, and have offered suggestions and com-
ments. Although we cannot mention all these people here, we especially thank the
following:

e Hani Abu-Salem, DePaul University; Jamel R. Alsabbagh, Grand Valley State
University; Ramzi Bualuan, Notre Dame University; Zhengxin Chen, Uni-
versity of Nebraska at Omaha; Jan Chomick, SUNY Buffalo University; Qin
Ding, Penn State University at Harrisburg; Frantisek Franek, McMaster Uni-
versity; Shashi K. Gadia, Iowa State University; William Hankley, Kansas State
University; Randy M. Kaplan, Drexel University; Mark Llewellyn, Univer-
sity of Central Florida; Marty Maskarinec, Western Illinois University; Yiu-
Kai Dennis Ng, Brigham Young University; Sunil Prabhakar, Purdue Univer-
sity; Stewart Shen, Old Dominion University; Anita Whitehall, Foothill Col-
lege; Christopher Wilson, University of Oregon; Weining Zhang, University
of Texas at San Antonio; who served as reviewers of the book and whose com-
ments helped us greatly in formulating this fifth edition.

e Anastassia Ailamaki, Sailesh Krishnamurthy, Spiros Papadimitriou, and Bia-
nca Schroeder (Carnegie Mellon University) for writing the appendix describ-
ing the PostgreSQL database system.

e Hakan Jakobsson (Oracle), for the appendix on the Oracle database system,

e Sriram Padmanabhan (IBM), for the appendix describing the IBM DB2 database
system.

e Sameet Agarwal, José A. Blakeley, Thierry D"Hers, Gerald Hinson, Dirk My-
ers, Vaqar Pirzada, Bill Ramos, Balaji Rathakrishnan, Michael Rys, Florian
Waas and Michael Zwilling (all of Microsoft) for the appendix on the Mi-
crosoft SQL Server database system. José Blakeley also for coordinating and
editing Chapter 29, and César Galindo-Legaria, Goetz Graefe, Kalen Delaney,
and Thomas Casey (all of Microsoft) for their contributions to the previous
edition of the Microsoft SQL Server chapter.

e Chen Li and Sharad Mehrotra for providing material on JDBC and security
that helped update and extend Chapter 8.

o Valentin Dinu, Goetz Graefe, Bruce Hillyer, Chad Hogg, Nahid Rahman, Patrick
Schmid, Jeff Storey, Prem Thomas, Liu Zhenming, and particularly N. L. Sarda
for their feedback, which helped us prepare the fifth edition.

e Rami Khouri, Nahid Rahman, and Michael Rys for feedback on draft versions
of chapters from the fifth edition.

e Raj Ashar, Janek Bogucki, Gavin M. Bierman, Christian Breimann, Tom Chap-
pell, Y. C. Chin, Laurens Damen, Prasanna Dhandapani, Arvind Hulgeri, Zhe-
ng Jiaping, Graham J. L. Kemp, Hae Choon Lee, Sang-Won Lee, Thanh-Duy
Nguyen, D. B. Phatak, Juan Altmayer Pizzorno, Rajarshi Rakshit, Greg Ric-
cardi, N. L. Sarda, Max Smolens, Nikhil Sethi, and Tim Wahls for pointing out
errors in the fourth edition.

XXVi

Preface

e Marilyn Turnamian, whose excellent secretarial assistance was essential for
timely completion of this fifth edition.

The publisher was Betsy Jones. The sponsoring editor was Kelly Lowery. The de-
velopmental editor was Melinda D. Bilecki. The project manager was Peggy Selle.
The executive marketing manager was Michael Weitz. The marketing manager was
Dawn Bercier. The cover illustrator and cover designer was JoAnne Schopler. The
freelance copyeditor was George Watson. The freelance proofreader was Judy Gan-
tenbein. The designer was Laurie Janssen The freelance indexer was Tobiah Waldron.

This edition is based on the four previous editions, so we thank once again the
many people who helped us with the first four editions, including R. B. Abhyankar,
Don Batory, Phil Bernhard, Haran Boral, Paul Bourgeois, Phil Bohannon, Robert Braz-
ile, Yuri Breitbart, Michael Carey, Soumen Chakrabarti, J. Edwards, Christos Falout-
sos, Homma Farian, Alan Fekete, Shashi Gadia, Jim Gray, Le Gruenwald, Eitan M.
Gurari, Ron Hitchens, Yannis Ioannidis, Hyoung-Joo Kim, Won Kim, Henry Korth
(father of Henry F), Carol Kroll, Gary Lindstrom, Irwin Levinstein, Ling Liu, Dave
Maier, Keith Marzullo, Fletcher Mattox, Sharad Mehrotra, Jim Melton, Alberto Mend-
elzon, Hector Garcia-Molina, Ami Motro, Bhagirath Narahari, Anil Nigam, Cyril Orji,
Meral Ozsoyoglu, Bruce Porter, Jim Peterson, K. V. Raghavan, Krithi Ramamritham,
Mike Reiter, Odinaldo Rodriguez, Mark Roth, Marek Rusinkiewicz, Sunita Sarawagi,
N. L. Sarda, S. Seshadri, Shashi Shekhar, Amit Sheth, Nandit Soparkar, Greg Speegle,
Dilys Thomas, and Marianne Winslett.

Marilyn Turnamian and Nandprasad Joshi provided secretarial assistance for the
fourth edition, and Marilyn also prepared an early draft of the cover design for the
fourth edition. Lyn Dupré copyedited the third edition and Sara Strandtman edited
the text of the third edition. Nilesh Dalvi, Sumit Sanghai, Gaurav Bhalotia, Arvind
Hulgeri K. V. Raghavan, Prateek Kapadia, Sara Strandtman, Greg Speegle, and Dawn
Bezviner helped to prepare the instructor’s manual for earlier editions. The new
cover is an evolution of the covers of the first four editions. The idea of using ships
as part of the cover concept was originally suggested to us by Bruce Stephan.

Finally, Sudarshan would like to acknowledge his wife, Sita, for her love and sup-
port and son Madhur for his love. Hank would like to acknowledge his wife, Joan,
and his children, Abby and Joe, for their love and understanding. Avi would like to
acknowledge Valerie for her love, patience, and support during the revision of this
book.

@ T

S.
.EK.
S

Introduction

A database-management system (DBMS) is a collection of interrelated data and a
set of programs to access those data. The collection of data, usually referred to as the
database, contains information relevant to an enterprise. The primary goal of a DBMS
is to provide a way to store and retrieve database information that is both convenient
and efficient.

Database systems are designed to manage large bodies of information. Manage-
ment of data involves both defining structures for storage of information and pro-
viding mechanisms for the manipulation of information. In addition, the database
system must ensure the safety of the information stored, despite system crashes or
attempts at unauthorized access. If data are to be shared among several users, the
system must avoid possible anomalous results.

Because information is so important in most organizations, computer scientists
have developed a large body of concepts and techniques for managing data. These
concepts and techniques form the focus of this book. This chapter briefly introduces
the principles of database systems.

1.1 Database-System Applications

Databases are widely used. Here are some representative applications:

e Banking: For customer information, accounts, loans, and banking transactions.

e Airlines: For reservations and schedule information. Airlines were among the
first to use databases in a geographically distributed manner.

e Universities: For student information, course registrations, and grades.

e Credit card transactions: For purchases on credit cards and generation of month-
ly statements.

2

Chapter 1 Introduction

o Telecommunication: For keeping records of calls made, generating monthly bills,
maintaining balances on prepaid calling cards, and storing information about
the communication networks.

e Finance: For storing information about holdings, sales, and purchases of finan-
cial instruments such as stocks and bonds; also for storing real-time market
data to enable on-line trading by customers and automated trading by the
firm.

e Sales: For customer, product, and purchase information.

o On-line retailers: For sales data noted above plus on-line order tracking, gen-
eration of recommendation lists, and maintenance of on-line product evalua-
tions.

e Manufacturing: For management of the supply chain and for tracking produc-
tion of items in factories, inventories of items in warehouses and stores, and
orders for items.

e Human resources: For information about employees, salaries, payroll taxes, ben-
efits, and for generation of paychecks.

As the list illustrates, databases form an essential part of almost all enterprises today.

Over the course of the last four decades of the twentieth century, use of databases
grew in all enterprises. In the early days, very few people interacted directly with
database systems, although without realizing it they interacted with databases in-
directly—through printed reports such as credit card statements, or through agents
such as bank tellers and airline reservation agents. Then automated teller machines
came along and let users interact directly with databases. Phone interfaces to com-
puters (interactive voice response systems) also allowed users to deal directly with
databases—a caller could dial a number, and press phone keys to enter information
or to select alternative options, to find flight arrival/departure times, for example, or
to register for courses in a university.

The Internet revolution of the late 1990s sharply increased direct user access to
databases. Organizations converted many of their phone interfaces to databases into
Web interfaces, and made a variety of services and information available online. For
instance, when you access an online bookstore and browse a book or music collec-
tion, you are accessing data stored in a database. When you enter an order online,
your order is stored in a database. When you access a bank Web site and retrieve
your bank balance and transaction information, the information is retrieved from the
bank’s database system. When you access a Web site, information about you may be
retrieved from a database to select which advertisements you should see. Further-
more, data about your Web accesses may be stored in a database.

Thus, although user interfaces hide details of access to a database, and most people
are not even aware they are dealing with a database, accessing databases forms an
essential part of almost everyone’s life today.

The importance of database systems can be judged in another way—today, data-
base system vendors like Oracle are among the largest software companies in the

1.2 Purpose of Database Systems 3

world, and database systems form an important part of the product line of more
diversified companies like Microsoft and IBM.

1.2 Purpose of Database Systems

Database systems arose in response to early methods of computerized management
of commercial data. As an example of such methods, typical of the 1960s, consider
part of a bank enterprise that, among other data, keeps information about all cus-
tomers and savings accounts. One way to keep the information on a computer is to
store it in operating system files. To allow users to manipulate the information, the
system has a number of application programs that manipulates the files, including
programs to:

Debit or credit an account

e Add a new account

Find the balance of an account

e Generate monthly statements

System programmers wrote these application programs to meet the needs of the
bank.

New application programs are added to the system as the need arises. For exam-
ple, suppose that a savings bank decides to offer checking accounts. As a result, the
bank creates new permanent files that contain information about all the checking ac-
counts maintained in the bank, and it may have to write new application programs
to deal with situations that do not arise in savings accounts, such as overdrafts. Thus,
as time goes by, the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional operating sys-
tem. The system stores permanent records in various files, and it needs different
application programs to extract records from, and add records to, the appropriate
files. Before database management systems (DBMSs) came along, organizations usu-
ally stored information in such systems.

Keeping organizational information in a file-processing system has a number of
major disadvantages:

e Data redundancy and inconsistency. Since different programmers create the
files and application programs over a long period, the various files are likely
to have different structures and the programs may be written in several pro-
gramming languages. Moreover, the same information may be duplicated in
several places (files). For example, the address and telephone number of a par-
ticular customer may appear in a file that consists of savings-account records
and in a file that consists of checking-account records. This redundancy leads
to higher storage and access cost. In addition, it may lead to data inconsis-
tency; that is, the various copies of the same data may no longer agree. For
example, a changed customer address may be reflected in savings-account
records but not elsewhere in the system.

4

Chapter 1

Introduction

e Difficulty in accessing data. Suppose that one of the bank officers needs to

find out the names of all customers who live within a particular postal-code
area. The officer asks the data-processing department to generate such a list.
Because the designers of the original system did not anticipate this request,
there is no application program on hand to meet it. There is, however, an ap-
plication program to generate the list of all customers. The bank officer has
now two choices: either obtain the list of all customers and extract the needed
information manually or ask a system programmer to write the necessary
application program. Both alternatives are obviously unsatisfactory. Suppose
that such a program is written, and that, several days later, the same officer
needs to trim that list to include only those customers who have an account
balance of $10,000 or more. As expected, a program to generate such a list does
not exist. Again, the officer has the preceding two options, neither of which is
satisfactory.

The point here is that conventional file-processing environments do not al-
low needed data to be retrieved in a convenient and efficient manner. More
responsive data-retrieval systems are required for general use.

Data isolation. Because data are scattered in various files, and files may be in
different formats, writing new application programs to retrieve the appropri-
ate data is difficult.

Integrity problems. The data values stored in the database must satisfy cer-
tain types of consistency constraints. For example, the balance of certain types
of bank accounts may never fall below a prescribed amount (say, $25). Devel-
opers enforce these constraints in the system by adding appropriate code in
the various application programs. However, when new constraints are added,
it is difficult to change the programs to enforce them. The problem is com-
pounded when constraints involve several data items from different files.

Atomicity problems. A computer system, like any other mechanical or elec-
trical device, is subject to failure. In many applications, it is crucial that, if a
failure occurs, the data be restored to the consistent state that existed prior to
the failure. Consider a program to transfer $50 from account A to account B.
If a system failure occurs during the execution of the program, it is possible
that the $50 was removed from account A but was not credited to account B,
resulting in an inconsistent database state. Clearly, it is essential to database
consistency that either both the credit and debit occur, or that neither occur.
That is, the funds transfer must be atomic—it must happen in its entirety or
not at all. It is difficult to ensure atomicity in a conventional file-processing
system.

Concurrent-access anomalies. For the sake of overall performance of the sys-
tem and faster response, many systems allow multiple users to update the
data simultaneously. Indeed, today, the largest Internet retailers may have mil-
lions of accesses per day to their data by shoppers. In such an environment,
interaction of concurrent updates is possible and may result in inconsistent

1.3 View of Data 5

data. Consider bank account A, containing $500. If two customers withdraw
funds (say $50 and $100, respectively) from account A at about the same time,
the result-of the concurrent executions may leave the account in an incorrect
(or inconsistent) state. Suppose that the programs executing on behalf of each
withdrawal read the old balance, reduce that value by the amount being with-
drawn, and write the result back. If the two programs run concurrently, they
may both read the value $500, and write back $450 and $400, respectively. De-
pending on which one writes the value last, the account may contain either
$450 or $400, rather than the correct value of $350. To guard against this pos-
sibility, the system must maintain some form of supervision. But supervision
is difficult to provide because data may be accessed by many different appli-
cation programs that have not been coordinated previously.

e Security problems. Not every user of the database system should be able to
access all the data. For example, in a banking system, payroll personnel need
to see only that part of the database that has information about the various
bank employees. They do not need access to information about customer ac-
counts. But, since application programs are added to the file-processing sys-
tem in an ad hoc manner, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of database systems.
In what follows, we shall see the concepts and algorithms that enable database sys-
tems to solve the problems with file-processing systems. In most of this book, we
use a bank enterprise as a running example of a typical data-processing application
found in a corporation.

1.3 View of Data

A database system is a collection of interrelated data and a set of programs that allow
users to access and modify these data. A major purpose of a database system is to
provide users with an abstract view of the data. That is, the system hides certain
details of how the data are stored and maintained.

1.3.1 Data Abstraction

For the system to be usable, it must retrieve data efficiently. The need for efficiency
has led designers to use complex data structures to represent data in the database.
Since many database-system users are not computer trained, developers hide the
complexity from users through several levels of abstraction, to simplify users’ inter-
actions with the system:

e Physical level. The lowest level of abstraction describes how the data are actu-
ally stored. The physical level describes complex low-level data structures in
detail.

e Logical level. The next-higher level of abstraction describes what data are
stored in the database, and what relationships exist among those data. The

6

Chapter 1

Introduction

view level

Figure 1.1 The three levels of data abstraction.

logical level thus describes the entire database in terms of a small number
of relatively simple structures. Although implementation of the simple struc-
tures at the logical level may involve complex physical-level structures, the
user of the logical level does not need to be aware of this complexity. Database
administrators, who must decide what information to keep in the database,
use the logical level of abstraction.

View level. The highest level of abstraction describes only part of the entire
database. Even though the logical level uses simpler structures, complexity
remains because of the variety of information stored in a large database. Many
users of the database system do not need all this information; instead, they
need to access only a part of the database. The view level of abstraction exists
to simplify their interaction with the system. The system may provide many
views for the same database.

Figure 1.1 shows the relationship among the three levels of abstraction.

An analogy to the concept of data types in programming languages may clarify

the distinction among levels of abstraction. Most high-level programming languages
support the notion of a structured type. For example, in a Pascal-like language, we
may declare a record as follows:

type customer = record
customer.id : string;
customer_name : string;
customer_street : string;
customer_city : string;
end;

This code defines a new record type called customer with four fields. Each field has
a name and a type associated with it. A banking enterprise may have several such
record types, including

13 ViewofData 7

e account, with fields account.number and balance

o employee, with fields employee_name and salary

At the physical level, a customer, account, or employee record can be described as a
block of consecutive storage locations (for example, words or bytes). The compiler
hides this level of detail from programmers. Similarly, the database system hides
many of the lowest-level storage details from database programmers. Database ad-
ministrators, on the other hand, may be aware of certain details of the physical orga-
nization of the data.

At the logical level, each such record is described by a type definition, as in the
previous code segment, and the interrelationship of these record types is defined as
well. Programmers using a programming language work at this level of abstraction.
Similarly, database administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that
hide details of the data types. Similarly, at the view level, several views of the database
are defined, and database users see these views. In addition to hiding details of the
logical level of the database, the views also provide a security mechanism to prevent
users from accessing certain parts of the database. For example, tellers in a bank see
only that part of the database that has information on customer accounts; they cannot
access information about salaries of employees.

1.3.2 Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of
information stored in the database at a particular moment is called an instance of the
database. The overall design of the database is called the database schema. Schemas
are changed infrequently, if at all.

The concept of database schemas and instances can be understood by analogy to
a program written in a programming language. A database schema corresponds to
the variable declarations (along with associated type definitions) in a program. Each
variable has a particular value at a given instant. The values of the variables in a
program at a point in time correspond to an instance of a database schema.

Database systems have several schemas, partitioned according to the levels of ab-
straction. The physical schema describes the database design at the physical level,
while the logical schema describes the database design at the logical level. A database
may also have several schemas at the view level, sometimes called subschemas, that
describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its effect on
application programs, since programmers construct applications by using the logical
schema. The physical schema is hidden beneath the logical schema, and can usually
be changed easily without affecting application programs. Application programs are
said to exhibit physical data independence if they do not depend on the physical
schema, and thus need not be rewritten if the physical schema changes.

We study languages for describing schemas, after introducing the notion of data
models in the next section.

Chapter 1

Introduction

1.3.3 Data Models

Underlying the structure of a database is the data model: a collection of conceptual
tools for describing data, data relationships, data semantics, and consistency con-
straints. A data model provides a way to describe the design of a database at the
physical, logical, and view level.

There are a number of different data models that we will cover in the text. The

data models can be classified in four different categories:

e Relational Model. The relational model uses a collection of tables to represent

both data and the relationships among those data. Each table has multiple
columns, and each column has a unique name. The relational model is an
example of a record-based model. Record-based models are so named because
the database is structured in fixed-format records of several types. Each table
contains records of a particular type. Each record type defines a fixed number
of fields, or attributes. The columns of the table correspond to the attributes of
the record type. The relational data model is the most widely used data model,
and a vast majority of current database systems are based on the relational
model. Chapters 2 through 7 cover the relational model in detail.

The Entity-Relationship Model. The entity-relationship (E-R) data model is
based on a perception of a real world that consists of a collection of basic
objects, called entities, and of relationships among these objects. An entity is a
“thing” or “object” in the real world that is distinguishable from other objects.
The entity-relationship model is widely used in database design, and Chapter
6 explores it in detail.

Object-Based Data Model. The object-oriented data model is another data
model that has seen increasing attention. The object-oriented model can be
seen as extending the E-R model with notions of encapsulation, methods (func-
tions), and object identity. The object-relational data model combines features
of the object-oriented data model and relational data model. Chapter 9 exam-
ines the object-based data model.

Semistructured Data Model. The semistructured data model permits the spec-
ification of data where individual data items of the same type may have dif-
ferent sets of attributes. This is in contrast to the data models mentioned ear-
lier, where every data item of a particular type must have the same set of at-
tributes. The Extensible Markup Language (XML) is widely used to represent
semistructured data. Chapter 10 covers it.

Historically, the network data model and the hierarchical data model preceded

the relational data model. These models were tied closely to the underlying imple-
mentation, and complicated the task of modeling data. As a result they are used little
now, except in old database code that is still in service in some places. They are out-
lined in Appendices A and B for interested readers.

14 Database Languages 9

1.4 Database Languages

A database system provides a data-definition language to specify the database schema
and a data-manipulation language to express database queries and updates. In prac-
tice, the data-definition and data-manipulation languages are not two separate lan-
guages; instead they simply form parts of a single database language, such as the
widely used SQL language.

1.4.1 Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or
manipulate data as organized by the appropriate data model. The types of access are:

e Retrieval of information stored in the database

Insertion of new information into the database

Deletion of information from the database

e Modification of information stored in the database
There are basically two types:

o Procedural DMLs require a user to specify what data are needed and how to
get those data.

e Declarative DMLs (also referred to as nonprocedural DMLs) require a user to
specify what data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs.
However, since a user does not have to specify how to get the data, the database
system has to figure out an efficient means of accessing data.

A query is a statement requesting the retrieval of information. The portion of a
DML that involves information retrieval is called a query language. Although tech-
nically incorrect, it is common practice to use the terms query language and data-
manipulation language synonymously.

There are a number of database query languages in use, either commercially or
experimentally. We study the most widely used query language, SQL, in Chapters 3
and 4. We also study some other query languages in Chapter 5.

The levels of abstraction that we discussed in Section 1.3 apply not only to defining
or structuring data, but also to manipulating data. At the physical level, we must
define algorithms that allow efficient access to data. At higher levels of abstraction,
we emphasize ease of use. The goal is to allow humans to interact efficiently with the
system. The query processor component of the database system (which we study in
Chapters 13 and 14) translates DML queries into sequences of actions at the physical
level of the database system.

10

Chapter1 Introduction

1.4.2 Data-Definition Language

We specify a database schema by a set of definitions expressed by a special language
called a data-definition language (DDL). The DDL is also used to specify additional
properties of the data.

We specify the storage structure and access methods used by the database system
by a set of statements in a special type of DDL called a data storage and definition lan-
guage. These statements define the implementation details of the database schemas,
which are usually hidden from the users.

The data values stored in the database must satisfy certain consistency constraints.
For example, suppose the balance on an account should not fall below $100. The DDL
provides facilities to specify such constraints. The database systems check these con-
straints every time the database is updated. In general, a constraint can be an ar-
bitrary predicate pertaining to the database. However, arbitrary predicates may be
costly to test. Thus, database systems concentrate on integrity constraints that can be
tested with minimal overhead:

e Domain Constraints. A domain of possible values must be associated with
every attribute (for example, integer types, character types, date/time types).
Declaring an attribute to be of a particular domain acts as a constraint on the
values that it can take. Domain constraints are the most elementary form of
integrity constraint. They are tested easily by the system whenever a new data
item is entered into the database.

e Referential Integrity. There are cases where we wish to ensure that a value
that appears in one relation for a given set of attributes also appears for a
certain set of attributes in another relation (referential integrity). Database
modifications can cause violations of referential integrity. When a referential-
integrity constraint is violated, the normal procedure is to reject the action that
caused the violation.

o Assertions. An assertion is any condition that the database must always sat-
isfy. Domain constraints and referential-integrity constraints are special forms
of assertions. However, there are many constraints that we cannot express by
using only these special forms. For example, “Every loan has at least one cus-
tomer who maintains an account with a minimum balance of $1000.00” must
be expressed as an assertion. When an assertion is created, the system tests
it for validity. If the assertion is valid, then any future modification to the
database is allowed only if it does not cause that assertion to be violated.

o Authorization. We may want to differentiate among the users as far as the
type of access they are permitted on various data values in the database. These
differentiations are expressed in terms of authorization, the most common be-
ing: read authorization, which allows reading, but not modification, of data;
insert authorization, which allows insertion of new data, but not modifica-
tion of existing data; update authorization, which allows modification, but
not deletion, of data; and delete authorization, which allows deletion of data.
We may assign the user all, none, or a combination of these types of autho-
rization.

1.5 Relational Databases 11

The DDL, just like any other programming language, gets as input some instruc-
tions (statements) and generates some output. The output of the DDL is placed in the
data dictionary, which contains metadata—that is, data about data. The data dic-
tionary is considered to be a special type of table, which can only be accessed and
updated by the database system itself (not a regular user). A database system con-
sults the data dictionary before reading or modifying actual data.

1.5 Relational Databases

A relational database is based on the relational model and uses a collection of tables
to represent both data and the relationships among those data. It also includes a DML
and DDL. Most commercial relational database systems employ the SQL language,
which we cover in this section and which will be covered in great detail in Chapters
3 and 4. In Chapter 5 we discuss other influential languages.

1.5.1 Tables

Each table has multiple columns, and each column has a unique name. Figure 1.2
presents a sample relational database comprising three tables: one shows details of
bank customers, the second shows accounts, and the third shows which accounts
belong to which customers.

The first table, the customer table, shows, for example, that the customer identified
by customer_id 192-83-7465 is named Johnson and lives at 12 Alma St. in Palo Alto.
The second table, account, shows, for example, that account A-101 has a balance of
$500, and A-201 has a balance of $900.

The third table shows which accounts belong to which customers. For example,
account number A-101 belongs to the customer whose customer_id is 192-83-7465,
namely Johnson, and customers 192-83-7465 (Johnson) and 019-28-3746 (Smith) share
account number A-201 (they may share a business venture).

The relational model is an example of a record-based model. Record-based mod-
els are so named because the database is structured in fixed-format records of several
types. Each table contains records of a particular type. Each record type defines a
fixed number of fields, or attributes. The columns of the table correspond to the at-
tributes of the record type.

It is not hard to see how tables may be stored in files. For instance, a special char-
acter (such as a comma) may be used to delimit the different attributes of a record,
and another special character (such as a new-line character) may be used to de-
limit records. The relational model hides such low-level implementation details from
database developers and users.

The relational data model is the most widely used data model, and a vast majority
of current database systems are based on the relational model. Chapters 2 through 7
cover the relational model in detail.

We also note that it is possible to create schemas in the relational model that have
problems such as unnecessarily duplicated information. For example, suppose we
store account_ number as an attribute of the customer record. Then, to represent the fact

12

Chapter 1

that accounts A-101 and A-201 both belong to customer Johnson (with customer.id
192-83-7465), we would need to store two rows in the customer table. The values for
customer_name, customer.street, and customer_city for Johnson would be unnecessarily
duplicated in the two rows. In Chapter 7, we shall study how to distinguish good
schema designs from bad schema designs.

Introduction

[customer_id |customer_name|

customer_street

| customer_city|

192-83-7465 Johnson 12 Alma St. Palo Alto
677-89-9011 Hayes 3 Main St. Harrison
182-73-6091 Turner 123 Putnam Ave. Stamford
321-12-3123 Jones 100 Main St. Harrison
336-66-9999 Lindsay 175 Park Ave. Pittsfield
019-28-3746 Smith 72 North St. Rye

(a) The customer table

[account_number | balance |

A-101
A-215
A-102
A-305
A-201
A-217
A-222

500
700
400
350
900
750
700

(b) The account table

[customer_id | account_number
192-83-7465 A-101
192-83-7465 A-201
019-28-3746 A-215
677-89-9011 A-102
182-73-6091 A-305
321-12-3123 A-217
336-66-9999 A-222
019-28-3746 A-201

(c) The depositor table

Figure 1.2 A sample relational database.

1.5.2 Data-Manipulation Language

The query language of SQL is nonprocedural. It takes as input several tables (possibly
only one) and always returns a single table. Here is an example of an SQL query that

finds the names of all customers who reside in Harrison:

1.5 Relational Databases 13

select customer.customer_name
from customer
where customer.customer city = ‘Harrison’

The query specifies that those rows from the table customer where the customer.city is
Harrison must be retrieved, and the customer_name attribute of these rows must be
displayed. More specifically, the result of executing this query is a table with a single
column labeled customer_name, and a set of rows, each of which contains the name of a
customer whose customer.city is Harrison. If the query is run on the table in Figure 1.2,
the result will consist of two rows, one with the name Hayes and the other with the
name Jones.

Queries may involve information from more than one table. For instance, the fol-
lowing query finds the account numbers and corresponding balances of all accounts
owned by the customer with customer_id 192-83-7465.

select account.account_number, account.balance

from depositor, account

where depositor.customer.id = '192-83-7465" and
depositor.account_number = account.account number

If the above query were run on the tables in Figure 1.2, the system would find that
the two accounts numbered A-101 and A-201 are owned by customer 192-83-7465
and the result will consist of a table with two columns (account_number, balance) and
two rows (A-101, 500) and (A-201, 900).

1.5.3 Data-Definition Language

SQL provides a rich DDL that allows one to define tables, integrity constraints, asser-
tions, etc.
For instance, the following statement in the SQL language defines the account table:

create table account
(account_number char(10),
balance integer)

Execution of the above DDL statement creates the account table. In addition, it up-
dates the data dictionary, which contains metadata (1.4.2). The schema of a table is
an example of metadata.

1.5.4 Database Access from Application Programs

SQL is not as powerful as a universal Turing machine; that is, there are some computa-
tions that can not be obtained by any SQL query. Such computations must be written
in a host language, such as Cobol, C, C++, or Java, with embedded SQL queries that
access the data in the database. Application programs are programs that are used
to interact with the database in this fashion. Examples in a banking system are pro-
grams that generate payroll checks, debit accounts, credit accounts, or transfer funds
between accounts.

14 Chapter1 Introduction

To access the database, DML statements need to be executed from the host lan-
guage. There are two ways to do this:

e By providing an application program interface (set of procedures) that can be

used to send DML and DDL statements to the database and retrieve the results.

The Open Database Connectivity (ODBC) standard defined by Microsoft

for use with the C language is a commonly used application program inter-

face standard. The Java Database Connectivity (JDBC) standard provides cor-
responding features to the Java language.

e By extending the host language syntax to embed DML calls within the host
language program. Usually, a special character prefaces DML calls, and a pre-
processor, called the DML precompiler, converts the DML statements to nor-
mal procedure calls in the host language.

1.6 Database Design

Database systems are designed to manage large bodies of information. These large
bodies of information do not exist in isolation. They are part of the operation of some
enterprise whose end product may be information from the database or may be some
device or service for which the database plays only a supporting role.

Database design mainly involves the design of the database schema. The design
of a complete database application environment that meets the needs of the enter-
prise being modeled requires attention to a broader set of issues. In this text, we fo-
cus initially on the writing of database queries and the design of database schemas.
Chapter 8 discusses the overall process of application design.

1.6.1 Design Process

A high-level data model serves the database designer by providing a conceptual
framework in which to specify, in a systematic fashion, what the data requirements
of the database users are, and how the database will be structured to fulfill these
requirements. The initial phase of database design, then, is to characterize fully the
data needs of the prospective database users. The database designer needs to interact
extensively with domain experts and users to carry out this task. The outcome of this
phase is a specification of user requirements.

Next, the designer chooses a data model, and by applying the concepts of the
chosen data model, translates these requirements into a conceptual schema of the
database. The schema developed at this conceptual-design phase provides a detailed
overview of the enterprise. The designer reviews the schema to confirm that all data
requirements are indeed satisfied and are not in conflict with one another. The de-
signer can also examine the design to remove any redundant features. The focus at
this point is describing the data and their relationships, rather than on specifying
physical storage details.

1.6 Database Design 15

In terms of the relational model, the conceptual-design process involves decisions
on what attributes we want to capture in the database and how to group these attributes
to form the various tables. The “what” part is basically a business decision, and we
will not discuss it further in this text. The “how” part is mainly a computer science
problem. There are principally two ways to tackle the problem. The first one is to use
the entity-relationship model (Section 1.6.3); the other is to employ a set of algorithms
(collectively known as normalization) that takes as input the set of all attributes and
generates a set of tables (Section 1.6.4).

A fully developed conceptual schema will also indicate the functional require-
ments of the enterprise. In a specification of functional requirements, users describe
the kinds of operations (or transactions) that will be performed on the data. Example
operations include modifying or updating data, searching for and retrieving specific
data, and deleting data. At this stage of conceptual design, the designer can review
the schema to ensure it meets functional requirements.

The process of moving from an abstract data model to the implementation of the
database proceeds in two final design phases. In the logical-design phase, the de-
signer maps the high-level conceptual schema onto the implementation data model
of the database system that will be used. The designer uses the resulting system-
specific database schema in the subsequent physical-design phase, in which the
physical features of the database are specified. These features include the form of file
organization and the internal storage structures; they are discussed in Chapter 11.

1.6.2 Database Design for Banking Enterprise

To illustrate the design process, let us examine how a database for a banking enter-
prise could be designed. The initial specification of user requirements may be based
on interviews with the database users, and on the designer’s own analysis of the
enterprise. The description that arises from this design phase serves as the basis for
specifying the conceptual structure of the database. Here are the major characteristics
of the banking enterprise.

e The bank is organized into branches. Each branch is located in a particular
city and is identified by a unique name. The bank monitors the assets of each
branch.

e Bank customers are identified by their customer.id values. The bank stores each
customer’s name, and the street and city where the customer lives. Customers
may have accounts and can take out loans. A customer may be associated with
a particular banker, who may act as a loan officer or personal banker for that
customer.

e The bank offers two types of accounts—savings and checking accounts. Ac-
counts can be held by more than one customer, and a customer can have more
than one account. Each account is assigned a unique account number. The
bank maintains a record of each account’s balance and the most recent date on
which the account was accessed by each customer holding the account. In ad-

16

Chapter1 Introduction

dition, each savings account has an interest rate, and overdrafts are recorded
for each checking account.

¢ The bank provides its customers with loans. A loan originates at a particular
branch and can be held by one or more customers. A loan is identified by a
unique loan number. For each loan, the bank keeps track of the loan amount
and the loan payments. Although a loan-payment number does not uniquely
identify a particular payment among those for all the bank’s loans, a payment
number does identify a particular payment for a specific loan. The date and
amount are recorded for each payment.

e Bank employees are identified by their employee_id values. The bank adminis-
tration stores the name and telephone number of each employee, the names
of the employee’s dependents, and the employee_id number of the employee’s
manager. The bank also keeps track of the employee’s start date and, thus,
length of employment.

In a real banking enterprise, the bank would keep track of deposits and with-
drawals from savings and checking accounts, just as it keeps track of payments to
loan accounts. Since the modeling requirements for that tracking are similar, and we
would like to keep our example application small, we do not keep track of such de-
posits and withdrawals in our model.

1.6.3 The Entity-Relationship Model

The entity-relationship (E-R) data model is based on a perception of a real world that
consists of a collection of basic objects, called entities, and of relationships among these
objects. An entity is a “thing” or “object” in the real world that is distinguishable
from other objects. For example, each person is an entity, and bank accounts can be
considered as entities.

Entities are described in a database by a set of attributes. For example, the at-
tributes account.number and balance may describe one particular account in a bank,
and they form attributes of the account entity set. Similarly, attributes customer_name,
customer.street address and customer_city may describe a customer entity.

An extra attribute customer_id is used to uniquely identify customers (since it may
be possible to have two customers with the same name, street address, and city).
A unique customer identifier must be assigned to each customer. In the United States,
many enterprises use the social-security number of a person (a unique number the
U.S. government assigns to every person in the United States) as a customer
identifier.

A relationship is an association among several entities. For example, a depositor
relationship associates a customer with each account that she has. The set of all enti-
ties of the same type and the set of all relationships of the same type are termed an
entity set and relationship set, respectively.

The overall logical structure (schema) of a database can be expressed graphically
by an E-R diagram, which is built up from the following components:

1.6 Database Design 17

account

ctistonier

Figure 1.3 A sample E-R diagram.

o Rectangles, which represent entity sets
e Ellipses, which represent attributes

e Diamonds, which represent sets of relationships among members from each
of several entity sets

e Lines, which link attributes to entity sets and entity sets to relationships

Each component is labeled with the entity or relationship that it represents.

As an illustration, consider part of a database banking system consisting of
customers and of the accounts that these customers have. Figure 1.3 shows the cor-
responding E-R diagram. The E-R diagram indicates that there are two entity sets,
customer and account, with attributes as outlined earlier. The diagram also shows a
relationship depositor between customer and account.

In addition to entities and relationships, the E-R model represents certain con-
straints to which the contents of a database must conform. One important constraint
is mapping cardinalities, which express the number of entities to which another en-
tity can be associated via a relationship set. For example, if each account must belong
to only one customer, the E-R model can express that constraint.

The entity-relationship model is widely used in database design, and Chapter 6
explores it in detail.

1.6.4 Normalization

Another method for designing a relational database is to use a process commonly
known as normalization. The goal is to generate a set of relation schemas that al-
lows us to store information without unnecessary redundancy, yet also allows us to
retrieve information easily. The approach is to design schemas that are in an appro-
priate normal form. To determine whether a relation schema is in one of the desirable
normal forms, we need additional information about the real-world enterprise that
we are modeling with the database. The most common approach is to use functional
dependencies, which we cover in Section 7.4.

To understand the need for normalization, let us look at what can go wrong in a
bad database design. Among the undesirable properties that a bad design may have
are:

18

Chapter 1 Introduction

“customer_id | account_number | balance |

192-83-7465 A-101 500
192-83-7465 A-201 %00
019-28-3746 A-215 700
677-89-9011 A-102 400
182-73-6091 A-305 350
321-12-3123 A-217 750
336-66-9999 A-222 700
019-28-3746 A-201 900

Figure 1.4 The depositor’ table.

e Repetition of information

e Inability to represent certain information

We shall discuss these problems with the help of a modified database design for our
banking example

Suppose that instead of having the two separate tables account and depositor, we
have a single table, depositor’, that combines the information from the two tables (as
depicted in Figure 1.4). Notice that there are two rows in depositor” that contain infor-
mation about account A-201. The repetition of information in our alternative design
is undesirable. Repeating information wastes space. Furthermore, it complicates up-
dating the database. Suppose that we wish to change the account balance of A-201
from $900 to $950. This change must be reflected in the two rows; contrast this with
the original design, where this will result in an update in a single row. Thus, updates
are more costly under the alternative design than under the original design. When
we perform the update in the alternative database, we must ensure that every tuple
pertaining to account A-201 is updated, or else our database will show two different
balance values for account A-201.

Let’s shift our attention to the issue of “inability to represent certain information.”
Suppose that instead of having the two separate tables customer and depositor, we
have a single table, customer’, that combines the information from the two tables
(as depicted in Figure 1.5). We cannot represent directly the information concern-
ing a customer (customer.id, customer_name, customer street, customer.city) unless that
customer has at least one account at the bank. This is because rows in the customer’
table require values for account.number.

One solution to this problem is to introduce null values. The null value indicates
that the value does not exist (or is not known). An unknown value may be either
missing (the value does exist, but we do not have that information) or not known (we
do not know whether or not the value actually exists). As we shall see later, null val-
ues are difficult to handle, and it is preferable not to resort to them. If we are not
willing to deal with null values, then we can create a particular item of customer
information only when the customer has an account in the bank (note that a cus-
tomer may have a loan but no account). Furthermore, we would have to delete this
information when the customer closes his account. Clearly, this situation is undesir-

1.7 Object-Based and Semistructured Databases 19

‘customer_id |customer_name1 customer_street | customer_city| account_number |

192-83-7465 Johnson 12 Alma St. Palo Alto A-101
192-83-7465 Johnson 12 Alma St. Palo Alto A-201
677-89-9011 Hayes 3 Main St. Harrison A-102
182-73-6091 Turner 123 Putnam St. Stamford A-305
321-12-3123 Jones 100 Main St. Harrison A-217
336-66-9999 Lindsay 175 Park Ave. Pittsfield A-222
019-28-3746 Smith 72 North St. Rye A-201

Figure 1.5 The customer’ table.

able, since, under our original database design, the customer information would be
available regardless of whether or not he has an account in the bank, and without
resorting to null values.

1.7 Object-Based and Semistructured Databases

Several application areas for database systems are limited by the restrictions of the
relational data model. As a result, researchers have developed several data models to
deal with these application domains. The data models that we will cover in the text
are the object-oriented and the object-relational data model, which are representative
of the object-based data models, and XML, which is representative of the semistruc-
tured data models.

1.7.1 Object-Based Data Models

The object-oriented data model is based on the object-oriented programming lan-
guage paradigm, which is now in wide use. Inheritance, object-identity, and encap-
sulation (information hiding), with methods to provide an interface to objects, are
among the key concepts of object-oriented programming that have found applica-
tions in data modeling. The object-oriented data model also supports a rich type sys-
tem, including structured and collection types. The object-oriented model can be seen
as extending the E-R model with notions of encapsulation, methods (functions), and
object identity.

The object-relational data model extends the traditional relational model with a
variety of features such as structured and collection types, as well as object orienta-
tion.

Chapter 9 examines the object-relational databases (that is, databases built on the
object-relational model), as well as the object-oriented databases (that is, databases
built on the object-oriented data model).

1.7.2 Semistructured Data Models

Semistructured data models permit the specification of data where individual data
items of the same type may have different sets of attributes. This is in contrast with

20

Chapter 1 Introduction

the data models mentioned earlier, where every data item of a particular type must
have the same set of attributes.

The XML language was initially designed as a way of adding markup informa-
tion to text documents, but has become important because of its applications in data
exchange. XML provides a way to represent data that have nested structure, and fur-
thermore allows a great deal of flexibility in structuring of data, which is important
for certain kinds of nontraditional data. Chapter 10 describes the XML language, dif-
ferent ways of expressing queries on data represented in XML, and transforming XML
data from one form to another.

1.8 Data Storage and Querying

A database system is partitioned into modules that deal with each of the responsibil-
ities of the overall system. The functional components of a database system can be
broadly divided into the storage manager and the query processor components.

The storage manager is important because databases typically require a large
amount of storage space. Corporate databases range in size from hundreds of giga-
bytes to, for the largest databases, terabytes of data. A gigabyte is 1000 megabytes (1
billion bytes), and a terabyte is 1 million megabytes (1 trillion bytes). Since the main
memory of computers cannot store this much information, the information is stored
on disks. Data are moved between disk storage and main memory as needed. Since
the movement of data to and from disk is slow relative to the speed of the central
processing unit, it is imperative that the database system structure the data so as to
minimize the need to move data between disk and main memory.

The query processor is important because it helps the database system simplify
and facilitate access to data. High-level views help to achieve this goal; with them,
users of the system are not burdened unnecessarily with the physical details of the
implementation of the system. However, quick processing of updates and queries
is important. It is the job of the database system to translate updates and queries
written in a nonprocedural language, at the logical level, into an efficient sequence of
operations at the physical level.

1.8.1 Storage Manager

A storage manager is a program module that provides the interface between the low-
level data stored in the database and the application programs and queries submit-
ted to the system. The storage manager is responsible for the interaction with the file
manager. The raw data are stored on the disk by using the file system, which is usu-
ally provided by a conventional operating system. The storage manager translates
the various DML statements into low-level file-system commands. Thus, the storage
manager is responsible for storing, retrieving, and updating data in the database.
The storage manager components include:

e Authorization and integrity manager, which tests for the satisfaction of in-
tegrity constraints and checks the authority of users to access data.

1.8 DataStorage and Querying 21

e Transaction manager, which ensures that the database remains in a consistent
(correct) state despite system failures, and that concurrent transaction execu-
tions proceed without conflicting.

e File manager, which manages the allocation of space on disk storage and the
data structures used to represent information stored on disk.

e Buffer manager, which is responsible for fetching data from disk storage into
main memory, and deciding what data to cache in main memory. The buffer
manager is a critical part of the database system, since it enables the database
to handle data sizes that are much larger than the size of main memory.

The storage manager implements several data structures as part of the physical
system implementation:

e Data files, which store the database itself.

e Data dictionary, which stores metadata about the structure of the database, in
particular the schema of the database.

e Indices, which can provide fast access to data items. Like the index in this
textbook, a database index provides pointers to those data items that hold a
particular value. For example, we could use an index to find all account records
with a particular account number. Hashing is an alternative to indexing that is
faster in some but not all cases.

We discuss storage media, file structures, and buffer management in Chapter 11.
Methods of accessing data efficiently via indexing or hashing are discussed in Chap-
ter 12.

1.8.2 The Query Processor

The query processor components include

e DDL interpreter, which interprets DDL statements and records the definitions
in the data dictionary.

e DML compiler, which translates DML statements in a query language into an
evaluation plan consisting of low-level instructions that the query evaluation
engine understands.

A query can usually be translated into any of a number of alternative eval-
uation plans that all give the same result. The DML compiler also performs
query optimization; that is, it picks the lowest cost evaluation plan from among
the alternatives.

e Query evaluation engine, which executes low-level instructions generated by
the DML compiler.

22

Chapter1 Introduction

Query evaluation is covered in Chapter 13, while the methods by which the query op-
timizer chooses from among the possible evaluation strategies is discussed in Chap-
ter 14.

1.9 Transaction Management

Often, several operations on the database form a single logical unit of work. An ex-
ample is a funds transfer, as in Section 1.2, in which one account (say A) is debited and
another account (say B) is credited. Clearly, it is essential that either both the credit
and debit occur, or that neither occur. That is, the funds transfer must happen in its
entirety or not at all. This all-or-none requirement is called atomicity. In addition, it
is essential that the execution of the funds transfer preserve the consistency of the
database. That is, the value of the sum A + B must be preserved. This correctness
requirement is called consistency. Finally, after the successful execution of a funds
transfer, the new values of accounts A and B must persist, despite the possibility of
system failure. This persistence requirement is called durability.

A transaction is a collection of operations that performs a single logical function
in a database application. Each transaction is a unit of both atomicity and consis-
tency. Thus, we require that transactions do not violate any database-consistency
constraints. That is, if the database was consistent when a transaction started, the
database must be consistent when the transaction successfully terminates. However,
during the execution of a transaction, it may be necessary temporarily to allow incon-
sistency, since either the debit of A or the credit of B must be done before the other.
This temporary inconsistency, although necessary, may lead to difficulty if a failure
occurs.

It is the programmer’s responsibility to define properly the various transactions,
so that each preserves the consistency of the database. For example, the transaction to
transfer funds from account A to account B could be defined to be composed of two
separate programs: one that debits account A, and another that credits account B. The
execution of these two programs one after the other will indeed preserve consistency.
However, each program by itself does not transform the database from a consistent
state to a new consistent state. Thus, those programs are not transactions.

Ensuring the atomicity and durability properties is the responsibility of the data-
base system itself—specifically, of the transaction-management component. In the
absence of failures, all transactions complete successfully, and atomicity is achieved
easily. However, because of various types of failure, a transaction may not always
complete its execution successfully. If we are to ensure the atomicity property, a failed
transaction must have no effect on the state of the database. Thus, the database must
be restored to the state in which it was before the transaction in question started exe-
cuting. The database system must therefore perform failure recovery, that is, detect
system failures and restore the database to the state that existed prior to the occur-
rence of the failure.

Finally, when several transactions update the database concurrently, the consis-
tency of data may no longer be preserved, even though each individual transac-
tion is correct. It is the responsibility of the concurrency-control manager to control

1.10 Data Mining and Analysis 23

the interaction among the concurrent transactions, to ensure the consistency of the
database.

The basic concepts of transaction processing are covered in Chapter 15. The man-
agement of concurrent transactions is covered in Chapter 16. Chapter 17 covers fail-
ure recovery in detail.

Database systems designed for use on small personal computers may not have
all these features. For example, many small systems allow only one user to access
the database at a time. Others do not offer backup and recovery, leaving that to the
user. These restrictions allow for a smaller data manager, with fewer requirements for
physical resources—especially main memory. Although such a low-cost, low-feature
approach is adequate for small personal databases, it is inadequate for a medium- to
large-scale enterprise.

The concept of a transaction has been applied broadly in database systems and
applications. While the initial use of transactions was in financial applications, the
concept is now used in real-time applications in telecommunication, as well as in
the management of long-duration activities such as product design or administrative
workflows. These broader applications of the transaction concept are discussed in
Chapter 25.

1.10 Data Mining and Analysis

The term data mining refers loosely to the process of semiautomatically analyzing
large databases to find useful patterns. Like knowledge discovery in artificial intelli-
gence (also called machine learning) or statistical analysis, data mining attempts to
discover rules and patterns from data. However, data mining differs from machine
learning and statistics in that it deals with large volumes of data, stored primarily on
disk. That is, data mining deals with “knowledge discovery in databases.”

Some types of knowledge discovered from a database can be represented by a set
of rules. The following is an example of a rule, stated informally: “Young women
with annual incomes greater than $50,000 are the most likely people to buy small
sports cars.” Of course such rules are not universally true, but rather have degrees
of “support” and “confidence.” Other types of knowledge are represented by equa-
tions relating different variables to each other, or by other mechanisms for predicting
outcomes when the values of some variables are known.

There are a variety of possible types of patterns that may be useful, and different
techniques are used to find different types of patterns. In Chapter 18 we study a
few examples of patterns and see how they may be automatically derived from a
database.

Usually there is a manual component to data mining, consisting of preprocess-
ing data to a form acceptable to the algorithms, and postprocessing of discovered
patterns to find novel ones that could be useful. There may also be more than one
type of pattern that can be discovered from a given database, and manual interaction
may be needed to pick useful types of patterns. For this reason, data mining is really
a semiautomatic process in real life. However, in our description we concentrate on
the automatic aspect of mining.

24

Chapter 1 Introduction

Businesses have begun to exploit the burgeoning data online to make better deci-
sions about their activities, such as what items to stock and how best to target cus-
tomers to increase sales. Many of their queries are rather complicated, however, and
certain types of information cannot be extracted even by using SQL.

Several techniques and tools are available to help with decision support. Several
tools for data analysis allow analysts to view data in different ways. Other analy-
sis tools precompute summaries of very large amounts of data, in order to give fast
responses to queries. The SQL:1999 standard now contains additional constructs to
support data analysis.

Textual data, too, has grown explosively. Textual data is unstructured, unlike the
rigidly structured data in relational databases. Querying of unstructured textual data
is referred to as information retrieval. Information retrieval systems have much in com-
mon with database systems—in particular, the storage and retrieval of data on sec-
ondary storage. However, the emphasis in the field of information systems is differ-
ent from that in database systems, concentrating on issues such as querying based
on keywords; the relevance of documents to the query; and the analysis, classifica-
tion, and indexing of documents. In Chapters 18 and 19 we cover decision support,
including on-line analytical processing, data mining, and information retrieval.

1.11 Database Architecture

We are now in a position to provide a single picture (Figure 1.6) of the various com-
ponents of a database system and the connections among them.

The architecture of a database system is greatly influenced by the underlying com-
puter system on which the database system runs. Database systems can be central-
ized, or client-server, where one server machine executes work on behalf of multi-
ple client machines. Database systems can also be designed to exploit parallel com-
puter architectures. Distributed databases span multiple geographically separated
machines.

In Chapter 20 we cover the general structure of modern computer systems. Chap-
ter 21 describes how various actions of a database, in particular query processing,
can be implemented to exploit parallel processing. Chapter 22 presents a number of
issues that arise in a distributed database, and describes how to deal with each is-
sue. The issues include how to store data, how to ensure atomicity of transactions
that execute at multiple sites, how to perform concurrency control, and how to pro-
vide high availability in the presence of failures. Distributed query processing and
directory systems are also described in this chapter.

Most users of a database system today are not present at the site of the database
system, but connect to it through a network. We can therefore differentiate between
client machines, on which remote database users work, and server machines, on
which the database system runs.

Database applications are usually partitioned into two or three parts, as in Fig-
ure 1.7. In a two-tier architecture, the application is partitioned into a component
that resides at the client machine, which invokes database system functionality at the
server machine through query language statements. Application program interface

1.11 Database Architecture
G| | appiten | [FRUES | | deibe
Webusr) | | PoBERE| | gy | @dbmoe
use write use use

application application
interfaces TOgrams

I
/,, Comhlﬂgr and > DML. qt DDL interpreter E
application A/ l
! ~ program | DML compiler
| object code _and organizer
! = query processor
! — 4 \w ________________ ..|
| [buffer manager | [file manager | e
! : ‘and integrity aaser
I HRAnager.
|
i
} storage manager i
L LY, O (W ST NS g - A O ¥ | i

Figure 1.6 System structure.

disk storage

25

standards like ODBC and JDBC are used for interaction between the client and the

server.

In contrast, in a three-tier architecture, the client machine acts as merely a front
end and does not contain any direct database calls. Instead, the client end communi-
cates with an application server, usually through a forms interface. The application
server in turn communicates with a database system to access data. The business

26

Chapter1 Introduction

f 1

: | | |

| [' !

| [: :

e ! client | . |

Ii application : | application client :

. ! I\ !

network network
e \ et)
! | ' | application server | |
] : server :] :
: | | ‘database system |
Wi g s e e s : L o e e S, !
(a) Two-tier architecture (b) Three-tier architecture

Figure 1.7 Two-tier and three-tier architectures.

logic of the application, which says what actions to carry out under what conditions,
is embedded in the application server, instead of being distributed across multiple
clients. Three-tier applications are more appropriate for large applications, and for
applications that run on the World Wide Web.

1.12 Database Users and Administrators

A primary goal of a database system is to retrieve information from and store new
information in the database. People who work with a database can be categorized as
database users or database administrators.

1.12.1 Database Users and User Interfaces

There are four different types of database-system users, differentiated by the way
they expect to interact with the system. Different types of user interfaces have been
designed for the different types of users.

o Naive users are unsophisticated users who interact with the system by invok-
ing one of the application programs that have been written previously. For
example, a bank teller who needs to transfer $50 from account A to account B
invokes a program called transfer. This program asks the teller for the amount
of money to be transferred, the account from which the money is to be trans-
ferred, and the account to which the money is to be transferred.

As another example, consider a user who wishes to find her account bal-
ance over the World Wide Web. Such a user may access a form, where she
enters her account number. An application program at the Web server then

1.12 Database Users and Administrators 27

retrieves the account balance, using the given account number, and passes
this information back to the user.

The typical user interface for naive users is a forms interface, where the
user can fill in appropriate fields of the form. Naive users may also simply
read reports generated from the database.

o Application programmers are computer professionals who write application
programs. Application programmers can choose from many tools to develop
user interfaces. Rapid application development (RAD) tools are tools that en-
able an application programmer to construct forms and reports with minimal
programming effort.

e Sophisticated users interact with the system without writing programs. In-
stead, they form their requests in a database query language. They submit
each such query to a query processor, whose function is to break down DML
statements into instructions that the storage manager understands. Analysts
who submit queries to explore data in the database fall in this category.

e Specialized users are sophisticated users who write specialized database
applications that do not fit into the traditional data-processing framework.
Among these applications are computer-aided design systems, knowledge-
base and expert systems, systems that store data with complex data types (for
example, graphics data and audio data), and environment-modeling systems.
Chapter 9 covers several of these applications.

1.12.2 Database Administrator

One of the main reasons for using DBMSs is to have central control of both the data
and the programs that access those data. A person who has such central control over
the system is called a database administrator (DBA). The functions of a DBA include:

e Schema definition. The DBA creates the original database schema by execut-
ing a set of data definition statements in the DDL.

e Storage structure and access-method definition.

e Schema and physical-organization modification. The DBA carries out changes
to the schema and physical organization to reflect the changing needs of the
organization, or to alter the physical organization to improve performance.

e Granting of authorization for data access. By granting different types of
authorization, the database administrator can regulate which parts of the data-
base various users can access. The authorization information is kept in a
special system structure that the database system consults whenever some-
one attempts to access the data in the system.

e Routine maintenance. Examples of the database administrator’s routine
maintenance activities are:

28

Chapter 1

Introduction

O Periodically backing up the database, either onto tapes or onto remote
servers, to prevent loss of data in case of disasters such as flooding.

O Ensuring that enough free disk space is available for normal operations,
and upgrading disk space as required.

[J Monitoring jobs running on the database and ensuring that performance
is not degraded by very expensive tasks submitted by some users.

1.13 History of Database Systems

Data processing drives the growth of computers, as it has from the earliest days of
commercial computers. In fact, automation of data processing tasks predates comput-
ers. Punched cards, invented by Herman Hollerith, were used at the very beginning
of the twentieth century to record U.S. census data, and mechanical systems were
used to process the cards and tabulate results. Punched cards were later widely used
as a means of entering data into computers.

Techniques for data storage and processing have evolved over the years:

e 1950s and early 1960s: Magnetic tapes were developed for data storage. Data

processing tasks such as payroll were automated, with data stored on tapes.
Processing of data consisted of reading data from one or more tapes and writ-
ing data to a new tape. Data could also be input from punched card decks, and
output to printers. For example, salary raises were processed by entering the
raises on punched cards and reading the punched card deck in synchroniza-
tion with a tape containing the master salary details. The records had to be
in the same sorted order. The salary raises would be added to the salary read
from the master tape, and written to a new tape; the new tape would become
the new master tape.

Tapes (and card decks) could be read only sequentially, and data sizes were
much larger than main memory; thus, data processing programs were forced
to process data in a particular order, by reading and merging data from tapes
and card decks.

Late 1960s and 1970s: Widespread use of hard disks in the late 1960s changed
the scenario for data processing greatly, since hard disks allowed direct access
to data. The position of data on disk was immaterial, since any location on disk
could be accessed in just tens of milliseconds. Data were thus freed from the
tyranny of sequentiality. With disks, network and hierarchical databases could
be created that allowed data structures such as lists and trees to be stored on
disk. Programmers could construct and manipulate these data structures.

A landmark paper by Codd [1970] defined the relational model and non-
procedural ways of querying data in the relational model, and relational
databases were born. The simplicity of the relational model and the possibil-
ity of hiding implementation details completely from the programmer were
enticing indeed. Codd later won the prestigious Association of Computing
Machinery Turing Award for his work.

1.13 History of Database Systems 29

e 1980s: Although academically interesting, the relational model was not used
in practice initially, because of its perceived performance disadvantages; re-
lational databases could not match the performance of existing network and
hierarchical databases. That changed with System R, a groundbreaking project
at IBM Research that developed techniques for the construction of an efficient
relational database system. Excellent overviews of System R are provided by
Astrahan et al. [1976] and Chamberlin et al. [1981]. The fully functional Sys-
tem R prototype led to IBM’s first relational database product, SQL/DS. Initial
commercial relational database systems, such as IBM DB2, Oracle, Ingres, and
DEC Rdb, played a major role in advancing techniques for efficient process-
ing of declarative queries. By the early 1980s, relational databases had become
competitive with network and hierarchical database systems even in the area
of performance. Relational databases were so easy to use that they eventually
replaced network/hierarchical databases; programmers using such databases
were forced to deal with many low-level implementation details, and had to
code their queries in a procedural fashion. Most importantly, they had to keep
efficiency in mind when designing their programs, which involved a lot of
effort. In contrast, in a relational database, almost all these low-level tasks
are carried out automatically by the database, leaving the programmer free to
work at a logical level. Since attaining dominance in the 1980s, the relational
model has reigned supreme among data models.

The 1980s also saw much research on parallel and distributed databases, as
well as initial work on object-oriented databases.

e Early 1990s: The SQL language was designed primarily for decision support
applications, which are query intensive, yet the mainstay of databases in the
1980s was transaction processing applications, which are update intensive.
Decision support and querying re-emerged as a major application area for
databases. Tools for analyzing large amounts of data saw large growths in
usage.

Many database vendors introduced parallel database products in this pe-
riod. Database vendors also began to add object-relational support to their
databases.

e Late 1990s: The major event was the explosive growth of the World Wide Web.
Databases were deployed much more extensively than ever before. Database
systems now had to support very high transaction processing rates, as well as
very high reliability and 24 x 7 availability (availability 24 hours a day, 7 days a
week, meaning no downtime for scheduled maintenance activities). Database
systems also had to support Web interfaces to data.

e Early 2000s: In the early 2000s we have seen the emerging of XML and the
associated query language XQuery as a new database technology. The jury is
still out as far as what role will XML play in future databases. In this time
period we have also witnessed the growth in “autonomic computing/auto
admin” techniques for minimizing system administration effort.

30 Chapterl Introduction

114 Summary

e A database-management system (DBMS) consists of a collection of interre-
lated data and a collection of programs to access that data. The data describe
one particular enterprise.

e The primary goal of a DBMS is to provide an environment that is both conve-
nient and efficient for people to use in retrieving and storing information.

e Database systems are ubiquitous today, and most people interact, either di-
rectly or indirectly, with databases many times every day.

e Database systems are designed to store large bodies of information. The man-
agement of data involves both the definition of structures for the storage of
information and the provision of mechanisms for the manipulation of infor-
mation. In addition, the database system must provide for the safety of the
information stored, in the face of system crashes or attempts at unauthorized
access. If data are to be shared among several users, the system must avoid
possible anomalous results.

e A major purpose of a database system is to provide users with an abstract
view of the data. That is, the system hides certain details of how the data are
stored and maintained.

e Underlying the structure of a database is the data model: a collection of con-
ceptual tools for describing data, data relationships, data semantics, and data
constraints.

e A data-manipulation language (DML) is a language that enables users to ac-
cess or manipulate data. Nonprocedural DMLs, which require a user to specify
only what data are needed, without specifying exactly how to get those data,
are widely used today.

e A data-definition language (DDL) is a language for specifying the database
schema and as well as other properties of the data.

o The relational data model is the most widely deployed model for storing data
in databases. Other data models are the object-oriented model, the object-
relational model, and semistructured data models.

o Database design mainly involves the design of the database schema. The entity-
relationship (E-R) data model is a widely used data model, for database de-
sign. It provides a convenient graphical representation to view data, relation-
ships and constraints.

e A database system has several subsystems.

[0 The storage manager subsystem provides the interface between the low-
level data stored in the database and the application programs and queries
submitted to the system.

[0 The query processor subsystem compiles and executes DDL and DML
statements.

Practice Exercises 31

e Transaction management ensures that the database remains in a consistent
(correct) state despite system failures. The transaction manager ensures that
concurrent transaction executions proceed without conflicting,.

e Database applications are typically broken up into a front-end part that runs at
client machines and a part that runs at the back end. In two-tier architectures,
the front end directly communicates with a database running at the back end.
In three-tier architectures, the back end part is itself broken up into an appli-
cation server and a database server.

e Database users can be categorized into several classes, and each class of users
usually uses a different type of interface to the database.

Review Terms

e Database-management system O Entity-relationship model
(DBMS) O Relational data model
e Database-systems applications [J Object-oriented data model

: [0 Object-relational data model
e File systems

: : base la
e Data inconsistency Databaselanguages

[Data-definition language

ist i . .
¢ Coristency donbaibs [J Data-manipulation language

e Data views O Query language
e Data abstraction e Data dictionary
e Database instance e Metadata
e Schema e Transactions
O Database schema
[J Physical schema h Conc‘ur:re.ncy
O Logical schema e Application program

Database administrator (DBA)

e Physical data independence
Client and server machines

Data models

Practice Exercises

1.1 This chapter has described several major advantages of a database system. What
are two disadvantages?

1.2 List seven programming languages that are procedural and two that are non-
procedural. Which group is easier to learn and use? Explain your answer.

1.3 List six major steps that you would take in setting up a database for a particular
enterprise.

1.4 Consider a two-dimensional integer array of size n x m that is to be used in
your favorite programming language. Using the array as an example, illustrate

32 Chapterl Introduction

the difference (a) between the three levels of data abstraction and (b) between a
schema and instances.

Exercises

1.5 List four applications which you have used, that most likely used a database
system to store persistent data.

1.6 List four significant differences between a file-processing system and a DBMS.
1.7 Explain the difference between physical and logical data independence.

1.8 List five responsibilities of a database-management system. For each responsi-
bility, explain the problems that would arise if the responsibility were not dis-
charged.

1.9 List atleast two reasons why database systems support data manipulation using
a declarative query language such as SQL, instead of just providing a a library
of C or C++ functions to carry out data manipulation.

1.10 Explain what problems are caused by the design of the table in Figure 1.5.

1.11 What are five main functions of a database administrator?

Bibliographical Notes

We list below general-purpose books, research paper collections, and Web sites on
databases. Subsequent chapters provide references to material on each topic outlined
in this chapter.

Codd [1970] is the landmark paper that introduced the relational model.

Textbooks covering database systems include Abiteboul et al. [1995], Date [2003],
Elmasri and Navathe [2003], O’Neil and O’Neil [2000], Ramakrishnan and Gehrke
[2002], Garcia-Molina et al. [2001], and Ullman [1988]. Textbook coverage of transac-
tion processing is provided by Bernstein and Newcomer [1997] and Gray and Reuter
[1993].

Several books contain collections of research papers on database management.
Among these are Bancilhon and Buneman [1990], Date [1986], Date [1990], Kim [1995],
Zaniolo et al. [1997], and Hellerstein and Stonebraker [2005].

A review of accomplishments in database management and an assessment of fu-
ture research challenges appears in Silberschatz et al. [1990], Silberschatz et al. [1996],
Bernstein et al. [1998] and Abiteboul et al. [2003]. The home page of the ACM Special
Interest Group on Management of Data (www.acm.org/sigmod) provides a wealth of
information about database research. Database vendor Web sites (see the Tools sec-
tion below) provide details about their respective products.

Tools 33

Tools

There are a large number of commercial database systems in use today. The ma-
jor ones include: IBM DB2 (www.ibm.com/software/data), Oracle (www.oracle.com),
Microsoft SQL Server (www.microsoft.com/sql), Informix (www.informix.com) (now
owned by IBM) and Sybase (www.sybase.com). Some of these systems are available
free for personal or noncommercial use, or for development, but are not free for ac-
tual deployment.

There are also a number of free/public domain database systems; widely used
ones include MySQL (www.mysgl.com) and PostgreSQL (www.postgresql.org).

A more complete list of links to vendor Web sites and other information is avail-
able from the home page of this book, at www.db-book.com.

d. 3 ' Agelt

:kl T 1'_! -1t el
2B I" 3

Ly winpg T -_I'u] L-.ﬂllr -
N (PRSI AT 21T el W

[LY = ol VYV i D |lf_-]l bl |,'||1Ol & ‘ :|7 |__|.1]-| i
IIE Br =, = W __nlj.-'l'_,_-l‘ln _ r u_j,._llh b= Bl gman
BT et D e e - 1"![111) paseme oy ':- L
. |) . g “EIT R AR L

nr . :'I‘ ke i’ "{: i 4 - i
S el ABvgm SRS RAT . et jt P Eind

p- - Ay =t el b €3 |' RN | § s Yol =
lni ':I_ﬂ'-M| '.” _I.'ﬂ.l_ T R ; |' e mls Rl- O

a A
[

_h
T
A gnn

. _
--1g } -) ;
I | ;
| i | | _
: .I'I o |
| "-!' Hel %
o
i :
. |

— -
i

YT TG PHEN T L . il _dl l:ilrll 1l| 1wl R Pl |

A data model is a collection of conceptual tools for describing data, data relation-
ships, data semantics, and consistency constraints. In this part, we focus on the rela-
tional model.

The relational model uses a collection of tables to represent both data and the rela-
tionships among those data. Its conceptual simplicity has led to its widespread adop-
tion; today a vast majority of database products are based on the relational model. In
Part 9, we overview four widely used relational database systems.

Although the relational model, which is covered in Chapter 2, describes data at
the logical and view levels, it is a lower-level data model compared to the entity-
relationship model discussed in Part 2.

To make data from a relational database available to users, we have to address
several issues. One is how users specify requests for data: Which of the various
query languages do they use? Chapters 3 and 4 cover the SQL language, which is
the most widely used query language today. Chapter 5 first covers two formal query
languages, the tuple relational calculus and the domain relational calculus, which
are declarative query languages based on mathematical logic. These two formal lan-
guages form the basis for two more user-friendly languages, QBE and Datalog, that
we study later in that chapter.

Another issue is data integrity and protection; databases need to protect data from
damage by user actions, whether unintentional or intentional. The integrity main-
tenance component of a database ensures that updates do not violate integrity con-
straints that have been specified on the data. The protection component of a database
includes access control to restrict the permissible actions for each user. Chapter 4
covers integrity and protection issues. Protection and integrity issues are present re-
gardless of the data model, but for concreteness we study them in the context of the
relational model.

—— — ——— i —
-
W UL S -
P - ‘_
. *.i‘
E:.

1
i

i i“!"' e a
: M iiaes
r

1

] i .
i 'i"l [™ =
I ' ll-.r [
[1a
) i i =
|*'1 ' § b .,'r ™
18 1118 =¥
1
B
l | H“u.", :
| Al prrdll e gy
. :

i |
2

[
' F puf
[} "l

g
- R
- »
X
, "
| T 1ot el o i g ol
-~ o
I| . Hi S Bl o |)
) [.
l--- " rv‘l b * ®
1‘ -
A o

b
Q] TP

Relational Model

The relational model is today the primary data model for commercial data-processing
applications. It has attained its primary position because of its simplicity, which eases
the job of the programmer, compared to earlier data models such as the network
model or the hierarchical model.

In this chapter, we first study the fundamentals of the relational model. We then
describe the relational algebra, which is used to specify requests for information. The
relational algebra is not user friendly, but instead serves as the formal basis for user-
friendly query languages that we study later, including the widely used SQL query
language, which we cover in detail in Chapters 3 and 4.

A substantial theory exists for relational databases. We study the part of this theory
dealing with queries in this chapter. In Chapters 6 through 7 we shall examine aspects
of relational database theory that help in the design of relational database schemas,
while in Chapters 13 and 14 we discuss aspects of the theory dealing with efficient
processing of queries.

2.1 Structure of Relational Databases

A relational database consists of a collection of tables, each of which is assigned a
unique name. A row in a table represents a relationship among a set of values. Infor-
mally, a table is an entity set, and a row is an entity as we discussed in Chapter 1.
Since a table is a collection of such relationships, there is a close correspondence be-
tween the concept of table and the mathematical concept of relation, from which the
relational data model takes its name. In what follows, we introduce the concept of
relation.

In this chapter, we shall be using a number of different relations to illustrate the
various concepts underlying the relational data model. These relations represent part
of abanking enterprise. They may not correspond to the actual way a banking database
may be structured, in order to simplify our presentation. We shall discuss criteria for
the appropriateness of relational structures in great detail in Chapters 6 and 7.

37

38

Chapter2 Relational Model

2.1.1 Basic Structure

Consider the account table of Figure 2.1. It has three column headers: account_number,
branch-name, and balance. Following the terminology of the relational model, we refer
to these headers as attributes. For each attribute, there is a set of permitted values,
called the domain of that attribute. For the attribute branch.name, for example, the
domain is the set of all branch names. Let D; denote the set of all account numbers,
D, the set of all branch names, and Dj the set of all balances. Any row of account
must consist of a 3-tuple (v1, v2, vs), where v; is an account number (that is, v is in
domain D,), v, is a branch name (that is, v is in domain D), and v3 is a balance (that
is, v3 is in domain Ds). In general, account will contain only a subset of the set of all
possible rows. Therefore, account is a subset of

Dy x Dy x Dg
In general, a table of n attributes must be a subset of
Dy % Dy % oo ¥ Dy % Dy

Mathematicians define a relation to be a subset of a Cartesian product of a list of
domains. This definition corresponds almost exactly with our definition of table. The
only difference is that we have assigned names to attributes, whereas mathematicians
rely on numeric “names,” using the integer 1 to denote the attribute whose domain
appears first in the list of domains, 2 for the attribute whose domain appears second,
and so on. Because tables are essentially relations, we shall use the mathematical
terms relation and tuple in place of the terms table and row. A tuple variable is a
variable that stands for a tuple; in other words, a tuple variable is a variable whose
domain is the set of all tuples.

In the account relation of Figure 2.1, there are seven tuples. Let the tuple variable ¢
refer to the first tuple of the relation. We use the notation t[account number] to denote
the value of t on the account_-number attribute. Thus, tlaccount number] = “A-101,” and
t{branch-name] = “Downtown”. Alternatively, we may write #[1] to denote the value
of tuple f on the first attribute (account number), t{2] to denote branch-name, and so on.
Since a relation is a set of tuples, we use the mathematical notation of f € r to denote
that tuple ¢ is in relation .

[account_number | branch_name] balance |

A-101 Downtown | 500
A-102 Perryridge 400
A-201 Brighton 900
A-215 Mianus 700
A-217 Brighton 750
A-222 Redwood 700
A-305 Round Hill | 350

Figure 2.1 The account relation.

2.1 Structure of Relational Databases 39

| account_number | branch_name] balance |

A-101 Downtown 500
A-215 Mianus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Brighton 900
A-222 Redwood 700
A-217 Brighton 750

Figure 2.2 The account relation with unordered tuples.

The order in which tuples appear in a relation is irrelevant, since a relation is a
set of tuples. Thus, whether the tuples of a relation are listed in sorted order, as in
Figure 2.1, or are unsorted, as in Figure 2.2, does not matter; the relations in the two
figures are the same, since both contain the same set of tuples.

We require that, for all relations r, the domains of all attributes of 7 be atomic. A
domain is atomic if elements of the domain are considered to be indivisible units.
For example, the set of integers is an atomic domain, but the set of all sets of integers
is a nonatomic domain. The distinction is that we do not normally consider inte-
gers to have subparts, but we consider sets of integers to have subparts—namely,
the integers composing the set. The important issue is not what the domain itself is,
but rather how we use domain elements in our database. The domain of all integers
would be nonatomic if we considered each integer to be an ordered list of digits. In
all our examples, we shall assume atomic domains. In Chapter 9, we shall discuss
extensions to the relational data model to permit nonatomic domains.

It is possible for several attributes to have the same domain. For example, suppose
that we have a relation customer that has the three attributes customer_-name, customer
-street, and customer_city, and a relation employee that includes the attribute employee
-name. It is possible that the attributes customer_name and employee_name will have the
same domain: the set of all person names, which at the physical level is the set of
all character strings. The domains of balance and branch.name, on the other hand, cer-
tainly ought to be distinct. It is perhaps less clear whether customer_name and branch
-name should have the same domain. At the physical level, both customer names and
branch names are character strings. However, at the logical level, we may want cus-
tomer_name and branch_name to have distinct domains.

One domain value that is a member of any possible domain is the null value,
which signifies that the value is unknown or does not exist. For example, suppose
that we include the attribute telephone_number in the customer relation. It may be that
a customer does not have a telephone number, or that the telephone number is un-
listed. We would then have to resort to null values to signify that the value is un-
known or does not exist. We shall see later that null values cause a number of diffi-
culties when we access or update the database, and thus should be eliminated if at
all possible. We shall assume null values are absent initially, and in Section 2.5 we
describe the effect of nulls on different operations.

40 Chapter 2

Relational Model

[branch_name | branch_city | assets |

Brighton Brooklyn 7100000
Downtown | Brooklyn 9000000
Mianus Horseneck | 400000
North Town | Rye 3700000
Perryridge | Horseneck | 1700000
Pownal Bennington | 300000
Redwood Palo Alto | 2100000
Round Hill | Horseneck | 8000000

Figure 2.3 The branch relation.

2.1.2 Database Schema

When we talk about a database, we must differentiate between the database schema,
which is the logical design of the database, and the database instance, which is a
snapshot of the data in the database at a given instant in time.

The concept of a relation corresponds to the programming-language notion of a
variable. The concept of a relation schema corresponds to the programming-language
notion of type definition.

It is convenient to give a name to a relation schema, just as we give names to type
definitions in programming languages. We adopt the convention of using lower-
case names for relations, and names beginning with an uppercase letter for rela-
tion schemas. Following this notation, we use Account_schema to denote the relation
schema for relation account. Thus,

Account_schema = (account number, branch_name, balance)
We denote the fact that account is a relation on Account_schema by
account(Account_schema)

In general, a relation schema consists of a list of attributes and their corresponding
domains. We shall not be concerned about the precise definition of the domain of
each attribute until we discuss the SQL language in Chapters 3 and 4.

The concept of a relation instance corresponds to the programming-language no-
tion of a value of a variable. The value of a given variable may change with time;
similarly the contents of a relation instance may change with time as the relation is
updated. However, we often simply say “relation” when we actually mean “relation
instance.”

As an example of a relation instance, consider the branch relation of Figure 2.3. The
schema for that relation is

Branch_schema = (branch_name, branch_city, assets)

Note that the attribute branch.name appears in both Branch.schema and Account
_schema. This duplication is not a coincidence. Rather, using common attributes in

2.1

Structure of Relational Databases

| customer_name [customer_street | customer_city|

Adams Spring Pittsfield
Brooks Senator Brooklyn
Curry North Rye
Glenn Sand Hill Woodside
Green Walnut Stamford
Hayes Main Harrison
Johnson Alma Palo Alto
Jones Main Harrison
Lindsay Park Pittsfield
Smith North Rye
Turner Putnam Stamford
Williams Nassau Princeton

41

Figure 2.4 The customer relation.

relation schemas is one way of relating tuples of distinct relations. For example, sup-
pose we wish to find the information about all of the accounts maintained in branches
located in Brooklyn. We look first at the branch relation to find the names of all the
branches located in Brooklyn. Then, for each such branch, we look in the account re-
lation to find the information about the accounts maintained at that branch.

Let us continue our banking example. We need a relation to describe information
about customers. The relation schema is

Customer_schema = (customer_name, customer street, customer_city)

Figure 2.4 shows a sample relation customer (Customer_schema). Note that we have
omitted the customer_id attribute that we used in Chapter 1, because now we want to
have smaller relation schemas in our running example of a bank database. We assume
that the customer name uniquely identifies a customer—obviously this may not be
true in the real world, but the assumption makes our examples much easier to read.
In a real-world database, the customer.id (which could be a social-security number or
an identifier generated by the bank) would serve to uniquely identify customers.

We also need a relation to describe the association between customers and ac-
counts. The relation schema to describe this association is

Depositor_schema = (customer_name, account number)

Figure 2.5 shows a sample relation depositor (Depositor_schema).

It would appear that, for our banking example, we could have just one relation
schema, rather than several. That is, it may be easier for a user to think in terms of
one relation schema, rather than in terms of several. Suppose that we used only one
relation for our example, with schema

(branch_name, branch_city, assets, customer_name, customer._street
customer_city, account_number, balance)

42

Chapter2 Relational Model

[customer_name| account_number |

Hayes A-102
Johnson A-101
Johnson A-201
Jones A-217
Lindsay A-222
Smith A-215
Turner A-305

Figure 2.5 The depositor relation.

Observe that, if a customer has several accounts, we must list her address once for
each account. That is, we must repeat certain information several times. This repeti-
tion is wasteful and is avoided by the use of several relations, as in our example.

In addition, if a branch has no accounts (a newly created branch, say, that has no
customers yet), we cannot construct a complete tuple on the preceding single rela-
tion, because no data concerning customer and account are available yet. To represent
incomplete tuples, we must use null values that signify that the value is unknown or
does not exist. Thus, in our example, the values for customer_name, customer_street, and
so on must be null. By using several relations, we can represent the branch informa-
tion for a bank with no customers without using null values. We simply use a tuple
on Branch.schema to represent the information about the branch, and create tuples on
the other schemas only when the appropriate information becomes available.

In Chapter 7, we shall study criteria to help us decide when one set of relation
schemas is more appropriate than another, in terms of information repetition and
the existence of null values. For now, we shall assume that the relation schemas are
given.

We include two additional relations to describe data about loans maintained in the
various branches in the bank:

Loan_schema = (loan-number, branch_name, amount)
Borrower_schema = (customer_name, loan_number)

Figures 2.6 and 2.7, respectively, show the sample relations loan (Loan.schema) and
borrower (Borrower_schema).

The relation schemas correspond to the set of tables that we might generate by
the method outlined in Section 1.6. Note that the customer relation may contain in-
formation about customers who have neither an account nor a loan at the bank. The
banking enterprise described here will serve as our primary example in this chap-
ter. On occasion, we shall need to introduce additional relation schemas to illustrate
particular points.

2.1.3 Keys

We must have a way to specify how tuples within a given relation are distinguished.
This is expressed in terms of their attributes. That is, the values of the attribute values

2.1 Structure of Relational Databases 43

[loan_number | branch_name| amount |
L-11 Round Hill 900
L-14 Downtown | 1500
L-15 Perryridge | 1500
L-16 Perryridge | 1300
L-17 Downtown | 1000
L-23 Redwood 2000
L-93 Mianus 500

Figure 2.6 The loan relation.

of a tuple must be such that they can uniquely identify the tuple. In other words, no
two tuples in a relation are allowed to have exactly the same value for all attributes.

A superkey is a set of one or more attributes that, taken collectively, allow us to
identify uniquely a tuple in the relation. For example, the customer.id attribute of the
relation customer is sufficient to distinguish one customer tuple from another. Thus,
customer.id is a superkey. Similarly, the combination of customer_name and customer.id
is a superkey for the relation customer. The customer_name attribute of customer is not
a superkey, because several people might have the same name.

The concept of a superkey is not sufficient for our purposes, since, as we saw, a
superkey may contain extraneous attributes. If K is a superkey, then so is any superset
of K. We are often interested in superkeys for which no proper subset is a superkey.
Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate
key. Suppose that a combination of customer name and customer_street is sufficient to
distinguish among members of the customer relation. Then, both {customer.id} and
{customer_name, customer_street} are candidate keys. Although the attributes customer
-id and customer_name together can distinguish customer tuples, their combination
does not form a candidate key, since the attribute customer_id alone is a candidate
key.

We shall use the term primary key to denote a candidate key that is chosen by the
database designer as the principal means of identifying tuples within a relation. A

| customer_name | loan_number |

Adams L-16
Curry L-93
Hayes L-15
Jackson L-14
Jones L-17
Smith L-11
Smith L-23
Williams L-17

Figure 2.7 The borrower relation.

44

Chapter2 Relational Model

key (whether primary, candidate, or super) is a property of the entire relation, rather
than of the individual tuples. Any two individual tuples in the relation are prohibited
from having the same value on the key attributes at the same time. The designation
of a key represents a constraint in the real-world enterprise being modeled.

Candidate keys must be chosen with care. As we noted, the name of a person is
obviously not sufficient, because there may be many people with the same name.
In the United States, the social-security number attribute of a person would be a
candidate key. Since non-U.S. residents usually do not have social-security numbers,
international enterprises must generate their own unique identifiers. An alternative
is to use some unique combination of other attributes as a key.

The primary key should be chosen such that its attribute values are never, or very
rarely, changed. For instance, the address field of a person should not be part of the
primary key, since it is likely to change. Social-security numbers, on the other hand,
are guaranteed to never change. Unique identifiers generated by enterprises gener-
ally do not change, except if two enterprises merge; in such a case the same identifier
may have been issued by both enterprises, and a reallocation of identifiers may be
required to make sure they are unique.

Formally, let R be a relation schema. If we say that a subset K of R is a superkey for
R, we are restricting consideration to relations 7(R) in which no two distinct tuples
have the same values on all attributes in K. That is, if ¢, and t5 are in r and t; # t2,
then i1 [Kl ?é tg[K].

A relation schema, say 71, may include among its attributes the primary key of
another relation schema, say r,. This attribute is called a foreign key from ry, ref-
erencing 7. The relation r; is also called the referencing relation of the foreign key
dependency, and 7, is called the referenced relation of the foreign key. For exam-
ple, the attribute branch-name in Account schema is a foreign key from Account.schema
referencing Branch_schema, since branch_name is the primary key of Branch_schema. In
any database instance, given any tuple, say ,, from the account relation, there must
be some tuple, say ty, in the branch relation such that the value of the branch_name
attribute of t, is the same as the value of the primary key, branch_name, of .

branch account depositor customer
branch_name account_number customer_name >{ customer_name
' ' q_l— branch_name 4—I— account_number customer_street

branch_city

customer—_ci
assets Brcely

balance

loan borrower
loan_number -4—1_ customer_name

——| branch_name loan_number
amount

Figure 2.8 Schema diagram for the banking enterprise.

2.1 Structure of Relational Databases 45

It is customary to list the primary key attributes of a relation schema before the
other attributes; for example, the branch.name attribute of Branch_schema is listed first,
since it is the primary key.

A database schema, along with primary key and foreign key dependencies, can
be depicted pictorially by schema diagrams. Figure 2.8 shows the schema diagram
for our banking enterprise. Each relation appears as a box, with the attributes listed
inside it and the relation name above it. If there are primary key attributes, a hori-
zontal line crosses the box, with the primary key attributes listed above the line in
gray. Foreign key dependencies appear as arrows from the foreign key attributes of
the referencing relation to the primary key of the referenced relation.

Many database systems provide design tools with a graphical user interface for
creating schema diagrams.

2.1.4 Query Languages

A query language is a language in which a user requests information from the data-
base. These languages are usually on a level higher than that of a standard program-
ming language. Query languages can be categorized as either procedural or non-
procedural. In a procedural language, the user instructs the system to perform a
sequence of operations on the database to compute the desired result. In a nonproce-
dural language, the user describes the desired information without giving a specific
procedure for obtaining that information.

Most commercial relational database systems offer a query language that includes
elements of both the procedural and the nonprocedural approaches. We shall study
the very widely used query language SQL in Chapters 3 and 4. Chapter 5 covers the
query languages QBE and Datalog, the latter a query language that resembles the
Prolog programming language.

There are a number of “pure” query languages: The relational algebra is procedu-
ral, whereas the tuple relational calculus and domain relational calculus are nonpro-
cedural. These query languages are terse and formal, lacking the “syntactic sugar” of
commercial languages, but they illustrate the fundamental techniques for extracting
data from the database.

In this chapter, we examine in great detail the relational-algebra language (in Chap-
ter 5 we cover the tuple relational-calculus and domain relational-calculus languages).
Relational algebra consists of a set of operations that take one or two relations as in-
put and produce a new relation as their result.

The fundamental operations in the relational algebra are select, project, union, set
difference, Cartesian product, and rename. In addition to the fundamental operations,
there are several other operations—namely, set intersection, natural join, division,
and assignment. We will define these operations in terms of the fundamental opera-
tions.

Initially, we shall be concerned with only queries. However, a complete data-
manipulation language includes not only a query language, but also a language for
database modification. Such languages include commands to insert and delete tuples,
as well as commands to modify parts of existing tuples. We shall examine database
modification after we complete our discussion of queries.

46

Chapter2 Relational Model

2.2 Fundamental Relational-Algebra Operations

The select, project, and rename operations are called unary operations, because they
operate on one relation. The other three operations operate on pairs of relations and
are, therefore, called binary operations.

2.2.1 The Select Operation

The select operation selects tuples that satisfy a given predicate. We use the lowercase
Greek letter sigma (o) to denote selection. The predicate appears as a subscript to o.
The argument relation is in parentheses after the o. Thus, to select those tuples of the
loan relation where the branch is “Perryridge,” we write

O branch.name = “Perryridge” (loan)

If the loan relation is as shown in Figure 2.6, then the relation that results from the
preceding query is as shown in Figure 2.9.
We can find all tuples in which the amount lent is more than $1200 by writing

T grmount>1200 UOGH)

In general, we allow comparisons using =, #, <, <, >, > in the selection predicate.
Furthermore, we can combine several predicates into a larger predicate by using the
connectives and (A), or (), and not (—). Thus, to find those tuples pertaining to loans
of more than $1200 made by the Perryridge branch, we write

T pranch_name = “Perryridge” A amount >1200 (IO(M’L)

The selection predicate may include comparisons between two attributes. To illus-
trate, consider the relation loan_officer that consists of three attributes: customer_name,
banker_name, and loan_number, which specifies that a particular banker is the loan of-
ficer for a loan that belongs to some customer. To find all customers who have the
same name as their loan officer, we can write

O customer-name = banker_name (loan.oﬁ?ccr)

2.2.2 The Project Operation

Suppose we want to list all loan numbers and the amount of the loans, but do not
care about the branch name. The project operation allows us to produce this relation.
The project operation is a unary operation that returns its argument relation, with
certain attributes left out. Since a relation is a set, any duplicate rows are eliminated.

[Toan_number | branch_name[amount |
L-15 Perryridge | 1500
L-16 Perryridge | 1300

Figure 2.9 Result Of 0pranch.name = “Perryridge” (l0an).

22 Fundamental Relational-Algebra Operations 47

| loan_number| amount |

L-11 900
L-14 1500
L-15 1500
L-16 1300
L-17 1000
L-23 2000
L-93 500

Figure 2.10 Loan number and the amount of the loan.

Projection is denoted by the uppercase Greek letter pi (IT). We list those attributes that
we wish to appear in the result as a subscript to II. The argument relation follows in
parentheses. We write the query to list all loan numbers and the amount of the loan
as

Hloan.number, amount (ioa‘n)

Figure 2.10 shows the relation that results from this query.

2.2.3 Composition of Relational Operations

The fact that the result of a relational operation is itself a relation is important. Con-
sider the more complicated query “Find those customers who live in Harrison.” We
write:

chstomer_name (Ucustomef‘_city = “Harrison” (customer))
Notice that, instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

In general, since the result of a relational-algebra operation is of the same type
(relation) as its inputs, relational-algebra operations can be composed together into
a relational-algebra expression. Composing relational-algebra operations into rela-
tional-algebra expressions is just like composing arithmetic operations (such as +, —,
*, and) into arithmetic expressions. We study the formal definition of relational-
algebra expressions in Section 2.2.8.

2.2.4 The Union Operation

Consider a query to find the names of all bank customers who have either an account
or a loan or both. Note that the customer relation does not contain the information,
since a customer does not need to have either an account or a loan at the bank. To
answer this query, we need the information in the depositor relation (Figure 2.5) and
in the borrower relation (Figure 2.7). We know how to find the names of all customers
with a loan in the bank:

ncu&tomenname (bO? T OT.UBT)

We also know how to find the names of all customers with an account in the bank:

48

Chapter2 Relational Model

Ieustomername (depﬂsitm“}

To answer the query, we need the union of these two sets; that is, we need all cus-
tomer names that appear in either or both of the two relations. We find these data by
the binary operation union, denoted, as in set theory, by U. So the expression needed
is

I ustomer-name (bor‘mwe?‘) L)' Henstomersmame (JEPOSifOT)

The result relation for this query appears in Figure 2.11. Notice that there are 10 tuples
in the result, even though there are seven distinct borrowers and six depositors. This
apparent discrepancy occurs because Smith, Jones, and Hayes are borrowers as well
as depositors. Since relations are sets, duplicate values are eliminated.

Observe that, in our example, we took the union of two sets, both of which con-
sisted of customer_name values. In general, we must ensure that unions are taken be-
tween compatible relations. For example, it would not make sense to take the union of
the loan relation and the borrower relation. The former is a relation of three attributes;
the latter is a relation of two. Furthermore, consider a union of a set of customer
names and a set of cities. Such a union would not make sense in most situations.
Therefore, for a union operation r U s to be valid, we require that two conditions
hold:

1. The relations r and s must be of the same arity. That is, they must have the
same number of attributes.
2. The domains of the ith attribute of r and the ith attribute of s must be the same,

for all 4.

Note that r and s can be either database relations or temporary relations that are the
result of relational-algebra expressions.

| customer_name |
Adams
Curry
Hayes
Jackson
Jones
Smith
Williams
Lindsay
Johnson
Turner

Figure 2.11 Names of all customers who have either a loan or an account.

22 Fundamental Relational-Algebra Operations 49

| customer_name)|

Johnson
Lindsay
Turner

Figure 2.12 Customers with an account but no loan.

2.2.5 The Set-Difference Operation

The set-difference operation, denoted by —, allows us to find tuples that are in one
relation but are not in another. The expression r — s produces a relation containing
those tuples in r but not in s.

We can find all customers of the bank who have an account but not a loan by
writing

Hr:'ustome'r_name (dejDOSiiOT') = chstamer.name {bor‘mwer)

The result relation for this query appears in Figure 2.12.

As with the union operation, we must ensure that set differences are taken be-
tween compatible relations. Therefore, for a set-difference operation r — s to be valid,
we require that the relations » and s be of the same arity, and that the domains of the
ith attribute of » and the ith attribute of s be the same.

2.2.6 The Cartesian-Product Operation

The Cartesian-product operation, denoted by a cross (x), allows us to combine in-
formation from any two relations. We write the Cartesian product of relations r; and
rgasry X rsa.

Recall that a relation is by definition a subset of a Cartesian product of a set of
domains. From that definition, we should already have an intuition about the defi-
nition of the Cartesian-product operation. However, since the same attribute name
may appear in both 71 and rz, we need to devise a naming schema to distinguish
between these attributes. We do so here by attaching to an attribute the name of the
relation from which the attribute originally came. For example, the relation schema
for r = borrower x loan is

(borrower.customer_name, borrower.loan_number, loan.loan_number,
loan.branch_name, loan.amount)

With this schema, we can distinguish borrower.loan_number from loan.loan_number. For
those attributes that appear in only one of the two schemas, we shall usually drop
the relation-name prefix. This simplification does not lead to any ambiguity. We can
then write the relation schema for r as

(customer_name, borrower.loan_number, loan.loan_number,
branch_name, amount)

50

Chapter 2

Relational Model

= e badowers e loees ! sl
customer_name | loan_number | loan_number | branch_name | amount
Adams L-16 L-11 Round Hill 900
Adams L-16 L-14 Downtown 1500
Adams L-16 L-15 Perryridge 1500
Adams L-16 L-16 Perryridge 1300
Adams L-16 L-17 Downtown 1000
Adams L-16 L-23 Redwood 2000
Adams L-16 L-93 Mianus 500
Curry L-93 L-11 Round Hill 900
Curry L-93 L-14 Downtown 1500
Curry L-93 L-15 Perryridge 1500
Curry L-93 L-16 Perryridge 1300
Curry L-93 L-17 Downtown 1000
Curry L-93 L-23 Redwood 2000
Curry L-93 L-93 Mianus 500
Hayes L-15 L-11 900
Hayes L-15 L-14 1500
Hayes L-15 L-15 1500
Hayes L-15 L-16 1300
Hayes L-15 L-17 1000
Hayes L-15 L-23 2000
Hayes L-15 L-93 500
Smith L-23 L-11 Round Hill 900
Smith L-23 L-14 Downtown 1500
Smith L-23 L5 Perryridge 1500
Smith L-23 L-16 Perryridge 1300
Smith L-23 L-17 Downtown 1000
Smith L-23 L-23 Redwood 2000
Smith L-23 L-93 Mianus 500
Williams L-17 L-11 Round Hill 900
Williams L-17 L-14 Downtown 1500
Williams L-17 L-15 Perryridge 1500
Williams L-17 L-16 Perryridge 1300
Williams L-17 L-17 Downtown 1000
Williams L-17 L-23 Redwood 2000
Williams L-17 L-93 Mianus 500

Figure 2.13

Result of borrower x loan.

2.2 Fundamental Relational-Algebra Operations 51

This naming convention requires that the relations that are the arguments of the
Cartesian-product operation have distinct names. This requirement causes problems
in some cases, such as when the Cartesian product of a relation with itself is desired.
A similar problem arises if we use the result of a relational-algebra expression in a
Cartesian product, since we shall need a name for the relation so that we can refer
to the relation’s attributes. In Section 2.2.7, we see how to avoid these problems by
using the rename operation.

Now that we know the relation schema for r = borrower x loan, what tuples ap-
pear in r? As you may suspect, we construct a tuple of r out of each possible pair of
tuples: one from the borrower relation and one from the loan relation. Thus, r is a large
relation, as you can see from Figure 2.13, which includes only a portion of the tuples
that make up r.

Assume that we have n; tuples in borrower and ny tuples in loan. Then, there are
ny * ny ways of choosing a pair of tuples—one tuple from each relation; so there
are n; * ng tuples in r. In particular, note that for some tuples t in 7, it may be that
t{borrower.loan_number] # t{loan.loan_number].

In general, if we have relations ry (R) and r3(R;), then r; x 75 is a relation whose
schema is the concatenation of R; and R,. Relation R contains all tuples for which
there is a tuple ¢; in r; and a tuple ¢, in 5 for which ¢{[R;] = t, [Ry] and t[Ry] =
l2[Ry).

Suppose that we want to find the names of all customers who have a loan at the
Perryridge branch. We need the information in both the loan relation and the borrower
relation to do so. If we write

Tbranch.-name = "Perryridge"(borrower x IOG‘”)

then the result is the relation in Figure 2.14. We have a relation that pertains to only
the Perryridge branch. However, the customer name column may contain customers
who do not have a loan at the Perryridge branch. (If you do not see why that is true,
recall that the Cartesian product takes all possible pairings of one tuple from borrower
with one tuple of loan.)

Since the Cartesian-product operation associates every tuple of loan with every tu-
ple of borrower, we know that, if a customer has a loan in the Perryridge branch, then
there is some tuple in borrower x loan that contains his name, and borrower.loan_number
= loan.loan_number. So, if we write

T borrower.loan.number = loan.loan-number
(o'bmnch-na.me = "Perr}rridge"(borrower X EG(LR))

we get only those tuples of borrower x loan that pertain to customers who have a
loan at the Perryridge branch.
Finally, since we want only customer.name, we do a projection:

chstomer_name (Jboﬁ'awcrioan,number = loan . lean.number
(Obranchname = “Perryridge” (borrower x loan)))

The result of this expression, shown in Figure 2.15, is the correct answer to our query.

52

Chapter 2

Relational Model

borrower. loan.
customer_name | loan_number | loan_number | branch_name | amount
Adams L-16 L-15 Perryridge 1500
Adams L-16 L-16 Perryridge 1300
Curry L-93 L-15 Perryridge 1500
Curry L-93 L-16 Perryridge 1300
Hayes L-15 L-15 Perryridge 1500
Hayes L-15 L-16 Perryridge 1300
Jackson L-14 L-15 Perryridge 1500
Jackson L-14 L-16 Perryridge 1300
Jones L-17 L-15 Perryridge 1500
Jones L-17 L-16 Perryridge 1300
Smith L-11 L-15 Perryridge 1500
Smith L-11 L-16 Perryridge 1300
Smith L-23 L-15 Perryridge 1500
Smith L-23 L-16 Perryridge 1300
Williams L-17 L-15 Perryridge 1500
Williams L-17 L-16 Perryridge 1300
Figure 2.14 Result of 0yranch.name = “Perryridge” (borrower x loan).

2.2.7 The Rename Operation

Unlike relations in the database, the results of relational-algebra expressions do not
have a name that we can use to refer to them. It is useful to be able to give them
names; the rename operator, denoted by the lowercase Greek letter rho (p), lets us do
this. Given a relational-algebra expression E, the expression

pz (E)

returns the result of expression E under the name x.
A relation r by itself is considered a (trivial) relational-algebra expression. Thus,
we can also apply the rename operation to a relation r to get the same relation under
a new name.
A second form of the rename operation is as follows. Assume that a relational-

algebra expression FE has arity n. Then, the expression

Pz(A1, Az, An) (E)

customer_name

Adams
Hayes

(obo'r“mwer. loan_number = loan.loan_number
(Tbranch.name = “Perryridge” (borrower x loan))).

Figure 215 Resultof II customer_name

22 Fundamental Relational-Algebra Operations 53

500
400
700
750
350

Figure 2.16 Result of the subexpression
I sceauint balance (Uaccoun:.baiance < d.balance (account X Pd (accouﬂi)))-

returns the result of expression E under the name x, and with the attributes renamed
to AI, Ag, et 1An-

To illustrate renaming a relation, we consider the query “Find the largest account
balance in the bank.” Our strategy is to (1) compute first a temporary relation consist-
ing of those balances that are not the largest and (2) take the set difference between
the relation ITy,iance (@ccount) and the temporary relation just computed, to obtain
the result.

Step 1: To compute the temporary relation, we need to compare the values of
all account balances. We do this comparison by computing the Cartesian product
account x account and forming a selection to compare the value of any two balances
appearing in one tuple. First, we need to devise a mechanism to distinguish between
the two balance attributes. We shall use the rename operation to rename one reference
to the account relation; thus we can reference the relation twice without ambiguity.

We can now write the temporary relation that consists of the balances that are not
the largest:

Haccoun!.baiance (Jaccount,baiance < d.balance (GCCG‘EL‘H{, X Pd (account))}

This expression gives those balances in the account relation for which a larger balance
appears somewhere in the account relation (renamed as d). The result contains all
balances except the largest one. Figure 2.16 shows this relation.

Step 2: The query to find the largest account balance in the bank can be written as:

Hbalmwe (CLCCtJunt) —
Haccount.balance (Jaccount.baiance < d.balance (account X pPd (GCCOunf)))

Figure 2.17 shows the result of this query.

As one more example of the rename operation, consider the query “Find the names
of all customers who live on the same street and in the same city as Smith.” We can

Figure 2.17 Largest account balance in the bank.

54

Chapter2 Relational Model

| customer_name |

Curry
Smith

Figure 2.18 Customers who live on the same street and in the same city as Smith.

obtain Smith’s street and city by writing

chstomer_street, customer_city (Ucustomer.name = “Smith” (customer})

However, in order to find other customers with this street and city, we must refer-
ence the customer relation a second time. In the following query, we use the rename
operation on the preceding expression to give its result the name smith_addr, and to
rename its attributes to street and city, instead of customer_street and customer_city:

I customer.customer_name
(ﬂ'custamer. customer.street=smith_addr.street A customer.customer_city=smith.addr.city
(customer X Psmith_addr(street,city)
(chs tomer_street, customer.city (Ocu.s tomer.name = “Smith” (customer)) }))

The result of this query, when we apply it to the customer relation of Figure 2.4, ap-
pears in Figure 2.18.

The rename operation is not strictly required, since it is possible to use a positional
notation for attributes. We can name attributes of a relation implicitly by using a po-
sitional notation, where $1, $2, . . . refer to the first attribute, the second attribute, and
so on. The positional notation also applies to results of relational-algebra operations.
The following relational-algebra expression illustrates the use of positional notation
with the unary operator o:

og2-33(R x R)

If a binary operation needs to distinguish between its two operand relations, a similar
positional notation can be used for relation names as well. For example, $R1 could
refer to the first operand, and $R2 could refer to the second operand. However, the
positional notation is inconvenient for humans, since the position of the attributeis a
number, rather than an easy-to-remember attribute name. Hence, we do not use the
positional notation in this textbook.

2.2.8 Formal Definition of the Relational Algebra

The operations in Section 2.2 allow us to give a complete definition of an expression
in the relational algebra. A basic expression in the relational algebra consists of either
one of the following:

e A relation in the database

e A constant relation

23 Additional Relational-Algebra Operations 55

A constant relation is written by listing its tuples within { }, for example { (A-101,
Downtown, 500) (A-215, Mianus, 700) }.

A general expression in the relational algebra is constructed out of smaller subex-
pressions. Let £y and E» be relational-algebra expressions. Then, the following are
all relational-algebra expressions:

Ey U Ey
E, — E»
El X E2

op(E1), where P is a predicate on attributes in E

ls(E1), where S is a list consisting of some of the attributes in £;

pz (E1), where x is the new name for the result of F;

2.3 Additional Relational-Algebra Operations

The fundamental operations of the relational algebra are sufficient to express any
relational-algebra query.! However, if we restrict ourselves to just the fundamental
operations, certain common queries are lengthy to express. Therefore, we define ad-
ditional operations that do not add any power to the algebra, but simplify common
queries. For each new operation, we give an equivalent expression that uses only the
fundamental operations.

2.3.1 The Set-Intersection Operation

The first additional relational-algebra operation that we shall define is set intersec-
tion (N). Suppose that we wish to find all customers who have both a loan and an
account. Using set intersection, we can write

H—cusl‘.omer.na.me (b()?"‘?"OTﬂE’.?‘) (M Warmmenname (dﬂp()ffﬁtﬂ?‘)

The result relation for this query appears in Figure 2.19.

Note that we can rewrite any relational-algebra expression that uses set intersec-
tion by replacing the intersection operation with a pair of set-difference operations
as:

rNs=r—(r—s)

Thus, set intersection is not a fundamental operation and does not add any power
to the relational algebra. It is simply more convenient to write r N s than to write
r— (r — s).

1. In Section 2.4, we introduce operations that extend the power of the relational algebra to handle null
and aggregate values.

56

Chapter2 Relational Model

[customer_name

Hayes
Jones
Smith

Figure 2.19 Customers with both an account and a loan at the bank.

2.3.2 The Natural-Join Operation

It is often desirable to simplify certain queries that require a Cartesian product. Usu-
ally, a query that involves a Cartesian product includes a selection operation on the
result of the Cartesian product. Consider the query “Find the names of all customers
who have a loan at the bank, along with the loan number and the loan amount.” We
first form the Cartesian product of the borrower and loan relations. Then, we select
those tuples that pertain to only the same loan_number, followed by the projection of
the resulting customer_name, loan_number, and amount:

chstomer_name, loan.loan.number, amount
(Ubormwer.ioan_numbcr = lpan.loan.number (bO?"?‘OU}(’,T‘ X EOU-'H))

The natural join is a binary operation that allows us to combine certain selections
and a Cartesian product into one operation. It is denoted by the join symbol X. The
natural-join operation forms a Cartesian product of its two arguments, performs a
selection forcing equality on those attributes that appear in both relation schemas,
and finally removes duplicate attributes.

Although the definition of natural join is complicated, the operation is easy to
apply. As an illustration, consider again the example “Find the names of all customers
who have a loan at the bank, and find the amount of the loan.” We express this query
by using the natural join as follows:

Ieustomer-name, loan.number, amount (bo*m"owe*r X lﬂﬂ.ﬂ)

Since the schemas for borrower and loan (that is, Borrower_schema and Loan_schema)
have the attribute loan_number in common, the natural-join operation considers only
pairs of tuples that have the same value on loan_number. It combines each such pair
of tuples into a single tuple on the union of the two schemas (that is, customer name,
branch.name, loan_number, amount). After performing the projection, we obtain the re-
lation in Figure 2.20.

Consider two relation schemas R and S—which are, of course, lists of attribute
names. If we consider the schemas to be sets, rather than lists, we can denote those
attribute names that appear in both R and S by R n S, and denote those attribute
names that appear in R, in S, or in both by R U S. Similarly, those attribute names that
appear in R but not S are denoted by R — S, whereas S — R denotes those attribute
names that appear in S but not in R. Note that the union, intersection, and difference
operations here are on sets of attributes, rather than on relations.

23 Additional Relational-Algebra Operations 57

| customer_name | loan_number | amount |

Adams L-16 1300
Curry L-93 500
Hayes L-15 1500
Jackson L-14 1500
Jones L-17 1000
Smith L-23 2000
Smith L-11 900
Williams L-17 1000

Fig'-“'e 2'20 Result of chstomer_name, loan_number, amount (bO?"‘.-“OT.U&’."‘ K EO(I.'.'"]L).

We are now ready for a formal definition of the natural join. Consider two relations
r(R) and s(S). The natural join of r and s, denoted by r X s, is a relation on schema
R U S formally defined as follows:

ritE = Hpwe (s metiiedo=aaan . sva =, T % 5))

where RN S = {Al, Ag, O] An}
Because the natural join is central to much of relational database theory and prac-
tice, we give several examples of its use.

Find the names of all branches with customers who have an account in the
bank and who live in Harrison.

Hbmnch_name
(O customer.city = “Harrison” (customer M account X depositor))

The result relation for this query appears in Figure 2.21.

Notice that we wrote customer X account X depositor without inserting
parentheses to specify the order in which the natural-join operations on the
three relations should be executed. In the preceding case, there are two possi-
bilities:

(customer ™M account) M depositor
customer M (account M depositor)

We did not specify which expression we intended, because the two are equiv-
alent. That is, the natural join is associative.

Brighton
Perryridge

Figure 2.21 Result of

branch name (O customer. city = “Harrison” (customer X account X depositor)).

58

Chapter2 Relational Model

Brighton
Downtown

Figure 2.22 Result of Hpranch name (Tbranch_city = “Brooklyn” (branch)).

e Find all customers who have both a loan and an account at the bank.
I ustomer.name (borrower X depositor)

Note that in Section 2.3.1 we wrote an expression for this query by using set
intersection. We repeat this expression here.

eustomer.name (bOTTO?.UBT‘) A Heydiomername (de'pOSitO?")

The result relation for this query appeared earlier in Figure 2.19. This example
illustrates a general fact about the relational algebra: It is possible to write
several equivalent relational-algebra expressions that are quite different from
one another.

e Let 7(R) and s(S) be relations without any attributes in common; that is,
R N S = 0. (0 denotes the empty set.) Then,r X s = r X s.

The theta join operation is an extension to the natural-join operation that allows
us to combine a selection and a Cartesian product into a single operation. Consider
relations 7(R) and s(9), and let 6 be a predicate on attributes in the schema R U S.
The theta join operation 7 My s is defined as follows:

rMg s = og(r x s)

2.3.3 The Division Operation

The division operation, denoted by =+, is suited to queries that include the phrase
“for all.” Suppose that we wish to find all customers who have an account at all the
branches located in Brooklyn. We can obtain all branches in Brooklyn by the expres-
sion
71 = Ipranchname (mench_cz'ty=“Brookl)m“ (branch))

The result relation for this expression appears in Figure 2.22.

We can find all (customer_name, branch_name) pairs for which the customer has an
account at a branch by writing

= ncusf.omcnname, branch.name (dGPOSifOT’ > account}

Figure 2.23 shows the result relation for this expression.

Now, we need to find customers who appear in r; with every branch name in
r1. The operation that provides exactly those customers is the divide operation. We
formulate the query by writing

chstamer_nam&, branch.name (deposito:-" M GCCOHHI)
-+ Ipranchname (mench_ca'ty = “Brooklyn” (b'-"mwh))

2.3 Additional Relational-Algebra Operations 59

Hayes Perryridge
Johnson Downtown
Johnson Brighton

Jones Brighton
Lindsay Redwood
Smith Mianus

Turner Round Hill

Figure 2.23 Result of chswmer_name, branch_name (depOSitOT X GCCOHTU').

The result of this expression is a relation that has the schema (customer_name) and that
contains the tuple (Johnson).

Formally, let r(R) and s(S) be relations, and let S C R; that is, every attribute of
schema S is also in schema R. The relation r + sis a relation on schema R — S (that
is, on the schema containing all attributes of schema R that are not in schema S). A
tuple tisin r <+ s if and only if both of two conditions hold:

1. tisin HR_S(T”)

2. For every tuple t, in s, there is a tuple ¢, in 7 satisfying both of the following:

a. t,[S] = t,[9]
b. t.[R —] =t

It may surprise you to discover that, given a division operation and the schemas of
the relations, we can, in fact, define the division operation in terms of the fundamen-
tal operations. Let r(R) and s(S) be given, with S C R:

T+ 8§ = HRHS (T‘) —_ HR—S ((HR—S (:r') > 4 8) — HR-—S,S(?))

To see that this expression is true, we observe that Ilz_g (r) gives us all tuples ¢ that
satisfy the first condition of the definition of division. The expression on the right
side of the set difference operator

Hp-s (Mg-s (r) x s) — Hg_s,s(7))

serves to eliminate those tuples that fail to satisfy the second condition of the defini-
tion of division. Let us see how it does so. Consider IIz_g (r) x s. This relation is
on schema R, and pairs every tuple in ITg_g (r) with every tuple in 5. The expression
IIr_s,s(r) merely reorders the attributes of r.

Thus, (Ilg—s (r) x s) — Hg_g,s(r) gives us those pairs of tuples from IIz_g (r)
and s that do not appear in r. If a tuple ¢; is in

s (Hr-s (r) x s) — Ip_s,s(r))

then there is some tuple ¢, in s that does not combine with tuple ¢; to form a tuple in
r. Thus, t; holds a value for attributes R — S that does not appear in 7 + s. It is these
values that we eliminate from Ilp_g (7).

60

Chapter2 Relational Model

2.3.4 The Assignment Operation

It is convenient at times to write a relational-algebra expression by assigning parts of
it to temporary relation variables. The assignment operation, denoted by «, works
like assignment in a programming language. To illustrate this operation, consider the
definition of division in Section 2.3.3. We could writer + sas

templ «— g _g(r)
temp2 +— Tg_s ((templ x s) — Ir_gs(r))
result = templ — temp2

The evaluation of an assignment does not result in any relation being displayed to
the user. Rather, the result of the expression to the right of the « is assigned to the
relation variable on the left of the <. This relation variable may be used in subsequent
expressions.

With the assignment operation, a query can be written as a sequential program
consisting of a series of assignments followed by an expression whose value is dis-
played as the result of the query. For relational-algebra queries, assignment must
always be made to a temporary relation variable. Assignments to permanent rela-
tions constitute a database modification. We discuss this issue in Section 2.6. Note
that the assignment operation does not provide any additional power to the algebra.
It is, however, a convenient way to express complex queries.

2.4 Extended Relational-Algebra Operations

The basic relational-algebra operations have been extended in several ways. A simple
extension is to allow arithmetic operations as part of projection. An important exten-
sion is to allow aggregate operations such as computing the sum of the elements of a
set, or their average. Another important extension is the outer-join operation, which
allows relational-algebra expressions to deal with null values, which model missing
information.

2.4.1 Generalized Projection

The generalized-projection operation extends the projection operation by allowing
arithmetic functions to be used in the projection list. The generalized-projection op-
eration has the form

Op,5,....F. (E)

where F is any relational-algebra expression, and each of Fy, Fb, ..., Fy is an arith-
metic expression involving constants and attributes in the schema of £. As a special
case, the arithmetic expression may be simply an attribute or a constant.

For example, suppose we have a relation credit.info, as in Figure 2.24, which lists
the credit limit and expenses so far (the credit_balance on the account). If we want to
find how much more each person can spend, we can write the following expression:

chstamew‘_namc, limit — credit_balance (Cfedff._iﬂfﬂ)

24 Extended Relational-Algebra Operations 61

| customer_name| limit | credit_balance |
Curry 2000 1750
Hayes 1500 1500
Jones 6000 700
Smith 2000 400

Figure 2.24 The credit_info relation.

The attribute resulting from the expression limit — credit_balance does not have a
name. We can apply the rename operation to the result of generalized projection in
order to give it a name. As a notational convenience, renaming of attributes can be
combined with generalized projection as illustrated below:

chstomer_name, (limit — credit-balance) as credit.available (cred:t‘mfo)

The second attribute of this generalized projection has been given the name credit
available. Figure 2.25 shows the result of applying this expression to the relation in
Figure 2.24.

2.4.2 Aggregate Functions

Aggregate functions take a collection of values and return a single value as a result.
For example, the aggregate function sum takes a collection of values and returns the
sum of the values. Thus, the function sum applied on the collection

{]!1737414711}

returns the value 24. The aggregate function avg returns the average of the values.
When applied to the preceding collection, it returns the value 4. The aggregate func-
tion count returns the number of the elements in the collection, and returns 6 on
the preceding collection. Other common aggregate functions include min and max,
which return the minimum and maximum values in a collection; they return 1 and
11, respectively, on the preceding collection.

The collections on which aggregate functions operate can have multiple occur-
rences of a value; the order in which the values appear is not relevant. Such collec-
tions are called multisets. Sets are a special case of multisets where there is only one
copy of each element.

| customer_name| credit_available]

Curry 250
Jones 5300
Smith 1600
Hayes 0

Flgure 2.25 The result of II customer-name, (limit — credit_balance) as ecredit_available
(credit_info).

62

Chapter2 Relational Model

[employee_name| branch_name] salary |

Adams Perryridge | 1500
Brown Perryridge | 1300
Gopal Perryridge | 5300
Johnson Downtown | 1500
Loreena Downtown 1300
Peterson Downtown | 2500
Rao Austin 1500
Sato Austin 1600

Figure 2.26 The pt.works relation.

To illustrate the concept of aggregation, we shall use the pt.works relation in Fig-
ure 2.26, for part-time employees. Suppose that we want to find out the total sum of
salaries of all the part-time employees in the bank. The relational-algebra expression
for this query is:

gsum(.mla‘ry) (pt-works)

The symbol G is the letter G in calligraphic font; read it as “calligraphic G.” The
relational-algebra operation § signifies that aggregation is to be applied, and its sub-
script specifies the aggregate operation to be applied. The result of the expression
above is a relation with a single attribute, containing a single row with a numerical
value corresponding to the sum of all the salaries of all employees working part-time
in the bank.

There are cases where we must eliminate multiple occurrences of a value before
computing an aggregate function. If we do want to eliminate duplicates, we use the
same function names as before, with the addition of the hyphenated string “distinct”
appended to the end of the function name (for example, count-distinct). An example
arises in the query “Find the number of branches appearing in the pt.works relation.”
In this case, a branch name counts only once, regardless of the number of employees
working that branch. We write this query as follows:

Geount—distinct (branch.name) (pt_work:s)

For the relation in Figure 2.26, the result of this query is a single row containing the
value 3.

Suppose we want to find the total salary sum of all part-time employees at each
branch of the bank separately, rather than the sum for the entire bank. To do so, we
need to partition the relation pt_works into groups based on the branch, and to apply
the aggregate function on each group.

The following expression using the aggregation operator G achieves the desired
result:

branch.nomeJsum(salary) (pt-works)

24 Extended Relational-Algebra Operations 63

| employee_name | branch_name] salary |

Rao Austin 1500
Sato Austin 1600
Johnson Downtown | 1500
Loreena Downtown | 1300
Peterson Downtown | 2500
Adams Perryridge | 1500
Brown Perryridge | 1300
Gopal Perryridge | 5300

Figure 2.27 The pt.works relation after grouping.

In the expression, the attribute branch.name in the left-hand subscript of G indicates
that the input relation pf.works must be divided into groups based on the value of
branch-name. Figure 2.27 shows the resulting groups. The expression sum(salary) in
the right-hand subscript of G indicates that for each group of tuples (that is, each
branch), the aggregation function sum must be applied on the collection of values of
the salary attribute. The output relation consists of tuples with the branch name, and
the sum of the salaries for the branch, as shown in Figure 2.28.
The general form of the aggregation operation G is as follows:

G1,G2,Gn IF1 (A1), Fa(A2)s-.., Fon(Am)(E)

where E is any relational-algebra expression; G1,Ga,. .., G, constitute a list of at-
tributes on which to group; each F; is an aggregate function; and each A; is an at-
tribute name. The meaning of the operation is as follows. The tuples in the result of
expression E are partitioned into groups in such a way that

1. All tuples in a group have the same values for G, Gy, ..., Gy.

2. Tuples in different groups have different values for Gy, Ga, ..., Gp.

Thus, the groups can be identified by the values of attributes Gy, G, . .., G,,. For each
group (g1, g2, - -, gn), the result has a tuple (g1,92, ..., 9n,a1,a2,-..,a,) where, for
each i, a; is the result of applying the aggregate function F; on the multiset of values
for attribute A; in the group.

| branch_name] sum(salary)
Austin 3100
Downtown 5300
Perryridge 8100

Figure 2.28 Result of janchname Gsum(salary) (pt-works).

64

Chapter2 Relational Model

[branch_name | sum_salary| max_salary |

Austin 3100 1600
Downtown 5300 2500
Perryridge 8100 5300

Figure 2.29 Result of

branch.name gsum(saiamy) as sum_salary, max(salary) as maz.salary (pt_works).

As a special case of the aggregate operation, the list of attributes G, G3, ..., Gy can
be empty, in which case there is a single group containing all tuples in the relation.
This corresponds to aggregation without grouping.

Going back to our earlier example, if we want to find the maximum salary for
part-time employees at each branch, in addition to the sum of the salaries, we write
the expression

branch.name Isum(salary),max(salary) (ptworks)

As in generalized projection, the result of an aggregation operation does not have a
name. We can apply a rename operation to the result in order to give it a name. As
a notational convenience, attributes of an aggregation operation can be renamed as
illustrated below:

branch.name gsum(saﬁa’r’y) as sum_salary, max(salary) as maz_salary (Pt—wm'ks)

Figure 2.29 shows the result of the expression.

2.4.3 Outer Join

The outer-join operation is an extension of the join operation to deal with missing
information. Suppose that we have the relations with the following schemas, which
contain data on full-time employees:

[employee_name| street | city |
Coyote Toon Hollywood
Rabbit Tunnel Carrotville
Smith Revolver | Death Valley
Williams Seaview | Seattle

[‘employee_name | branch_name | salary |

Coyote Mesa 1500
Rabbit Mesa 1300
Gates Redmond | 5300
Williams Redmond | 1500

Figure 2.30 The employee and ft_works relations.

24 Extended Relational-Algebra Operations 65
| employee_name | street | city | branch_name | salary |
Coyote Toon Hollywood | Mesa 1500
Rabbit Tunnel | Carrotville Mesa 1300
Williams Seaview | Seattle Redmond | 1500

Figure 2.31 The result of employee X ft_works.

employee (employee_name, street, city)
ftworks (employee_name, branch_name, salary)

Consider the employee and ft.works relations in Figure 2.30. Suppose that we want
to generate a single relation with all the information (street, city, branch name, and
salary) about full-time employees. A possible approach would be to use the natural-
join operation as follows:

employee W ft_works

The result of this expression appears in Figure 2.31. Notice that we have lost the street
and city information about Smith, since the tuple describing Smith is absent from
the ft.works relation; similarly, we have lost the branch name and salary information
about Gates, since the tuple describing Gates is absent from the employee relation.

We can use the outer-join operation to avoid this loss of information. There are
actually three forms of the operation: left outer join, denoted IX; right outer join, de-
noted MC; and full outer join, denoted L. All three forms of outer join compute the
join, and add extra tuples to the result of the join. The results of the expressions
employee M ft_works,, employee MC ft_works, and employee DC ft_works appear in
Figures 2.32, 2.33, and 2.34, respectively.

The left outer join (3¥) takes all tuples in the left relation that did not match with
any tuple in the right relation, pads the tuples with null values for all other attributes
from the right relation, and adds them to the result of the natural join. In Figure 2.32,
tuple (Smith, Revolver, Death Valley, null, null) is such a tuple. All information from
the left relation is present in the result of the left outer join.

The right outer join (>C) is symmetric with the left outer join: It pads tuples from
the right relation that did not match any from the left relation with nulls and adds
them to the result of the natural join. In Figure 2.33, tuple (Gates, null, null, Redmond,
5300) is such a tuple. Thus, all information from the right relation is present in the
result of the right outer join.

| employee_name | street | city [branch_name [salary |
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond | 1500
Smith Revolver | Death Valley | null null

Figure 2.32 Result of employee 34 ft_works.

66

Chapter 2

Relational Model

[Cemployee_name | street | city [branch_name | salary |
Coyote Toon Hollywood | Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500
Gates null null Redmond 5300

Figure 2.33 Result of employee MXC ft_works.

The full outer join(2<C) does both of those operations, padding tuples from the
left relation that did not match any from the right relation, as well as tuples from the
right relation that did not match any from the left relation, and adding them to the
result of the join. Figure 2.34 shows the result of a full outer join.

Since outer-join operations may generate results containing null values, we need
to specify how the different relational-algebra operations deal with null values. Sec-
tion 2.5 deals with this issue.

It is interesting to note that the outer-join operations can be expressed by the basic
relational-algebra operations. For instance, the left outer join operation, r 2 s, can
be written as

(rXs)U(r—Tg(r™s)) x {(null,...,null)}

where the constant relation {(null, . ..,null)} is on the schema S — R.

2.5 Null Values

In this section, we define how the various relational-algebra operations deal with null
values and complications that arise when a null value participates in an arithmetic
operation or in a comparison. As we shall see, there is often more than one possible
way of dealing with null values, and as a result our definitions can sometimes be
arbitrary. Operations and comparisons on null values should therefore be avoided,
where possible.

Since the special value null indicates “value unknown or nonexistent,” any arith-
metic operations (such as +, —, %, /) involving null values must return a null result.

Similarly, any comparisons (such as <, <=, >, >=, #) involving a null value eval-
uate to special value unknown; we cannot say for sure whether the result of the
comparison is true or false, so we say that the result is the new truth value unknown.

[employee_name | street | city | branch_name | salary |
Coyote Toon Hollywood Mesa 1500
Rabbit Tunnel Carrotville Mesa 1300
Williams Seaview | Seattle Redmond 1500
Smith Revolver | Death Valley | null null
Gates null null Redmond 5300

Figure 2.34 Result of employee DL ft_works.

25 Null Values 67

Comparisons involving nulls may occur inside Boolean expressions involving the
and, or, and not operations. We must therefore define how the three Boolean opera-
tions deal with the truth value unknown.

and: (true and unknown) = unknown; (false and unknown) = false; (unknown and
unknown) = unknown.

or: (true or unknown) = true; (false or unknown) = unknown; (unknown or un-
known) = unknown.

not: (not unknown) = unknown.

We are now in a position to outline how the different relational operations deal
with null values.

Select: The selection operation evaluates predicate P in op(E) on each tuple ¢
in F. If the predicate returns the value true, t is added to the result. Otherwise,
if the predicate returns unknown or false, t is not added to the result.

Join: Joins can be expressed as a Cartesian product followed by a selection.
Thus, the definition of how selection handles nulls also defines how join op-
erations handle nulls.

In a natural join, say r M s, we can see from the above definition that if two
tuples, t, € r and t, € s, both have a null value in a common attribute, then
the tuples do not match.

Projection: The projection operation treats nulls just like any other value when
eliminating duplicates. Thus, if two tuples in the projection result are exactly
the same, and both have nulls in the same fields, they are treated as duplicates.

The decision is a little arbitrary since, without knowing the actual value,
we do not know if the two instances of null are duplicates or not.

Union, intersection, difference: These operations treat nulls just as the pro-
jection operation does; they treat tuples that have the same values on all fields
as duplicates even if some of the fields have null values in both tuples.

The behavior is rather arbitrary, especially in the case of intersection and
difference, since we do not know if the actual values (if any) represented by
the nulls are the same.

Generalized projection: We outlined how nulls are handled in expressions
at the beginning of Section 2.5. Duplicate tuples containing null values are
handled as in the projection operation.

Aggregate: When nulls occur in grouping attributes, the aggregate operation
treats them just as in projection: If two tuples are the same on all grouping
attributes, the operation places them in the same group, even if some of their
attribute values are null.

When nulls occur in aggregated attributes, the operation deletes null values
at the outset, before applying aggregation. If the resultant multiset is empty,
the aggregate result is null, except for the count operation, whose result is 0.

68 Chapter2 Relational Model

Note that the treatment of nulls here is different from that in ordinary arith-
metic expressions; we could have defined the result of an aggregate operation
as null if even one of the aggregated values is null. However, this would mean
a single unknown value in a large group could make the aggregate result on
the group to be null, and we would lose a lot of useful information.

e Outer join: Outer-join operations behave just like join operations, except on
tuples that do not occur in the join result. Such tuples may be added to the
result (depending on whether the operation is 3¢, X, or), padded with
nulls.

2.6 Modification of the Database

We have limited our attention until now to the extraction of information from the
database. In this section, we address how to add, remove, or change information in
the database.

We express database modifications by using the assignment operation. We make
assignments to actual database relations by using the same notation as that described
in Section 2.3 for assignment.

2.6.1 Deletion

We express a delete request in much the same way as a query. However, instead of
displaying tuples to the user, we remove the selected tuples from the database. We
can delete only whole tuples; we cannot delete values on only particular attributes.
In relational algebra a deletion is expressed by

re—1r—F

where r is a relation and E is a relational-algebra expression.
Here are several examples of relational-algebra delete requests:

e Delete all of Smith’s account records.
depositor «— depositor — O customer.name = “Smith (depositor)
e Delete all loans with amount in the range 0 to 50.

loan « loan — Oamount>0Aamount<so (loan)

e Delete all accounts at branches located in Brooklyn.

T1 = Obranch_city = “Brooklyn” (GCCOUNt > bmnch)

Ly = Hbm.nch_nume, acecount.number, balance (Tl)
account +«— account — T

Note that, in the final example, we simplified our expression by using assign-
ment to temporary relations (r; and r2).

2.6 Modification of the Database 69

2.6.2 Insertion

To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. Obviously, the attribute values for in-
serted tuples must be members of the attribute’s domain. Similarly, tuples inserted
must be of the correct arity. The relational algebra expresses an insertion by

re—ruUFg

where 7 is a relation and E is a relational-algebra expression. We express the insertion
of a single tuple by letting E be a constant relation containing one tuple.

Suppose that we wish to insert the fact that Smith has $1200 in account A-973 at
the Perryridge branch. We write

account «— account U {(A-973, “Perryridge”, 1200)}
depositor « depositor U {(“Smith”, A-973)}

More generally, we might want to insert tuples on the basis of the result of a query.
Suppose that we want to provide as a gift for all loan customers of the Perryridge
branch a new $200 savings account. Let the loan number serve as the account number
for this savings account. We write

1 ¢ (Obranch.name = “Perryridge” (borrower X loan))

ra = Ilioan_n.umber, branch.name (7'1

account «— account U (rs x {(200)})
dePOSitor t depﬂsitﬂr U chstomer_name, loan_number (Tl)

Instead of specifying a tuple as we did earlier, we specify a set of tuples that is in-
serted into both the account and depositor relation. Each tuple in the account relation
has an account_number (which is the same as the loan number), a branch.name (Per-
ryridge), and the initial balance of the new account ($200). Each tuple in the depositor
relation has as customer.name the name of the loan customer who is being given the
new account and the same account number as the corresponding account tuple.

2.6.3 Updating

In certain situations, we may wish to change a value in a tuple without changing all
values in the tuple. We can use the generalized-projection operator to do this task:

r — Ip,m,.. k. (7)

where each F; is either the ith attribute of r, if the ith attribute is not updated, or, if
the attribute is to be updated, F; is an expression, involving only constants and the
attributes of r, that gives the new value for the attribute. Note that the schema of
the expression resulting from the generalized-projection expression must match the
original schema of r.

If we want to select some tuples from r and to update only them, we can use
the following expression; here, P denotes the selection condition that chooses which

70 Chapter2 Relational Model

tuples to update:
r — lp,p,.F(0p(r)) U (r—op(r))
To illustrate the use of the update operation, suppose that interest payments are
being made, and that all balances are to be increased by 5 percent. We write

account <« naccaunt_number, branch.name, balance *1.05 (account)

Now suppose that accounts with balances over $10,000 receive 6 percent interest,
whereas all others receive 5 percent. We write

account «— Haccountﬂumber,&raﬂchname, balance *1.06 (Jbaiaﬂce}10000 (account))
U Tliceount. number, branch_.name balance x1.05 (T halance<10000 (account))

2.7 Summary

e The relational data model is based on a collection of tables. The user of the
database system may query these tables, insert new tuples, delete tuples, and
update (modify) tuples. There are several languages for expressing these op-
erations.

e The relational algebra defines a set of algebraic operations that operate on
tables, and output tables as their results. These operations can be combined
to get expressions that express desired queries. The algebra defines the basic
operations used within relational query languages.

e The operations in relational algebra can be divided into

[J Basic operations

[0 Additional operations that can be expressed in terms of the basic opera-
tions

O Extended operations, some of which add further expressive power to re-
lational algebra

e Databases can be modified by insertion, deletion, or update of tuples. We
used the relational algebra with the assignment operator to express these
modifications.

e The relational algebra is a terse, formal language that is inappropriate for ca-
sual users of a database system. Commercial database systems, therefore, use
languages with more “syntactic sugar.” In Chapters 3 and 4, we shall consider
the most influential language—SQL, which is based on relational algebra.

Review Terms

e Table e Null value
e Relation

. e Database schema
e Tuple variable

e Atomic domain e Database instance

e Relation instance
e Keys
e Foreign key

O Referencing relation
[0 Referenced relation

o Schema diagram

e Query language

e Procedural language

e Nonprocedural language

e Relational algebra

Relational-algebra operations

O Select o

[Project IT

0 Union U

O Set difference —

0O Cartesian product x
0 Rename p

Additional operations

O Set intersection N
[J Natural join ™

Practice Exercises

Practice Exercises VA

O Division +
e Assignment operation

Extended relational-algebra
operations
[0 Generalized projection IT
O Outer join
— Left outer join Ix
— Right outer join MC
— Full outer join 2XC
O Aggregation G
e Multisets
e Grouping
e Null value
e Truth values

O true

O false

O unknown

Modification of the database

[0 Deletion
O Insertion
[0 Updating

[]

2.1 Consider the relational database of Figure 2.35, where the primary keys are un-
derlined. Give an expression in the relational algebra to express each of the fol-

lowing queries:

a. Find the names of all employees who live in the same city and on the same

street as do their managers.

b. Find the names of all employees in this database who do not work for First

Bank Corporation.

c. Find the names of all employees who earn more than every employee of

Small Bank Corporation.

employee (person_name, street, city)

works (person_naimne, company_name, salary)
company (company_name, city)

manages (person_name, manager_narme)

Figure 2.35 Relational database for Exercises 2.1, 2.3, 2.5, 2.7, and 2.9.

72 Chapter2 Relational Model

2.2 The outer-join operations extend the natural-join operation so that tuples from
the participating relations are not lost in the result of the join. Describe how the
theta join operation can be extended so that tuples from the left, right, or both
relations are not lost from the result of a theta join.

2.3 Consider the relational database of Figure 2.35. Give an expression in the rela-
tional algebra for each request:

a. Modify the database so that Jones now lives in Newtown.
b. Give all managers in this database a 10 percent salary raise.

Exercises

2.4 Describe the differences in meaning between the terms relation and relation schema.

2.5 Consider the relational database of Figure 2.35, where the primary keys are un-
derlined. Give an expression in the relational algebra to express each of the fol-
lowing queries:

a. Find the names of all employees who work for First Bank Corporation.

b. Find the names and cities of residence of all employees who work for First
Bank Corporation.

¢. Find the names, street address, and cities of residence of all employees who
work for First Bank Corporation and earn more than $10,000 per annum.

d. Find the names of all employees in this database who live in the same city
as the company for which they work.

e. Assume the companies may be located in several cities. Find all companies
located in every city in which Small Bank Corporation is located.

2.6 Consider the relation of Figure 2.20, which shows the result of the query “Find
the names of all customers who have a loan at the bank.” Rewrite the query
to include not only the name, but also the city of residence for each customer.
Observe that now customer Jackson no longer appears in the result, even though
Jackson does in fact have a loan from the bank.

a. Explain why Jackson does not appear in the result.

b. Suppose that you want Jackson to appear in the result. How would you
modify the database to achieve this effect?

¢. Again, suppose that you want Jackson to appear in the result. Write a query
using an outer join that accomplishes this desire without your having to
modify the database.

2.7 Consider the relational database of Figure 2.35. Give an expression in the rela-
tional algebra for each request:

a. Give all employees of First Bank Corporation a 10 percent salary raise.

b. Give all managers in this database a 10 percent salary raise, unless the salary
would be greater than $100,000. In such cases, give only a 3 percent raise.

¢. Delete all tuples in the works relation for employees of Small Bank Corpora-
tion.

Bibliographical Notes 73

2.8 Using the bank example, write relational-algebra queries to find the accounts
held by more than two customers in the following ways:

a. Using an aggregate function.
b. Without using any aggregate functions.

2.9 Consider the relational database of Figure 2.35. Give a relational-algebra expres-
sion for each of the following queries:
a. Find the company with the most employees.
b. Find the company with the smallest payroll.
c. Find those companies whose employees earn a higher salary, on average,
than the average salary at First Bank Corporation.

2.10 List two reasons why null values might be introduced into the database.
2.11 Consider the following relational schema
employee(empno, name, office, age)

books(isbn, title, authors, publisher)
loan(empno, isbn, date)

Write the following queries in relational algebra.

a. Find the names of employees who have borrowed a book published by
McGraw-Hill.

b. Find the names of employees who have borrowed all books published by
McGraw-Hill :

c. Find the names of employees who have borrowed more than five different
books published by McGraw-Hill.

d. For each publisher, find the names of employees who have borrowed more
than five books of that publisher.

Bibliographical Notes

E. F. Codd of the IBM San Jose Research Laboratory proposed the relational model in
the late 1960s (Codd [1970]). This work led to the prestigious ACM Turing Award to
Codd in 1981 (Codd [1982]).

After Codd published his original paper, several research projects were formed
with the goal of constructing practical relational database systems including System
R at the IBM San Jose Research Laboratory, Ingres at the University of California at
Berkeley, and Query-by-Example at the IBM T.]. Watson Research Center.

Atzeni and Antonellis [1993] and Maier [1983] are texts devoted exclusively to the
theory of the relational data model.

The original definition of relational algebra is in Codd [1970]. Extensions to the
relational model and discussions of incorporation of null values in the relational al-
gebra (the RM/T model), as well as outer joins, are in Codd [1979]. Codd [1990] is
a compendium of E. E Codd’s papers on the relational model. Outer joins are also
discussed in Date [1993b].

74

Chapter2 Relational Model

Many relational database products are now commercially available. These include
IBM’s DB2, Oracle, Sybase, Informix, and Microsoft SQL Server. Open source relational
database systems include MySQL and PostgreSQL. Database products designed for
personal use include Microsoft Access and FoxPro.

The relational algebra described in Chapter 2 provides a concise, formal notation for
representing queries. However, commercial database systems require a query lan-
guage that is more user friendly. In this chapter, as well as Chapter 4, we study SQL,
the most influential commercially marketed query language. SQL uses a combination
of relational-algebra (Chapter 2) and relational-calculus (Chapter 5) constructs.

Although we refer to the SQL language as a “query language,” it can do much
more than just query a database. It can define the structure of the data, modify data
in the database, and specify security constraints.

It is not our intention to provide a complete users’ guide for SQL. Rather, we
present SQL's fundamental constructs and concepts. Individual implementations of
SQL may differ in details, or may support only a subset of the full language.

3.1 Background

IBM developed the original version of SQL, originally called Sequel, as part of the
System R project in the early 1970s. The Sequel language has evolved since then,
and its name has changed to SQL (Structured Query Language). Many products now
support the SQL language. SQL has clearly established itself as the standard relational
database language.

In 1986, the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) published an SQL standard, called SQL-86.
ANSI published an extended standard for SQL, SQL-89, in 1989. The next version of
the standard was SQL-92 standard, followed by SQL:1999; the most recent version is
SQL:2003. The bibliographic notes provide references to these standards.

The SQL language has several parts:

e Data-definition language (DDL). The SQL DDL provides commands for defin-
ing relation schemas, deleting relations, and modifying relation schemas.

75

76

Chapter3 SQL

o Interactive data-manipulation language (DML). The SQL DML includes a
query language based on both the relational algebra (Chapter 2) and and the
tuple relational calculus (Chapter 5). It also includes commands to insert tu-
ples into, delete tuples from, and modify tuples in the database.

e Integrity. The SQL DDL includes commands for specifying integrity constraints
that the data stored in the database must satisfy. Updates that violate integrity
constraints are disallowed.

e View definition. The SQL DDL includes commands for defining views.

e Transaction control. SQL includes commands for specifying the beginning
and ending of transactions.

¢ Embedded SQL and dynamic SQL. Embedded and dynamic SQL define how
SQL statements can be embedded within general-purpose programming lan-
guages, such as C, C++, Java, PL/I, Cobol, Pascal, and Fortran.

e Authorization. The SQL DDL includes commands for specifying access rights
to relations and views.

In this chapter, we present a survey of basic DML and the DDL features of SQL. Our
description is mainly based on the widely implemented SQL-92 standard, but we also
cover some extensions from the SQL:1999 and SQL:2003 standards.

In Chapter 4 we provide a more detailed coverage of the SQL type system, in-
tegrity constraints, and authorization. In that chapter, we also briefly outline embed-
ded and dynamic SQL, including the ODBC and JDBC standards for interacting with
a database from programs written in the C and Java languages. In Chapter 9, we
outline object-oriented extensions to SQL that were introduced in SQL:1999.

Many database systems support most of the SQL-92 standard and some of the new
constructs in SQL:1999 and SQL:2003, although currently no database system supports
all the new constructs. You should also be aware that many database systems do
not support some features of SQL-92, and that many databases provide nonstandard
features that we do not cover here. In case you find that some language features
described here do not work on the database system that you use, consult the user
manuals for your database system to find exactly what features it supports.

The enterprise that we use in the examples in this chapter, and later chapters,
is a banking enterprise. Figure 3.1 gives the relational schema that we use in our
examples, with primary-key attributes underlined. Recall that in Chapter 2 we first

branch(branch.name, branch_city, assets)

customer (customer_name, customer.street, customer_city)
loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_name, balance)
depositor (customer_name, account.number)

Figure 3.1 Schema of banking enterprise.

3.2 Data Definition 77

defined a relation schema R by listing its attributes, and then defined a relation r
on the schema using the notation r(R). The notation in Figure 3.1 omits the schema
name, and defines the schema of a relation by directly listing its attributes.

3.2 Data Definition

The set of relations in a database must be specified to the system by means of a data-
definition language (DDL). The SQL DDL allows specification of not only a set of rela-
tions, but also information about each relation, including

o The schema for each relation

e The domain of values associated with each attribute

e The integrity constraints

e The set of indices to be maintained for each relation

e The security and authorization information for each relation

o The physical storage structure of each relation on disk

We discuss here basic schema definition and basic domain values; we defer discus-
sion of the other SQL DDL features to Chapter 4.

3.2.1 Basic Domain Types

The SQL standard supports a variety of built-in domain types, including:
e char(n): A fixed-length character string with user-specified length n. The full
form, character, can be used instead.

e varchar(n): A variable-length character string with user-specified maximum
length n. The full form, character varying, is equivalent.

e int: An integer (a finite subset of the integers that is machine dependent). The
full form, integer, is equivalent.

e smallint: A small integer (a machine-dependent subset of the integer domain
type).

e numeric(p, d): A fixed-point number with user-specified precision. The num-
ber consists of p digits (plus a sign), and d of the p digits are to the right of the
decimal point. Thus, numeric(3,1) allows 44.5 to be stored exactly, but neither
444.5 or 0.32 can be stored exactly in a field of this type.

e real, double precision: Floating-point and double-precision floating-point num-
bers with machine-dependent precision.

o float(n): A floating-point number, with precision of at least n digits.

Additional domain values are covered in Section 4.1.

78

Chapter3 SQL

3.2.2 Basic Schema Definition in SQL

We define an SQL relation by using the create table command:

create table r(A1 Dy, A3 D, ..., A, Dy,
(integrity-constraint,),

(integrity-constraint,))

where 7 is the name of the relation, each A; is the name of an attribute in the schema of
relation 7, and D; is the domain type of values in the domain of attribute A;. There are
a number of different allowable integrity constraints. In this section we only discuss
primary key,which takes the form:

e primary key (A4;,,Aj,,...,A4;,): The primary-key specification says that at-
tributes A;,, Aj,, ..., 4;,, form the primary key for the relation. The primary-
key attributes are required to be non null and unique; that is, no tuple can have
a null value for a primary-key attribute, and no two tuples in the relation can
be equal on all the primary-key attributes.! Although the primary-key specifi-
cation is optional, it is generally a good idea to specify a primary key for each
relation.

Other integrity constraints that the create table command may include are covered
later, in Section 4.2,

Figure 3.2 presents a partial SQL DDL definition of our bank database. Note that,
as in earlier chapters, we do not attempt to model precisely the real world in the
bank database example. In the real world, multiple people may have the same name,
so customer_name would not be a primary key for the customer relation; a customer_id
would more likely be used as a primary key. We use customer.name as a primary key
to keep our database schema simple and short.

If a newly inserted or modified tuple in a relation has null values for any primary-
key attribute, or if the tuple has the same value on the primary-key attributes as does
another tuple in the relation, SQL flags an error and prevents the update.

A newly created relation is empty initially. We can use the insert command to load
data into the relation. For example, if we wish to insert the fact that there is an account
A-9732 at the Perryridge branch and that it has a balance of $1200, we write

insert into account
values ("A-9732', 'Perryridge’, 1200)

The values are specified in the order in which the corresponding attributes are listed
in the relation schema. The insert command has a number of useful features, and is
covered in more detail later, in Section 3.10.2.

We can use the delete command to delete tuples from a relation. The command

delete from account

1. In SQL-89, primary-key attributes were not implicitly declared to be not null; an explicit not null
declaration was required.

32 Data Definition 79

create table customer
(customer name char(20),
customer_street char(30),
customercity ~ char(30),
primary key (customer_name))

create table branch
(branch_name char(15),
branch_city char(30),
assets numeric(16,2),
primary key (branch_name))

create table account
(accountnumber char(10),
branch_name char(15),
balance numeric(12,2),
primary key (account_number))

create table depositor
(customer-name char(20),
account_number char(10),
primary key (customer_name, account_number))

Figure3.2 SQL data definition for part of the bank database.

would delete all tuples from the account relation. Other forms of the delete command
allow specific tuples to be deleted; the delete command is covered in more detail
later, in Section 3.10.1.

To remove a relation from an SQL database, we use the drop table command. The
drop table command deletes all information about the dropped relation from the
database. The command

drop table r
is a more drastic action than
delete from r

The latter retains relation 7, but deletes all tuples in 7. The former deletes not only all
tuples of , but also the schema for 7. After r is dropped, no tuples can be inserted
into r unless it is re-created with the create table command.

We use the alter table command to add attributes to an existing relation. All tuples
in the relation are assigned null as the value for the new attribute. The form of the
alter table command is

alter table radd A D

where r is the name of an existing relation, A is the name of the attribute to be added,

80

Chapter3 SQL

and D is the domain of the added attribute. We can drop attributes from a relation by
the command

alter table r drop A

where 7 is the name of an existing relation, and A is the name of an attribute of the
relation. Many database systems do not support dropping of attributes, although
they will allow an entire table to be dropped.

3.3 Basic Structure of SQL Queries

A relational database consists of a collection of relations, each of which is assigned
a unique name. Each relation has a structure similar to that presented in Chapter 2.
SQL allows the use of null values to indicate that the value either is unknown or does
not exist. It allows a user to specify which attributes cannot be assigned null values,
as we noted in Section 3.2.

The basic structure of an SQL expression consists of three clauses: select, from, and
where.

e The select clause corresponds to the projection operation of the relational al-
gebra. It is used to list the attributes desired in the result of a query.

e The from clause corresponds to the Cartesian-product operation of the rela-
tional algebra. It lists the relations to be scanned in the evaluation of the ex-
pression.

e The where clause corresponds to the selection predicate of the relational alge-
bra. It consists of a predicate involving attributes of the relations that appear
in the from clause.

That the term select has different meaning in SQL than in the relational algebra is an
unfortunate historical fact. We emphasize the different interpretations here to mini-
mize potential confusion.

A typical SQL query has the form

select Ay, As,..., A,
fromry, r2,...,Tm
where P

Each A; represents an attribute, and each r; a relation. P is a predicate. The query is
equivalent to the relational-algebra expression

A, Ay,..a.(0p(r1 X T2 X o0 X 7))

If the where clause is omitted, the predicate P is true. However, unlike the result of a
relational-algebra expression, the result of the SQL query may contain multiple copies
of some tuples; we shall return to this issue in Section 3.3.8.

SQL forms the Cartesian product of the relations named in the from clause,
performs a relational-algebra selection using the where clause predicate, and then

3.3 Basic Structure of SQL Queries 81

projects the result onto the attributes of the select clause. In practice, SQL may con-
vert the expression into an equivalent form that can be processed more efficiently.
However, we shall defer concerns about efficiency to Chapters 13 and 14.

3.3.1 The select Clause

The result of an SQL query is, of course, a relation. Let us consider a simple query
using our banking example, “Find the names of all branches in the loan relation”:

select branch_name
from loan

The result is a relation consisting of a single attribute with the heading branch name.

Formal query languages are based on the mathematical notion of a relation being
a set. Thus, duplicate tuples never appear in relations. In practice, duplicate elimina-
tion is time-consuming. Therefore, SQL (like most other commercial query languages)
allows duplicates in relations as well as in the results of SQL expressions. Thus, the
preceding query will list each branch_name once for every tuple in which it appears in
the loan relation.

In those cases where we want to force the elimination of duplicates, we insert the
keyword distinct after select. We can rewrite the preceding query as

select distinct branch_name
from loan

if we want duplicates removed.
SQL allows us to use the keyword all to specify explicitly that duplicates are not
removed:

select all branch-name
from loan

Since duplicate retention is the default, we will not use all in our examples. To ensure
the elimination of duplicates in the results of our example queries, we will use dis-
tinct whenever it is necessary. In most queries where distinct is not used, the exact
number of duplicate copies of each tuple present in the query result is not important.
However, the number is important in certain applications; we return to this issue in
Section 3.3.8.

The asterisk symbol * * ” can be used to denote “all attributes.” Thus, the use of
loan.* in the preceding select clause would indicate that all attributes of loan are to be
selected. A select clause of the form select * indicates that all attributes of all relations
appearing in the from clause are selected.

The select clause may also contain arithmetic expressions involving the operators
+, =, *,and / operating on constants or attributes of tuples. For example, the query

select loan_number, branch_name, amount * 100
from loan

82

Chapter3 SQL

will return a relation that is the same as the loan relation, except that the attribute
amount is multiplied by 100.

SQL also provides special data types, such as various forms of the date type, and
allows several arithmetic functions to operate on these types.

3.3.2 The where Clause

Let us illustrate the use of the where clause in SQL. Consider the query “Find all loan
numbers for loans made at the Perryridge branch with loan amounts greater that
$1200.” This query can be written in SQL as:

select loan_number
from loan
where branch-name = 'Perryridge” and amount > 1200

SQL uses the logical connectives and, or, and not—rather than the mathematical
symbols A, V, and = —in the where clause. The operands of the logical connectives
can be expressions involving the comparison operators <, <=, >, >=, =, and <>.
SQL allows us to use the comparison operators to compare strings and arithmetic
expressions, as well as special types, such as date types.

SQL includes a between comparison operator to simplify where clauses that spec-
ify that a value be less than or equal to some value and greater than or equal to some
other value. If we wish to find the loan number of those loans with loan amounts
between $90,000 and $100,000, we can use the between comparison to write

select loan_number
from loan
where amount between 90000 and 100000

instead of

select loan_number
from loan
where amount <= 100000 and amount >= 90000

Similarly, we can use the not between comparison operator.

3.3.3 The from Clause

Finally, let us discuss the use of the from clause. The from clause by itself defines a
Cartesian product of the relations in the clause. Since the natural join is defined in
terms of a Cartesian product, a selection, and a projection, it is a relatively simple
matter to write an SQL expression for the natural join.

We write the relational-algebra expression

[Icustame?‘_namc, loan_number, amount (borrmer Pl EO{ITL)

for the query “For all customers who have a loan from the bank, find their names,
loan numbers, and loan amount.” In SQL, this query can be written as

3.3 Basic Structure of SQL Queries 83

select customer_name, borrower.loan-number, amount
from borrower, loan
where borrower.loan_number = loan.loan_number

Notice that SQL uses the notation relation-name.attribute-name, as does the relational
algebra, to avoid ambiguity in cases where an attribute appears in the schema of more
than one relation. We could have written borrower.customer_name instead of customer
-name in the select clause. However, since the attribute customer_name appears in only
one of the relations named in the from clause, there is no ambiguity when we write
customer_name.

We can extend the preceding query and consider a more complicated case in which
we require also that the loan be from the Perryridge branch: “Find the customer
names, loan numbers, and loan amounts for all loans at the Perryridge branch.” To
write this query, we need to state two constraints in the where clause, connected by
the logical connective and:

select customer_name, borrower.loan_number, amount

from borrower, loan

where borrower.loan_number = loan.loan_number and
branch_name = 'Perryridge’

SQL includes extensions to perform natural joins and outer joins in the from clause.
We discuss these extensions in Section 3.11.

3.3.4 The Rename Operation

SQL provides a mechanism for renaming both relations and attributes. It uses the as
clause, taking the form:

old-name as new-name

The as clause can appear in both the select and from clauses.
Consider again the query that we used earlier:

select customer_name, borrower.loan_number, amount
from borrower, loan
where borrower.loan_number = loan.loan_number

The result of this query is a relation with the following attributes:
customer_name, loan_number, amount

The names of the attributes in the result are derived from the names of the attributes
in the relations in the from clause.

We cannot, however, always derive names in this way, for several reasons: First,
two relations in the from clause may have attributes with the same name, in which
case an attribute name is duplicated in the result. Second, if we used an arithmetic
expression in the select clause, the resultant attribute does not have a name. Third,

84

Chapter3 SQL

even if an attribute name can be derived from the base relations as in the preced-
ing example, we may want to change the attribute name in the result. Hence, SQL
provides a way of renaming the attributes of a result relation.

For example, if we want the attribute name loan_number to be replaced with the
name loan_id, we can rewrite the preceding query as

select customer_name, borrower.loan_number as loan_id, amount
from borrower, loan
where borrower.loannumber = loan.loan_number

3.3.5 Tuple Variables

The as clause is particularly useful in defining the notion of tuple variables. A tuple
variable in SQL must be associated with a particular relation. Tuple variables are de-
fined in the from clause by way of the as clause. To illustrate, we rewrite the query
“For all customers who have a loan from the bank, find their names, loan numbers,
and loan amount” as

select customer_name, T.loan_number, S.amount
from borrower as T, loan as S
where T.loan_number = S.loan_number

Note that we define a tuple variable in the from clause by placing it after the name of
the relation with which it is associated, with the keyword as in between (the keyword
as is optional). When we write expressions of the form relation-name.attribute-name,
the relation name is, in effect, an implicitly defined tuple variable.

Tuple variables are most useful for comparing two tuples in the same relation.
Recall that, in such cases, we could use the rename operation in the relational algebra.
Suppose that we want the query “Find the names of all branches that have assets
greater than at least one branch located in Brooklyn.” We can write the SQL expression

select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = 'Brooklyn’

Observe that we could not use the notation branch.asset, since it would not be clear
which reference to branch is intended.

SQL permits us to use the notation (vy,vs, ... , U) to denote a tuple of arity n con-
taining values vi,vs, ..., v,. The comparison operators can be used on tuples, and
the ordering is defined lexicographically. For example, (a1,a2) <= (b1, b2) is true if
a1 < by, or (a1 = b)) A (a2 <= by); similarly, the two tuples are equal if all their
attributes are equal.

3.3.6 String Operations

SQL specifies strings by enclosing them in single quotes, for example, "Perryridge,’
as we saw earlier. A single quote character that is part of a string can be specified by

3.3 Basic Structure of SQL Queries 85

using two single quote characters; for example, the string “It’s right”” can be specified
by “It”s right”.

The most commonly used operation on strings is pattern matching using the op-
erator like. We describe patterns by using two special characters:

e Percent (%): The % character matches any substring.

e Underscore (_): The _ character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase char-
acters, or vice versa. To illustrate pattern matching, we consider the following exam-
ples:

e 'Perry%’ matches any string beginning with “Perry.”

e "%idge%" matches any string containing “idge” as a substring, for example,
"Perryridge’, ‘Rock Ridge’, ‘Mianus Bridge’, and ‘Ridgeway.’

e "___" matches any string of exactly three characters.

e "___% matches any string of at least three characters.

SQL expresses patterns by using the like comparison operator. Consider the query
“Find the names of all customers whose street address includes the substring ‘Main’.”
This query can be written as

select customer_name
from customer
where customer_street like '%Main%’

For patterns to include the special pattern characters (that is, % and _), SQL allows
the specification of an escape character. The escape character is used immediately
before a special pattern character to indicate that the special pattern character is to be
treated like a normal character. We define the escape character for a like comparison
using the escape keyword. To illustrate, consider the following patterns, which use a
backslash () as the escape character:

e like ‘ab\%cd %’ escape "\’ matches all strings beginning with “ab%cd”.
e like ‘ab\\cd%’ escape "\" matches all strings beginning with “ab\cd”.

SQL allows us to search for mismatches instead of matches by using the not like
comparison operator.

SQL also permits a variety of functions on character strings, such as concatenating
(using “||"), extracting substrings, finding the length of strings, converting strings to
uppercase (using upper()) and lowercase (using lower()), and so on. SQL:1999 also
offers a similar to operation, which provides more powerful pattern matching than
the like operation; the syntax for specifying patterns is similar to that used in Unix
regular expressions.

86

Chapter 3 SQL

There are variations on the exact set of string functions supported by different
database systems. Some database systems do not distinguish uppercase from low-
ercase when matching strings. Thus, "ABC” like "abc’ would return true, as would
"ABC’ = "abc’, on such systems. Others provide extensions to specify that a string
match should ignore the case. See your database system’s manual for more details
on exactly what string functions it supports.

3.3.7 Ordering the Display of Tuples

SQL offers the user some control over the order in which tuples in a relation are dis-
played. The order by clause causes the tuples in the result of a query to appear in
sorted order. To list in alphabetic order all customers who have a loan at the Per-
ryridge branch, we write

select distinct customer_name

from borrower, loan

where borrower.loannumber = loan.loan_number and
branch-name = "Perryridge’

order by customer_name

By default, the order by clause lists items in ascending order. To specify the sort order,
we may specify desc for descending order or asc for ascending order. Furthermore,
ordering can be performed on multiple attributes. Suppose that we wish to list the
entire loan relation in descending order of amount. If several loans have the same
amount, we order them in ascending order by loan number. We express this query in
SQL as follows:

select *
from loan
order by amount desc, loan_number asc

To fulfill an order by request, SQL must perform a sort. Since sorting a large num-
ber of tuples may be costly, it should be done only when necessary.

3.3.8 Duplicates

Using relations with duplicates offers advantages in several situations. Accordingly,
SQL formally defines not only what tuples are in the result of a query, but also how
many copies of each of those tuples appear in the result. We can define the duplicate
semantics of an SQL query using multiset versions of the relational operators. Here,
we define the multiset versions of several of the relational-algebra operators. Given
multiset relations r1 and 7o,

1. If there are ¢; copies of tuple ¢; in 71, and ¢; satisfies selection oy, then there
are ¢; copies of t; in og(r1).

2. For each copy of tuple t, in ry, there is a copy of tuple IT4(t1) in ILa(71), where
I14(t1) denotes the projection of the single tuple #;.

34 SetOperations 87

3. If there are ¢; copies of tuple ¢; in r; and ¢; copies of tuple ¢, in 7y, there are
c1 * ¢ copies of the tuple ¢1.ty in 7 x ry.

For example, suppose that relations r; with schema (A, B) and r; with schema (C)
are the following multisets:

T = {(113): (2,a)} r2= {(2),(3), (3)}
Then [15(r1) would be {(a), (a)}, whereas II5(r;) x r; would be
{(a"-‘ 2)’ (a! 2)7 (a'i 3)1 (al 3)? (a'l 3)'-‘ (ﬂ'? 3)}

We can now define how many copies of each tuple occur in the result of an SQL
query. An SQL query of the form

select A;, As,..., A,
fromry, 7y, ..., 7"m
where P

is equivalent to the relational-algebra expression

nAl,Az A lop(ry X rg x +-- x ?.m))

using the multiset versions of the relational operators o, IT, and x.

3.4 Set Operations

The SQL operations union, intersect, and except operate on relations and correspond
to the relational-algebra operations U, N, and —. Like union, intersection, and set
difference in relational algebra, the relations participating in the operations must be
compatible; that is, they must have the same set of attributes.

Let us demonstrate how several of the example queries that we considered in
Chapter 2 can be written in SQL. We shall now construct queries involving the union,
intersect, and except operations of two sets: the set of all customers who have an
account at the bank, which can be derived by

select customer_name
from depositor

and the set of customers who have a loan at the bank, which can be derived by

select customer_name
from borrower

In our discussion that follows, we shall refer to the relations obtained as the result of
the preceding queries as d and b, respectively.

3.4.1 The Union Operation

To find all the bank customers having a loan, an account, or both at the bank,
we write

88

Chapter 3 SOL

(select customer_name
from depositor)

union

(select customer_naime
from borrower)

The union operation automatically eliminates duplicates, unlike the select clause.
Thus, in the preceding query, if a customer—say, Jones—has several accounts or
Jloans (or both) at the bank, then Jones will appear only once in the result.

If we want to retain all duplicates, we must write union all in place of union:

(select customer_name
from depositor)
union all

(select customer_name
from borrower)

The number of duplicate tuples in the result is equal to the total number of duplicates
that appear in both d and b. Thus, if Jones has three accounts and two loans at the
bank, then there will be five tuples with the name Jones in the result.

3.4.2 The Intersect Operation

To find all customers who have both a loan and an account at the bank, we write

(select distinct customer_name
from depositor)

intersect

(select distinct customer_namne
from borrower)

The intersect operation automatically eliminates duplicates. Thus, in the preceding
query, if a customer—say, Jones—has several accounts and loans at the bank, then
Jones will appear only once in the result.

If we want to retain all duplicates, we must write intersect all in place of intersect:

(select customer_name
from depositor)
intersect all

(select customer_name
from borrower)

The number of duplicate tuples that appear in the result is equal to the minimum
number of duplicates in both d and b. Thus, if Jones has three accounts and two loans
at the bank, then there will be two tuples with the name Jones in the result.

3.5 Aggregate Functions 89

3.4.3 The Except Operation

To find all customers who have an account but no loan at the bank, we write

(select distinct customer_name
from depositor)

except

(select customer_name

from borrower)

The except operation automatically eliminates duplicates. Thus, in the preceding
query, a tuple with customer name Jones will appear (exactly once) in the result only
if Jones has an account at the bank, but has no loan at the bank.

If we want to retain all duplicates, we must write except all in place of except:

(select customer_name
from depositor)
except all

(select customer_name
from borrower)

The number of duplicate copies of a tuple in the result is equal to the number of
duplicate copies of the tuple in depositor minus the number of duplicate copies of
the tuple in borrower, provided that the difference is positive. Thus, if Jones has three
accounts and one loan at the bank, then there will be two tuples with the name Jones
in the result. If, instead, this customer has two accounts and three loans at the bank,
there will be no tuple with the name Jones in the result.

3.5 Aggregate Functions

Aggregate functions are functions that take a collection (a set or multiset) of values as
input and return a single value. SQL offers five built-in aggregate functions:

o Average: avg
e Minimum: min
e Maximum: max

Total: sum

Count: count

The input to sum and avg must be a collection of numbers, but the other operators
can operate on collections of nonnumeric data types, such as strings, as well.

As an illustration, consider the query “Find the average account balance at the
Perryridge branch.” We write this query as follows:

20

Chapter3 SQL

select avg (balance)
from account
where branch.name = "Perryridge’

The result of this query is a relation with a single attribute, containing a single tu-
ple with a numerical value corresponding to the average balance at the Perryridge
branch. Optionally, we can give a name to the attribute of the result relation by using
the as clause.

There are circumstances where we would like to apply the aggregate function not
only to a single set of tuples, but also to a group of sets of tuples; we specify this wish
in SQL using the group by clause. The attribute or attributes given in the group by
clause are used to form groups. Tuples with the same value on all attributes in the
group by clause are placed in one group.

As an illustration, consider the query “Find the average account balance at each
branch.” We write this query as follows:

select branch_name, avg (balance)
from account
group by branch.name

Retaining duplicates is important in computing an average. Suppose that the ac-
count balances at the (small) Brighton branch are $1000, $3000, $2000, and $1000. The
average balance is $7000/4 = $1750.00. If duplicates were eliminated, we would ob-
tain the wrong answer ($6000/3 = $2000).

There are cases where we must eliminate duplicates before computing an aggre-
gate function. If we do want to eliminate duplicates, we use the keyword distinct in
the aggregate expression. An example arises in the query “Find the number of de-
positors for each branch.” In this case, a depositor counts only once, regardless of the
number of accounts that depositor may have. We write this query as follows:

select branch.name, count (distinct customer_name)

from depositor, account

where depositor.account number = account.account_number
group by branch_name

At times, it is useful to state a condition that applies to groups rather than to tu-
ples. For example, we might be interested in only those branches where the average
account balance is more than $1200. This condition does not apply to a single tuple;
rather, it applies to each group constructed by the group by clause. To express such a
query, we use the having clause of SQL. SQL applies predicates in the having clause
after groups have been formed, so aggregate functions may be used. We express this
query in SQL as follows:

select branch-name, avg (balance)
from account

group by branch_name

having avg (balance) > 1200

3.6 Null Values 91

At times, we wish to treat the entire relation as a single group. In such cases, we
do not use a group by clause. Consider the query “Find the average balance for all
accounts.” We write this query as follows:

select avg (balance)
from account

We use the aggregate function count frequently to count the number of tuples in
a relation. The notation for this function in SQL is count (*). Thus, to find the number
of tuples in the customer relation, we write

select count (¥)
from customer

SQL does not allow the use of distinct with count (*). It is legal to use distinct with
max and min, even though the result does not change. We can use the keyword all
in place of distinct to specify duplicate retention, but, since all is the default, there is
no need to do so.

If a where clause and a having clause appear in the same query, SQL applies the
predicate in the where clause first. Tuples satisfying the where predicate are then
placed into groups by the group by clause. SQL then applies the having clause, if it
is present, to each group; it removes the groups that do not satisfy the having clause
predicate. The select clause uses the remaining groups to generate tuples of the result
of the query.

To illustrate the use of both a having clause and a where clause in the same query,
we consider the query “Find the average balance for each customer who lives in
Harrison and has at least three accounts.”

select depositor.customer-name, avg (balance)

from depositor, account, customer

where depositor.account number = account.account.number and
depositor.customer_name = customer.customer_name and
customer_city = "Harrison’

group by depositor.customer_name

having count (distinct depositor.account number) >=3

3.6 Null Values

SQL allows the use of null values to indicate absence of information about the value
of an attribute.

We can use the special keyword null in a predicate to test for a null value. Thus,
to find all loan numbers that appear in the loan relation with null values for amount,
we write

select loan_number
from loan
where amount is null

92

Chapter3 SQL

The predicate is not null tests for the absence of a null value.

The use of a null value in arithmetic and comparison operations causes several
complications. In Section 2.5 we saw how null values are handled in the relational
algebra. We now outline how SQL handles null values.

The result of an arithmetic expression (involving, for example +, —, * or /) is null
if any of the input values is null. SQL treats as unknown the result of any comparison
involving a null value (other than is null and is not null).

Since the predicate in a where clause can involve Boolean operations such as and,
or, and not on the results of comparisons, the definitions of the Boolean operations
are extended to deal with the value unknown, as outlined in Section 2.5.

e and: The result of true and unknown is unknown, false and unknown is false,
while unknown and unknown is unknown.

e or: The result of true or unknown is true, false or unknown is unknown, while
unknown or unknown is unknown.

e not: The result of not unknown is unknown.
SQL defines the result of an SQL statement of the form
select ... from R,,- -, R, where P

to contain (projections of) tuples in Ry x --- x R, for which predicate P evaluates to
true. If the predicate evaluates to either false or unknown for a tuplein Ry x - - - X Ry,
(the projection of) the tuple is not added to the result.

SQL also allows us to test whether the result of a comparison is unknown, rather
than true or false, by using the clauses is unknown and is not unknown.

Null values, when they exist, also complicate the processing of aggregate opera-
tors. For example, assume that some tuples in the loan relation have a null value for
amount. Consider the following query to total all loan amounts:

select sum (amount)
from loan

The values to be summed in the preceding query include null values, since some
tuples have a null value for amount. Rather than say that the overall sum is itself null,
the SQL standard says that the sum operator should ignore null values in its input.

In general, aggregate functions treat nulls according to the following rule: All ag-
gregate functions except count (*) ignore null values in their input collection. As a
result of null values being ignored, the collection of values may be empty. The count
of an empty collection is defined to be 0, and all other aggregate operations return a
value of null when applied on an empty collection. The effect of null values on some
of the more complicated SQL constructs can be subtle.

A Boolean type data, which can take values true, false, and unknown, was in-
troduced in SQL:1999. The aggregate functions some and every, which mean exactly
what you would intuitively expect, can be applied on a collection of Boolean values.

3.7 Nested Subqueries 93

3.7 Nested Subqueries

SQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of subqueries
is to perform tests for set membership, make set comparisons, and determine set car-
dinality. We shall study these uses in subsequent sections.

3.7.1 Set Membership

SQL allows testing tuples for membership in a relation. The in connective tests for set
membership, where the set is a collection of values produced by a select clause. The
not in connective tests for the absence of set membership.

As an illustration, reconsider the query “Find all the customers who have both a
loan and an account at the bank.” Earlier, we wrote such a query by intersecting two
sets: the set of depositors at the bank, and the set of borrowers from the bank. We
can take the alternative approach of finding all account holders at the bank who are
members of the set of borrowers from the bank. Clearly, this formulation generates
the same results as the previous one did, but it leads us to write our query using
the in connective of SQL. We begin by finding all account holders, and we write the
subquery

(select customer_name
from depositor)

We then need to find those customers who are borrowers from the bank and who
appear in the list of account holders obtained in the subquery. We do so by nesting
the subquery in an outer select. The resulting query is

select distinct customer_name

from borrower

where customer_name in (select customer name
from depositor)

This example shows that it is possible to write the same query several ways in
SQL. This flexibility is beneficial, since it allows a user to think about the query in
the way that seems most natural. We shall see that there is a substantial amount of
redundancy in SQL.

In the preceding example, we tested membership in a one-attribute relation. It is
also possible to test for membership in an arbitrary relation in SQL. We can thus write
the query “Find all customers who have both an account and a loan at the Perryridge
branch” in yet another way:

24

Chapter3 SQL

select distinct customer_name
from borrower, loan
where borrower.loannumber = loan.loan_-number and
branch_name = 'Perryridge’ and
(branch_name, customer_name) in
(select branch_name, customer_name
from depositor, account
where depositor.account_number = account.account number)

We use the not in construct in a similar way. For example, to find all customers
who do have a loan at the bank, but do not have an account at the bank, we can write

select distinct customer_name

from borrower

where customer_name not in (select customer_nare
from depositor)

The in and not in operators can also be used on enumerated sets. The following
query selects the names of customers who have a loan at the bank, and whose names
are neither Smith nor Jones.

select distinct customer_name
from borrower
where customer name not in (‘Smith’, ‘Jones’)

3.7.2 Set Comparison

As an example of the ability of a nested subquery to compare sets, consider the query
“Find the names of all branches that have assets greater than those of at least one
branch located in Brooklyn.” In Section 3.3.5, we wrote this query as follows:

select distinct T.branch-name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = "Brooklyn’

SQL does, however, offer an alternative style for writing the preceding query. The
phrase “greater than at least one” is represented in SQL by > some. This construct
allows us to rewrite the query in a form that resembles closely our formulation of the
query in English.

select branch_name
from branch
where assets > some (select assets
from branch
where branch_city = "Brooklyn’)

The subquery

3.7 Nested Subqueries 95

(select assets
from branch
where branch_city = "Brooklyn’)

generates the set of all asset values for all branches in Brooklyn. The > some
comparison in the where clause of the outer select is true if the assefs value of the
tuple is greater than at least one member of the set of all asset values for branches in
Brooklyn.

SQL also allows < some, <= some, >= some, = some, and <> some comparisons.
As an exercise, verify that = some is identical to in, whereas <> some is nof the same
as not in. The keyword any is synonymous to some in SQL. Early versions of SQL
allowed only any. Later versions added the alternative some to avoid the linguistic
ambiguity of the word any in English.

Now we modify our query slightly. Let us find the names of all branches that
have an asset value greater than that of each branch in Brooklyn. The construct > all
corresponds to the phrase “greater than all.” Using this construct, we write the query
as follows:

select branch_name
from branch
where assets > all (select assets
from branch
where branch_city = 'Brooklyn’)

As it does for some, SQL also allows < all, <= all, >= all, = all, and <> all compar-
isons. As an exercise, verify that <> all is identical to not in.

As another example of set comparisons, consider the query “Find the branch that
has the highest average balance.” Aggregate functions cannot be composed in SQL.
Thus, we cannot use max (avg (...)). Instead, we can follow this strategy: We begin
by writing a query to find all average balances, and then nest it as a subquery of a
larger query that finds those branches for which the average balance is greater than
or equal to all average balances:

select branch_name

from account

group by branch_name

having avg (balance) >= all (select avg (balance)
from account
group by branch_name)

3.7.3 Test for Empty Relations

SQL includes a feature for testing whether a subquery has any tuples in its result. The
exists construct returns the value true if the argument subquery is nonempty. Using
the exists construct, we can write the query “Find all customers who have both an
account and a loan at the bank” in still another way:

96

Chapter3 SQL

select customer_name
from borrower
where exists (select *
from depositor
where depositor.customer_name = borrower.customer-name)

We can test for the nonexistence of tuples in a subquery by using the not ex-
ists construct. We can use the not exists construct to simulate the set containment
(that is, superset) operation: We can write “relation A contains relation B” as “not
exists (B except A).” (Although it is not part of the SQL-92 and SQL:1999 standards,
the contains operator was present in some early relational systems.) To illustrate the
not exists operator, consider again the query “Find all customers who have an ac-
count at all the branches located in Brooklyn.” For each customer, we need to see
whether the set of all branches at which that customer has an account contains the
set of all branches in Brooklyn. Using the except construct, we can write the query as
follows:

select distinct S.customer_name
from depositor as S
where not exists ((select branch_name
from branch
where branch_city = "Brooklyn’)
except
(select R.branch.name
from depositor as T, account as R
where T.account number = R.account_number and
S.customer_name = T.customer_name))

Here, the subquery

(select branch_name
from branch
where branch_city = "Brooklyn’)

finds all the branches in Brooklyn. The subquery

(select R.branch.name

from depositor as T, account as R

where T.account-number = R.account number and
S.customer-name = T.customer_name)

finds all the branches at which customer S.customer.name has an account. Thus, the
outer select takes each customer and tests whether the set of all branches at which
that customer has an account contains the set of all branches located in Brooklyn.

In queries that contain subqueries, a scoping rule applies for tuple variables. In
a subquery, according to the rule, it is legal to use only tuple variables defined in
the subquery itself or in any query that contains the subquery. If a tuple variable
is defined both locally in a subquery and globally in a containing query, the local

38 Complex Queries 97

definition applies. This rule is analogous to the usual scoping rules used for variables
in programming languages.

3.7.4 Test for the Absence of Duplicate Tuples

SQL includes a feature for testing whether a subquery has any duplicate tuples in its
result. The unique construct returns the value true if the argument subquery contains
no duplicate tuples. Using the unique construct, we can write the query “Find all
customers who have at most one account at the Perryridge branch” as follows:

select T.customer_name
from depositor as T
where unique (select R.customer.name
from account, depositor as R
where T.customer_name = R.customer-name and
R.account number = account.account_number and
account.branch-name = 'Perryridge’)

We can test for the existence of duplicate tuples in a subquery by using the not
unique construct. To illustrate this construct, consider the query “Find all customers
who have at least two accounts at the Perryridge branch,” which we write as

select distinct T.customer.name
from depositor T
where not unique (select R.customer_name
from account, depositor as R
where T.customer name = R.customer.name and
R.account number = account.account-number and
account.branch_name = "Perryridge’)

Formally, the unique test on a relation is defined to fail if and only if the relation
contains two tuples ¢; and ¢, such that ¢; = t,. Since the test t1 = i fails if any of the
fields of ¢, or t5 are null, it is possible for unique to be true even if there are multiple
copies of a tuple, as long as at least one of the attributes of the tuple is null.

3.8 Complex Queries

Complex queries are often hard or impossible to write as a single SQL block or a
union/intersection/difference of SQL blocks. (An SQL block consists of a single select-
from-where statement, possibly with group by and having clauses.) We study here
two ways of composing multiple SQL blocks to express a complex query: derived
relations and the with clause.

3.8.1 Derived Relations

SQL allows a subquery expression to be used in the from clause. If we use such an
expression, then we must give the result relation a name, and we can rename the

98

Chapter3 SQL

attributes. We do this renaming by using the as clause. For example, consider the
subquery

(select branch_name, avg (balance)

from account

group by branch-name)

as branch.avg (branch_name, avg_balance)

This subquery generates a relation consisting of the names of all branches and their
corresponding average account balances. The subquery result is named branch.avg,
with the attributes branch-name and avg-balance.

To illustrate the use of a subquery expression in the from clause, consider the
query “Find the average account balance of those branches where the average ac-
count balance is greater than $1200.” We wrote this query in Section 3.5 by using the
having clause. We can now rewrite this query, without using the having clause, as
follows:

select branch-name, avg balance
from (select branch_name, avg (balance)

from account

group by branch-name)

as branch.avg (branch-name, avg_balance)
where avg_balance > 1200

Note that we do not need to use the having clause, since the subquery in the from
clause computes the average balance, and its result is named as branch.avg; we can
use the attributes of branch.avg directly in the where clause.

As another example, suppose we wish to find the maximum across all branches of
the total balance at each branch. The having clause does not help us in this task, but
we can write this query easily by using a subquery in the from clause, as follows:

select max(tot_balance)
from (select branch.name, sum(balance)
from account
group by branch.name) as branch_total (branch-name, tot_balance)

3.8.2 The with Clause

(Note: Read this section after reading Section 3.9.) Complex queries are much eas-
ier to write and to understand if we structure them by breaking them into smaller
views that we then combine, just as we structure programs by breaking their task
into procedures. However, unlike a procedure definition, a create view clause cre-
ates a view definition in the database, and the view definition stays in the database
until a command drop view view-name is executed.

The with clause provides a way of defining a temporary view whose definition is
available only to the query in which the with clause occurs. Consider the following
query, which selects accounts with the maximum balance; if there are many accounts
with the same maximum balance, all of them are selected.

3.9 Views 929

with max_balance (value) as
select max(balance)
from account
select account_number
from account, max_balance
where account.balance = max_balance.value

The with clause, introduced in SQL:1999, is currently supported only by some data-
bases.

We could have written the above query by using a nested subquery in either the
from clause or the where clause. However, using nested subqueries would have
made the query harder to read and understand. The with clause makes the query
logic clearer; it also permits a view definition to be used in multiple places within a
query.

For example, suppose we want to find all branches where the total account deposit
is greater than the average of the total account deposits at all branches. We can write
the query using the with clause as follows.

with branch_total (branch_name, value) as
select branch_name, sum(balance)
from account
group by branch_name
with branch_total avg(value) as
select avg(value)
from branch_total
select branch_name
from branch_total, branch_total avg
where branch_total.value >= branch_total avg.value

We can, of course, create an equivalent query without the with clause, but it would
be more complicated and harder to understand. You can write the equivalent query
as an exercise,

3.9 Views

In our examples up to this point, we have operated at the logical-model level. That
is, we have assumed that the relations in the collection we are given are the actual
relations stored in the database.

It is not desirable for all users to see the entire logical model. Security consider-
ations may require that certain data be hidden from users. Consider a person who
needs to know a customer’s loan number and branch name, but has no need to see
the loan amount. This person should see a relation described (modulo renaming of
attributes), in SQL, by

select customer_name, borrower.loan_number, branch_name
from borrower, loan
where borrower.loan_number = loan.loan_number

100

Chapter3 SQL

Aside from security concerns, we may wish to create a personalized collection of
relations that is better matched to a certain user’s intuition than is the logical model.
An employee in the advertising department, for example, might like to see a relation
consisting of the customers who have either an account or a loan at the bank, and
the branches with which they do business. The relation that we would create for that
employee is

(select branch_name, customer_name

from depositor, account

where depositor.account_number = account.account number)
union

(select branch_name, customer_name

from borrower, loan

where borrower.loannumber = loan.loan_number)

Any relation that is not part of the logical model, but is made visible to a user as a
virtual relation, is called a view. It is possible to support a large number of views on
top of any given set of actual relations.

3.9.1 View Definition

We define a view in SQL by using the create view command. To define a view, we
must give the view a name and must state the query that computes the view. The
form of the create view command is

create view v as <query expression>

where <query expression> is any legal query expression. The view name is repre-
sented by v.

As an example, consider the view consisting of branches and their customers. As-
sume that we want this view to be called all_customer. We define this view as follows:

create view all_customer as
(select branch_name, customer_name
from depositor, account
where depositor.account number = account.account-number)
union
(select branch_name, customer_name
from borrower, loan
where borrower.loan-number = loan.loan_number)

Once we have defined a view, we can use the view name to refer to the virtual re-
lation that the view generates. Using the view all_customer, we can find all customers
of the Perryridge branch by writing

3.9 Views 101

select customer_name
from all_customer
where branch_name = ‘Perryridge’

View names may appear in any place where a relation name may appear, so long
as no update operations are executed on the views. We study the issue of update
operations on views in Section 3.10.4.

The attribute names of a view can be specified explicitly as follows:

create view branch_total loan(branch_name, total loan) as
select branch_name, sum(amount)

from loan

group by branch_name

The preceding view gives for each branch the sum of the amounts of all the loans
at the branch. Since the expression sum(amount) does not have a name, the attribute
name is specified explicitly in the view definition.

Intuitively, at any given time, the set of tuples in the view relation is the result
of evaluation of the query expression that defines the view at that time. Thus, if a
view relation is computed and stored, it may become out of date if the relations used
to define it are modified. To avoid this, views are usually implemented as follows.
When we define a view, the database system stores the definition of the view itself,
rather than the result of evaluation of the relational-algebra expression that defines
the view. Wherever a view relation appears in a query, it is replaced by the stored
query expression. Thus, whenever we evaluate the query, the view relation gets re-
computed.

Certain database systems allow view relations to be stored, but they make sure
that, if the actual relations used in the view definition change, the view is kept up
to date. Such views are called materialized views. The process of keeping the view
up to date is called view maintenance, covered in Section 14.5. Applications that use
a view frequently benefit from the use of materialized views, as do applications that
demand fast response to certain view-based queries. Of course, the benefits to queries
from the materialization of a view must be weighed against the storage costs and the
added overhead for updates.

3.9.2 Views Defined by Using Other Views

In Section 3.9.1 we mentioned that view relations may appear in any place that a
relation name may appear, except for restrictions on the use of views in update ex-
pressions. Thus, one view may be used in the expression defining another view. For
example, we can define the view perryridge_customer as follows:

create view perryridge_customer as
select customer.name

from all_customer

where branch_name = 'Perryridge’

where all_customer is itself a view relation.

102

Chapter 3 SQL

View expansion is one way to define the meaning of views defined in terms of
other views. The procedure assumes that view definitions are not recursive; that is,
no view is used in its own definition, whether directly, or indirectly through other
view definitions. For example, if v1 is used in the definition of v2, v2 is used in the
definition of v3, and v3 is used in the definition of v1, then each of v1, v2, and v3
is recursive. Recursive view definitions are useful in some situations, and we revisit
them in the context of the Datalog language, in Section 5.4.

Let view v; be defined by an expression e; that may itself contain uses of view
relations. A view relation stands for the expression defining the view, and therefore
a view relation can be replaced by the expression that defines it. If we modify an ex-
pression by replacing a view relation by the latter’s definition, the resultant expres-
sion may still contain other view relations. Hence, view expansion of an expression
repeats the replacement step as follows:

repeat

Find any view relation v; in e;

Replace the view relation v; by the expression defining v;
until no more view relations are present in e;

As long as the view definitions are not recursive, this loop will terminate. Thus, an
expression e containing view relations can be understood as the expression resulting
from view expansion of e, which does not contain any view relations.

As an illustration of view expansion, consider the following expression:

select *
from perryridge_customer
where customer_name = "John’

The view-expansion procedure initially generates

select *
from (select customer_name

from all_customer

where branch.name = 'Perryridge’)
where customer_name = ‘John’

It then generates

select *
from (select customer_name
from ((select branch_name, customer_name
from depositor, account
where depositor.account_number = account.account_number)
union
(select branch-name, customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number))
where branch_.name = 'Perryridge’)
where customer_name = ‘John’

3.10 Modification of the Database 103

At this time, there are no more uses of view relations, and view expansion termi-
nates.

3.10 Modification of the Database

We have restricted our attention until now to the extraction of information from the
database. Now, we show how to add, remove, or change information with SQL.

3.10.1 Deletion

A delete request is expressed in much the same way as a query. We can delete only
whole tuples; we cannot delete values on only particular attributes. SQL expresses a
deletion by

delete from r
where P

where P represents a predicate and 7 represents a relation. The delete statement first
finds all tuples ¢ in r for which P (t) is true, and then deletes them from 7. The where
clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates on only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation.
The predicate in the where clause may be as complex as a select command’s where
clause. At the other extreme, the where clause may be empty. The request

delete from loan

deletes all tuples from the loan relation. (Well-designed systems will seek confirma-
tion from the user before executing such a devastating request.)
Here are examples of SQL delete requests:

e Delete all account tuples in the Perryridge branch.

delete from account
where branch name = ‘Perryridge’

e Delete all loans with loan amounts between $1300 and $1500.

delete from loan
where amount between 1300 and 1500

e Delete all account tuples at every branch located in Brooklyn.

delete from account
where branch_name in (select branch_name
from branch
where branch._city = ‘Brooklyn’)

104

Chapter3 SQL

This delete request first finds all branches in Brooklyn, and then deletes all
account tuples pertaining to those branches.

Note that, although we may delete tuples from only one relation at a time, we may
reference any number of relations in a select-from-where nested in the where clause
of a delete. The delete request can contain a nested select that references the relation
from which tuples are to be deleted. For example, suppose that we want to delete the
records of all accounts with balances below the average at the bank. We could write

delete from account
where balance < (select avg (balance)
from account)

The delete statement first tests each tuple in the relation account to check whether the
account has a balance less than the average at the bank. Then, all tuples that fail the
test—that is, represent an account with a lower-than-average balance—are deleted.
Performing all the tests before performing any deletion is important—if some tuples
are deleted before other tuples have been tested, the average balance may change,
and the final result of the delete would depend on the order in which the tuples were
processed!

3.10.2 Insertion

To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. Obviously, the attribute values for in-
serted tuples must be members of the attribute’s domain. Similarly, tuples inserted
must be of the correct arity.

The simplest insert statement is a request to insert one tuple. Suppose that we
wish to insert the fact that there is an account A-9732 at the Perryridge branch and
that it has a balance of $1200. We write

insert into account
values ('A-9732’, 'Perryridge’, 1200)

In this example, the values are specified in the order in which the corresponding
attributes are listed in the relation schema. For the benefit of users who may not
remember the order of the attributes, SQL allows the attributes to be specified as part
of the insert statement. For example, the following SQL insert statements are identical
in function to the preceding one:

insert into account (account_number, branch.name, balance)
values ("A-9732’, "Perryridge’, 1200)

insert into account (branch_name, account.number, balance)
values ('Perryridge’, 'A-9732’, 1200)

More generally, we might want to insert tuples on the basis of the result of a query.
Suppose that we want to present a new $200 savings account as a gift to all loan

3.10 Modification of the Database 105

customers of the Perryridge branch, for each loan they have. Let the loan number
serve as the account number for the savings account. We write

insert into account
select loan_number, branch_-name, 200
from loan
where branch-name = 'Perryridge’

Instead of specifying a tuple as we did earlier in this section, we use a select to specify
a set of tuples. SQL evaluates the select statement first, giving a set of tuples that is
then inserted into the account relation. Each tuple has a loan_number (which serves as
the account number for the new account), a branch_name (Perryridge), and an initial
balance of the new account ($200).

We also need to add tuples to the depositor relation; we do so by writing

insert into depositor
select customer_name, loan_number
from borrower, loan
where borrower.loannumber = loan.loan_number and
branch.name = 'Perryridge’

This query inserts a tuple (customer_name, loan_number) into the depositor relation for
each customer-name who has a loan in the Perryridge branch with loan number loan
_number.

It is important that we evaluate the select statement fully before we carry out
any insertions. If we carry out some insertions even as the select statement is being
evaluated, a request such as

insert into account
select *
from account

might insert an infinite number of tuples! The request would insert the first tuple in
account again, creating a second copy of the tuple. Since this second copy is part of
account now, the select statement may find it, and a third copy would be inserted into
account. The select statement may then find this third copy and insert a fourth copy,
and so on, forever. Evaluating the select statement completely before performing
insertions avoids such problems.

Our discussion of the insert statement considered only examples in which a value
is given for every attribute in inserted tuples. It is possible, as we saw in Chapter 2,
for inserted tuples to be given values on only some attributes of the schema. The
remaining attributes are assigned a null value denoted by null. Consider the request

insert into account
values ("A-401’, null, 1200)

106

Chapter 3 SQL

We know that account A-401 has $1200, but the branch name is not known. Consider
the query

select account_number
from account
where branch_name = 'Perryridge’

Since the branch at which account A-401 is maintained is not known, we cannot de-
termine whether it is equal to “Perryridge.”

We can prohibit the insertion of null values on specified attributes by using the
SQL DDL, as we discuss later in Section 4.2.2.

Most relational database products have special “bulk loader” utilities to insert a
large set of tuples into a relation. These utilities allow data to be read from formatted
text files, and can execute much faster than an equivalent sequence of insert state-
ments.

3.10.3 Updates

In certain situations, we may wish to change a value in a tuple without changing all
values in the tuple. For this purpose, the update statement can be used. As we could
for insert and delete, we can choose the tuples to be updated by using a query.

Suppose that annual interest payments are being made, and all balances are to be
increased by 5 percent. We write

update account
set balance = balance * 1.05

The preceding update statement is applied once to each of the tuples in account rela-
tion.

If interest is to be paid only to accounts with a balance of $1000 or more, we can
write

update account
set balance = balance * 1.05
where balance >= 1000

In general, the where clause of the update statement may contain any construct
legal in the where clause of the select statement (including nested selects). As with
insert and delete, a nested select within an update statement may reference the re-
lation that is being updated. As before, SQL first tests all tuples in the relation to see
whether they should be updated, and carries out the updates afterward. For exam-
ple, we can write the request “Pay 5 percent interest on accounts whose balance is
greater than average” as follows:

update account

set balance = balance * 1.05

where balance > (select avg (balance)
from account)

3.10 Modification of the Database 107

Let us now suppose that all accounts with balances over $10,000 receive 6 percent
interest, whereas all others receive 5 percent. We could write two update statements:

update account
set balance = balance * 1.06
where balance > 10000

update account
set balance = balance * 1.05
where balance <= 10000

Note that, as we saw in Chapter 2, the order of the two update statements is impor-
tant. If we changed the order of the two statements, an account with a balance just
under $10,000 would receive 11.3 percent interest.

SQL provides a case construct, which we can use to perform both the updates with
a single update statement, avoiding the problem with order of updates.

update account
set balance = case
when balance <= 10000 then balance * 1.05
else balance * 1.06
end

The general form of the case statement is as follows.

case
when pred, then result;
when pred, then result,

when pred,, then result,,
else resulty
end

The operation returns result;, where i is the first of pred,, pred,, ..., pred, thatis sat-
isfied; if none of the predicates is satisfied, the operation returns result,. Case state-
ments can be used in any place where a value is expected.

3.10.4 Update of a View

Although views are a useful tool for queries, they present serious problems if we ex-
press updates, insertions, or deletions with them. The difficulty is that a modification
to the database expressed in terms of a view must be translated to a modification to
the actual relations in the logical model of the database.

Toillustrate the problem, consider a clerk who needs to see all loan data in the loan
relation, except loanamount. Let loan_branch be the view given to the clerk. We define
this view as

108

Chapter3 SQL

create view loan_branch as
select loan_number, branch_name
from loan

Since we allow a view name to appear wherever a relation name is allowed, the
clerk can write:

insert into loan_branch
values ('L-37’, "Perryridge’)

This insertion must be represented by an insertion into the relation loan, since loan is
the actual relation from which the database system constructs the view loan_branch.
However, to insert a tuple into loan, we must have some value for amount. There are
two reasonable approaches to dealing with this insertion:

o Reject the insertion, and return an error message to the user.

e Insert a tuple (L-37, “Perryridge”, null) into the loan relation.

Another problem with modification of the database through views occurs with a
view such as

create view loan_info as

select customer_name, amount

from borrower, loan

where borrower.loan_number = loan.loan_number

This view lists the loan amount for each loan that any customer of the bank has.
Consider the following insertion through this view:

insert into loan_info
values (‘Johnson’, 1900)

[Toan_number | branch_name] amount | [customer_name] loan_number |

L-11 Round Hill 900 Adams L-16
L-14 Downtown | 1500 Curry L-93
L-15 Perryridge 1500 Hayes L-15
L-16 Perryridge | 1300 Jackson L-14
L-17 Downtown | 1000 Jones L-17
L-23 Redwood 2000 Smith L-11
1-93 Mianus 500 Smith L-23
null null 1900 Williams L-17

Johnson null

loan
borrower

Figure 3.3 Tuples inserted into loan and borrower.

3.10 Modification of the Database 109

The only possible method of inserting tuples into the borrower and loan relations is
to insert (“Johnson”, null) into borrower and (null, null, 1900) into loan. Then, we obtain
the relations shown in Figure 3.3. However, this update does not have the desired
effect, since the view relation loan_info still does not include the tuple (“Johnson”,
1900). Thus, there is no way to update the relations borrower and loan by using nulls
to get the desired update on loan_info.

Because of problems such as these, modifications are generally not permitted on
view relations, except in limited cases. Different database systems specify different
conditions under which they permit updates on view relations; see the database
system manuals for details. The general problem of database modification through
views has been the subject of substantial research, and the bibliographic notes pro-
vide pointers to some of this research.

In general, an SQL view is said to be updatable (that is, inserts, updates or deletes
can be applied on the view) if the following conditions are all satisfied:

® The from clause has only one database relation.

e The select clause contains only attribute names of the relation, and does not
have any expressions, aggregates, or distinct specification.

e Any attribute not listed in the select clause can be set to null.

e The query does not have a group by or having clause.

Under these constraints, the update, insert, and delete operations would be forbid-
den on the example view all_customer that we defined previously.
Suppose a view downtown_account is defined as follows:

create view downtown_account as

select account_number, branch-name, balance
from account

where branch_name = "Downtown’

The above view is updatable, since it satisfies the conditions listed earlier.

Even with the conditions on updatability, the following problem still remains. Sup-
pose that a user tries to insert the tuple ('A-999’, "Perryridge’, 1000) into the downtown
-account view. This tuple can be inserted into the account relation, but it would not ap-
pear in the downtown_account view since it does not satisfy the selection imposed by
the view.

By default, SQL would allow the above update to proceed. However, views can be
defined with a with check option clause at the end of the view definition; then, if a
tuple inserted into the view does not satisfy the view’s where clause condition, the
insertion is rejected by the database system. Updates are similarly rejected if the new
value does not satisfy the where clause conditions.

SQL:1999 has a more complex set of rules about when inserts, updates, and deletes
can be executed on a view, that allows updates through a larger class of views; how-
ever, the rules are too complex to be discussed here.

110

Chapter3 SQL

3.10.5 Transactions

A transaction consists of a sequence of query and/or update statements. The SQL
standard specifies that a transaction begins implicitly when an SQL statement is exe-
cuted. One of the following SQL statements must end the transaction:

e Commit work commits the current transaction; that is, it makes the updates
performed by the transaction become permanent in the database. After the
transaction is committed, a new transaction is automatically started.

e Rollback work causes the current transaction to be rolled back; that is, it un-
does all the updates performed by the SQL statements in the transaction. Thus,
the database state is restored to what it was before the first statement of the
transaction was executed.

The keyword work is optional in both the statements.

Transaction rollback is useful if some error condition is detected during execution
of a transaction. Commit is similar, in a sense, to saving changes to a document that
is being edited, while rollback is similar to quitting the edit session without saving
changes. Once a transaction has executed commit work, its effects can no longer be
undone by rollback work. The database system guarantees that in the event of some
failure, such as an error in one of the SQL statements, a power outage, or a system
crash, a transaction’s effects will be rolled back if it has not yet executed commit
work. In the case of power outage or other system crash, the rollback occurs when
the system restarts.

For instance, to transfer money from one account to another we need to update
two account balances. The two update statements would form a transaction. An error
while a transaction executes one of its statements would result in undoing of the
effects of the earlier statements of the transaction, so that the database is not left in a
partially updated state. We study further properties of transactions in Chapter 15.

If a program terminates without executing either of these commands, the updates
are either committed or rolled back. The standard does not specify which of the two
happens, and the choice is implementation dependent. In many SQL implementa-
tions, by default each SQL statement is taken to be a transaction on its own, and gets
committed as soon as it is executed. Automatic commit of individual SQL statements
must be turned off if a transaction consisting of multiple SQL statements needs to be
executed. How to turn off automatic commit depends on the specific SQL implemen-
tation.

A better alternative, which is part of the 5QL:1999 standard (but supported by only
some SQL implementations currently), is to allow multiple SQL statements to be en-
closed between the keywords begin atomic . .. end. All the statements between the
keywords then form a single transaction.

3.11 Joined Relationsxx

SQL provides not only the basic Cartesian-product mechanism for joining tuples of
relations, but also provides (in SQL-92 and later SQL versions) various other mecha-

3.11 Joined Relationss* 111

| loan_number | branch_name | amount | | customer_name | loan_number [
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
L-260 Perryridge 1700 Hayes L-155
loan borrower

Figure 3.4 The loan and borrower relations.

nisms for joining relations, including theta joins and natural joins, as well as various
forms of outer joins. These additional operations are typically used as subquery ex-
pressions in the from clause.

3.11.1 Examples

We illustrate the various join operations by using the relations loan and borrower in
Figure 3.4. We start with a simple example of a join; the join operation is referred to as
an inner join in SQL, to distinguish it from an outer join. Figure 3.5 shows the result
of the expression

loan inner join borrower on loan.loan_number = borrower.loan_number

The expression computes the theta join of the loan and the borrower relations, with
the join condition being loan.loan_number = borrower.loan_number. The attributes of the
result consist of the attributes of the left-hand-side relation followed by the attributes
of the right-hand-side relation.

Note that the attribute loan_number appears twice in the figure—the first occur-
rence is from loan, and the second is from borrower. The SQL standard does not require
attribute names in such results to be unique. An as clause should be used to assign
unique names to attributes in query and subquery results.

We rename the result relation of a join and the attributes of the result relation by
using an as clause, as illustrated here:

loan inner join borrower on loan.loan_number = borrower.loan_number
as [b(loan_number, branch, amount, cust, cust loan_num)

We rename the second occurrence of loan_number to custloan_num. The ordering of the
attributes in the result of the join is important for the renaming.
Next, we consider an example of the left outer-join operation:

[loan_number [branch_name | amount | customer_name | loan_number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230

Figure 3.5 The result of loan inner join borrower on
loan.loan_number = borrower.loan_number.

112

Chapter3 SQL

[Toan_number | branch_name | amount | customer_name | loan_number |

L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
L-260 Perryridge 1700 null null

Figure 3.6 The result of loan left outer join borrower on
loan.loan_number = borrower.loan_number.

loan left outer join borrower on loan.loan_number = borrower.loan_number

We can compute the left outer-join operation logically as follows. First, compute the
result of the inner join as before. Then, for every tuple ¢ in the left-hand-side relation
loan that does not match any tuple in the right-hand-side relation borrower in the inner
join, add a tuple 7 to the result of the join: The attributes of tuple r that are derived
from the left-hand-side relation are filled in with the values from tuple ¢, and the
remaining attributes of r are filled with null values. Figure 3.6 shows the resultant
relation. The tuples (L-170, Downtown, 3000) and (L-230, Redwood, 4000) join with
tuples from borrower and appear in the result of the inner join, and hence in the result
of the left outer join. On the other hand, the tuple (L-260, Perryridge, 1700) did not
match any tuple from borrower in the inner join, and hence a tuple (L-260, Perryridge,
1700, null, null) is present in the result of the left outer join.
Finally, we consider an example of the natural-join operation:

loan natural inner join borrower

This expression computes the natural join of the two relations. The only attribute
name common to loan and borrower is loan_number. Figure 3.7 shows the result of the
expression. The result is similar to the result of the inner join with the on condition in
Figure 3.5, since they have, in effect, the same join condition. However, the attribute
loan_number appears only once in the result of the natural join, whereas it appears
twice in the result of the join with the on condition.

3.11.2 Join Types and Conditions

In Section 3.11.1, we saw examples of the join operations permitted in SQL. Join op-
erations take two relations and return another relation as the result. Although outer-
join expressions are typically used in the from clause, they can be used anywhere
that a relation can be used.

lonn_number | branch_name | amount | customer_name |
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

Figure 3.7 The result of loan natural inner join borrower.

3.11 Joined Relations+x 113

Join types Join conditions

inner join natural

left outer join on < predicate>
right outer join using (A, Ay, ..., A,)
full outer join |

Figure 3.8 Join types and join conditions.

Each of the variants of the join operations in SQL consists of a join type and a join
condition. The join condition defines which tuples in the two relations match and what
attributes are present in the result of the join. The join type defines how tuples in each
relation that do not match any tuple in the other relation (based on the join condition)
are treated. Figure 3.8 shows some of the allowed join types and join conditions. The
first join type is the inner join, and the other three are the outer joins. Of the three join
conditions, we have seen the natural join and the on condition before, and we shall
discuss the using condition, later in this section.

The use of a join condition is mandatory for outer joins, but is optional for inner
joins (if it is omitted, a Cartesian product results). Syntactically, the keyword natural
appears before the join type, as illustrated earlier, whereas the on and using con-
ditions appear at the end of the join expression. The keywords inner and outer are
optional, since the rest of the join type enables us to deduce whether the join is an
inner join or an outer join.

The meaning of the join condition natural, in terms of which tuples from the two
relations match, is straightforward. The ordering of the attributes in the result of a
natural join is as follows. The join attributes (that is, the attributes common to both
relations) appear first, in the order in which they appear in the left-hand-side relation.
Next come all nonjoin attributes of the left-hand-side relation, and finally all nonjoin
attributes of the right-hand-side relation.

The right outer join is symmetric to the left outer join. Tuples from the right-hand-
side relation that do not match any tuple in the left-hand-side relation are padded
with nulls and are added to the result of the right outer join.

Here is an example of combining the natural-join condition with the right outer

join type:
loan natural right outer join borrower

Figure 3.9 shows the result of this expression. The attributes of the result are defined
by the join type, which is a natural join; hence, loan_number appears only once. The

| loan_number | branch_name | amount | customer_name]

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-155 null null Hayes

Figure 3.9 The result of loan natural right outer join borrower.

114

Chapter3 SQL

first two tuples in the result are from the inner natural join of loan and borrower. The
tuple (Hayes, L-155) from the right-hand-side relation does not match any tuple from
the left-hand-side relation loan in the natural inner join. Hence, the tuple (L-155, null,
null, Hayes) appears in the join result.

The join condition using(A;, Az, ..., Ay) is similar to the natural-join condition,
except that the join attributes are the attributes A,, As, ..., A,, rather than all at-
tributes that are common to both relations. The attributes A;, Az, ..., A, must consist
of only attributes that are common to both relations, and they appear only once in the
result of the join.

The full outer join is a combination of the left and right outer-join types. After
the operation computes the result of the inner join, it extends with nulls tuples from
the left-hand-side relation that did not match with any from the right-hand-side, and
adds them to the result. Similarly, it extends with nulls tuples from the right-hand-
side relation that did not match with any tuples from the left-hand-side relation and
adds them to the result.

For example, Figure 3.10 shows the result of the expression

loan full outer join borrower using (loan number)

As another example of the use of the outer-join operation, we can write the query
“Find all customers who have an account but no loan at the bank” as

select .CN
from (depositor left outer join borrower
on depositor.customer_name = borrower.customer.narme)
as dbl (d_CN, account_number, b_CN, loan_number)
where b_CN is null

Similarly, we can write the query “Find all customers who have either an account
or a loan (but not both) at the bank,” with natural full outer joins as:

select customer_name
from (depositor natural full outer join borrower)
where account_number is null or loan_.number is null

SQL-92 also provides two other join types, called cross join and union join. The
first is equivalent to an inner join without a join condition; the second is equivalent
to a full outer join on the “false” condition—that is, where the inner join is empty.

[Toan_number | branch_name | amount | customer_name |

L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-260 Perryridge 1700 null
L-155 null null Hayes

Figure 3.10 The result of loan full outer join borrower using (loan_number).

Review Terms 115

3.12 Summary

Commercial database systems do not use the terse, formal relational algebra
covered in Chapter 2. The widely used SQL language, which we studied in
this chapter, is based on the relational algebra, but includes much “syntactic
sugar.”

The SQL data-definition language is used to create relations with specified
schemas. The SQL DDL supports a number of types including date and time
types. Further details on the SQL DDL, in particular its support for integrity
constraints, appear in Section 3.2.

SQL includes a variety of language constructs for queries on the database. All
the relational-algebra operations, including the extended relational-algebra
operations, can be expressed by SQL. SQL also allows ordering of query re-
sults by sorting on specified attributes.

SQL handles queries on relations containing null values by adding the truth
value “unknown” to the usual truth values of true and false.

SQL allows nested subqueries in the where clause. The outer query can per-
form a variety of operations on the subquery result such as checking for empti-
ness or containment of a value in the subquery result. Subqueries in the from
clause are called derived relations.

View relations can be defined as relations containing the result of queries.
Views are useful for hiding unneeded information, and for collecting together
information from more than one relation into a single view.

Temporary views defined by using the with clause are also useful for breaking
up complex queries into smaller and easier-to-understand parts.

SQL provides constructs for updating, inserting, and deleting information.
Updates through views are allowed only when some fairly restrictive con-
ditions are satisfied.

Transactions are a sequence of queries and updates that together carry out
a task. Transactions can be committed, or rolled back; when a transaction is
rolled back, the effects of all updates performed by the transaction are undone.

SQL supports several types of outer join with several types of join conditions.

Review Terms

L]

DDL: data-definition language e where clause
DML: data-manipulation e as clause
language e Tuple variable
select clause e order by clause

from clause Duplicates

116 Chapter3 SQL

person (driver.id, name, address)

car (license, model, year)

accident (report_number, date, location)

owns (driver.id, license)

participated (driver.id, license, report.number, damage amount)

Figure 3.11 Insurance database.

e Set operations e with clause
[] union, intersect, except e Views
e Aggregate functions O View definition
O avg, min, max, sum, count O View expansion
O group by e Database modification
e Null values [delete, insert, update

0 Truth value “unknown” O View update

e Nested subqueries % Trghsacim
O commit
e Set operations O rollback
0 {<,<=,>,>=} { some,all } o Join types
O exists O Inner and outer join
O unique O left, right and full outer join
e Derived relations (in from clause) O natural, using, and on

Practice Exercises

3.1 Consider the insurance database of Figure 3.11, where the primary keys are un-
derlined. Construct the following SQL queries for this relational database.
a. Find the total number of people who owned cars that were involved in ac-
cidents in 1989.
b. Add a new accident to the database; assume any values for required at-
tributes.
c. Delete the Mazda belonging to “John Smith.”

3.2 Consider the employee database of Figure 3.12, where the primary keys are un-
derlined. Give an expression in SQL for each of the following queries.

employee (employee_name, street, city)

works (employee_name, company_name, salary)
company (company_name, city)

manages (employee_name, manager_name)

Figure 3.12 Employee database.

3.3

34

3.5

3.6

Practice Exercises 117

a. Find the names and cities of residence of all employees who work for First
Bank Corporation.

b. Find the names, street addresses, and cities of residence of all employees
who work for First Bank Corporation and earn more than $10,000.

¢. Find all employees in the database who do not work for First Bank Corpo-
ration.

d. Find all employees in the database who earn more than each employee of
Small Bank Corporation.

e. Assume that the companies may be located in several cities. Find all com-
panies located in every city in which Small Bank Corporation is located.

f. Find the company that has the most employees.

g Find those companies whose employees earn a higher salary, on average,
than the average salary at First Bank Corporation.

Consider the relational database of Figure 3.12. Give an expression in SQL for
each of the following queries.

a. Modify the database so that Jones now lives in Newtown.

b. Give all managers of First Bank Corporation a 10 percent raise unless the
salary becomes greater than $100,000; in such cases, give only a 3 percent
raise.

SQL-92 provides an n-ary operation called coalesce, which is defined as follows:
coalesce(Ay, A, ..., A,) returns the first nonnull A; in the list A1, A5, 000545,
and returns null if all of Ay, As, ..., A, are null.

Let a and b be relations with the schemas A(name, address, title) and B(name,
address, salary), respectively. Show how to express a natural full outer join b
using the full outer-join operation with an on condition and the coalesce op-
eration. Make sure that the result relation does not contain two copies of the
attributes name and address, and that the solution is correct even if some tuples
in a and b have null values for attributes name or address.

Suppose that we have a relation marks(student.id, score) and we wish to assign
grades to students based on the score as follows: grade F if score < 40, grade C
if 40 < score < 60, grade B if 60 < score < 80, and grade A if 80 < score. Write
SQL queries to do the following;:

a. Display the grade for each student, based on the marks relation.

b. Find the number of students with each grade.

Consider the SQL query

select p.al
fromp, 11, 12
where p.al =rl.al or p.al = r2.al

Under what conditions does the preceding query select values of p.al that are
either in r1 or in r2? Examine carefully the cases where one of 71 or 2 may be

empty.

118 Chapter3 SQL

3.7 Certain systems allow marked nulls. A marked null L; is equal to itself, but if
i # j,then L; # 1 ;. Oneapplication of marked nulls is to allow certain updates
through views. Consider the view loar_info (Section 3.9). Show how you can use
marked nulls to allow the insertion of the tuple (“Johnson”, 1900) through loan
_info.

Exercises

3.8 Consider the insurance database of Figure 3.11, where the primary keys are un-
derlined. Construct the following SQL queries for this relational database.

a. Find the number of accidents in which the cars belonging to “John Smith™
were involved.

b. Update the damage amount for the car with license number “AABB2000™ in
the accident with report number “AR2197” to $3000.

3.9 Consider the employee database of Figure 3.12, where the primary keys are un-
derlined. Give an expression in SQL for each of the following queries.

a. Find the names of all employees who work for First Bank Corporation.

b. Find all employees in the database who live in the same cities as the com-
panies for which they work.

c. Find all employees in the database who live in the same cities and on the
same streets as do their managers.

d. Find all employees who earn more than the average salary of all employees
of their company.

e. Find the company that has the smallest payroll.

3.10 Consider the relational database of Figure 3.12. Give an expression in SQL for
each of the following queries.
a. Give all employees of First Bank Corporation a 10 percent raise.
b. Give all managers of First Bank Corporation a 10 percent raise.
c. Delete all tuples in the works relation for employees of Small Bank Corpora-
tion.

3.11 Let the following relation schemas be given:

R=(A,B,C)
S =(D,E,F)

Let relations 7(R) and s(S) be given. Give an expression in SQL that is equivalent
to each of the following queries.
a. Tla(r)

IJ. OB =17 (‘l")
Co X 8

d. llx,r (oc=p(r x s))

312 Let R = (A, B,C), and let 7; and r; both be relations on schema R. Give an
expression in SQL that is equivalent to each of the following queries.

3.13
3.14

3.15

3.16
3.17

3.18

3.19

3.20

3.21

Exercises 119

Loy W
.1 Mg
« 1 — T2
- Hap(r1) W Hpe(rs)

Show that, in SQL, <> all is identical to not in.

L T

Consider the relational database of Figure 3.12. Using SQL, define a view con-
sisting of manager name and the average salary of all employees who work for
that manager. Explain why the database system should not allow updates to be
expressed in terms of this view.

Write an SQL query, without using a with clause, to find all branches where
the total account deposit is less than the average total account deposit at all
branches,

a. Using a nested query in the from clause.
b. Using a nested query in a having clause.

List two reasons why null values might be introduced into the database.

Show how to express the coalesce operation from Exercise 3.4 using the case
operation.

Give an SQL schema definition for the employee database of Figure 3.12. Choose
an appropriate domain for each attribute and an appropriate primary key for
each relation schema.

Using the relations of our sample bank database, write SQL expressions to define
the following views:

a. A view containing the account numbers and customer names (but not the
balances) for all accounts at the Deer Park branch.

b. A view containing the names and addresses of all customers who have an
account with the bank, but do not have a loan.

¢. Aview containing the name and average account balance of every customer
of the Rock Ridge branch.

For each of the views that you defined in Exercise 3.19, explain how updates
would be performed (if they should be allowed at all).

Consider the following relational schema
employee(empno, name, office, age)

books(isbn, title, authors, publisher)
loan(empno, isbn, date)

Write the following queries in SQL.
a. Print the names of employees who have borrowed any book published by
McGraw-Hill.
b. Print the names of employees who have borrowed all books published by
McGraw-Hill.

120

Chapter3 SQL

¢. For each publisher, print the names of employees who have borrowed more
than five books of that publisher.

3.22 Consider the relational schema

student(student_id, student_name)
registered(student_id, course_id)

Write an SQL query to list the student-id and name of each student along with
the total number of courses that the student is registered for. Students who are
not registered for any course must also be listed, with the number of registered
courses shown as 0.

3.23 Suppose that we have a relation marks(student_id, score). Write an SQL query to
find the dense rank of each student. That is, all students with the top mark get a
rank of 1, those with the next highest mark get a rank of 2, and so on. Hint: Split
the task into parts, using the with clause.

Bibliographical Notes

The original version of SQL, called Sequel 2, is described by Chamberlin et al. [1976].
Sequel 2 was derived from the languages Square (Boyce et al. [1975] and Chamber-
lin and Boyce [1974]). The American National Standard SQL-86 is described in ANSI
[1986]. The IBM Systems Application Architecture definition of SQL is defined by IBM
[1987]. The official standards for SQL-89 and SQL-92 are available as ANSI [1989] and
ANSI [1992], respectively.

Textbook descriptions of the SQL-92 language include Date and Darwen [1997],
Melton and Simon [1993], and Cannan and Otten [1993]. Date and Darwen [1997]
and Date [1993a] include a critique of SQL-92.

Textbooks on SQL:1999 include Melton and Simon [2001] and Melton [2002]. Eisen-
berg and Melton [1999] provide an overview of SQL:1999. Donahoo and Speegle [2005]
covers SQL from a developers perspective. Eisenberg et al. [2004] provides an overview
of SQL:2003.

The SQL:1999 and SQL:2003 standards are published as a collection of ISO/IEC stan-
dards documents, which are described in more detail in Section 23.3. The standard
documents are densely packed with information and hard to read, and of use pri-
marily for database system implementers. The standards documents are available
for purchase electronically from the Web site hitp:/webstore.ansi.org.

Many database products support SQL features beyond those specified in the stan-
dard, and may not support some features of the standard. More information on these
features may be found in the SQL user manuals of the respective products.

The processing of SQL queries, including algorithms and performance issues, is
discussed in Chapters 13 and 14. Bibliographic references on these matters appear in
those chapters.

The rules used by SQL to determine the updatability of a view, and how updates
are reflected on the underlying database relations, are defined by the SQL:1999 stan-
dard, and are summarized in Melton and Simon [2001].

Advanced SQL .

In Chapter 3 we provided a detailed coverage of the basic structure of SQL. The SQL
language has grown since the late 1970s from a simple language with a few features
to a rather complex language with features to satisfy many different types of users.
In this chapter we cover some of the advanced features of SQL. We continue to use
the bank schema, reproduced in Figure 4.1 for your convenience, in our examples.

4.1 SQL Data Types and Schemas

We have seen that a type, that is, a domain of possible values, must be associated with
every attribute. In Chapter 3, we covered a number of built-in data types supported
in SQL, such as integer types, real types, and character types. There are additional
built-in data types supported by SQL, which we describe below. We also describe
how to create basic user-defined types in SQL.

4.1.1 Built-in Data Types in SQL

In addition to the basic data types we introduced in Section 3.2, the SQL standard
supports other built-in data types, including:

e date: A calendar date containing a (four-digit) year, month, and day of the
month. '

e time: The time of day, in hours, minutes, and seconds. A variant, time(p), can
be used to specify the number of fractional digits for seconds (the default be-
ing 0). It is also possible to store time zone information along with the time by
specifying time with timezone.

e timestamp: A combination of date and time. A variant, timestamp(p), can be
used to specify the number of fractional digits for seconds (the default here
being 6). Time zone information is also stored if with timezone is specified.

121

122

Chapter4 Advanced SQL

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)
loan (loan_number, branch_name, amount)

borrower (customer_.name, loan_number)

account (account_number, branch_name, balance)
depositor (customer_name, account number)

Figure 4.1 Schema of banking enterprise.

Date and time values can be specified like this:

date "2001-04-25
time "09:30:00’
timestamp '2001-04-25 10:29:01.45’

Dates must be specified in the format year followed by month followed by day, as
shown. The seconds field of time or timestamp can have a fractional part, as in the
timestamp above.

We can use an expression of the form cast e as ¢ to convert a character string (or
string valued expression) e to the type ¢, where t is one of date, time, or timestamp.
The string must be in the appropriate format as illustrated at the beginning of this
paragraph. When required, time zone information is inferred from the system set-
tings.

To extract individual fields of a date or time value d, we can use extract (field from
d), where field can be one of year, month, day, hour, minute, or second. Time zone
information can be extracted using timezone_hour and timezone_minute.

SQL also defines several useful functions to get the current date and time. For
example, current_date returns the current date, current_time returns the current time
(with time zone), and localtime returns the current local time (without time zone).
Timestamps (date plus time) are returned by current timestamp (with time zone)
and localtimestamp (local date and time without time zone).

SQL allows comparison operations on all the types listed here, and it allows both
arithmetic and comparison operations on the various numeric types. SQL also pro-
vides a data type called interval, and it allows computations based on dates and
times and on intervals. For example, if x and y are of type date, then = — y is an in-
terval whose value is the number of days from date x to date y. Similarly, adding or
subtracting an interval to a date or time gives back a date or time, respectively.

It is often useful to compare values from different compatible types. As an illus-
tration, suppose that the type of customer_name is a character string of length 20, and
the type of branch_name is a character string of length 15. Although the string lengths
might differ, standard SQL will consider the two types compatible. As another exam-
ple, since every small integer is also an integer, a comparison z < y, where x is a small
integer and y is an integer (or vice versa), makes sense. We make such a comparison
by casting small integer x as an integer. A transformation of this sort is called a type
coercion. Type coercion is used routinely in common programming languages, as
well as in database systems.

41 SQL Data Types and Schemas 123

4.1.2 User-Defined Types

SQL supports two forms of user-defined data types. The first form, which we cover
here, is called distinct types. The other form, called structured data types, allows the
creation of complex data types with nested record structures, arrays, and multisets.
We do not cover structured data types in this chapter, but describe them later, in
Chapter 9.

It is possible for several attributes to have the same data type. For example, the at-
tributes customer_name and employee_name might have the same domain: the set of all
person names. However, the domains of balance and branch_name certainly ought to be
distinct. It is perhaps less clear whether customer.name and branch.name should have
the same domain. At the implementation level, both customer names and branch
names are character strings. However, we would normally not consider the query
“Find all customers who have the same name as a branch” to be a meaningful query.
Thus, if we view the database at the conceptual, rather than the physical, level, cus-
tomer_name and branch.name should have distinct domains.

More importantly, at a practical level, assigning a customer’s name to a branch is
probably a programming error; similarly, comparing a monetary value expressed in
dollars directly with a monetary value expressed in pounds is also almost surely a
programming error. A good type system should be able to detect such assignments
or comparisons. To support such checks, SQL provides the notion of distinct types.

The create type clause can be used to define new types. For example, the state-
ments:

create type Dollars as numeric(12,2) final
create type Pounds as numeric(12,2) final

define the user-defined types Dollars and Pounds to be decimal numbers with a total
of 12 digits, two of which are placed after the decimal point. (The keyword final isn’t
really meaningful in this context but is required by the SQL:1999 standard for reasons
we won’t get into here; some implementations allow the final keyword to be omit-
ted.) The newly created types can then be used, for example, as types of attributes of
relations. For example, we could declare the account table as:

create table account
(account_number char(10),
branch_name char(15),
balance Dollars)

An attempt to assign a value of type Dollars to a variable of type Pounds would result
in a compile time error, although both are of the same numeric type. Such an assign-
ment is likely to be due to a programmer error, where the programmer forgot about
the differences in currency. Declaring different types for different currencies helps
catch such errors.

As a result of strong type checking, the expression (account.balance+20) would not
be accepted since the attribute and the integer constant 20 have different types. Values

124

Chapter4 Advanced SQL

of one type can be cast (that is, converted) to another domain, as illustrated below:
cast (account.balance to numeric(12,2))

We could do addition on the numeric type, but to save the result back to an attribute
of type Dollars we would have to use another cast expression to convert the type back
to Dollars.

SQL also provides drop type and alter type clauses to drop or modify types that
have been created earlier.

Even before user-defined types were added to SQL (in SQL:1999), SQL had a similar
but subtly different notion of domain type (introduced in SQL-92). We could define a
domain type DDollars as follows.

create domain DDollars as numeric(12,2)

The domain type DDollars can be used as attribute types, just as we used the type
Dollars. However, there are two significant differences between types and domains:

1. Domains can have constraints, such as not null, specified on them, and can
have default values defined for variables of the domain type, whereas user-
defined types cannot have constraints or default values specified on them.
User-defined types are designed to be used not just for specifying attribute
types, but also in procedural extensions to SQL where it may not be possible
to enforce constraints. We return to the issue of constraints on domains later,
in Section 4.2.4.

2. Domains are not strongly typed. As a result, values of one domain type can
be assigned to values of another domain type as long as the underlying types
are compatible.

4.1.3 Large-Object Types

Many current-generation database applications need to store attributes that can be
large (of the order of many kilobytes), such as a photograph of a person, or very
large (of the order of many megabytes or even gigabytes), such as a high-resolution
medical image or video clip. SQL therefore provides new large-object data types for
character data (clob) and binary data (blob). The letters “lob” in these data types
stand for “Large OBject.” For example, we may declare attributes

book_review clob(10KB)
image blob(10MB)
movie blob(2GB)

Executing an SQL query would typically retrieve one or more rows of the result into
memory. Large objects are typically used in external applications, and for very large
objects (multiple megabytes to gigabytes), it is inefficient or impractical to retrieve
an entire large object into memory. Instead, an application would usually use an SQL

4.1 SQL Data Types and Schemas 125

query to retrieve a “locator” for a large object and then use the locator to manipu-
late the object from the host language. For instance, the JDBC application program
interface (described in Section 4.5.2) permits a locator to be fetched instead of the en-
tire large object; the locator can then be used to fetch the large object in small pieces,
rather than all at once, much like reading data from an operating system file using a
read function call.

4.1.4 Schemas, Catalogs, and Environments

To understand the motivation for schemas and catalogs, consider how files are named
in a file system. Early file systems were flat; that is, all files were stored in a single
directory. Current-generation file systems, of course, have a directory structure, with
files stored within subdirectories. To name a file uniquely, we must specify the full
path name of the file, for example, /users/avi/db-book/chapter4.tex.

Like early file systems, early database systems also had a single name space for all
relations. Users had to coordinate to make sure they did not try to use the same name
for different relations. Contemporary database systems provide a three-level hierar-
chy for naming relations. The top level of the hierarchy consists of catalogs, each of
which can contain schemas. SQL objects such as relations and views are contained
within a schema. (Some database implementations use the term “database” in place
of the term catalog.)

In order to perform any actions on a database, a user (or a program) must first
connect to the database. The user must provide the user name and usually, a se-
cret password for verifying the identity of the user. Each user has a default catalog
and schema, and the combination is unique to the user. When a user connects to a
database system, the default catalog and schema are set up for the connection; this
corresponds to the current directory being set to the user’s home directory when the
user logs into an operating system.

To identify a relation uniquely, a three-part name must be used, for example,

catalog5.bank_schema.account

We may omit the catalog component, in which case the catalog part of the name is
considered to be the default catalog for the connection. Thus if catalogs5 is the default
catalog, we can use bank_schema.account to identify the same relation uniquely. Fur-
ther, we may also omit the schema name, and the schema part of the name is again
considered to be the default schema for the connection. Thus we can use just account
if the default catalog is catalog5 and the default schema is bank_schema.

With multiple catalogs and schemas available, different applications and differ-
ent users can work independently without worrying about name clashes. Moreover,
multiple versions of an application—one a production version, other test versions—
can run on the same database system.

The default catalog and schema are part of an SQL environment that is set up
for each connection. The environment additionally contains the user identifier (also
referred to as the authorization identifier). All the usual SQL statements, including the
DDL and DML statements, operate in the context of a schema. We can create and

126

Chapter4 Advanced SQL

drop schemas by means of create schema and drop schema statements. Creation and
dropping of catalogs is implementation dependent and not part of the SQL standard.

4.2 Integrity Constraints

Integrity constraints ensure that changes made to the database by authorized users
do not result in a loss of data consistency. Thus, integrity constraints guard against
accidental damage to the database.

Examples of integrity constraints are:

e An account balance cannot be null.
e No two accounts can have the same account number.

e Every account number in the depositor relation must have a matching account
number in the account relation.

o The hourly salary of a bank employee must be at least $6.00 an hour.

In general, an integrity constraint can be an arbitrary predicate pertaining to the
database. However, arbitrary predicates may be costly to test. Thus, most database
systems allow one to specify integrity constraints that can be tested with minimal
overhead. We study some such forms of integrity constraints in this section. In Chap-
ter 7 we study another form of integrity constraint, called functional dependencies,
that is used primarily in the process of schema design.

4.2.1 Constraints on a Single Relation

We described in Section 3.2 how to define tables using the create table command. The
create table command may also include integrity-constraint statements. In addition
to the “primary-key” constraint, there are a number of other ones that can be included
in the create table command. The allowed integrity constraints include

e not null
e unique

e check(<predicate>)

We cover each of these types of constraints in the following sections.

4.2.2 Not Null Constraint

As we discussed in Chapter 2, the null value is a member of all domains, and as a
result is a legal value for every attribute in SQL by default. For certain attributes,
however, null values may be inappropriate. Consider a tuple in the account relation
where account_number is null. Such a tuple gives account information for an unknown
account; thus, it does not contain useful information. Similarly, we would not want
the account balance to be null. In cases such as this, we wish to forbid null values,

42 Integrity Constraints 127

and we can do so by restricting the domain of attributes account number and balance
to exclude null values, by declaring them as follows.

account_number char(10) not null
balance numeric(12,2) not null

The not null specification prohibits the insertion of a null value for this attribute.
Any database modification that would cause a null to be inserted in an attribute
declared to be not null generates an error diagnostic.

There are many situations where we want to avoid null values. In particular, SQL
prohibits null values in the primary key of a relation schema. Thus, in our bank exam-
ple, in the account relation, if the attribute account_number is declared as the primary
key for account, it cannot take a null value. As a result it would not need to be explic-
itly declared to be not null.

The not null specification can also be applied to a user-defined domain declara-
tion; as a result attributes of that domain type would not be allowed to take a null
value. For example, if we wished our Dollars domain to not take null values, we could
declare it as follows.

create domain Dollars numeric(12,2) not null

4.2.3 Unique Constraint

SQL also supports an integrity constraint
unique (A;,, Az, v0 5 45,)

The unique specification says that attributes A;,, Aj,, ..., A;,, form a candidate key;
that is, no two tuples in the relation can be equal on all the primary-key attributes.
However, candidate key attributes are permitted to be null unless they have explicitly
been declared to be not null. Recall that a null value does not equal any other value.
(The treatment of nulls here is the same as that of the unique construct defined in
Section 3.7.4.)

4.2.4 The check Clause

The check clause in SQL can be applied to relation declarations as well as to domain
declarations. When applied to a relation declaration, the clause check(P) specifies a
predicate P that must be satisfied by every tuple in a relation.

A common use of the check clause is to ensure that attribute values satisfy spec-
ified conditions, in effect creating a powerful type system. For instance, a clause
check(assets>=0) in the create table command for relation branch would ensure that
the value of assets is nonnegative.

As another example, consider the following;:

128

Chapter4 Advanced SQL

create table student
(narmme char(15) not null,
student_id char(10),
degree_level char(15),
primary key (student_id),
check (degree_level in (‘Bachelors’, "Masters’, "Doctorate’)))

Here, we use the check clause to simulate an enumerated type, by specifying that
degree_level must be one of ‘Bachelors’, "Masters’, or "Doctorate’.

When applied to a domain, the check clause permits the schema designer to spec-
ify a predicate that must be satisfied by any value assigned to a variable whose type
is the domain.

For instance, a check clause can ensure that an hourly wage domain allows only
values greater than a specified value (such as the minimum wage):

create domain Hourly Wage numeric(5,2)
constraint wage value_test check(value >= 6.00)

The domain HourlyWage has a constraint that ensures that the hourly wage is greater
than or equal to 6.00. The clause constraint wage_value_test is optional, and is used
to give the name wage_value_test to the constraint. The name is used by the system to
indicate the constraint that an update violated.

As another example, a domain can be restricted to contain only a specified set of
values by using the in clause:

create domain AccountType char(10)
constraint account_type_test
check (value in ("Checking’, ‘Saving’))

Thus, the check clause permits attributes and domains to be restricted in powerful
ways that most programming-language type systems do not permit.

The preceding check conditions can be tested quite easily, when a tuple is inserted
or modified. However, in general, the check conditions can be more complex (and
harder to check), since subqueries that refer to other relations are permitted in the
check condition. For example, this constraint could be specified on the relation de-
posit:

check (branch_name in (select branch_name from branch))

The check condition verifies that the branch_name in each tuple in the deposit relation
is actually the name of a branch in the branch relation. Thus, the condition has to be
checked not only when a tuple is inserted or modified in deposit, but also when the
relation branch changes (in this case, when a tuple is deleted or modified in relation
branch).

The preceding constraint is actually an example of a class of constraints called
referential-integrity constraints. We discuss such constraints, along with a simpler way
of specifying them in SQL, in Section 4.2.5.

42 Integrity Constraints 129

create table customer
(customername char(20),
customer.street char(30),
customercity char(30),
primary key (customer_name))

create table branch
(branch_name char(15),
branch_city char(30),
assets numeric(16,2),
primary key (branch_name),
check (assets >= 0))

create table account
(account.number char(10),
branch_name char(15),
balance numeric(12,2),
primary key (account_number),
foreign key (branch_name) references branch,
check (balance >= 0))

create table depositor
(customer-name char(20),
account_number char(10),
primary key (customer_name, account_number),
foreign key (customer_name) references customer,
foreign key (account_number) references account)

Figure4.2 SQL data definition for part of the bank database.

Complex check conditions can be useful when we want to ensure integrity of data,
but we should use them with care, since they may be costly to test.

4.2.5 Referential Integrity

Often, we wish to ensure that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another relation. This condition
is called referential integrity.

Foreign keys can be specified as part of the SQL create table statement by using
the foreign key clause. We illustrate foreign-key declarations by using the SQL DDL
definition of part of our bank database, shown in Figure 4.2. The definition of the
account table has a declaration “foreign key (branch.name) references branch”. This
foreign-key declaration specifies that for each account tuple, the branch name speci-
fied in the tuple must exist in the branch relation. Without this constraint, it is possible
for an account to specify a nonexistent branch name.

130

Chapter4 Advanced SQL

More generally, let 71 (R;) and r9(R2) be relations with primary keys K; and K3,
respectively (recall that Ry and R; denote the set of attributes of 71 and ry, respec-
tively). We say that a subset o of R; is a foreign key referencing K in relation r; if itis
required that, for every tuple t; in 5, there must be a tuple t; in 7y such that 1 [K1] =
t2[c]. Requirements of this form are called referential-integrity constraints, or sub-
set dependencies. The latter term arises because the preceding referential-integrity
constraint can be written as I, (r2) € Ilk, (r1). Note that, for a referential-integrity
constraint to make sense, o and K; must be compatible sets of attributes; that is, ei-
ther @ must be equal to K7, or they must contain the same number of attributes, and
the types of corresponding attributes must be compatible (we assume here that o and
K, are ordered).

By default, in SQL a foreign key references the primary-key attributes of the ref-
erenced table. SQL also supports a version of the references clause where a list of
attributes of the referenced relation can be specified explicitly. The specified list of
attributes must, however, be declared as a candidate key of the referenced relation.

We can use the following short form as part of an attribute definition to declare
that the attribute forms a foreign key:

branch_.name char(15) references branch

When a referential-integrity constraint is violated, the normal procedure is to re-
ject the action that caused the violation (that is, the transaction performing the up-
date action is rolled back). However, a foreign key clause can specify that if a delete
or update action on the referenced relation violates the constraint, then, instead of
rejecting the action, the system must take steps to change the tuple in the referencing
relation to restore the constraint. Consider this definition of an integrity constraint on
the relation account:

create table account
(o
foreign key (branch_name) references branch
on delete cascade
on update cascade,

Because of the clause on delete cascade associated with the foreign-key declaration,
if a delete of a tuple in branch results in this referential-integrity constraint being vi-
olated, the system does not reject the delete. Instead, the delete “cascades” to the
account relation, deleting the tuple that refers to the branch that was deleted. Simi-
larly, the system does not reject an update to a field referenced by the constraint if it
violates the constraint; instead, the system updates the field branch.name in the ref-
erencing tuples in account to the new value as well. SQL also allows the foreign key
clause to specify actions other than cascade, if the constraint is violated: The referenc-
ing field (here, branch.name) can be set to null (by using set null in place of cascade),
or to the default value for the domain (by using set default).

4.2 Integrity Constraints 131

If there is a chain of foreign-key dependencies across multiple relations, a deletion
or update at one end of the chain can propagate across the entire chain. An interest-
ing case where the foreign key constraint on a relation references the same relation
appears in Practice Exercises 4.4. If a cascading update or delete causes a constraint
violation that cannot be handled by a further cascading operation, the system aborts
the transaction. As a result, all the changes caused by the transaction and its cascad-
ing actions are undone.

Null values complicate the semantics of referential-integrity constraints in SQL.
Attributes of foreign keys are allowed to be null, provided that they have not other-
wise been declared to be nonnull. If all the columns of a foreign key are nonnull in
a given tuple, the usual definition of foreign-key constraints is used for that tuple. If
any of the foreign-key columns is null, the tuple is defined automatically to satisfy
the constraint.

This definition may not always be the right choice, so SQL also provides constructs
that allow you to change the behavior with null values; we do not discuss the con-
structs here.

Integrity constraints can be added to an existing relation by using the command
alter table table-name add constraint, where constraint can be any of the constraints
we have seen. When such a command is executed, the system first ensures that the
relation satisfies the specified constraint. If it does, the constraint is added to the
relation; if not, the command is rejected.

Transactions may consist of several steps, and integrity constraints may be vio-
lated ‘temporarily after one step, but a later step may remove the violation. For in-
stance, suppose we have a relation person with primary key name, and an attribute
spouse, and suppose that spouse is a foreign key on person. That is, the constraint says
that the spouse attribute must contain a name that is present in the person table. Sup-
pose we wish to note the fact that John and Mary are married to each other by insert-
ing two tuples, one for John and one for Mary, in the above relation. The insertion of
the first tuple would violate the foreign-key constraint, regardless of which of the two
tuples is inserted first. After the second tuple is inserted the foreign-key constraint
would hold again.

To handle such situations, the SQL standard allows a clause initially deferred to
be added to a constraint specification; the constraint would then be checked at the
end of a transaction, and not at intermediate steps.! A constraint can alternatively be
specified as deferrable, which means it is checked immediately by default, but can be
deferred when desired. For constraints declared as deferrable, executing a statement
set constraints constraint-list deferred as part of a transaction causes the checking of
the specified constraints to be deferred to the end of that transaction.

However, you should be aware that the default behavior is to check constraints im-
mediately, and many database implementations do not support deferred constraint
checking.

1. We can work around the problem in the above example in another way, if the spouse attribute can be
set to null: We set the spouse attributes to null when inserting the tuples for John and Mary, and we update
them later. However, this technique is rather messy, and does not work if the attributes cannot be set to
null.

132

Chapter4 Advanced SQL

create assertion sum_constraint check
(not exists (select * from branch
where (select sum(amount) from loan
where loan.branch-name = branch.branch.name)
>= (select sum(balance) from account
where account.branch.name = branch.branch_name)))

create assertion balance_constraint check
(not exists (select * from loan
where not exists (select *

from borrower, depositor, account

where loan.loan_number = borrower.loan_number
and borrower.customer-name = depositor.customer name
and depositor.account number = account.account_number
and account.balance >= 1000)))

Figure 4.3 Two assertion examples.

4.2.6 Assertions

An assertion is a predicate expressing a condition that we wish the database always
to satisfy. Domain constraints and referential-integrity constraints are special forms
of assertions. We have paid substantial attention to these forms of assertions because
they are easily tested and apply to a wide range of database applications. However,
there are many constraints that we cannot express by using only these special forms.
Two examples of such constraints are:

e The sum of all loan amounts for each branch must be less than the sum of all
account balances at the branch.

o Every loan has at least one customer who maintains an account with a mini-
mum balance of $1000.00.

An assertion in SQL takes the form
create assertion <assertion-name> check <predicate>

In Figure 4.3 we show how the two examples of constraints can be written in SQL.
Since SQL does not provide a “for all X, P(X)” construct (where P is a predicate), we
are forced to implement the constraint by an equivalent construct, “not exists X such
that not P(X)”, that can be expressed in SQL.

When an assertion is created, the system tests it for validity. If the assertion is valid,
then any future modification to the database is allowed only if it does not cause that
assertion to be violated. This testing may introduce a significant amount of overhead
if complex assertions have been made. Hence, assertions should be used with great
care. The high overhead of testing and maintaining assertions has led some system
developers to omit support for general assertions, or to provide specialized forms of
assertion that are easier to test.

4.3 Authorization 133

4.3 Authorization

We may assign a user several forms of authorizations on parts of the database. For
example,

Authorization to read data

e Authorization to insert new data
e Authorization to update data

e Authorization to delete data

Each of these types of authorizations is called a privilege. We may authorize the
user all, none, or a combination of these types of privileges on specified parts of a
database, such as a relation or a view.

The SQL standard includes the privileges select, insert, update, and delete. The
select privilege authorizes a user to read data. In addition to these forms of privi-
leges for access to data, SQL supports several other privileges, such as the privilege
to create, delete, or modify relations, and the privilege to execute procedures. We dis-
cuss these privileges later, in Section 8.7. The privilege all privileges can be used as a
short form for all the allowable privileges. A user who creates a new relation is given
all privileges on that relation automatically.

A user who has some form of authorization may be allowed to pass on (grant)
this authorization to other users, or to withdraw (revoke) an authorization that was
granted earlier.

The SQL data-definition language includes commands to grant and revoke priv-
ileges. The grant statement is used to confer authorization. The basic form of this
statement is:

grant <privilege list> on <relation name or view name> to <user/role list>

The privilege list allows the granting of several privileges in one command. The notion
of roles is covered later, in Section 8.7.

The following grant statement grants database users John and Mary select autho-
rization on the account relation:

grant select on account to John, Mary

The update authorization may be given either on all attributes of the relation or
on only some. If update authorization is included in a grant statement, the list of at-
tributes on which update authorization is to be granted optionally appears in paren-
theses immediately after the update keyword. If the list of attributes is omitted, the
update privilege will be granted on all attributes of the relation.

This grant statement gives users John and Mary update authorization on the amount
attribute of the loan relation:

grant update (amount) on loan to John, Mary

134

Chapter 4 Advanced SQL

The insert privilege may also specify a list of attributes; any inserts to the relation
must specify only these attributes, and the system either gives each of the remaining
attributes default values (if a default is defined for the attribute) or sets them to null.

The user name public refers to all current and future users of the system. Thus,
privileges granted to public are implicitly granted to all current and future users.

By default, a user/role that is granted a privilege is not authorized to grant that
privilege to another user/role. SQL allows a privilege grant to specify that the recipi-
ent may further grant the privilege to another user. We describe this feature in more
detail in Section 8.7.

To revoke an authorization, we use the revoke statement. It takes a form almost
identical to that of grant:

revoke <privilege list> on <relation name or view name>
from <user/role list>

Thus, to revoke the privileges that we granted previously, we write

revoke select on branch from John, Mary
revoke update (amount) on loan from John, Mary

Revocation of privileges is more complex if the user from whom the privilege is re-
voked has granted the privilege to another user. We return to this issue in Section 8.7.

4.4 Embedded SQL

SQL provides a powerful declarative query language. Writing queries in SQL is usu-
ally much easier than coding the same queries in a general-purpose programming
language. However, a programmer must have access to a database from a general-
purpose programming language for at least two reasons:

1. Not all queries can be expressed in SQL, since SQL does not provide the full
expressive power of a general-purpose language. That is, there exist queries
that can be expressed in a language such as C, Java, or Cobol that cannot be
expressed in SQL. To write such queries, we can embed SQL within a more
powerful language.

SQL is designed so that queries written in it can be optimized automatically
and executed efficiently—and providing the full power of a programming
language makes automatic optimization exceedingly difficult.

2. Nondeclarative actions—such as printing a report, interacting with a user, or
sending the results of a query to a graphical user interface—cannot be done
from within SQL. Applications usually have several components, and query-
ing or updating data is only one component; other components are written in
general-purpose programming languages. For an integrated application, the
programs written in the programming language must be able to access the
database.

44 Embedded SQL 135

The SQL standard defines embeddings of SQL in a variety of programming lan-
guages, such as C, Cobol, Pascal, Java, PL/I, and Fortran. A language in which SQL
queries are embedded is referred to as a host language, and the SQL structures per-
mitted in the host language constitute embedded SQL.

Programs written in the host language can use the embedded SQL syntax to ac-
cess and update data stored in a database. This embedded form of SQL extends the
programmer’s ability to manipulate the database even further. In embedded SQL, all
query processing is performed by the database system, which then makes the result
of the query available to the program one tuple (record) at a time.

An embedded SQL program must be processed by a special preprocessor prior to
compilation. The preprocessor replaces embedded SQL requests with host-language
declarations and procedure calls that allow run-time execution of the database ac-
cesses. Then, the resulting program is compiled by the host-language compiler. To
identify embedded SQL requests to the preprocessor, we use the EXEC SQL statement;
it has the form

EXEC SQL <embedded SQL statement > END-EXEC

The exact syntax for embedded SQL requests depends on the language in which
SQL is embedded. For instance, a semicolon is used instead of END-EXEC when SQL
is embedded in C. The Java embedding of SQL (called SQLJ) uses the syntax

#SQL { <embedded SQL statement > };

We place the statement SQL INCLUDE in the program to identify the place where
the preprocessor should insert the special variables used for communication between
the program and the database system. Variables of the host language can be used
within embedded SQL statements, but they must be preceded by a colon (:) to distin-
guish them from SQL variables.

Before executing any SQL statements, the program must first connect to the database.
This is done using

EXEC SQL connect to server user user-name END-EXEC

Here, server identifies the server to which a connection is to be established. Database
implementations may require a password to be provided in addition to a user name.

Embedded SQL statements are similar in form to the SQL statements that we de-
scribed in this chapter. There are, however, several important differences, as we note
here.

To write a relational query, we use the declare cursor statement. The result of the
query is not yet computed. Rather, the program must use the open and fetch com-
mands (discussed later in this section) to obtain the result tuples.

Consider the banking schema that we have used in this chapter. Assume that we
have a host-language variable amount, and that we wish to find the names and cities
of residence of customers who have more than amount dollars in any account. We can
write this query as follows:

136

Chapter4 Advanced SQL

EXEC SQL
declare ¢ cursor for
select customer.-name, customer_city
from depositor, customer, account
where depositor.customer_name = customer.customer_name and
account.account_number = depositor.account.number and
account.balance > :amount
END-EXEC

The variable ¢ in the preceding expression is called a cursor for the query. We use
this variable to identify the query in the open statement, which causes the query to
be evaluated, and in the fetch statement, which causes the values of one tuple to be
placed in host-language variables.

The open statement for our sample query is as follows:

EXEC SQL open ¢ END-EXEC

This statement causes the database system to execute the query and to save the results
within a temporary relation. The query has a host-language variable (:amount); the
query uses the value of the variable at the time the open statement is executed.

If the SQL query results in an error, the database system stores an error diagnostic
in the SQL communication-area (SQLCA) variables, whose declarations are inserted
by the SQL INCLUDE statement.

An embedded SQL program executes a series of fetch statements to retrieve tuples
of the result. The fetch statement requires one host-language variable for each at-
tribute of the result relation. For our example query, we need one variable to hold the
customer_name value and another to hold the customer_city value. Suppose that those
variables are cn and cc, respectively. Then the statement:

EXEC SQL fetch c into :cn, :cc END-EXEC

produces a tuple of the result relation. The program can then manipulate the vari-
ables cn and cc by using the features of the host programming language.

A single fetch request returns only one tuple. To obtain all tuples of the result,
the program must contain a loop to iterate over all tuples. Embedded SQL assists the
programmer in managing this iteration. Although a relation is conceptually a set, the
tuples of the result of a query are in some fixed physical order. When the program
executes an open statement on a cursor, the cursor is set to point to the first tuple
of the result. Each time it executes a fetch statement, the cursor is updated to point
to the next tuple of the result. When no further tuples remain to be processed, the
variable SQLSTATE in the SQLCA is set to ‘02000’ (meaning “no data”). Thus, we can
use a while loop (or equivalent loop) to process each tuple of the result.

We must use the close statement to tell the database system to delete the tempo-
rary relation that held the result of the query. For our example, this statement takes
the form

EXEC SQL close ¢ END-EXEC

45 DynamicSQL 137

SQLJ, the Java embedding of SQL, provides a variation of the above scheme, where
Java iterators are used in place of cursors. SQLJ associates the results of a query with
an iterator, and the next() method of the Java iterator interface can be used to step
through the result tuples, just as the preceding examples use fetch on the cursor.

Embedded SQL expressions for database modification (update, insert, and delete)
do not return a result. Thus, they are somewhat simpler to express. A database-
modification request takes the form

EXEC SQL < any valid update, insert, or delete> END-EXEC

Host-language variables, preceded by a colon, may appear in the SQL database-
modification expression. If an error condition arises in the execution of the statement,
a diagnostic is set in the SQLCA.

Database relations can also be updated through cursors. For example, if we want
to add 100 to the balance attribute of every account where the branch name is “Per-
ryridge,” we could declare a cursor as follows.

declare ¢ cursor for

select *

from account

where branch_name = ‘Perryridge’
for update

We then iterate through the tuples by performing fetch operations on the cursor (as
illustrated earlier), and after fetching each tuple we execute the following code

update account
set balance = balance + 100
where current of ¢

Embedded SQL allows a host-language program to access the database, but it pro-
vides no assistance in presenting results to the user or in generating reports. Most
commercial database products include tools to assist application programmers in
creating user interfaces and formatted reports. Chapter 8 describes how to build
database applications with user interfaces, concentrating on Web-based user inter-
faces.

4.5 Dynamic SQL

The dynamic SQL component of SQL allows programs to construct and submit SQL
queries at run time. In contrast, embedded SQL statements must be completely present
at compile time; they are compiled by the embedded SQL preprocessor. Using dy-
namic SQL, programs can create SQL queries as strings at run time (perhaps based on
input from the user) and can either have them executed immediately or have them
prepared for subsequent use. Preparing a dynamic SQL statement compiles it, and
subsequent uses of the prepared statement use the compiled version.

138

Chapter4 Advanced SQL

SQL defines standards for embedding dynamic SQL calls in a host language, such
as C, as in the following example.

char * sqlprog = "update account set balance = balance x1.05
where account number = 77;

EXEC SQL prepare dynprog from :sqlprog;

char account[10] = " A-101";

EXEC SQL execute dynprog using :account;

The dynamic SQL program contains a ?, which is a placeholder for a value that is
provided when the SQL program is executed.

However, the syntax above requires extensions to the language or a preprocessor
for the extended language. A popular alternative is to use an application program
interface to send SQL queries or updates to a database system, and not make any
changes in the programming language itself.

In the rest of this section, we look at two standards for connecting to an SQL
database and performing queries and updates. One, ODBC, is an application pro-
gram interface originally developed for the C language, and subsequently extended
to other languages such as C++, C#, and Visual Basic. The other, JDBC, is an applica-
tion program interface for the Java language.

To understand these standards, we need to understand the concept of SQL ses-
sions. The user or application connects to an SQL server, establishing a session; exe-
cutes a series of statements; and finally disconnects the session. Thus, all activities of
the user or application are in the context of an SQL session. In addition to the normal
SQL commands, a session can also contain commands to commit the work carried out
in the session, or to rollback the work carried out in the session.

4.5.1 ODBC

The Open Database Connectivity (ODBC) standard defines a way for an application
program to communicate with a database server. ODBC defines an application pro-
gram interface (API) that applications can use to open a connection with a database,
send queries and updates, and get back results. Applications such as graphical user
interfaces, statistics packages, and spreadsheets can make use of the same ODBC API
to connect to any database server that supports ODBC.

Each database system supporting ODBC provides a library that must be linked
with the client program. When the client program makes an ODBC API call, the code
in the library communicates with the server to carry out the requested action, and
fetch results.

Figure 4.4 shows an example of C code using the ODBC API. The first step in using
ODBC to communicate with a server is to set up a connection with the server. To do
so, the program first allocates an SQL environment, then a database connection han-
dle. ODBC defines the types HENV, HDBC, and RETCODE. The program then opens
the database connection by using SQLConnect. This call takes several parameters,
including the connection handle, the server to which to connect, the user identifier,

45 DynamicSQL 139

void ODBCexample()

{
RETCODE error;
HENV env; /* environment */
HDBC conn; /* database connection */
SQLAllocEnv(&env);
SQLAllocConnect(env, &conn);
SQLConnect(conn, "db.yale.edu”, SQL_NTS, "avi”, SQL_NTS,
"avipasswd”, SQL_NTS);
{
char branchname[80];
float balance;
int lenOut1, lenOut2;
HSTMT stmt;
char * sglquery = "select branch_name, sum (balance)
from account
group by branch_name”;
SQLAllocStmt(conn, &stmt);
error = SQLExecDirect(stmt, sglquery, SQL_NTS);
if (error == SQL_SUCCESS) {
SQLBindCol(stmt, 1, SQL_.C_CHAR, branchname , 80, &lenOut1);
SQLBindCol(stmt, 2, SQL_C_FLOAT, &balance, 0, &lenOut2);
while (SQLFetch(stmt) == SQL_SUCCESS) {
printf (* %s %g\n", branchname, balance);
; }
SQLFreeStmi(stmt, SQL_DROP);
SQLDisconnect(conn);
SQLFreeConnect(conn);
SQLFreeEnv(env);
}

Figure 4.4 ODBC code example.

and the password for the database. The constant SQL_NTS denotes that the previous
argument is a null-terminated string.

Once the connection is set up, the program can send SQL commands to the database
by using SQLExecDirect. C language variables can be bound to attributes of the
query result, so that when a result tuple is fetched using SQLFetch, its attribute val-
ues are stored in corresponding C variables. The SQLBindCol function does this task;
the second argument identifies the position of the attribute in the query result, and
the third argument indicates the type conversion required from SQL to C. The next
argument gives the address of the variable. For variable-length types like character

140

Chapter4 Advanced SQL

arrays, the last two arguments give the maximum length of the variable and a loca-
tion where the actual length is to be stored when a tuple is fetched. A negative value
returned for the length field indicates that the value is null. For fixed-length types
such as integer or float, the maximum length field is ignored, while a negative value
returned for the length field indicates a null value.

The SQLFetch statement is in a while loop that gets executed until SQLFetch re-
turns a value other than SQL_SUCCESS. On each fetch, the program stores the val-
ues in C variables as specified by the calls on SQLBindCol and prints out these values.

At the end of the session, the program frees the statement handle, disconnects
from the database, and frees up the connection and SQL environment handles. Good
programming style requires that the result of every function call must be checked to
make sure there are no errors; we have omitted most of these checks for brevity.

It is possible to create an SQL statement with parameters; for example, consider
the statement insert into account values(?,?,?). The question marks are placeholders
for values which will be supplied later. The above statement can be “prepared,” that
is, compiled at the database, and repeatedly executed by providing actual values for
the placeholders—in this case, by providing an account number, branch name, and
balance for the relation account.

ODBC defines functions for a variety of tasks, such as finding all the relations in the
database and finding the names and types of columns of a query result or a relation
in the database.

By default, each SQL statement is treated as a separate transaction that is commit-
ted automatically. The SQLSetConnectOption(conn, SQL_ AUTOCOMMIT, 0) turns
off automatic commit on connection conn, and transactions must then be committed
explicitly by SQLTransact(conn, SQL_.COMMIT) or rolled back by SQLTransact(conn,
SQL.ROLLBACK).

The ODBC standard defines conformance levels, which specify subsets of the func-
tionality defined by the standard. An ODBC implementation may provide only core
level features, or it may provide more advanced (level 1 or level 2) features. Level
1 requires support for fetching information about the catalog, such as information
about what relations are present and the types of their attributes. Level 2 requires
further features, such as ability to send and retrieve arrays of parameter values and
to retrieve more detailed catalog information.

The SQL standard defines a call level interface (CLI) that is similar to the ODBC
interface. The ADO and ADO.NET APIs are alternatives to ODBC, designed for the
Visual Basic and C# languages; see the bibliographic notes for more information.

4.5.2 JDBC

The JDBC standard defines an API that Java programs can use to connect to database
servers. (The word JDBC was originally an abbreviation for Java Database Connec-
tivity, but the full form is no longer used.)

4.5.2.1 Opening a Connection and Executing Queries

Figure 4.5 shows an example Java program that uses the JDBC interface. The program
must first open a connection to a database, and can then execute SQL statements,

45 DynamicSQL 141

public static void JDBCexample(String dbid, String userid, String passwd)

{
try

Class.forName (“oracle.jdbc.driver.OracleDriver”);
Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin: @ db.yale.edu:2000:bankdb”,
userid, passwd);
Statement stmt = conn.createStatement();
try {
stmt.executeUpdate(
"insert into account values(’A-9732’, 'Perryridge’, 1200)");
} catch (SQLException sgle)

{
}

ResultSet rset = stmt.executeQuery(
"select branch_name, avg (balance)
from account
group by branch_name”);
while (rset.next()) {
System.out.printin(rset.getString("branch_name”) + " +
rset.getFloat(2));

System.out.printin("Could not insert tuple. ” + sqle);

}

stmt.close();
conn.close();

}
catch (SQLException sgle)

{
}

System.out.printin("SQLException : ” + sgle);

Figure 4.5 An example of JDBC code.

but before opening a connection, it loads the appropriate drivers for the database
by using Class.forName. The first parameter to the getConnection call specifies the
machine name where the server runs (in our example, db.yale.edu), the port number
it uses for communication (in our example, 2000). The parameter also specifies which
schema on the server is to be used (in our example, bankdb), since a database server
may support multiple schemas. The first parameter also specifies the protocol to be
used to communicate with the database (in our example, jdbc:oracle:thin:). Note that
JDBC specifies only the API, not the communication protocol. A JDBC driver may
support multiple protocols, and we must specify one supported by both the database
and the driver. The other two arguments to getConnection are a user identifier and a
password.

142

Chapter4 Advanced SQL

PreparedStatement pStmt = conn.prepareStatement(
"insert into account values(?,?,7)");

pStmt.setString(1, "A-97327),

pStmt.setString(2, "Perryridge”);

pStmt.setInt(3, 1200);

pStmt.executeUpdate();

pStmt.setString(1, "A-9733");

pStmt.executeUpdate();

Figure 4.6 Prepared statements in JDBC code.

The program then creates a statement handle on the connection and uses it to
execute an SQL statement and get back results. In our example, stmt.executeUpdate
executes an update statement. The try { ... } catch { ... } construct permits us to
catch any exceptions (error conditions) that arise when JDBC calls are made, and print
an appropriate message to the user.

The program can execute a query by using stmt.executeQuery. It can retrieve the
set of rows in the result into a ResultSet and fetch them one tuple at a time using the
next() function on the result set. Figure 4.5 shows two ways of retrieving the values
of attributes in a tuple: using the name of the attribute (branch-name) and using the
position of the attribute (2, to denote the second attribute).

The connection is closed at the end of the procedure. Note that it is important to
close the connection because there is a limit imposed on the number of connections
to the database; unclosed connections may cause that limit to be exceeded. If this
happens, the application cannot open any more connections to the database.

4.5.2.2 Prepared Statements

We can create a prepared statement in which some values are replaced by *?”, thereby
specifying that actual values will be provided later. Some database systems compile
the query when it is prepared; each time the query is executed (with new values), the
database can reuse the previously compiled form of the query. The code fragment in
Figure 4.6 shows how prepared statements can be used. The setString function (and
other similar functions for other basic SQL types) allows us to specify the values for
the parameters.

Prepared statements are the preferred method of executing SQL queries, when the
query uses values entered by a user. Suppose that the values for the variables ac-
count_number, branch_name, and balance have been entered by a user, and a cor-
responding row is to be inserted into the account relation. Suppose that, instead of
using a prepared statement, a query is constructed by concatenating the strings as
follows:

“insert into account values(’ ” + account_number +"’,’ " + branch_name + 7", ”
+ balance +)"

and the query is executed directly. Now, if the user typed a single quote in the ac-
count number or branch name fields, the query string would have a syntax error. It is

45 DynamicSQL 143

quite possible that a bank branch may have a quotation mark in its name (especially
if it is an Irish name such as O'Henry). Worse still, malicious hackers can “inject”
SQL queries of their own by typing in appropriate characters in the string. Such SQL
injection can result in serious security lapses.

Adding escape characters to deal with single quote characters in strings is one
way to solve this problem. Using prepared statements is a simpler way to solve this
problem, since the setString method adds escape characters implicitly. In addition
when the same statement has to be executed multiple times with different values,
prepared statements usually execute much faster than separate SQL statements.

JDBC also provides a CallableStatement interface that allows invocation of SQL
stored procedures and functions (described later, in Section 4.6). These play the same
role for functions and procedures as prepareStatement does for queries.

CallableStatement cStmt1 = conn.prepareCall(’{? = call some_function(?)}");
CallableStatement cStmt2 = conn.prepareCall(*{call some_procedure(?,?)}");

The data types of function return values and out parameters of procedures must be
registered using the method registerOutParameter(), and can be retrieved using get
methods similar to those for result sets. See a JDBC manual for more details.

4.5.2.3 Metadata Features

JDBC also provides mechanisms to examine database schemas and to find the types
of attributes of a result set. The interface ResultSet has a method getMetaData() to
get a ResultSetMetaData object providing metadata about the result set. The inter-
face ResultSetMetaData, in turn, has methods to find metadata information, such as
the number of columns in the result, the name of a specified column, or the type of a
specified column. The JDBC program below illustrates the use of the ResultSetMeta-
Data interface to print out the names and types of all columns of a result set. The
variable rs in the code below is assumed to be a result set obtained by executing a

query.

ResultSetMetaData rsmd = rs.getMetaData();

for(inti = 1; i <= rsmd.getColumnCount(); i++) {
System.out.printin(rsmd.getColumnName(i));
System.out.printin(rsmd.getColumnTypeName(i));

}

The DatabaseMetaData interface provides a way to find metadata about the data-
base. The interface Connection has a method getMetaData that returns a Database-
MetaData object. The DatabaseMetaData interface in turn has a large number of
methods to get metadata about the database. The code in Figure 4.7 illustrates how
to find information about columns (attributes) of relations in a database. The variable
conn is assumed to store an already opened database connection. The method get-
Columns takes four arguments: a catalog name (null signifies that the catalog name is
to be ignored), a schema name pattern, a table name pattern, and a column name pat-

144 Chapter4 Advanced SQL

DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rs = dbomd.getColumns(null, "bankdb”, "account”, "%”);
// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern, and

I Column-Pattern
// Returns: One row for each column; row has a number of attributes such as
/i COLUMN_NAME, TYPE_NAME

while(rs.next()) {
System.out.printin(rs.getString("COLUMN_NAME”), rs.getString("TYPE_NAME”);
}

Figure 4.7 Finding column information in JDBC using DatabaseMetaData.

tern. The schema name, table name, and column name patterns can be used to specify
a name or a pattern. Patterns can use the SQL string matching special characters “%”
and “_; for instance the pattern “%” matches all names.

Only columns of tables of schemas satisfying the specified name or pattern are
retrieved. Each row in the result set contains information about one column. The
rows have a number of columns such as the name of the catalog, schema, table and
column, the type of the column, and so on.

Other methods provided by DatabaseMetaData allow retrieval of metadata about
relations (getTables()), foreign-key references (getCrossReference()), authorizations,
database limits such as maximum number of connections, and so on.

The metadata interfaces can be used for a variety of tasks. For example, they can
be used to write a database browser that allows a user to find the tables in a database,
examine their schema, examine rows in a table, apply selections to see desired rows,
and so on. The metadata information can be used to make code used for these tasks
generic; for example, code to display the rows in a relation can be written in such a
way that it would work on all possible relations regardless of their schema. Similarly,
it is possible to write code that takes a query string, executes the query, and prints
out the results as a formatted table; the code can work regardless of the actual query
submitted.

4.5.2.4 Other Features

JDBC provides a number of other features, such as updatable result sets. It can create
an updatable result set from a query that performs a selection and/or a projection on
a database relation. An update to a tuple in the result set then results in an update to
the corresponding tuple of the database relation.

By default, each SQL statement is treated as a separate transaction that is com-
mitted automatically. The method setAutoCommit() in the JDBC Connection interface
allows this behavior to be turned on or off. Thus, if conn is a variable storing an open
connection, conn.setAutoCommit(false) will turn off automatic commit. Transactions
must then be committed explicitly by conn.commit() or rolled back by conn.rollback().
Automatic commit can be turned on by conn.setAutoCommit(true).

JDBC provides interfaces to deal with large objects without requiring an entire
large object to be created in memory. To fetch large objects, the ResultSet class pro-

4.6 Functions and Procedural Constructss* 145

create function account_count(customer_name varchar(20))
returns integer
begin
declare a_count integer;
select count(*) into a_count
from depositor
where depositor.customer_name = customer_name
return a_count;
end

Figure 4.8 Function defined in SQL.

vides methods getBlob() and getClob() that are similar to the getString() method, but
return objects of type Blob and Clob, respectively. These objects do not store the entire
large object, but instead store locators for the large objects. The Blob and Clob classes
provide methods to retrieve large object in small pieces. They also allow large objects
to be stored in the database; they can be associated with Java data streams, which
are fetched transparently and sent to the database in small pieces, so that the whole
object need not be created in memory.

JDBC also provides a RowSet class, which provides the features of ResultSet plus a
number of extra features. For more information about JDBC, refer to the bibliographic
information at the end of the chapter.

4.6 Functions and Procedural Constructsx*x

Starting from the SQL:1999 version, SQL allows the definition of functions, procedures,
and methods. These can be defined either by the procedural component of SQL:1999,
or by an external programming language such as Java, C, or C++. We look at defini-
tions in SQL first, and then see how to use definitions in external languages.

Several database systems support their own procedural extensions to SQL, such as
PL/SQL in Oracle and TransactSQL in Microsoft SQL Server. These resemble the pro-
cedural part of SQL, but there may be significant differences in syntax and semantics;
see the respective system manuals for further details.

4.6.1 SQL Functions and Procedures

Suppose that we want a function that, given the name of a customer returns the
count of the number of accounts owned by the customer. We can define the function
as shown in Figure 4.8.

This function can be used in a query that returns names and addresses of all cus-
tomers with more than one account:

select customer_name, customer.street, customer_city
from customer
where account_count(customer.name) > 1

146 Chapter4 Advanced SQL

create function accounts_of (customer_-name char(20))
returns table (
account_number char(10),
branch.name char(15),
balance numeric(12,2))
return table
(select account_number, branch_name, balance
from account
where exists (
select *
from depositor
where depositor.customer_name = accounts_of.customer_name and
depositor.account_number = account.account_number)

Figure 4.9 Table function in SQL.

Functions are particularly useful with specialized data types such as images and
geometric objects. For instance, a line-segment data type used in a map database may
have an associated function that checks whether two line-segments overlap, and an
image data type may have associated functions to compare two images for similarity.
Functions may be written in an external language such as C, as we see in Section 4.6.3.

Since the SQL:2003 version, SQL supports functions that can return tables as results;
such functions are called table functions. Consider the function defined in Figure 4.9.
The function returns a table containing all the accounts that a particular person owns.
Note that the functions parameter is referenced by prefixing it with the name of the
function (accounts.of.customer_name).

The function can be used in a query as follows:

select *
from table(accounts_of (‘Smith"))

This query returns all accounts belonging to customer ‘Smith’. In the above simple
case it is straightforward to write this query without using table valued functions. In
general, however, table valued functions can be thought of as parameterized views
that generalize the regular notion of views by allowing parameters.

SQL:1999 also supports procedures. The account_count function could instead be
written as a procedure:

create procedure account_count_proc(in customer_name varchar(20),
out a_count integer)
begin
select count(*) into a_count
from depositor
where depositor.customer_name = account_count.proc.customer_name
end

46 Functions and Procedural Constructs+ 147

Procedures can be invoked either from an SQL procedure or from embedded SQL
by the call statement:

declare a_count integer;
call account_count_proc('Smitl’, a_count);

Procedures and functions can be invoked from dynamic SQL, as illustrated by the
JDBC syntax in Section 4.5.2.2.

SQL:1999 permits more than one procedure of the same name, so long as the
number of arguments of the procedures with the same name is different. The name,
along with the number of arguments, is used to identify the procedure. SQL also
permits more than one function with the same name, so long as the different func-
tions with the same name either have different numbers of arguments, or for func-
tions with the same number of arguments, they differ in the type of at least one argu-
ment.

4.6.2 Procedural Constructs

Since the SQL:1999 version, SQL supports a variety of procedural constructs, which
gives it almost all the power of a general-purpose programming language. The part
of the SQL standard that deals with these constructs is called the Persistent Storage
Module (PSM).

The goal of the SQL PSM is not to replace conventional programming languages.
Rather, the procedural constructs allow “business logic” to be recorded as stored pro-
cedures in the database, and executed within the database. For example, banks usu-
ally have many rules about how and when a payment can be made to a customer,
such as maximum cash withdrawal limits, minimum balance requirements, over-
draft facilities that allow a customer to withdraw more than the available balance
by automatically creating a loan, and so on.

While such business logic can be encoded as programming-language procedures
stored entirely outside the database, defining them as stored procedures in the data-
base has several advantages. For example, it allows multiple applications to access
the procedures, and it allows a single point of change in case the business rules
change, without changing the application. Application code can then call the stored
procedures, instead of directly updating database relations.

Procedural constructs are required to allow complex business rules to be coded
as stored procedures, and were hence added to SQL from the SQL:1999 version (they
were supported by some database products even earlier).

A compound statement is of the form begin ... end, and it may contain multi-
ple SQL statements between the begin and the end. Local variables can be declared
within a compound statement, as we have seen in Section 4.6.1.

SQL:1999 supports the while statements and the repeat statements by the following
syntax:

148 Chapter4 Advanced SQL

declare n integer default 0;

while n < 10 do
setn=n-+1;

end while

repeat
setn=n—1;

untiln =0

end repeat

This code does not do anything useful; it is simply meant to show the syntax of while
and repeat loops. We will see more meaningful uses later.
There is also a for loop that permits iteration over all results of a query:

declare n integer default 0;
forras
select balance from account
where branch-name = ‘Perryridge’
do
set n = n-+ r.balance
end for

The program implicitly opens a cursor when the for loop begins execution and uses
it to fetch the values one row at a time into the for loop variable (7, in the above exam-
ple). It is possible to give a name to the cursor, by inserting the text cn cursor for just
after the keyword as, where cn is the name we wish to give to the cursor. The cursor
name can be used to perform update/delete operations on the tuple being pointed to
by the cursor. The statement leave can be used to exit the loop, while iterate starts on
the next tuple, from the beginning of the loop, skipping the remaining statements.

The conditional statements supported by SQL include if-then-else statements by
using this syntax:

if r.balance < 1000

then set | = [+ r.balance
elseif r.balance < 5000

then set m = m+ r.balance
else set h = h+ r.balance
end if

This code assumes that I, m, and h are integer variables and r is a row variable. If
we replace the line “set n = n+ r.balance” in the for loop of the preceding paragraph
by the if-then-else code (and provide appropriate declarations and initial values for
l,m and h), the loop would compute the total balances of accounts that fall under the
low, medium, and high balance categories, respectively.

SQL also supports a case statement similar to the C/C++ language case statement
(in addition to case expressions, which we saw in Chapter 3).

Finally, SQL includes the concept of signaling exception conditions, and declaring
handlers that can handle the exception, as in this code:

4.6 Functions and Procedural Constructssx 149

declare out of stock condition
declare exit handler for out of stock
begin

end

The statements between the begin and the end can raise an exception by executing
signal out.of stock. The handler says that if the condition arises, the action to be taken
is to exit the enclosing begin end statement. Alternative actions would be continue,
which continues execution from the next statement following the one that raised the
exception. In addition to explicitly defined conditions, there are also predefined con-
ditions such as sqlexception, sqlwarning, and not found.

Figure 4.10 provides a larger example of the use of procedural constructs in SQL.
The function withdraw defined in the figure withdraws money from an account, and
if the balance becomes negative it initiates overdraft handling; code for handling
overdraft is not shown. The function returns an error code, with a value greater than
or equal to 0 signifying success, and a negative value signifying an error condition.

Another example that illustrates while loops is presented later, in Section 4.7.

create procedure withdraw(
in account_number varchar(10)
in amount numeric(12,2))
—— withdraw money from an account
returns integer
begin
declare newbalance numeric(12,2);
select balance into newbalance
from account
where account.account_number = withdraw.account_number;
newbalance = newbalance — amount;
if (newbalance < 0)
begin
... code to handle overdraft here
... if amount too large to be handled by overdraft return error code —1
end
else begin
update account
set balance = balance — newbalance
where account.account number = withdraw.account_number
end
return(0);
end

Figure 410 Procedure for withdrawal from account.

150

Chapter4 Advanced SQL

4.6.3 External Language Routines

SQL allows us to define functions in a programming language such as Java, C#, C or
C++. Functions defined in this fashion can be more efficient than functions defined
in SQL, and computations that cannot be carried out in SQL can be executed by these
functions. An example of the use of such functions would be to perform a complex
arithmetic computation on the data in a tuple.

External procedures and functions can be specified in this way:

create procedure account count proc(in customer_name varchar(20),
out count integer)

language C

external name ' /usr/avi/bin/account.count proc’

create function account count (customer_name varchar(20))
returns integer

language C

external name ' /usr/avi/bin/account.count’

The external language procedures need to deal with null values and exceptions.
They must therefore have several extra parameters: an sqlstate value to indicate fail-
ure/success status, a parameter to store the return value of the function, and indi-
cator variables for each parameter/function result to indicate if the value is null. An
extra line parameter style general added to the declaration above indicates that the
external procedures/ functions take only the arguments shown and do not deal with
null values or exceptions.

Functions defined in a programming language and compiled outside the database
system may be loaded and executed with the database-system code. However, do-
ing so carries the risk that a bug in the program can corrupt the database internal
structures, and can bypass the access-control functionality of the database system.
Database systems that are concerned more about efficient performance than about
security may execute procedures in such a fashion. Database systems that are con-
cerned about security may execute such code as part of a separate process, commu-
nicate the parameter values to it, and fetch results back, via interprocess communi-
cation. However, the time overhead of interprocess communication is quite high; on
typical CPU architectures, tens to hundreds of thousands of instructions can execute
in the time taken for one interprocess communication.

If the code is written in a “safe” language such as Java or C#, there is another
possibility: executing the code in a sandbox within the database query execution
process itself. The sandbox allows the Java or C# code to access its own memory area,
but prevents the code from reading or updating the memory of the query execution
process, or accessing files in the file system. (Creating a sandbox is not possible for a
language such as C, which allows unrestricted access to memory through pointers.)
Avoiding interprocess communication reduces function call overhead greatly.

Several database systems today support external language routines running in a
sandbox within the query execution process. For example, Oracle and IBM DB2 allow

47 Recursive Queries*+ 151

Java functions to run as part of the database process. Microsoft SQL Server 2005 allows
procedures compiled into the Common Language Runtime (CLR) to execute within
the database process; such procedures could have been written, for example, in C# or
Visual Basic.

4.7 Recursive Queriesx*x

Consider a database containing information about employees in an organization.
Suppose we have a relation manager(employee_name, manager-name), specifying which
employee is directly supervised by which manager. Figure 4.11 shows an instance of
the manager relation.

Suppose now that we want to find out which employees are supervised, whether
directly or indirectly, by a given manager—say, Jones. That is, we wish to find em-
ployees who are supervised directly by Jones, or who are supervised by someone
who is supervised by Jones, or who are supervised by someone who is supervised by
someone who is supervised by Jones, and so on.

Thus, if the manager of Alon is Barinsky, and the manager of Barinsky is Esto-
var, and the manager of Estovar is Jones, then Alon, Barinsky, and Estovar are the
employees supervised by Jones.

4.7.1 Transitive Closure Using Iteration

One way to write the above query is to use iteration: First find those who work di-
rectly under Jones, then those who work under the first set, and so on. Figure 4.12
shows a function findEmpl(mgr) to carry out this task; the function takes the name of
the manager as a parameter (mgr), computes the set of all direct and indirect employ-
ees of that manager, and returns the set.

The procedure uses three temporary tables: empl, which is used to store the set
of tuples to be returned; newemp, which stores the employees found in the previous
iteration; and temp, which is used as temporary storage while sets of employees are
manipulated. The procedure inserts all employees who directly work for mgr into
newemp before the repeat loop. The repeat loop first adds all employees in newemp to
empl. Next, it computes employees who work for those in newemp, except those who
have already been found to be employees of mgr, and stores them in the temporary

employee_name | manager_name

Alon Barinsky
Barinsky Estovar
Corbin Duarte
Duarte Jones
Estovar Jones

Jones Klinger
Rensal Klinger

Figure 411 The manager relation.

152 Chapter4 Advanced SQL

create function findEmpl(mgr char(10))
— — Finds all employees who work directly or indirectly for mgr
returns table (name char(10))
— — The relation manager(employee_name, manager_name) specifies who directly
- — works for whom.
begin
create temporary table empl (name char(10));
— — table empl stores the set of employees to be returned
create temporary table newemp (name char(10));
— — table newemp contains employees found in the previous iteration
create temporary table temp (name char(10));
—— table temp is a temporary table used to store intermediate results
insert into newemp
select employee name
from manager
where manager_naime = mgr
repeat
insert into empl
select name
from newemp;

insert into temp
(select manager.employeename
from newemp, manager
where newemp.employee_name = manager.manager-name;

)

except (
select employee_name
from empl

);
delete from newenp;
insert into newemp

select *

from femp;
delete from temp;

until not exists (select * from newemp)
end repeat;
return table empl

end

Figure 4.12 Finding all employees of a manager.

4.7 Recursive Queriesxx 153

Iteration number Tuples in empl
0
1 (Duarte), (Estovar)
2 (Duarte), (Estovar), (Barinsky), (Corbin)
3 (Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
4 (Duarte), (Estovar), (Barinsky), (Corbin), (Alon)

Figure 4.13 Employees of Jones in iterations of function findEmpl.

table femp. Finally, it replaces the contents of newemp by the contents of temp. The
repeat loop terminates when it finds no new (indirect) employees.

Figure 4.13 shows the employees that would be found in each iteration, if the pro-
cedure were called for the manager named Jones.

We note that the use of the except clause in the function ensures that the func-
tion works even in the (abnormal) case where there is a cycle of management. For
example, if # works for b, b works for ¢, and ¢ works for a, there is a cycle.

While cycles may be unrealistic in management control, cycles are possible in other
applications. For instance, suppose we have a relation flights(to, from) that says which
cities can be reached from which other cities by a direct flight. We can write code sim-
ilar to that in the findEmpl function, to find all cities that are reachable by a sequence
of one or more flights from a given city. All we have to do is to replace manager by
flight and replace attribute names correspondingly. In this situation there can be cy-
cles of reachability, but the function would work correctly since it would eliminate
cities that have already been seen.

4.7.2 Recursion in SQL

The transitive closure of the relation manager is a relation that contains all pairs (emp,
mgr) such that emp is a direct or indirect employee of mgr. There are numerous ap-
plications that require computation of similar transitive closures on hierarchies. For
instance, organizations typically consist of several levels of organizational units. Ma-
chines consist of parts that in turn have subparts, and so on; for example, a bicycle
may have subparts such as wheels and pedals, which in turn have subparts such as
tires, rims, and spokes. Transitive closure can be used on such hierarchies to find, for
example, all parts in a bicycle.

It is rather inconvenient to specify transitive closure using iteration. There is an
alternative approach, using recursive view definitions, that is easier to use.

We can use recursion to define the set of employees controlled by a particular
manager, say Jones, as follows. The people supervised (directly or indirectly) by Jones
are

1. People whose manager is Jones

2. People whose manager is supervised (directly or indirectly) by Jones

Note that case 2 is recursive, since it defines the set of people supervised by Jones in
terms of the set of people supervised by Jones. Other examples of transitive closure,

154

Chapter4 Advanced SQL

with recursive empl(employee_name, manager_name) as (
select employee_name, manager_name
from manager
union
select manager.employee name, empl.manager-name
from manager, empl
where manager.manager_name = empl.employee_name
)
select x
from empl

Figure 4.14 Recursive query in SQL.

such as finding all subparts (direct or indirect) of a given part can also be defined in
a similar manner, recursively.

Since the SQL:1999 version, the SQL standard supports a limited form of recursion,
using the with recursive clause, where a view (or temporary view) is expressed in
terms of itself. Recursive queries can be used, for example, to express transitive clo-
sure concisely. Recall that the with clause is used to define a temporary view whose
definition is available only to the query in which it is defined. The additional key-
word recursive specifies that the view is recursive.

For example, we can find every pair (emp,mgr) such that emp is directly or indi-
rectly managed by mgr, using the recursive SQL view shown in Figure 4.14.

Any recursive view must be defined as the union of two subqueries: a base query
that is nonrecursive and a recursive query that uses the recursive view. In the exam-
ple in Figure 4.14, the base query is the select on manager while the recursive query
computes the join of manager and empl.

The meaning of a recursive view is best understood as follows. First compute the
base query and add all the resultant tuples to the view relation (which is initially
empty). Next compute the recursive query using the current contents of the view
relation, and add all the resulting tuples back to the view relation. Keep repeating
the above step until no new tuples are added to the view relation. The resultant view
relation instance is called a fixed point of the recursive view definition. (The term
“fixed” refers to the fact that there is no further change.) The view relation is thus
defined to contain exactly the tuples in the fixed-point instance.

Applying the above logic to our example, we would first find all direct employees
of each manager by executing the base query. The recursive query would add one
more level of employees in each iteration, until the maximum depth of the manager-
employee relationship is reached. At this point no new tuples would be added to the
view, and the iteration would have reached a fixed point.

Note that the database system is not required to use the above iterative technique
to compute the result of the recursive query; it may get the same result using other
techniques that may be more efficient.

There are some restrictions on the recursive query in a recursive view; specifi-
cally, the query should be monotonic, that is, its result on a view relation instance
V3 should be a superset of its result on a view relation instance V; if V; is a superset

4.8 Advanced SQL Featuress= 155

of V5. Intuitively, if more tuples are added to the view relation, the recursive query
should return at least the same set of tuples as before, and possibly return additional
tuples.

In particular, recursive queries should not use any of the following constructs,
since they would make the query nonmonotonic:

e Aggregation on the recursive view
e not exists on a subquery that uses the recursive view

e Set difference (except) whose right-hand side uses the recursive view

For instance, if the recursive query was of the form r — v where v is the recursive
view, if we add a tuple to v the result of the query can become smaller; the query is
therefore not monotonic.

The meaning of recursive views can be defined by the iterative procedure as long
as the recursive query is monotonic; if the recursive query is nonmonotonic, the
meaning of the view is hard to define. SQL therefore requires the queries to be mono-
tonic. Recursive queries are discussed in more detail in the context of the Datalog
query language, in Section 5.4.6.

SQL also allows creation of recursively defined permanent views by using create
recursive view in place of with recursive. Some implementations support recursive
queries using a different syntax; see the respective system manuals for further details.

4.8 Advanced SQL Features:x

The SQL language has grown over the past two decades from a simple language with
a few features to a rather complex language with features to satisfy many different
types of users. In this section we introduce the reader to some new features added
to SQL as part of SQL:2003. The features described in this section do not add to the
expressivity of the SQL language, but they do simplify the specification of some tasks.
You should be aware that not all database systems currently support these features.

4.8.1 Create Table Extensions

Applications often require creation of tables that have the same schema as an existing
table. SQL provides a create table like extension to support this task:

create table temp_account like account

The above statement creates a new table femp.account which has the same schema as
account.

When writing a complex query, it is often useful to store the result of a query as a
new table; the table is usually temporary. Two statements are required, one to create
the table (with appropriate columns) and the second to insert the query result into the
table. SQL:2003 provides a simpler technique to create a table containing the results of

156

Chapter4 Advanced SQL

a query. For example the following statement creates a table 1 containing the results
of a query.

create table {1 as

(select *

from account

where branch_name = 'Perryridge’)
with data

By default, the names and data types of the columns are inferred from the query
result. Names can be explicitly given to the columns by listing the column names
after the relation name. If the with data clause is omitted, the table is created but not
populated with data.

The above create table ... as statement closely resembles the create view statement
and both are defined by using queries. The main difference is that the contents of the
table are set when the table is created, whereas the contents of a view always reflect
the current query result.

Note that several implementations support the functionality of create table ... like
and create table ... as using different syntax; see the respective system manuals for
further details.

4.8.2 More on Subqueries

SQL:2003 allows subqueries to occur wherever a value is required, provided the sub-
query returns only one value; such subqueries are called scalar subqueries. For ex-
ample, a subquery can be used in the select clause as illustrated in the following
example that lists all customers along with the number of accounts they own:

select customer_name,
(select count(*)
from account
where account.customer.name = customer.customer_name) as num.accounts
from customer

The subquery in the above example is guaranteed to return only a single value since
it has a count(*) aggregate without a group by. Subqueries without aggregates are
also permitted. Such queries may potentially return more than one answer; if they
do, a run-time error occurs.

Subqueries in the select clause of the outer query can access attributes of relations
in the from clause of the outer query, such as customer.customer_.name in the above
example.

Subqueries in the from clause (discussed earlier in Section 3.8.1), however, cannot
normally access attributes of other relations in the from clause; SQL:2003 supports a
lateral clause that allows a subquery in the from clause to access attributes of pre-
ceding subqueries in the from clause. Thus the above query could be written alterna-
tively as follows.

48 Advanced SQL Featuresxx 157

select customer_name, num._accounts
from customer,
lateral(select count(*)
from account
where account.customer_name = customer.customer.name)
as this_customer(nun.accounts)

4.8.3 Advanced Constructs for Database Update

Suppose we have a relation funds_received(account number, amount) that stores funds
received (say, by electronic funds transfer) for each of a set of accounts. Suppose now
that we want to add the amounts to the balances of the corresponding accounts. In
order to use the SQL update statement to carry out this task, we have to look up the
funds_received table for each tuple in the account table. We can use subqueries in the
update clause to carry out this task, as follows. We assume for simplicity that the
relation funds._received contains at most one tuple for each account.

update account set balance = balance +
(select amount
from funds_received
where funds received.account number = account.account-n umber)
where exists(
select *
from funds_received
where funds_received.account_number = account.account number)

Note that the condition in the where clause of the update ensures that only accounts
with corresponding tuples in funds._received are updated, while the subquery within
the set clause computes the amount to be added to each such account.

There are many applications that require updates such as that illustrated above.
Typically, there is a table, which we shall call the master table, and updates to the
master table are received as a batch. Now the master table has to be correspondingly
updated. SQL:2003 provides a special construct, called the merge construct, to sim-
plify the task of performing such merging of information. For example, the above
update can be expressed using merge as follows.

merge into account as A
using (select *
from funds_received) as F
on (A.account_number = Faccount_number)
when matched then
update set balance = balance+F.amount

When a record from the subquery in the using clause matches a record in the account
relation, the when matched clause is executed, which can execute an update on the
relation; in this case, the matching record in the account relation is updated as shown.

158

Chapter4 Advanced SQL

The merge statement can also have a when not matched then clause, which per-
mits insertion of new records into the relation. In the above example, when there is
no matching account for a funds._received tuple, the insertion action could create a new
account record (with a null branch_name) using the following clause.

when not matched then
insert values (Eaccount_number, null, Famount)

Although not very meaningful in this example,” the when not matched clause can
be quite useful in other cases. For example, suppose the local relation is a copy of a
master relation, and we receive updated as well as newly inserted records from the
master relation. The merge statement can update matched records (these would be
updated old records) and insert records that are not matched (these would be new
records).

Not all SQL implementations support the merge statement currently; see the re-
spective system manuals for further details.

4.9 Summary

e The SQL data-definition language provides support for defining built-in do-
main types such as date and time, as well as user-defined domain types.

o Domain constraints specify the set of possible values that may be associated
with an attribute. Such constraints may also prohibit the use of null values for
particular attributes.

o Referential-integrity constraints ensure that a value that appears in one rela-
tion for a given set of attributes also appears for a certain set of attributes in
another relation.

e Assertions are declarative expressions that state predicates that we require
always to be true.

o A user may have several forms of authorization on parts of the database. Au-
thorization is a means by which the database system can be protected against
malicious or unauthorized access.

e SQL queries can be invoked from host languages, via embedded and dynamic
SQL. The ODBC and JDBC standards define application program interfaces to
access SQL databases from C and Java language programs. Increasingly, pro-
grammers use these APIs to access databases.

e Functions and procedures can be defined using SQL. We have also outlined
procedural extensions provided by SQL:1999, which allow iteration and con-
ditional (if-then-else) statements.

2. A better action here would have been to insert these records into an error relation, but that cannot be
done with the merge statement.

Practice Exercises 159

e Some queries, such as transitive closure, can be expressed either using iter-
ation, or by using recursive SQL queries. Recursion can be expressed using
either recursive views, or recursive with clause definitions.

e We also saw a brief overview of some advanced features of SQL, which sim-
plify certain tasks related to data definition, and querying and updating data.

Review Terms

User-defined types

e Domains

e Large objects

e Catalogs

e Schemas

e Integrity constraints

e Domain constraints

e Unique constraint

e Check clause

o Referential integrity

e Primary-key constraint
e Foreign-key constraint
o Cascading deletes

e Cascading updates

e Assertion

e Authorization

Privileges
[J Select

0 Insert
O Update

Practice Exercises

O Delete

O All privileges
Granting of privileges
Revoking of privileges
Embedded sQL
Cursors
Updatable cursors
Dynamic SQL
ODBC

e |DBC

L]

Prepared statements
Accessing metadata

SQL functions

Stored procedures
Procedural constructs
External language routines
Recursive queries
Monotonic queries

Merge statement

4.1 Complete the SQL DDL definition of the bank database of Figure 4.2 to include

the relations loan and borrower.

4.2 Consider the following relational database:

employee (employee_name, street, city)

works (employee_name, company_name, salary)
company (company_name, city)

manages (employee_name, manager_name)

160 Chapter4 Advanced SQL

Give an SQL DDL definition of this database. Identify referential-integrity con-
straints that should hold, and include them in the DDL definition.

4.3 Write check conditions for the schema you defined in Exercise 4.2 to ensure that:

a. Every employee works for a company located in the same city as the city in
which the employee lives.
b. No employee earns a salary higher than that of his manager.

4.4 SQL allows a foreign-key dependency to refer to the same relation, as in the
following example:

create table manager
(employee-name char(20) not null
manager-name char(20) not null,
primary key employee_name,
foreign key (manager_name) references manager
on delete cascade)

Here, employee_name is a key to the table manager, meaning that each employee
has at most one manager. The foreign-key clause requires that every manager
also be an employee. Explain exactly what happens when a tuple in the relation
manager is deleted.

4.5 Write an assertion for the bank database to ensure that the assets value for the
Perryridge branch is equal to the sum of all the amounts lent by the Perryridge
branch.

4.6 Describe the circumstances in which you would choose to use embedded SQL
rather than SQL alone or only a general-purpose programming language.

Exercises

4.7 Referential-integrity constraints as defined in this chapter involve exactly two
relations. Consider a database that includes the following relations:

salaried worker (name, office, phone, salary)
hourly_worker (name, hourly_wage)
address (name, street, city)

Suppose that we wish to require that every name that appears in address appears
in either salaried_worker or hourly-worker, but not necessarily in both.

a. Propose a syntax for expressing such constraints.
b. Discuss the actions that the system must take to enforce a constraint of this
form.

4.8

4.9

4.10

411

4.12

413

4.14

4.15

Exercises 161

Write a Java function using JDBC metadata features that takes a ResultSet as
an input parameter, and prints out the result in tabular form, with appropriate
names as column headings.

Write a Java function using JDBC metadata features that prints a list of all re-
lations in the database, displaying for each relation the names and types of its
attributes.

Consider an employee database with two relations

employee (employee_name, street, city)
works (employee_name, company_name, salary)

where the primary keys are underlined. Write a query to find companies whose
employees earn a higher salary, on average, than the average salary at First Bank
Corporation.

a. Using SQL functions as appropriate.

b. Without using SQL functions.

Rewrite the query in Section 4.6.1 that returns the name, street and city of all
customers with more than one account, using the with clause instead of using a
function call.

Compare the use of embedded SQL with the use in SQL of functions defined in
a general-purpose programming language. Under what circumstances would
you use each of these features?

Modify the recursive query in Figure 4.14 to define a relation
empldepth(employee_name, manager_name, depth)

where the attribute depth indicates how many levels of intermediate managers
are there between the employee and the manager. Employees who are directly
under a manager would have a depth of 0.

Consider the relational schema

part(part_id, name, cost)
subpart(part_id, subpart_id, count)

A tuple (p1, pz, 3) in the subpart relation denotes that the part with part-id py is a
direct subpart of the part with part-id p1, and p; has 3 copies of p, Note that p,
may itself have further subparts. Write a recursive SQL query that outputs the
names of all subparts of the part with part-id “P-100".

Consider again the relational schema from Exercise 4.14. Write a JDBC function
using non-recursive SQL to find the total cost of part “P-100”, including the costs
of all its subparts. Be sure to take into account the fact that a part may have
multiple occurrences of a subpart. You may use recursion in Java if you wish.

162 Chapter4 Advanced SQL

Bibliographical Notes

See the bibliographic notes of Chapter 3 for references to SQL standards and books
on SQL.

Many database products support SQL features beyond those specified in the stan-
dards, and may not support some features of the standard. More information on these
features may be found in the SQL user manuals of the respective products.

java.sun.com/docs/books/tutorial is an excellent source for more (and up-to-date)
information on JDBC, and on Java in general. References to books on Java (including
JDBC) are also available at this URL. The ODBC API is described in Microsoft [1997]
and Sanders [1998]. Melton and Eisenberg [2000] provides a guide to SQLJ, JDBC, and
related technologies. More information on ODBC, ADO and ADO.NET can be found
on msdn.microsoft.com/data.

Other Relational Lan’guages'

In Chapter 2 we presented the relational algebra, which forms the basis of the widely
used SQL query language. SQL was covered in great detail in Chapters 3 and 4. In
this chapter, we first study two more formal languages, the tuple relational calculus
and the domain relational calculus, which are declarative query languages based on
mathematical logic. These two formal languages form the basis for two more user-
friendly languages, QBE and Datalog, that we study later in this chapter.

Unlike SQL, QBE is a graphical language, where queries look like tables. QBE and
its variants are widely used in database systems on personal computers. Datalog
has a syntax modeled after the Prolog language. Although not used commercially at
present, Datalog has been used in several research database systems.

For QBE and Datalog, we present fundamental constructs and concepts rather than
a complete users’ guide for these languages. Keep in mind that individual implemen-
tations of a language may differ in details, or may support only a subset of the full

language.

5.1 The Tuple Relational Calculus

When we write a relational-algebra expression, we provide a sequence of procedures
that generates the answer to our query. The tuple relational calculus, by contrast, is a
nonprocedural query language. It describes the desired information without giving
a specific procedure for obtaining that information.

A query in the tuple relational calculus is expressed as

{t| P()}

that is, it is the set of all tuples t such that predicate P is true for t. Following our
earlier notation, we use #[A] to denote the value of tuple t on attribute A, and we use
t € r to denote that tuple ¢ is in relation 7.

163

164 Chapter5 Other Relational Languages

Before we give a formal definition of the tuple relational calculus, we return to
some of the queries for which we wrote relational-algebra expressions in Section 2.2.
Recall that the queries are on the following schema:

branch(branch.name, branch_city, assets)

customer (customer_name, customer_street, customemity)
loan (loan_number, branch_name, amount)

borrower (customer_name, loan_number)

account (account_number, branch_.name, balance)
depositor (customer name, account.number)

5.1.1 Example Queries

Find the branch.name, loan_number, and amount for loans of over $1200:
{t|t € loan A tlamount] > 1200}

Suppose that we want only the loan_number attribute, rather than all attributes of the
loan relation. To write this query in the tuple relational calculus, we need to write
an expression for a relation on the schema (loan-number). We need those tuples on
(loan_number) such that there is a tuple in loan with the amount attribute > 1200. To
express this request, we need the construct “there exists™ from mathematical logic.
The notation

it € r(Q(1))

means “there exists a tuple t in relation 7 such that predicate Q(f) is true.”
Using this notation, we can write the query “Find the loan number for each loan
of an amount greater than $1200” as

{t|3s € loan (t[loan-number] = s[loan_number]
A slamount] > 1200)}

In English, we read the preceding expression as “The set of all tuples ¢ such that there
exists a tuple s in relation loan for which the values of t and s for the loan_number
attribute are equal, and the value of s for the amount attribute is greater than $1200.”

Tuple variable f is defined on only the loan_number attribute, since that is the only
attribute having a condition specified for t. Thus, the result is a relation on (loan
_number).

Consider the query “Find the names of all customers who have a loan from the
Perryridge branch.” This query is slightly more complex than the previous queries,
since it involves two relations: borrower and loan. As we shall see, however, all it
requires is that we have two “there exists” clauses in our tuple-relational-calculus
expression, connected by and (A). We write the query as follows:

{t|3s € borrower (t[customer_name] = s|[customer_name]
A3Ju € loan (u[loan-number] = s[loan_number]
A u[branch-name] = “Perryridge”))}

51 The Tuple Relational Calculus 165

| customer_name]

Adams
Hayes

Figure 5.1 Names of all customers who have a loan at the Perryridge branch.

In English, this expression is “The set of all (customer name) tuples for which the cus-
tomer has a loan that is at the Perryridge branch.” Tuple variable u ensures that the
customer is a borrower at the Perryridge branch. Tuple variable s is restricted to per-
tain to the same loan number as s. Figure 5.1 shows the result of this query.

To find all customers who have a loan, an account, or both at the bank, we used
the union operation in the relational algebra. In the tuple relational calculus, we shall
need two “there exists” clauses, connected by or (v):

{t|3s € borrower (t|customer_name] = s[customer_name)
V3u € depositor (t[customer_name] = u[customer_name])}

This expression gives us the set of all customer.name tuples for which at least one of
the following holds:

o The customer_name appears in some tuple of the borrower relation as a borrower
from the bank.

e The customer_name appears in some tuple of the depositor relation as a depositor
of the bank.

If some customer has both a loan and an account at the bank, that customer appears
only once in the result, because the mathematical definition of a set does not allow
duplicate members. The result of this query appeared earlier in Figure 2.11.

If we now want only those customers who have both an account and a loan at the
bank, all we need to do is to change the or (V) to and (A) in the preceding expression.

{t[3s € borrower (t[customer_name] = s[customer_name))
AJu € depositor (t[customer_name] = u[customer_name))}

The result of this query appeared in Figure 2.19.

Now consider the query “Find all customers who have an account at the bank but
do not have a loan from the bank.” The tuple-relational-calculus expression for this
query is similar to the expressions that we have just seen, except for the use of the not
(=) symbol:

{t|3u € depositor (t[customer_name| = u[customer_name])
A-3ds € borrower (t[customer-name] = s[customer_name])}

This tuple-relational-calculus expression uses the 3 u € depositor (...) clause
to require that the customer have an account at the bank, and it uses the = 3 s ¢
borrower (...) clause to eliminate those customers who appear in some tuple of the

166

Chapter5 Other Relational Languages

borrower relation as having a loan from the bank. The result of this query appeared in
Figure 2.12.

The query that we shall consider next uses implication, denoted by =-. The formula
P = (@ means “P implies Q”; that is, “if P is true, then Q must be true.” Note that
P = Qislogically equivalent to =P V Q. The use of implication rather than not and
or often suggests a more intuitive interpretation of a query in English.

Consider the query that we used in Section 2.3.3 to illustrate the division opera-
tion: “Find all customers who have an account at all branches located in Brooklyn.” To
write this query in the tuple relational calculus, we introduce the “for all” construct,
denoted by V. The notation

Vi e r(Q(t))

means “Q is true for all tuples t in relation 7.”
We write the expression for our query as follows:

{t|3r € customer (r[customer_name] = t[customer_name]) A\
(Vu € branch (u[branchcity] = * Brooklyn” =
s € depositor (t[customer_name] = s[customer_name]
Adw € account (waccount_number] = s[account_number]
A w[branch.name] = ulbranch_name]))))}

In English, we interpret this expression as “The set of all customers (that is, (customer
_name) tuples £) such that, for all tuples u in the branch relation, if the value of # on at-
tribute branch_city is Brooklyn, then the customer has an account at the branch whose
name appears in the branch_name attribute of 1.”

Note that there is a subtlety in the above query: If there is no branch in Brooklyn,
all customer names satisfy the condition. The first line of the query expression is crit-
ical in this case—without the condition

Ir € customer (r[customer_name] = t[customer_name))
if there is no branch in Brooklyn, any value of ¢ (including values that are not cus-
tomer names in the customer relation) would qualify.

5.1.2 Formal Definition

We are now ready for a formal definition. A tuple-relational-calculus expression is of
the form

{t| P(®)}

where P is a formula. Several tuple variables may appear in a formula. A tuple vari-
able is said to be a free variable unless it is quantified by a 3 or V. Thus, in

t € loan A 3s € customer(t[branch.name] = s[branch-name))

tis a free variable. Tuple variable s is said to be a bound variable.
A tuple-relational-calculus formula is built up out of atomns. An atom has one of
the following forms:

5.1 The Tuple Relational Calculus 167

e s €7, wheres is a tuple variable and r is a relation (we do not allow use of the
¢ operator)

e slx] © ulyl, where s and u are tuple variables, x is an attribute on which s is
defined, y is an attribute on which u is defined, and Q is a comparison operator
(<, <, = #.>, 2 we require that attributes x and y have domains whose

members can be compared by ©
e s[x] © ¢, where s is a tuple variable, x is an attribute on which s is defined, © is
a comparison operator, and c is a constant in the domain of attribute x

We build up formulae from atoms by using the following rules:

e An atom is a formula.
e If P, is a formula, then so are —P; and (P).
e If P and P, are formulae, then so are PV P, Py A Pjand P, = P,.
e If P (s)is a formula containing a free tuple variable s, and r is a rela tion, then
3s € r(Pi(s)) and Vs € r (Pi(s))
are also formulae.

As we could for the relational algebra, we can write equivalent expressions that
are not identical in appearance. In the tuple relational calculus, these equivalences
include the following three rules:

1. Py A P is equivalent to = (~(P;) V —(P)).
2. Vit € r(Pi(t))is equivalentto =3¢ € r (=P (t)).
3. Pi = P,isequivalent to =(P) vV B,

5.1.3 Safety of Expressions

There is one final issue to be addressed. A tuple-relational-calculus expression may
generate an infinite relation. Suppose that we write the expression

{t|-(t € loan)}

There are infinitely many tuples that are not in loan. Most of these tuples contain
values that do not even appear in the database! Clearly, we do not wish to allow such
expressions.

To help us define a restriction of the tuple relational calculus, we introduce the
concept of the domain of a tuple relational formula, P. Intuitively, the domain of
P, denoted dom(P), is the set of all values referenced by P. They include values
mentioned in P itself, as well as values that appear in a tuple of a relation men-
tioned in P. Thus, the domain of P is the set of all values that appear explicitly in
P or that appear in one or more relations whose names appear in P. For example,
dom(t € loan A tlamount] > 1200) is the set containing 1200 as well as the set of all

168

Chapter5 Other Relational Languages

values appearing in loan. Also, dom(— (¢t € loan)) is the set of all values appearing
in loan, since the relation loan is mentioned in the expression.

We say that an expression {t | P(t)} is safe if all values that appear in the result
are values from dom(P). The expression {t |~ (t € loan)} is not safe. Note that
dom(~ (t € loan)) is the set of all values appearing in loan. However, it is possible
to have a tuple ¢ not in loan that contains values that do not appear in loan. The other
examples of tuple-relational-calculus expressions that we have written in this section
are safe.

5.1.4 Expressive Power of Languages

The tuple relational calculus restricted to safe expressions is equivalent in expressive
power to the basic relational algebra (with the operators U, —, X, o, and p, but without
the extended relational operators such as generalized projection G and the outer-join
operations). Thus, for every relational-algebra expression using only the basic opera-
tions, there is an equivalent expression in the tuple relational calculus, and for every
tuple-relational-calculus expression, there is an equivalent relational-algebra expres-
sion. We will not prove this assertion here; the bibliographic notes contain references
to the proof. Some parts of the proof are included in the exercises. We note that the
tuple relational calculus does not have any equivalent of the aggregate operation, but
it can be extended to support aggregation. Extending the tuple relational calculus to
handle arithmetic expressions is straightforward.

5.2 The Domain Relational Calculus

A second form of relational calculus, called domain relational calculus, uses domain
variables that take on values from an attributes domain, rather than values for an
entire tuple. The domain relational calculus, however, is closely related to the tuple
relational calculus.

Domain relational calculus serves as the theoretical basis of the widely used QBE
language, just as relational algebra serves as the basis for the SQL language.

5.2.1 Formal Definition

An expression in the domain relational calculus is of the form
{< tyy B0y 50,20 > | Pl@n 835005%0)}

where z,, z3,...,z, represent domain variables. P represents a formula composed
of atoms, as was the case in the tuple relational calculus. An atom in the domain
relational calculus has one of the following forms:

e <y, To,...,Tn > € 7, wherer is a relation on n attributes and z1, T2,...,Tn
are domain variables or domain constants.

e x © y, where x and y are domain variables and © is a comparison operator =
<, =, #, >, >). We require that attributes x and y have domains that can be
compared by ©.

5.2 The Domain Relational Calculus 169

® X © ¢, where x is a domain variable, O is a comparison operator, and c is a
constant in the domain of the attribute for which x is a domain variable.

We build up formulae from atoms by using the following rules:

e Anatom is a formula.
e If P, is a formula, then so are =P and (P).
e If P, and P, are formulae, then so are Py V Py, P, A Pyyand P; = P,.
o If P (z) is a formula in x, where x is a free domain variable, then
Jz (Pi(z)) and V z (Pi(z))

are also formulae.

As a notational shorthand, we write 3 a, b, ¢ (P(a,b,c)) forda (3b (3 c (P(a,b,c)))).

5.2.2 Example Queries

We now give domain-relational-calculus queries for the examples that we consid-
ered earlier. Note the similarity of these expressions and the corresponding tuple-
relational-calculus expressions.

e Find the loan number, branch name, and amount for loans of over $1200:
{<lLba>| <l,ba>€ loan A a > 1200}
e Find all loan numbers for loans with an amount greater than $1200:

{<l>|3ba(<lba>€ loan A a > 1200)}

Although the second query appears similar to the one that we wrote for the tuple
relational calculus, there is an important difference. In the tuple calculus, when we
write 3 s for some tuple variable s, we bind it immediately to a relation by writing
Js € r. However, when we write 3 b in the domain calculus, b refers not to a tuple,
but rather to a domain value. Thus, the domain of variable b is unconstrained until
the subformula < /,b,a > € loan constrains b to branch names that appear in the
loan relation.
We now give several examples of queries in the domain relational calculus.

e Find the names of all customers who have a loan from the Perryridge branch
and find the loan amount:

{<eca> |3 l(<el>e€ borrower
A3b(<l,ba>€ loan A b = “Perryridge”))}

e Find the names of all customers who have a loan, an account, or both at the
Perryridge branch:

170

Chapter5 Other Relational Languages

{<e> |3l(< ¢l >€ borrower
A3db,a(<l,b,a >€ loan A b = “Perryridge”))
V3a(< c¢,a > € depositor
A3b,n(< a,b,n > € account A b = “Perryridge”))}

e Find the names of all customers who have an account at all the branches lo-
cated in Brooklyn:

{<e> |Ts, t(< ¢ 8,t> € customer) A
Y2,z (< x,y,2 > € branch A y = “Brooklyn” =
Ja,b (< a,z,b> € account A < ¢,a> € depositor))}

In English, we interpret this expression as “The set of all (customer_name) tuples
¢ such that, for all (branch_name, branch_city, assets) tuples z,y, z, if the branch
city is Brooklyn, then the following is true:

[J There exists a tuple in the relation account with account number a and
branch name x.

[0 There exists a tuple in the relation depositor with customer ¢ and account
number a.”

5.2.3 Safety of Expressions

We noted that, in the tuple relational calculus (Section 5.1), it is possible to write ex-
pressions that may generate an infinite relation. That led us to define safety for tuple-
relational-calculus expressions. A similar situation arises for the domain relational
calculus. An expression such as

{<l,ba> |~(<l,b,a> € loan)}

is unsafe, because it allows values in the result that are not in the domain of the
expression.

For the domain relational calculus, we must be concerned also about the form of
formulae within “there exists” and “for all” clauses. Consider the expression

{<z> |Fy(<z,y>er) Adz(n(<z,2>€ 1) A P(z,2))}

where P is some formula involving = and z. We can test the first part of the formula,
Jy (< z,y > € r), by considering only the values in r. However, to test the second
part of the formula, 3z (- (< z,2>€ 1) A P(z,z)), we must consider values for
z that do not appear in r. Since all relations are finite, an infinite number of values
do not appear in r. Thus, it is not possible, in general, to test the second part of the
formula without considering an infinite number of potential values for z. Instead, we
add restrictions to prohibit expressions such as the preceding one.

In the tuple relational calculus, we restricted any existentially quantified variable
to range over a specific relation. Since we did not do so in the domain calculus, we
add rules to the definition of safety to deal with cases like our example. We say that
an expression

53 Query-by-Example 171

{< Ty, Toyeeny Ty = |P(I]: 3:21"'13:?’1)}
is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from dom(P).

2. For every “there exists” subformula of the form 3 z (P (z)), the subformula is
true if and only if there is a value x in dom(P,) such that P; (z) is true.

3. For every “for all” subformula of the form Vz (Py(z)), the subformula is true
if and only if P;(z) is true for all values x from dom(P,).

The purpose of the additional rules is to ensure that we can test “for all” and “there
exists” subformulae without having to test infinitely many possibilities. Consider the
second rule in the definition of safety. For 3 2 (P (z)) to be true, we need to find only
one x for which Py(z) is true. In general, there would be infinitely many values to
test. However, if the expression is safe, we know that we can restrict our attention to
values from dom(P;). This restriction reduces to a finite number the tuples we must
consider.

The situation for subformulae of the form Vz (P;(z)) is similar. To assert that
Vz (Pi(z)) is true, we must, in general, test all possible values, so we must exam-
ine infinitely many values. As before, if we know that the expression is safe, it is
sufficient for us to test P, (z) for those values taken from dom(P,).

All the domain-relational-calculus expressions that we have written in the exam-
ple queries of this section are safe.

5.2.4 Expressive Power of Languages

When the domain relational calculus is restricted to safe expressions, it is equivalent
in expressive power to the tuple relational calculus restricted to safe expressions.
Since we noted earlier that the restricted tuple relational calculus is equivalent to the
relational algebra, all three of the following are equivalent:

o The basic relational algebra (without the extended relational-algebra opera-
tions)

e The tuple relational calculus restricted to safe expressions

e The domain relational calculus restricted to safe expressions

We note that the domain relational calculus also does not have any equivalent of the
aggregate operation, but it can be extended to support aggregation, and extending it
to handle arithmetic expressions is straightforward.

5.3 Query-by-Example

Query-by-Example (QBE) is the name of both a data-manipulation language and an
early database system that included this language.
The QBE data-manipulation language has two distinctive features:

172

Chapter5 Other Relational Languages

1. Unlike most query languages and programming languages, QBE has a two-
dimensional syntax. Queries look like tables. A query in a one-dimensional
language (for example, SQL) can be written in one (possibly long) line. A two-
dimensional language requires two dimensions for its expression. (There is a
one-dimensional version of QBE, but we shall not consider it in our discus-
sion.)

2. QBE queries are expressed “by example.” Instead of giving a procedure for
obtaining the desired answer, the user gives an example of what is desired.
The system generalizes this example to compute the answer to the query.

Despite these unusual features, there is a close correspondence between QBE and the
domain relational calculus.

There are two flavors of QBE: the original text-based version and a graphical ver-
sion developed later that is supported by the Microsoft Access database system. In
this section we provide a brief overview of the data-manipulation features of both
versions of QBE. We first cover features of the text-based QBE that correspond to the
SQL select-from-where clause without aggregation or updates. See the bibliographic
notes for references where you can obtain more information about how the text-
based version of QBE handles sorting of output, aggregation, and update. Later, in
Section 5.3.6 we briefly cover features of the graphical version of QBE.

5.3.1 Skeleton Tables

We express queries in QBE by skeleton tables. These tables show the relation schema,
as in Figure 5.2. Rather than clutter the display with all skeletons, the user selects
those skeletons needed for a given query and fills in the skeletons with example
rows. An example row consists of constants and example elements, which are domain
variables. To avoid confusion between the two, QBE uses an underscore character ()
before domain variables, as in _x, and lets constants appear without any qualification.
This convention is in contrast to those in most other languages, in which constants
are quoted and variables appear without any qualification.

5.3.2 Queries on One Relation

Returning to our ongoing bank example, to find all loan numbers at the Perryridge
branch, we bring up the skeleton for the loan relation, and fill it in as follows:

loan | loan_number | branch_name | amount |
| P | Perryridge | |

This query tells the system to look for tuples in loan that have “Perryridge” as the
value for the branch.name attribute. For each such tuple, the system assigns the value
of the loan_number attribute to the variable x. It “prints” (actually, displays) the value
of the variable x, because the command P. appears in the loan.number column next to
the variable x. Observe that this result is similar to what would be done to answer

53 Query-by-Example 173

branch | branch_name | branch_city | assets |
| |]
customer | customer_name [customer_steet | customer_city |
\ | \ \
loan | loan_number | branch_name | amount |
| \]
borrower customer_name | loan_number |
| \
account | account_number | branch_name | balance |
| |]
depositor | customer_name [account_number |

| | |

Figure 5.2 QBE skeleton tables for the bank example.

the domain-relational-calculus query

{{z) | 3b,a({@,b,a) € loan A b = “Perryridge”)}

QBE assumes that a blank position in a row contains a unique variable. As a result,
if a variable does not appear more than once in a query, it may be omitted. Our
previous query could thus be rewritten as

loan loan_number | branch_name | amount |
P. | Perryridge |]

QBE (unlike SQL) performs duplicate elimination automatically. To suppress du-
plicate elimination, we insert the command ALL. after the P. command:

loan | loan_number | branch_name amount |
| PALL. | Perryridge |

174

Chapter5 Other Relational Languages

To display the entire loan relation, we can create a single row consisting of P. in
every field. Alternatively, we can use a shorthand notation by placing a single P. in
the column headed by the relation name:

loan_ | Toan_number | branch_name | _amount]
P | | I |

QBE allows queries that involve arithmetic comparisons (for example, >), rather
than equality comparisons, as in “Find the loan numbers of all loans with a loan
amount of more than $700™:

loan | loan_number | branch_name | amount |
| P] [>700 |

Comparisons can involve only one arithmetic expression on the right-hand side of
the comparison operation (for example, > (_x +_y — 20)). The expression can include
both variables and constants. The space on the left-hand side of the comparison op-
eration must be blank. The arithmetic operations that QBE supports are =, <, <, >,
>, and —.

Note that requiring the left-hand side to be blank implies that we cannot compare
two distinct named variables. We shall deal with this difficulty shortly.

As yet another example, consider the query “Find the names of all branches that
are not located in Brooklyn.” This query can be written as follows:

branch branch_name | branch_city [assets |
P, [—Brooklyn | |

The primary purpose of variables in QBE is to force values of certain tuples to have
the same value on certain attributes. Consider the query “Find the loan numbers of
all loans made jointly to Smith and Jones™

borrower | customer_name | loan_number |
Smith P_x
Jones i 4

To execute this query, the system finds all pairs of tuples in borrower that agree on the
loan_number attribute, where the value for the customer-name attribute is “Smith” for
one tuple and “Jones” for the other. The system then displays the value of the loan
_number attribute.

In the domain relational calculus, the query would be written as

{() | 3z ((z,1) € borrower A x = “Smith”)

ATz ((z,1) € borrower A x = “Jones”)}

As another example, consider the query “Find all customers who live in the same
city as Jones™:

53 Query-by-Example 175

customer | customer_name | customer_steet | customer_city |
P.x -y
Jones y

5.3.3 Queries on Several Relations

QBE allows queries that span several different relations (analogous to Cartesian prod-
uct or natural join in the relational algebra). The connections among the various rela-
tions are achieved through variables that force certain tuples to have the same value
on certain attributes. As an illustration, suppose that we want to find the names of all
customers who have a loan from the Perryridge branch. This query can be written as

loan | loan_number | branch_name | amount |
| > | Perryridge | |
borrower | customer_name | loan_number |
| Py I X |

To evaluate the preceding query, the system finds tuples in loan with “Perryridge”
as the value for the branch_name attribute. For each such tuple, the system finds tu-
ples in borrower with the same value for the loan_number attribute as the loan tuple. It
displays the values for the customer_name attribute.

We can use a technique similar to the preceding one to write the query “Find the
names of all customers who have both an account and a loan at the bank’:

depositor | customer_name | account_number |
A i |
borrower | customer_name | loan_number |
| -x | |

Now consider the query “Find the names of all customers who have an account
at the bank, but who do not have a loan from the bank.” We express queries that
involve negation in QBE by placing a not sign (—) under the relation name and next
to an example row:

depositor | customer_name | account_number |
. Fx | |
borrower | customer_name | loan_number |
S R |

Compare the preceding query with our earlier query “Find the names of all cus-
tomers who have both an account and a loan at the bank.” The only difference is the —

176

Chapter 5 Other Relational Languages

appearing next to the example row in the borrower skeleton. This difference, however,
has a major effect on the processing of the query. QBE finds all x values for which

1. There is a tuple in the depositor relation whose customer-name is the domain
variable x.

2. There is no tuple in the borrower relation whose customer-name is the same as
in the domain variable x.

The — can be read as “there does not exist.”

The fact that we placed the — under the relation name, rather than under an at-
tribute name, is important. A — under an attribute name is shorthand for #. Thus, to
find all customers who have at least two accounts, we write

depositor | customer_name | account_number |
P ¥ Y
- -y

In English, the preceding query reads “Display all customer-name values that ap-
pear in at least two tuples, with the second tuple having an account.number different
from the first.”

5.3.4 The Condition Box

At times, it is either inconvenient or impossible to express all the constraints on the
domain variables within the skeleton tables. To overcome this difficulty, QBE includes
a condition box feature that allows the expression of general constraints over any of
the domain variables. QBE allows logical expressions to appear in a condition box.
The logical operators are the words and and or, or the symbols “&” and “|".

For example, the query “Find the loan numbers of all loans made to Smith, to Jones
(or to both jointly)” can be written as

borrower | customer_name | loan_number |
LR EELIE
B ~ conditions |

[_n=Smithor _n=Jones |

It is possible to express the above query without using a condition box, by using
P. in multiple rows. However, queries with P. in multiple rows are sometimes hard to
understand, and are best avoided.

As yet another example, suppose that we modify the final query in Section 5.3.3
to be “Find all customers who are not named ‘Jones’ and who have at least two ac-
counts.” We want to include an “x # Jones” constraint in this query. We do that by
bringing up the condition box and entering the constraint “x — = Jones™:

5.3 Query-by-Example 177

| conditions |
[x—=Jones |

Turning to another example, to find all account numbers with a balance between
$1300 and $1500, we write

account | account_number [branch_name | balance |
L EE

conditions
-x = 1300
_x <1500

L

As another example, consider the query “Find all branches that have assets greater
than those of at least one branch located in Brooklyn.” This query can be written as

branch | branch_name | branch_city [assels |
P_x -y
Brooklyn 2

conditions
Y>>z

QBE allows complex arithmetic expressions to appear in a condition box. We can
write the query “Find all branches that have assets that are at least twice as large as
the assets of one of the branches located in Brooklyn” much as we did in the preced-
ing query, by modifying the condition box to

:

conditions
Y22* %

To find the account number of accounts with a balance between $1300 and $2000,
but not exactly $1500, we write

account | account_number | branch_name | balance |
& T BER

[conditions |
| _x =(=1300 and <2000 and — 1500) |

QBE uses the or construct in an unconventional way to allow comparison with a set
of constant values. To find all branches that are located in either Brooklyn or Queens,
we write

178 Chapter5 Other Relational Languages

" branch | branch_name | branch_city | assets |
B] = | |

B
[-x=(Brooklyn or Queens) |

5.3.5 The Result Relation

The queries that we have written thus far have one characteristic in common: The
results to be displayed appear in a single relation schema. If the result of a query
includes attributes from several relation schemas, we need a mechanism to display
the desired result in a single table. For this purpose, we can declare a temporary result
relation that includes all the attributes of the result of the query. We print the desired
result by including the command P. in only the result skeleton table.

As an illustration, consider the query “Find the customer_name, account number, and
balance for all accounts at the Perryridge branch.” In relational algebra, we would
construct this query as follows:

1. Join depositor and account.

2. Project customer_name, account_number, and balance.
To construct the same query in QBE, we proceed as follows:

1. Create a skeleton table, called result, with attributes customer_name, account
_number, and balance. The name of the newly created skeleton table (that is,
result) must be different from any of the previously existing database relation
names.

2. Write the query.

The resulting query is
~account | account_number | branch_name | balance |
I Y | Perryridge | -z |
“depositor | customer_name | account_number |
| x | Y |
result | customer_name | account_number | balance |
P -x l Y N

5.3.6 QBE in Microsoft Access

In this section, we survey the QBE version supported by Microsoft Access. While
the original QBE was designed for a text-based display environment, Access QBE is

53 Query-by-Example 179

e—— P

account
#*

account_number

branch_name
balance

depositor

customer_name
account_number

Field: |customer_name account_number balance branch_name
Table: |depositor account account account
Sort:
Show: vl
Crkeria: - = Perryridge”
or: -

Figure 5.3 An example query in Microsoft Access QBE.

designed for a graphical display environment, and accordingly is called graphical
query-by-example (GQBE).

Figure 5.3 shows a sample GQBE query. The query can be described in English as
“Find the customer name, account_number, and balance for all accounts at the Perryridge
branch.” Section 5.3.5 showed how it is expressed in QBE.

A minor difference in the GQBE version is that the attributes of a table are writ-
ten one below the other, instead of horizontally. A more significant difference is that
the graphical version of QBE uses a line linking attributes of two tables, instead of a
shared variable, to specify a join condition.

An interesting feature of QBE in Access is that links between tables are created
automatically, on the basis of the attribute name. In the example in Figure 5.3, the two
tables account and depositor were added to the query. The attribute account_number is
shared between the two selected tables, and the system automatically inserts a link
between the two tables. In other words, a natural-join condition is imposed by default
between the tables; the link can be deleted if it is not desired. The link can also be
specified to denote a natural outer join, instead of a natural join.

Another minor difference in Access QBE is that it specifies attributes to be printed
in a separate box, called the design grid, instead of using a P. in the table. It also
specifies selections on attribute values in the design grid.

Queries involving group by and aggregation can be created in Access as shown in
Figure 5.4. The query in the figure finds the name, street, and city of all customers
who have more than one account at the bank. The “group by” attributes as well as
the aggregate functions are noted in the design grid.

Note that when a condition appears in a column of the design grid with the “To-
tal” row set to an aggregate, the condition is applied on the aggregated value; for

180

Chapter 5

Other Relational Languages

Field: |customer_name customer_street customer _city account_number
Table: |customer customer customer depasitor
Total: |Group By Group By Group By Count
Sork:
Shou:] 2] [l
Criteria: L= =1
or:
.<- Hii

Figure 5.4 An aggregation query in Microsoft Access QBE.

example, in Figure 5.4, the selection “> 17 on the column account_number is applied
on the result of the aggregate “Count.” Such selections correspond to selections in an
SQL having clause.

Selection conditions can be applied on columns of the design grid that are nei-
ther grouped by or aggregated; such attributes must be marked as “Where™ in the
row “Total.” Such “Where” selections are applied before aggregation, and correspond
to selections in an SQL where clause. However, such columns cannot be printed
(marked as “Show”). Only columns where the “Total” row specifies either “group
by,” or an aggregate function can be printed.

Queries are created through a graphical user interface, by first selecting tables.
Attributes can then be added to the design grid by dragging and dropping them from
the tables. Selection conditions, grouping, and aggregation can then be specified on
the attributes in the design grid. Access QBE supports a number of other features too,
including queries to modify the database through insertion, deletion, or update.

5.4 Datalog

Datalog is a nonprocedural query language based on the logic-programming lan-
guage Prolog. As in the relational calculus, a user describes the information desired
without giving a specific procedure for obtaining that information. The syntax of Dat-
alog resembles that of Prolog. However, the meaning of Datalog programs is defined
in a purely declarative manner, unlike the more procedural semantics of Prolog, so
Datalog simplifies writing simple queries and makes query optimization easier.

54 Datalog 181

5.4.1 Basic Structure

A Datalog program consists of a set of rules. Before presenting a formal definition of
Datalog rules and their formal meaning, we consider examples. Consider a
Datalog rule to define a view relation v1 containing account numbers and balances
for accounts at the Perryridge branch with a balance of over $700:

v1(A, B) :=account(A, “Perryridge”, B), B > 700

Datalog rules define views; the preceding rule uses the relation account, and de-
fines the view relation v1. The symbol :- is read as “if,” and the comma separating
the “account(A, “Perryridge”, B)” from “B > 700" is read as “and.” Intuitively, the
rule is understood as follows:

forall A, B
if (A, “Perryridge”, B) € account and B > 700
then (A,B)evl

Suppose that the relation account is as shown in Figure 5.5. Then, the view relation
v1 contains the tuples in Figure 5.6.

To retrieve the balance of account number A-217 in the view relation vl, we can
write the following query:

?v1(*A-217", B)
The answer to the query is
(A-217, 750)

To get the account number and balance of all accounts in relation v1, where the bal-
ance is greater than 800, we can write

?vl(4, B), B > 800
The answer to this query is

(A-201, 900)

| account_number | branch_name | balance |
A-101 Downtown 500
A-215 Mianus 700
A-102 Perryridge 400
A-305 Round Hill 350
A-201 Perryridge 900
A-222 Redwood 700
A-217 Perryridge 750

Figure 5.5 The account relation.

182

Chapter5 Other Relational Languages

[account_number | balance |
A-201 900
A-217 750

Figure 5.6 The v1 relation.

In general, we need more than one rule to define a view relation. Each rule defines
a set of tuples that the view relation must contain. The set of tuples in the view re-
lation is then defined as the union of all these sets of tuples. The following Datalog
program specifies the interest rates for accounts:

interest_rate(A, 5) —account(A, N, B), B < 10000
interest_rate(A, 6) —account(A, N, B), B >= 10000

The program has two rules defining a view relation interest.rate, whose attributes are
the account number and the interest rate. The rules say that, if the balance is less than
$10,000, then the interest rate is 5 percent, and if the balance is greater than or equal
to $10,000, the interest rate is 6 percent.

Datalog rules can also use negation. The following rules define a view relation ¢
that contains the names of all customers who have a deposit, but have no loan, at the
bank:

¢(N) —depositor(N,A), not is_borrower(N)
is_borrower(N) :— borrower(N, L)

Prolog and most Datalog implementations recognize attributes of a relation by po-
sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL
queries. However, when relations have a large number of attributes, or the order or
number of attributes of relations may change, the positional notation can be cum-
bersome and error prone. It is not hard to create a variant of Datalog syntax using
named attributes, rather than positional attributes. In such a system, the Datalog rule
defining v1 can be written as

v1(account_ number A, balance B) —
account(account number A, branch_name “Perryridge”, balance B),
B> 1700

Translation between the two forms can be done without significant effort, given the
relation schema.

5.4.2 Syntax of Datalog Rules

Now that we have informally explained rules and queries, we can formally define
their syntax; we discuss their meaning in Section 5.4.3. We use the same conventions
as in the relational algebra for denoting relation names, attribute names, and con-
stants (such as numbers or quoted strings). We use uppercase (capital) letters and

54 Datalog 183

words starting with uppercase letters to denote variable names, and lowercase let-
ters and words starting with lowercase letters to denote relation names and attribute
names. Examples of constants are 4, which is a number, and “John,” which is a string;
X and Name are variables. A positive literal has the form

p(tlitg}"‘!tﬂ)

where p is the name of a relation with n attributes, and ¢, t,, ..., t, are either con-
stants or variables. A negative literal has the form

not p(t1,t2,...,t,)
where relation p has n attributes. Here is an example of a literal:
account(A, “Perryridge”, B)

Literals involving arithmetic operations are treated specially. For example, the lit-
eral B > 700, although not in the syntax just described, can be conceptually un-
derstood to stand for > (B,700), which is in the required syntax, and where > is a
relation.

But what does this notation mean for arithmetic operations such as “>"? The re-
lation > (conceptually) contains tuples of the form (z,y) for every possible pair of
values z,y such that z > y. Thus, (2,1) and (5, —33) are both tuples in >. Clearly,
the (conceptual) relation > is infinite. Other arithmetic operations (such as >, =, +,
and —) are also treated conceptually as relations. For example, A = B + C stands con-
ceptually for +(B, C, A), where the relation + contains every tuple (z,y, z) such that
2=z 4+ Y.

A fact is written in the form

plvi,va,...,vn)

and denotes that the tuple (v;,vs,...,v,) is in relation p. A set of facts for a relation
can also be written in the usual tabular notation. A set of facts for the relations in a
database schema is equivalent to an instance of the database schema. Rules are built
out of literals and have the form

p(ilatzj . -1t‘n,) i LI}L23 v 1Ln

where each L; is a (positive or negative) literal. The literal p(t1,ta,...,t,) is referred
to as the head of the rule, and the rest of the literals in the rule constitute the body of
the rule.

A Datalog program consists of a set of rules; the order in which the rules are writ-
ten has no significance. As mentioned earlier, there may be several rules defining a
relation.

Figure 5.7 shows a Datalog program that defines the interest on each account in
the Perryridge branch. The first rule of the program defines a view relation interest,
whose attributes are the account number and the interest earned on the account. It

184

Chapter5 Other Relational Languages

interest(A, I —account(A, “Perryridge”, B),
interest_rate(A, R), I = B« R/100

interest_rate(A, 5) :—account(A, N, B), B < 10000

interest_rate(A, 6) :—account(A, N, B), B >= 10000

Figure 5.7 Datalog program that defines interest on Perryridge accounts.

uses the relation account and the view relation interestrate. The last two rules of the
program are rules that we saw earlier.

A view relation v; is said to depend directly on a view relation vy if v, is used
in the expression defining v;. In the above program, view relation interest depends
directly on relations interest_rate and account. Relation interest_rate in turn depends
directly on account.

A view relation v; is said to depend indirectly on view relation v, if there is a
sequence of intermediate relations iy, 42, . . . , in, for some n, such that v; depends di-
rectly on 7y, i; depends directly on i, and so on until i,,_; depends on iy,.

In the example in Figure 5.7, since we have a chain of dependencies from inferest
to interest_rate to account, relation interest also depends indirectiy on account.

Finally, a view relation v, is said to depend on view relation vy if v; depends either
directly or indirectly on vs.

A view relation v is said to be recursive if it depends on itself. A view relation that
is not recursive is said to be nonrecursive.

Consider the program in Figure 5.8. Here, the view relation empl depends on itself
(because of the second rule), and is therefore recursive. In contrast, the program in
Figure 5.7 is nonrecursive.

5.4.3 Semantics of Nonrecursive Datalog

We consider the formal semantics of Datalog programs. For now, we consider only
programs that are nonrecursive. The semantics of recursive programs is somewhat
more complicated; it is discussed in Section 5.4.6. We define the semantics of a pro-
gram by starting with the semantics of a single rule.

5.4.3.1 Semantics of a Rule

A ground instantiation of a rule is the result of replacing each variable in the rule
by some constant. If a variable occurs multiple times in a rule, all occurrences of
the variable must be replaced by the same constant. Ground instantiations are often
simply called instantiations.

empl(X,Y) —manager(X,Y)
empl(X,Y) —manager(X, Z), empl(Z,Y)

Figure 5.8 Recursive Datalog program.

54 Datalog 185

Our example rule defining v1, and an instantiation of the rule, are:

v1(A, B) - account(A, “Perryridge”, B), B > 700
v1(*A-217", 750) = account(“A-217", “Perryridge”, 750), 750 > 700

Here, variable A was replaced by “A-217" and variable B by 750.

A rule usually has many possible instantiations. These instantiations correspond
to the various ways of assigning values to each variable in the rule.

Suppose that we are given a rule R,

p(tlstQ:---:tn) :_LI}LZ!"‘!LR

and a set of facts 7 for the relations used in the rule (I can also be thought of as a
database instance). Consider any instantiation R’ of rule R:

p(ﬂlsv2$" . >1’1'n) :”'!1122! v '1zn
where each literal /; is either of the form g; (v; 1, v1,2, . . . , vi n,) O Of the form not qi(vi 1,
Vi2, ..., Vin,) and where each v; and each v; ; is a constant.

We say that the body of rule instantiation R’ is satisfied in I if

1. For each positive literal ¢;(v;,1,...,%;,,) in the body of R, the set of facts I

contains the fact q(v; 1,...,v;p,).
2. For each negative literal not ¢;(v;,1, . .., v;»,) in the body of R/, the set of facts
I does not contain the fact g;(v; 1, ... +Vjim;)-

We define the set of facts that can be inferred from a given set of facts I using rule
R as

infer(R,I) = {p(t1,...,tn,) | there is an instantiation R’ of R,
where p(t;,...,tn,) is the head of R/, and
the body of R’ is satisfied in I'}.

Given a set of rules R = {Ry, Ry, ..., R, }, we define
infer(R, I) = infer(Ry, I) U infer(Ra, I) U .. .U infer(R,, I)

Suppose that we are given a set of facts I containing the tuples for relation account
in Figure 5.5. One possible instantiation of our running-example rule R is

v1(*A-2177, 750) :—account(“A-217", “Perryridge”, 750), 750 > 700

The fact account(“A-217", “Perryridge”, 750) is in the set of facts I. Further, 750 is
greater than 700, and hence conceptually (750, 700) is in the relation “>”. Hence, the
body of the rule instantiation is satisfied in /. There are other possible instantiations
of R, and using them we find that infer(R, I) has exactly the set of facts for v1 that
appears in Figure 5.9.

186

Chapter5 Other Relational Languages

| account_number | balance |
A-201 900
A-217 750

Figure 5.9 Result of infer(R, I).

5.4.3.2 Semantics of a Program

When a view relation is defined in terms of another view relation, the set of facts in
the first view depends on the set of facts in the second one. We have assumed, in this
section, that the definition is nonrecursive; that is, no view relation depends (directly
or indirectly) on itself. Hence, we can layer the view relations in the following way,
and can use the layering to define the semantics of the program:

e A relation is in layer 1 if all relations used in the bodies of rules defining it are
stored in the database.

o A relation is in layer 2 if all relations used in the bodies of rules defining it
either are stored in the database or are in layer 1.

e In general, a relation p is in layer i + 1 if (1) it is not in layers 1,2,...,i and
(2) all relations used in the bodies of rules defining p either are stored in the
database or are in layers 1,2, ..., 1.

Consider the program in Figure 5.7 with the additional rule:
perryridge.account(X, Y) :~account(X, “Perryridge”, Y)

The layering of view relations in the program appears in Figure 5.10. The relation ac-
count is in the database. Relation interest_rate is in layer 1, since all the relations used in
the two rules defining it are in the database. Relation perryridgeaccount
is similarly in layer 1. Finally, relation interest is in layer 2, since it is not in layer 1
and all the relations used in the rule defining it are in the database or in layers lower
than 2.

layer 2 interest

4

interest_rate
perryridge_account
]

layer 1

database account

Figure 5.10 Layering of view relations.

54 Datalog 187

We can now define the semantics of a Datalog program in terms of the layering of
view relations. Let the layers in a given program be 1,2, ...,n. Let R; denote the set
of all rules defining view relations in layer i.

o We define Ij to be the set of facts stored in the database, and define I; as
I = Io U %".’LfET(Rl, Ig)

e We proceed in a similar fashion, defining I, in terms of /; and R4, and so on,
using the following definition:

Iiy1 = L; Uinfer(Riya, I;)

e Finally, the set of facts in the view relations defined by the program (also called
the semantics of the program) is given by the set of facts I,, corresponding to
the highest layer n.

For the program in Figure 5.7, I is the set of facts in the database, and I, is the set
of facts in the database along with all facts that we can infer from I, using the rules for
relations interest.rate and perryridge account. Finally, I, contains the facts in I; along
with the facts for relation interest that we can infer from the facts in I; by the rule
defining interest. The semantics of the program—that is, the set of those facts that are
in each of the view relations—is defined as the set of facts I5.

Recall that, in Section 3.9.2, we saw how to define the meaning of nonrecursive
relational-algebra views by a technique known as view expansion. View expansion
can be used with nonrecursive Datalog views as well; conversely, the layering tech-
nique described here can also be used with relational-algebra views.

5.4.4 Safety

It is possible to write rules that generate an infinite number of answers. Consider the
rule

gHX,Y) =X >Y

Since the relation defining > is infinite, this rule would generate an infinite number
of facts for the relation gt, which calculation would, correspondingly, take an infinite
amount of time and space.

The use of negation can also cause similar problems. Consider the rule:

not_in_loan(L, B, A) :—not loan(L, B, A)

The idea is that a tuple (loan_-number, branch.name, amount) is in view relation not_in
-loan if the tuple is not present in the loan relation. However, if the set of possible loan
-numbers, branch names, and balances is infinite, the relation rnot.in_loan would be
infinite as well.

Finally, if we have a variable in the head that does not appear in the body, we may
get an infinite number of facts where the variable is instantiated to different values.

188

Chapter5 Other Relational Languages

So that these possibilities are avoided, Datalog rules are required to satisfy the
following safety conditions:

1. Every variable that appears in the head of the rule also appears in a nonarith-
metic positive literal in the body of the rule.

2. Every variable appearing in a negative literal in the body of the rule also ap-
pears in some positive literal in the body of the rule.

If all the rules in a nonrecursive Datalog program satisfy the preceding safety con-
ditions, then all the view relations defined in the program can be shown to be finite,
as long as all the database relations are finite. The conditions can be weakened some-
what to allow variables in the head to appear only in an arithmetic literal in the body
in some cases. For example, in the rule

p(A) —q(B), A=B+1

we can see that if relation g is finite, then so is p, according to the properties of addi-
tion, even though variable A appears in only an arithmetic literal.

5.4.5 Relational Operations in Datalog

Nonrecursive Datalog expressions without arithmetic operations are equivalent in
expressive power to expressions using the basic operations in relational algebra (U, —,
x, 0,11, and p). We shall not formally prove this assertion here. Rather, we shall show
through examples how the various relational-algebra operations can be expressed in
Datalog. In all cases, we define a view relation called query to illustrate the operations.

We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule. To
project attribute account_name from account, we use

query(A) :—account(A, N, B)

We can obtain the Cartesian product of two relations r; and r, in Datalog as fol-
lows:

QUCW(XI:X21 s ?Xﬂ: Yl'.! Yr?'. v 1Ym) :_TI{X1$X2: . .,Xn),TQ(Y]_,YE,‘. -Ym)

where r is of arity n, and r; is of arity m, and the X1, Xs,..., X;,Y1,Ys,..., Y, are
all distinct variable names.
We form the union of two relations r; and r; (both of arity n) in this way:

query(Xy, Xa, ..., Xp) =1 (X1, Xo,..., Xn)
query(X1, Xa, ..., Xn) = 12(X1, X2, ..., Xn)

We form the set difference of two relations r; and r; in this way:

quemJ(Xl-;Xﬁ-‘ . an) :_TI(XI:XQ: coes X)), mot ra(Xy, X, . :Xn)

54 Datalog 189

Finally, we note that with the positional notation used in Datalog, the renaming oper-
ator p is not needed. A relation can occur more than once in the rule body, but instead
of renaming to give distinct names to the relation occurrences, we can use different
variable names in the different occurrences.

It is possible to show that we can express any nonrecursive Datalog query without
arithmetic by using the relational-algebra operations. We leave this demonstration
as an exercise for you to carry out. You can thus establish the equivalence of the
basic operations of relational algebra and nonrecursive Datalog without arithmetic
operations.

Certain extensions to Datalog support the relational update operations (insertion,
deletion, and update). The syntax for such operations varies from implementation
to implementation. Some systems allow the use of + or — in rule heads to denote
relational insertion and deletion. For example, we can move all accounts at the Per-
ryridge branch to the Johnstown branch by executing

+ account(A, “Johnstown”, B) :—account(A, “Perryridge”, B)
— account(A, “Perryridge”, B) :—account(A, “Perryridge”, B)

Some implementations of Datalog also support the aggregation operation of ex-
tended relational algebra. Again, there is no standard syntax for this operation.

5.4.6 Recursion in Datalog

Several database applications deal with structures that are similar to tree data struc-
tures. For example, consider employees in an organization. Some of the employees
are managers. Each manager manages a set of people who report to him or her. But
each of these people may in turn be managers, and they in turn may have other peo-
ple who report to them. Thus employees may be organized in a structure similar to a
tree.

Suppose that we have a relation schema

Manager_schema = (employee_name, manager_name)

Let manager be a relation on the preceding schema.

Suppose now that we want to find out which employees are supervised, directly
or indirectly by a given manager—say, Jones. Thus, if the manager of Alon is Barin-
sky, and the manager of Barinsky is Estovar, and the manager of Estovar is Jones,
then Alon, Barinsky, and Estovar are the employees controlled by Jones. People of-
ten write programs to manipulate tree data structures by recursion. Using the idea
of recursion, we can define the set of employees controlled by Jones as follows. The
people supervised by Jones are (1) people whose manager is Jones and (2) people
whose manager is supervised by Jones. Note that case (2) is recursive.

We can encode the preceding recursive definition as a recursive Datalog view,
called empl_jones:

empl_jones(X) :—manager(X, “Jones™)
empl_jones(X) - manager(X,Y), empl_jones(Y)

190

Chapter5 Other Relational Languages

procedure Datalog-Fixpoint
I = set of facts in the database
repeat
OldI =1
I =1Uinfer(R,I)
until / = Old_I

Figure 5.11 Datalog-Fixpoint procedure.

The first rule corresponds to case (1); the second rule corresponds to case (2). The
view empl_jones depends on itself because of the second rule; hence, the preceding
Datalog program is recursive. We assume that recursive Datalog programs contain no
rules with negative literals. The reason will become clear later. The bibliographical
notes refer to papers that describe where negation can be used in recursive Datalog
programs.

The view relations of a recursive program that contains a set of rules R are defined
to contain exactly the set of facts I computed by the iterative procedure Datalog-
Fixpoint in Figure 5.11. The recursion in the Datalog program has been turned into
an iteration in the procedure. At the end of the procedure, infer(R,I) U D = I, where
D is the set of facts in the database, and [is called a fixed point of the program.

Consider the program defining empl_jones, with the relation manager, as in Fig-
ure 5.12. The set of facts computed for the view relation empl_jones in each iteration
appears in Figure 5.13. In each iteration, the program computes one more level of
employees under Jones and adds it to the set empl jones. The procedure terminates
when there is no change to the set emplLjones, which the system detects by finding
I = Old_I. Such a termination point must be reached, since the set of managers and
employees is finite. On the given manager relation, the procedure Datalog-Fixpoint
terminates after iteration 4, when it detects that no new facts have been inferred.

You should verify that, at the end of the iteration, the view relation empl_jones con-
tains exactly those employees who work under Jones. To print out the names of the
employees supervised by Jones defined by the view, you can use the query

? empl_jones(N)

employee_name | manager_nanie

Alon Barinsky
Barinsky Estovar
Corbin Duarte
Duarte Jones
Estovar Jones
Jones Klinger
Rensal Klinger

Figure 5.12 The manager relation.

54 Datalog 191

Iteration number | Tuples in empl_jones

(Duarte), (Estovar)

(Duarte), (Estovar), (Barinsky), (Corbin)
(Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
(Duarte), (Estovar), (Barinsky), (Corbin), (Alon)

=W N= o

Figure 5.13 Employees of Jones in iterations of procedure Datalog-Fixpoint.

To understand procedure Datalog-Fixpoint, we recall that a rule infers new facts
from a given set of facts. Iteration starts with a set of facts I set to the facts in the
database. These facts are all known to be true, but there may be other facts that are
true as well.! Next, the set of rules R in the given Datalog program is used to infer
what facts are true, given that facts in 7 are true. The inferred facts are added to I,
and the rules are used again to make further inferences. This process is repeated until
no new facts can be inferred.

For safe Datalog programs, we can show that there will be some point where no
more new facts can be derived; that is, for some k, I;..; = I;.. At this point, then, we
have the final set of true facts. Further, given a Datalog program and a database, the
fixed-point procedure infers all the facts that can be inferred to be true.

If a recursive program contains a rule with a negative literal, the following prob-
lem can arise. Recall that when we make an inference by using a ground instantiation
of a rule, for each negative literal not ¢ in the rule body we check that ¢ is not present
in the set of facts I. This test assumes that g cannot be inferred later. However, in
the fixed-point iteration, the set of facts / grows in each iteration, and even if ¢ is
not present in I at one iteration, it may appear in I later. Thus, we may have made
an inference in one iteration that can no longer be made at an earlier iteration, and
the inference was incorrect. We require that a recursive program should not contain
negative literals, in order to avoid such problems.

Instead of creating a view for the employees supervised by a specific manager
Jones, we can create a more general view relation empl that contains every tuple
(X,Y) such that X is directly or indirectly managed by Y, using the following pro-
gram (also shown in Figure 5.8):

empl(X,Y) —manager(X,Y)
empl(X,Y) —manager(X, Z), empl(Z,Y)

To find the direct and indirect subordinates of Jones, we simply use the query

? empl(X, “Jones™)

1. The word “fact” is used in a technical sense to note membership of a tuple in a relation. Thus, in the
Datalog sense of “fact,” a fact may be true (the tuple is indeed in the relation) or false (the tuple is not in
the relation).

192

Chapter5 Other Relational Languages

which gives the same set of values for X as the view empl_jones. Most Datalog imple-
mentations have sophisticated query optimizers and evaluation engines that can run
the preceding query at about the same speed they could evaluate the view empl_jones.

The view empl defined previously is called the transitive closure of the relation
manager. If the relation manager were replaced by any other binary relation R, the
preceding program would define the transitive closure of R.

5.4.7 The Power of Recursion

Datalog with recursion has more expressive power than Datalog without recursion.
In other words, there are queries on the database that we can answer by using recur-
sion, but cannot answer without using it. For example, we cannot express transitive
closure in Datalog without using recursion (or for that matter, in SQL or QBE without
recursion). Consider the transitive closure of the relation manager. Intuitively, a fixed
number of joins can find only those employees that are some (other) fixed number of
levels down from any manager (we will not attempt to prove this result here). Since
any given nonrecursive query has a fixed number of joins, there is a limit on how
many levels of employees the query can find. If the number of levels of employees
in the manager relation is more than the limit of the query, the query will miss some
levels of employees. Thus, a nonrecursive Datalog program cannot express transitive
closure.

An alternative to recursion is to use an external mechanism, such as embedded
SQL, to iterate on a nonrecursive query. The iteration in effect implements the fixed-
point loop of Figure 5.11. In fact, that is how such queries are implemented on data-
base systems that do not support recursion. However, writing such queries by iter-
ation is more complicated than using recursion, and evaluation by recursion can be
optimized to run faster than evaluation by iteration.

The expressive power provided by recursion must be used with care. It is relatively
easy to write recursive programs that will generate an infinite number of facts, as this
program illustrates:

number(0)
number(A) —number(B), A= B+ 1

The program generates number(n) for all positive integers n, which is clearly infinite,
and will not terminate. The second rule of the program does not satisfy the safety
condition in Section 5.4.4. Programs that satisfy the safety condition will terminate,
even if they are recursive, provided that all database relations are finite. For such
programs, tuples in view relations can contain only constants from the database, and
hence the view relations must be finite. The converse is not true; that is, there are
programs that do not satisfy the safety conditions, but that do terminate.

The procedure Datalog-Fixpoint iteratively uses the function infer(R, I) to com-
pute what facts are true, given a recursive Datalog program. Although we consid-
ered only the case of Datalog programs without negative literals, the procedure can
also be used on views defined in other languages, such as SQL or relational alge-
bra, provided that the views satisfy the conditions described next. Regardless of the

54 Datalog 193

language used to define a view V, the view can be thought of as being defined by an
expression Ey that, given a set of facts I, returns a set of facts Ey (I) for the view rela-
tion V. Given a set of view definitions R (in any language), we can define a function
infer(R, I) that returns I U {Jy, . Ev (I). The preceding function has the same form
as the infer function for Datalog.

A view V is said to be monotonic if, given any two sets of facts I; and I, such
that I C I, then Ev(I;) € Ey(I,), where Ey is the expression used to define V.
Similarly, the function infer is said to be monotonic if

I C Ig = fﬂf&’?‘(R,Il) C fﬂfl‘.’?‘(R, 12)

Thus, if infer is monotonic, given a set of facts I; that is a subset of the true facts, we
can be sure that all facts in infer(R, I) are also true. Using the same reasoning as in
Section 5.4.6, we can then show that procedure Datalog-Fixpoint is sound (that is, it
computes only true facts), provided that the function infer is monotonic.

Relational-algebra expressions that use only the operators II, o, x, X, U, N, or p are
monotonic. Recursive views can be defined by using such expressions.

However, relational expressions that use the operator — are not monotonic. For ex-
ample, let manager, and manager, be relations with the same schema as the manager
relation. Let

I = { manager,(“Alon”, “Barinsky”), manager, (“Barinsky”, “Estovar™),
manager,(“Alon”, “Barinsky”) }

and let

I, = { manager,(“Alon”, “Barinsky”), manager, (“Barinsky”, “Estovar™),
manager,(“Alon”, “Barinsky”), manager,(“Barinsky”, “Estovar”)}

Consider the expression manager, — manager,. Now the result of the preceding ex-
pression on I, is (“Barinsky”, “Estovar”), whereas the result of the expression on /s is
the empty relation. But I; C I»; hence, the expression is not monotonic. Expressions
using the grouping operation of extended relational algebra are also nonmonotonic.

The fixed-point technique does not work on recursive views defined with non-
monotonic expressions. However, there are instances where such views are useful,
particularly for defining aggregates on “part—subpart” relationships. Such relation-
ships define what subparts make up each part. Subparts themselves may have further
subparts, and so on; hence, the relationships, like the manager relationship, have a
natural recursive structure. An example of an aggregate query on such a structure
would be to compute the total number of subparts of each part. Writing this query in
Datalog or in SQL (without procedural extensions) would require the use of a recur-
sive view on a nonmonotonic expression. The bibliographic notes provide references
to research on defining such views.

It is possible to define some kinds of recursive queries without using views. For
example, extended relational operations have been proposed to define transitive clo-
sure, and extensions to the SQL syntax to specify (generalized) transitive closure have

194 Chapter5

Other Relational Languages

been proposed. However, recursive view definitions provide more expressive power
than do the other forms of recursive queries.

5.5

Summary

The tuple relational calculus and the domain relational calculus are non-
procedural languages that represent the basic power required in a relational
query language. The basic relational algebra is a procedural language that is
equivalent in power to both forms of the relational calculus when they are
restricted to safe expressions.

The relational calculi are terse, formal languages that are inappropriate for
casual users of a database system. Commercial database systems, therefore,
use languages with more “syntactic sugar.” We have considered two query
languages: QBE and Datalog.

QBE is based on a visual paradigm: The queries look much like tables.

QBE and its variants have become popular with nonexpert database users be-
cause of the intuitive simplicity of the visual paradigm. The widely used Mi-
crosoft Access database system supports a graphical version of QBE, called
GQOBE.

Datalog is derived from Prolog, but unlike Prolog, it has a declarative seman-
tics, making simple queries easier to write and query evaluation easier to op-
timize.

Defining views is particularly easy in Datalog, and the recursive views that
Datalog supports make it possible to write queries, such as transitive-closure
queries, that cannot be written without recursion or iteration. However, no
accepted standards exist for important features, such as grouping and aggre-
gation, in Datalog. Datalog remains mainly a research language.

Review Terms

Tuple relational calculus e Microsoft Access

Domain relational calculus e Graphical Query-By-Example
Safety of expressions (GQBE)

Expressive power of languages e Design grid
Query-by-Example (QBE) e Datalog

Two-dimensional syntax e Rules

Skeleton tables e Uses

Example rows e Defines

Condition box e Positive literal

Result relation Negative literal

Practice Exercises 195

e Fact 00 Ground instantiation
¢ Rule [0 Satisfied
0 Head e Infer
0 Body e Semantics
e Datalog program O Ofarule
e Depend on O Of a program
0 Directly e Safety

O Indirectly
Recursive view

Fixed point

i o ° iti su
Nonrecursive view Transitive closure

Instantiation e Monotonic view definition

Practice Exercises
5.1 Let the following relation schemas be given:

R =(A,B,0)
S =(D,E,F)

Let relations 7(R) and s(S) be given. Give an expression in the tuple relational
calculus that is equivalent to each of the following:

a. 1Ty (?‘)

b. ¢ B=17 ('f‘)

C. r X 8

d. HA,F (JCZD{T‘ x S))

52 Let R = (A, B, C), and let ; and 75 both be relations on schema R. Give
an expression in the domain relational calculus that is equivalent to each of the
following:

. HA(:'"I)
. og=17 (1)
.11 U e
.11 N oTre
e 1 — Ta
- I4,8(r1) X Tp,c(r2)
5.3 Let R = (A, B)and S = (4, C), and let 7(R) and s(S) be relations. Write expres-
sions in QBE and Datalog for each of the following queries:
a. {<a>[3b(<a,b>er Ab=T)}
b. {<abe> | <ab>€e rA <a,c>€ s}
c {<a>|3ec(<a,e>€ sATb,ba(<a,by>ETA < by>ErTAb >

b2))}

5.4 Consider the relational database of Figure 5.14 where the primary keys are un-
derlined. Give an expression in Datalog for each of the following queries:

M R T

196

Chapter 5

Other Relational Languages

employee (person_name, street, city)

works (person_name, company_name, salary)
company (company_name, city)

manages (person_name, manager-name)

Figure 5.14 Employee database.

. Find all employees who work (directly or indirectly) under the manager

“Jones.”

. Find all cities of residence of all employees who work (directly or indirectly)

under the manager “Jones.”

Find all pairs of employees who have a (direct or indirect) manager in com-
mon.

Find all pairs of employees who have a (direct or indirect) manager in com-
mon, and are at the same number of levels of supervision below the com-
mon manager.

5.5 Describe how an arbitrary Datalog rule can be expressed as an extended relatio-
nal-algebra view.

Exercises

5.6 Consider the employee database of Figure 5.14. Give expressions in tuple rela-
tional calculus and domain relational calculus for each of the following queries:

a.
b.

Find the names of all employees who work for First Bank Corporation.
Find the names and cities of residence of all employees who work for First
Bank Corporation.

Find the names, street addresses, and cities of residence of all employees
who work for First Bank Corporation and earn more than $10,000 per an-
nuim.

. Find all employees who live in the same city as that in which the company

for which they work is located.

Find all employees who live in the same city and on the same street as their
managers.

Find all employees in the database who do not work for First Bank Corpo-
ration.

. Find all employees who earn more than every employee of Small Bank Cor-

poration.

. Assume that the companies may be located in several cities. Find all com-

panies located in every city in which Small Bank Corporation is located.

57 Let R = (A, B)and S = (A, C), and let 7(R) and s(S) be relations. Write
relational-algebra expressions equivalent to the following domain-relational-
calculus expressions:

a.

{<a> |3b({cab>er A b= 17)}

Exercises 197

b. {<a,b,c> | <a,b>€ rA <a,c>€ s}

¢ {<a>[3Fb(<ab>er)VVe@d(<de>€ s) =<a,c>e€ s)}

d{<a> |Je(<ac>€ s A Ibyba (K aby >E T A < by >
€rAb > b))}

5.8 Repeat Exercise 5.7, writing SQL queries instead of relational-algebra expres-
sions.

59 Let R = (A, B)and S = (4, C), and let r(R) and s(S5) be relations. Using
the special constant null, write tuple-relational-calculus expressions equivalent
to each of the following:

a. r s
b. r s
c. rMHs

5.10 Consider the insurance database of Figure 5.15, where the primary keys are un-
derlined. Construct the following GQBE queries for this relational database.
a. Find the total number of people who owned cars that were involved in ac-
cidents in 1989.
b. Find the number of accidents in which the cars belonging to “John Smith”
were involved.

5.11 Give a tuple-relational-calculus expression to find the maximum value in rela-
tion r(A).

5.12 Repeat Exercise 5.6 using QBE and Datalog.

5.13 Let R = (A, B,C), and let r; and 75 both be relations on schema R. Give expres-
sions in QBE and Datalog equivalent to each of the following queries:
a. m Ure
b. r 1 N To
C Ty — T9
d. Map(r1) M Ope(rz)

5.14 Write an extended relational-algebra view equivalent to the Datalog rule

p(4,C, D) - q1(A, B), 2(B,C), ¢3(4,B), D=B+1

person (driver.id, name, address)

car (license, model, year)

accident (report_number, date, location)

owns (driver.id, license)

participated (driver.id, license, report number, damage_amount)

Figure 5.15 Insurance database.

198

Chapter 5 Other Relational Languages

Bibliographical Notes

The original definition of tuple relational calculus is in Codd [1972]. A formal proof of
the equivalence of tuple relational calculus and relational algebra is in Codd [1972].
Several extensions to the relational calculus have been proposed. Klug [1982] and
Escobar-Molano et al. [1993] describe extensions to scalar aggregate functions.

The QBE database system was developed at IBM’s T. J. Watson Research Center in
the early 1970s. The QBE data-manipulation language was later used in IBM’s Query
Management Facility (QMF). The original version of Query-by-Example is described
in Zloof [1977]. Other QBE implementations include Microsoft Access, and Borland
Paradox (which is no longer supported).

Ullman [1988] and Ullman [1989] provide extensive textbook discussions of logic
query languages and implementation techniques. Ramakrishnan and Ullman [1995]
provide a more recent survey on deductive databases.

Datalog programs that have both recursion and negation can be assigned a simple
semantics if the negation is “stratified”—that is, if there is no recursion through nega-
tion. Chandra and Harel [1982] and Apt and Pugin [1987] discuss stratified negation.
An important extension, called the modular-stratification semantics, which handles a
class of recursive programs with negative literals, is discussed in Ross [1990]; an eval-
uation technique for such programs is described by Ramakrishnan et al. [1992].

Tools

The Microsoft Access QBE is currently the most widely available implementation of
QBE. The QMF and Everywhere editions of IBM DB2 also support QBE.

The Coral system from the University of Wisconsin-Madison (www.cs.wisc.edu/-
coral) is an implementation of Datalog. The XSB system from the State University of
New York (SUNY) Stony Brook (xsb.sourceforge.net) is a widely used Prolog imple-
mentation that supports database querying; recall that Datalog is a nonprocedural
subset of Prolog.

P ART 2

Database Design

Database systems are designed to manage large bodies of information. These large
bodies of information do not exist in isolation. They are part of the operation of some
enterprise whose end product may be information from the database or may be some
device or service for which the database plays only a supporting role.

The first two chapters of this part focus on the design of database schemas. The
entity-relationship (E-R) model described in Chapter 6 is a high-level data model. In-
stead of representing all data in tables, it distinguishes between basic objects, called
entities, and relationships among these objects. It is often used as a first step in database-
schema design.

Relational database design—the design of the relational schema— was covered
informally in earlier chapters. There are, however, principles that can be used to dis-
tinguish good database designs from bad ones. These are formalized by means of
several “normal forms” that offer different trade-offs between the possibility of in-
consistencies and the efficiency of certain queries. Chapter 7 describes the formal
design of relational schemas.

The design of a complete database application environment that meets the needs
of the enterprise being modeled requires attention to a broader set of issues, many
of which are covered in Chapter 8. This chapter describes Web-based interfaces to
databases and extends our earlier discussion of data integrity and security.

Daéta'base. Des:gn qnd =
the E-R Model |

Up to this point in the text, we have assumed a given database schema and studied
how queries and updates are expressed. We now consider how to design a database
schema in the first place. In this chapter, we focus on the entity-relationship data
model (E-R), which provides a means of identifying entities to be represented in the
database and how those entities are related. Ultimately, the database design will be
expressed in terms of a relational database design and an associated set of constraints.
We show in this chapter how an E-R design can be transformed into a set of relation
schemas and how some of the constraints can be captured in that design. Then, in
Chapter 7, we consider in detail whether a set of relation schemas represent a good or
bad database design and study the process of creating good designs using a broader
set of constraints. These two chapters cover the fundamental concepts of database
design.

6.1 Overview of the Design Process

The task of creating a database application is a complex one, involving several tasks
such as design of the database schema, design of the programs that access and update
the data, and design of a security scheme to control access to data. The needs of the
users play a central role in the design process. In this chapter, we focus on the design
of the database schema, although we briefly outline some of the other design tasks
later in the chapter.

The design of a complete database application environment that meets the needs
of the enterprise being modeled requires attention to a broad set of issues. These
additional aspects of the expected use of the database influence a variety of design
choices at the physical, logical, and view levels.

201

202

Chapter 6 Database Design and the E-R Model

6.1.1 Design Phases

For small applications, it may be feasible for a database designer who understands
the application requirements to decide directly on the relations to be created, their
attributes, and constraints on the relations. However, such a direct design process
is difficult for real-world applications, since they are often highly complex. Often
no one person understands the complete data needs of an application. The database
designer must interact with users of the application to understand the needs of the
application, represent them in a high-level fashion that can be understood by the
users, and then translate the requirements into lower levels of the design. A high-
level data model serves the database designer by providing a conceptual framework
in which to specify, in a systematic fashion, the data requirements of the database
users, and a database structure that fulfills these requirements.

e The initial phase of database design is to characterize fully the data needs of
the prospective database users. The database designer needs to interact exten-
sively with domain experts and users to carry out this task. The outcome of
this phase is a specification of user requirements. While there are techniques
for diagrammatically representing user requirements, in this chapter we re-
strict ourselves to textual descriptions of user requirements, which we illus-
trate later in Section 6.8.2.

o Next, the designer chooses a data model and, by applying the concepts of the
chosen data model, translates these requirements into a conceptual schema
of the database. The schema developed at this conceptual-design phase pro-
vides a detailed overview of the enterprise. The entity-relationship model,
which we study in the rest of this chapter, is typically used to represent the
conceptual design. Stated in terms of the entity-relationship model, the con-
ceptual schema specifies the entities that are represented in the database, the
attributes of the entities, the relationships between the entities, and constraints
on the entities and relationships. Typically, the conceptual-design phase re-
sults in the creation of an entity-relationship diagram that provides a graphic
representation of the schema.

The designer reviews the schema to confirm that all data requirements are
indeed satisfied and are not in conflict with one another. She can also exam-
ine the design to remove any redundant features. Her focus at this point is
describing the data and their relationships, rather than on specifying physical
storage details.

e A fully developed conceptual schema also indicates the functional require-
ments of the enterprise. In a specification of functional requirements, users
describe the kinds of operations (or transactions) that will be performed on
the data. Example operations include modifying or updating data, searching
for and retrieving specific data, and deleting data. At this stage of concep-
tual design, the designer can review the schema to ensure it meets functional
requirements.

6.1 Overview of the Design Process 203

e The process of moving from an abstract data model to the implementation of
the database proceeds in two final design phases.

U In the logical-design phase, the designer maps the high-level concep-
tual schema onto the implementation data model of the database system
that will be used. The implementation data model is typically the rela-
tional data model, and this step typically consists of mapping the concep-
tual schema defined using the entity-relationship model into a relation
schema.

U Finally, the designer uses the resulting system-specific database schema in
the subsequent physical-design phase, in which the physical features of
the database are specified. These features include the form of file organiza-
tion and the internal storage structures; they are discussed in Chapter 11.

The physical schema of a database can be changed relatively easily after an appli-
cation has been built. However, changes to the logical schema are usually harder to
carry out, since they may affect a number of queries and updates scattered across ap-
plication code. It is therefore important to carry out the database design phase with
care, before building the rest of the database application.

6.1.2 Design Alternatives

A major part of the database design process is deciding how to represent in the design
the various types of “things™ such as people, places, products, and the like. We use
the term entity to refer to any such distinctly identifiable item. These various entities
have certain commonalities as well as differences. We wish to exploit commonalities
to have a succinct, easily understood design, yet need to retain the flexibility to rep-
resent distinctions among entities that exist at design time or that may materialize in
the future. The various entities are related to each other in a variety of ways, all of
which need to be captured in the database design.

In designing a database schema, we must ensure that we avoid two major pitfalls:

1. Redundancy: A bad design may repeat information. In the bank example we
have used so far, we have a relation with customer information and a separate
relation with account information. Suppose that instead we repeated all of
the customer information (name, address, etc.) once for each account or loan
that the customer has. Clearly, that would be redundant. Ideally, information
should appear in exactly one place.

2. Incompleteness: A bad design may make certain aspects of the enterprise dif-
ficult or impossible to model. For example, suppose we used a database de-
sign for our bank scenario that stores customer name and address information
with each account and loan, but does not have a separate customer relation. It
would then be impossible to enter a new customer’s name and address unless
that customer has already opened an account or taken out a loan. We might
try to make do with the problematic design by storing null values for account

204

Chapter 6 Database Design and the E-R Model

or loan information, such as account number or amount. Such a work-around
is not only unattractive, but may be prevented by primary-key constraints.

Avoiding bad designs is not enough. There may be a large number of good designs
from which we must choose. As a simple example, consider a customer who buys
a product. Is the sale of this product a relationship between the customer and the
product? Alternatively, is the sale itself an entity that is related both to the customer
and to the product? This choice, though simple, may make an important difference
in what aspects of the enterprise can be modeled well. Considering the need to make
choices such as this for the large number of entities and relationships in a real-world
enterprise, it is not hard to see that database design can be a challenging problem.
Indeed we shall see that it requires a combination of both science and “good taste.”

6.2 The Entity-Relationship Model

The entity-relationship (E-R) data model was developed to facilitate database design
by allowing specification of an enterprise schema that represents the overall logical
structure of a database. The E-R data model is one of several semantic data models;
the semantic aspect of the model lies in its representation of the meaning of the data.
The E-R model is very useful in mapping the meanings and interactions of real-world
enterprises onto a conceptual schema. Because of this usefulness, many database-
design tools draw on concepts from the E-R model. The E-R data model employs
three basic notions: entity sets, relationship sets, and attributes.

6.2.1 Entity Sets

An entity is a “thing” or “object” in the real world that is distinguishable from all
other objects. For example, each person in an enterprise is an entity. An entity has
a set of properties, and the values for some set of properties may uniquely identify
an entity. For instance, a person may have a person_id property whose value uniquely
identifies that person. Thus, the value 677-89-9011 for person_id would uniquely iden-
tify one particular person in the enterprise. Similarly, loans can be thought of as enti-
ties, and loan number L-15 at the Perryridge branch uniquely identifies a loan entity.
An entity may be concrete, such as a person or a book, or it may be abstract, such as
a loan, a holiday, or a concept.

An entity set is a set of entities of the same type that share the same properties, or
attributes. The set of all persons who are customers at a given bank, for example, can
be defined as the entity set customer. Similarly, the entity set loan might represent the
set of all loans awarded by a particular bank. The individual entities that constitute a
set are said to be the extension of the entity set. Thus, all the individual bank customers
are the extension of the entity set customer.

Entity sets do not need to be disjoint. For example, it is possible to define the entity
set of all employees of a bank (employee) and the entity set of all customers of the bank
(customer). A person entity may be an employee entity, a customer entity, both, or neither.

6.2 The Entity-Relationship Model =~ 205

321-12-3123 [Jones | Main | Harrison L-17] 1000
019-28-3746 [Smith | North |Rye L-23| 2000
677-89-9011 [Hayes |Main |Harrison L-15] 1500]
555-55-5555 [Jackson | Dupont| Woodside L-14 | 1500
244-66-8800 |Curry | North |Rye L19| 500
963-96-3963| Williams| Nassau | Princeton L-11] 900
335577991 [Adams | Spring | Pittsfield 16 1300]
customer loan

Figure 6.1 Entity sets customer and loan.

An entity is represented by a set of attributes. Attributes are descriptive properties
possessed by each member of an entity set. The designation of an attribute for an en-
tity set expresses that the database stores similar information concerning each entity
in the entity set; however, each entity may have its own value for each attribute. Pos-
sible attributes of the customer entity set are customer.id, customer_name, customer.street,
and customer.city. In real life, there would be further attributes, such as street num-
ber, apartment number, state, postal code, and country, but we omit them to keep our
examples simple. Possible attributes of the loan entity set are loan_number and amount.

Each entity has a value for each of its attributes. For instance, a particular customer
entity may have the value 321-12-3123 for customer.id, the value Jones for customer
_name, the value Main for customer._street, and the value Harrison for customer_city.

The customer-id attribute is used to identify customers uniquely, since there may
be more than one customer with the same name, street, and city. In the United States,
many enterprises find it convenient to use the social-security number of a person!
as an attribute whose value uniquely identifies the person. In general the enterprise
would have to create and assign a unique identifier for each customer.

A database thus includes a collection of entity sets, each of which contains any
number of entities of the same type. Figure 6.1 shows part of a bank database that
consists of two entity sets: customer and loan.

A database for a banking enterprise may include a number of other entity sets.
For example, in addition to keeping track of customers and loans, the bank also pro-
vides accounts, which are represented by the entity set account with attributes account

1. In the United States, the government assigns to each person in the country a unique number, called a
social-security number, to identify that person uniquely. Each person is supposed to have only one social-
security number, and no two people are supposed to have the same social-security number.

206

Chapter 6 Database Design and the E-R Model

301-12.3123 | Jones | Main | Harrison L-17 | 1000

019-28-3746 | Smith | North | Rye / 123 (2000

677-89-9011 | Hayes | Main | Harrison L-15 {1500

555-55-5555 | Jackson | Dupont Woodside /\ L-14 {1500

244-66-8300 | Curry | North | Rye L-19 | 500

963-96-3963 |Williams | Nassau | Princeton] N L-11 | 900

335-57-7991 | Adams | Spring | Pittsfield L-16 | 1300
customer loan

Figure 6.2 Relationship set borrower.

_number and balance. Also, if the bank has a number of different branches, then we
may keep information about all the branches of the bank. Each branch entity set may
be described by the attributes branch_name, branch city, and assefs.

6.2.2 Relationship Sets

A relationship is an association among several entities. For example, we can define
a relationship that associates customer Hayes with loan L-15. This relationship spec-
ifies that Hayes is a customer with loan number L-15.

A relationship set is a set of relationships of the same type. Formally, it is a math-
ematical relation on n > 2 (possibly nondistinct) entity sets. If Ey, Es,...,E, are
entity sets, then a relationship set R is a subset of

{(e1,€2,.--,€n) | €1 € Br,ea € Bn,...,e, € By}

where (e, e, . . ., €,) is a relationship.

Consider the two entity sets customer and loan in Figure 6.1. We define the rela-
tionship set borrower to denote the association between customers and the bank loans
that the customers have. Figure 6.2 depicts this association.

As another example, consider the two entity sets loan and branch. We can define
the relationship set loan_branch to denote the association between a bank loan and the
branch in which that loan is maintained.

The association between entity sets is referred to as participation; that is, the entity
sets By, Es,..., E, participate in relationship set R. A relationship instance in an
E-R schema represents an association between the named entities in the real-world

6.2 The Entity-Relationship Model ~ 207

enterprise that is being modeled. As an illustration, the individual customer entity
Hayes, who has customer identifier 677-89-9011, and the loan entity L-15 participate
in a relationship instance of borrower. This relationship instance represents that, in the
real-world enterprise, the person called Hayes who holds customer.id 677-89-9011 has
taken the loan that is numbered L-15.

The function that an entity plays in a relationship is called that entity’s role. Since
entity sets participating in a relationship set are generally distinct, roles are implicit
and are not usually specified. However, they are useful when the meaning of a re-
lationship needs clarification. Such is the case when the entity sets of a relationship
set are not distinct; that is, the same entity set participates in a relationship set more
than once, in different roles. In this type of relationship set, sometimes called a re-
cursive relationship set, explicit role names are necessary to specify how an entity
participates in a relationship instance. For example, consider an entity set employee
that records information about all the employees of the bank. We may have a rela-
tionship set works_for that is modeled by ordered pairs of employee entities. The first
employee of a pair takes the role of worker, whereas the second takes the role of man-
ager. In this way, all relationships of works for are characterized by (worker, manager)
pairs; (manager, worker) pairs are excluded.

A relationship may also have attributes called descriptive attributes. Consider a
relationship set depositor with entity sets customer and account. We could associate the
attribute access date to that relationship to specify the most recent date on which a cus-
tomer accessed an account. The depositor relationship among the entities correspond-
ing to customer Jones and account A-217 has the value “23 May 2001 for attribute
accessdate, which means that the most recent date that Jones accessed account A-217
was 23 May 2001.

Figure 6.3 shows the relationship set depositor with a descriptive attribute access
-date; to keep the figure simple, only some of the attributes of the two entity sets
are shown.

As another example of descriptive attributes for relationships, suppose we have
entity sets student and course which participate in a relationship set registered._for. We
may wish to store a descriptive attribute for_credit with the relationship, to record
whether a student has taken the course for credit, or is auditing (or sitting in on) the
course.

A relationship instance in a given relationship set must be uniquely identifiable
from its participating entities, without using the descriptive attributes. To understand
this point, suppose we want to model all the dates when a customer accessed an
account. The single-valued attribute access_date can store a single access date only. We
cannot represent multiple access dates by multiple relationship instances between the
same customer and account, since the relationship instances would not be uniquely
identifiable using only the participating entities. The right way to handle this case is
to create a multivalued attribute access.dates, which can store all the access dates.

However, there can be more than one relationship set involving the same entity
sets. In our example, the customer and loan entity sets participate in the relationship
set borrower. Additionally, suppose each loan must have another customer who serves
as a guarantor for the loan. Then the customer and loan entity sets may participate in
another relationship set, guarantor.

208

Chapter 6

Database Design and the E-R Model

depositor(access_date)

account(account_number)

customer(customer_name) 24 May 2005 —

3 June 2005

21 June 2005
Smith

10 June 2005
Hayes

17 June 2005

— 28 May 2005

28 May 2005

= =
g g

Lindsay

24 June 2005

23 May 2005

Figure 6.3 Access.date as attribute of the depositor relationship set.

The relationship sets borrower and loan_branch provide an example of a binary rela-
tionship set—that is, one that involves two entity sets. Most of the relationship sets in
a database system are binary. Occasionally, however, relationship sets involve more
than two entity sets.

As an example, consider the entity sets employee, branch, and job. Examples of job
entities could include manager, teller, auditor, and so on. Job entities may have the
attributes title and level. The relationship set works.on among employee, branch, and
job is an example of a ternary relationship. A ternary relationship among Jones, Per-
ryridge, and manager indicates that Jones acts as a manager at the Perryridge branch.
Jones could also act as auditor at the Downtown branch, which would be represented
by another relationship. Yet another relationship could be among Smith, Downtown,
and teller, indicating Smith acts as a teller at the Downtown branch.

The number of entity sets that participate in a relationship set is also the degree of
the relationship set. A binary relationship set is of degree 2; a ternary relationship set
is of degree 3.

6.2.3 Attributes

For each attribute, there is a set of permitted values, called the domain, or value set,
of that attribute. The domain of attribute customer-name might be the set of all text
strings of a certain length. Similarly, the domain of attribute loan_number might be the
set of all strings of the form “L-n” where n is a positive integer.

Formally, an attribute of an entity set is a function that maps from the entity set
into a domain. Since an entity set may have several attributes, each entity can be de-

6.2 The Entity-Relationship Model 209

Composite name address
Attributes
first_name middle_initial last_name street city state postal_code
Component
Attributes

street_number street_name apartment_number
Figure 6.4 Composite attributes customer_name and customer address.

scribed by a set of (attribute, data value) pairs, one pair for each attribute of the entity
set. For example, a particular customer entity may be described by the set {(customer
-id, 677-89-9011), (customer_name, Hayes), (customer.street, Main), (customer_city, Har-
rison)}, meaning that the entity describes a person named Hayes whose customer
identifier is 677-89-9011 and who resides at Main Street in Harrison. We can see, at
this point, an integration of the abstract schema with the actual enterprise being mod-
eled. The attribute values describing an entity will constitute a significant portion of
the data stored in the database.

An attribute, as used in the E-R model, can be characterized by the following at-
tribute types.

e Simple and composite attributes. In our examples thus far, the attributes have
been simple; that is, they have not been divided into subparts. Composite
attributes, on the other hand, can be divided into subparts (that is, other at-
tributes). For example, an attribute name could be structured as a composite
attribute consisting of first name, middle_initial, and last_name. Using composite
attributes in a design schema is a good choice if a user will wish to refer to an
entire attribute on some occasions, and to only a component of the attribute
on other occasions. Suppose we were to substitute for the customer entity-set
attributes customer street and customer_city the composite attribute address with
the attributes street, city, state, and zip_.code.> Composite attributes help us to
group together related attributes, making the modeling cleaner.

Note also that a composite attribute may appear as a hierarchy. In the com-
posite attribute address, its component attribute street can be further divided
into street_number, street name, and apartment_number. Figure 6.4 depicts these
examples of composite attributes for the customer entity set.

e Single-valued and multivalued attributes. The attributes in our examples all
have a single value for a particular entity. For instance, the loan_number at-
tribute for a specific loan entity refers to only one loan number. Such attributes
are said to be single valued. There may be instances where an attribute has

2. We assume the address format used in the United States, which includes a numeric postal code called
a zip code.

210

Chapter 6 Database Design and the E-R Model

a set of values for a specific entity. Consider an employee entity set with the
attribute phone_number. An employee may have zero, one, or several phone
numbers, and different employees may have different numbers of phones.
This type of attribute is said to be multivalued. As another example, an at-
tribute dependent_name of the employee entity set would be multivalued, since
any particular employee may have zero, one, or more dependent(s).

Where appropriate, upper and lower bounds may be placed on the number
of values in a multivalued attribute. For example, a bank may limit the num-
ber of phone numbers recorded for a single customer to two. Placing bounds
in this case expresses that the phone_number attribute of the customer entity set
may have between zero and two values.

e Derived attribute. The value for this type of attribute can be derived from
the values of other related attributes or entities. For instance, let us say that
the customer entity set has an attribute loans_held, which represents how many
loans a customer has from the bank. We can derive the value for this attribute
by counting the number of loan entities associated with that customer.

As another example, suppose that the customer entity set has an attribute age
that indicates the customer’s age. If the customer entity set also has an attribute
date_of birth, we can calculate age from date_of birth and the current date. Thus,
age is a derived attribute. In this case, date.of birth may be referred to as a base
attribute, or a stored attribute. The value of a derived attribute is not stored but
is computed when required.

An attribute takes a null value when an entity does not have a value for it. The
null value may indicate “not applicable” —that is, that the value does not exist for the
entity. For example, one may have no middle name. Null can also designate that an
attribute value is unknown. An unknown value may be either missing (the value does
exist, but we do not have that information) or not known (we do not know whether or
not the value actually exists).

For instance, if the name value for a particular customer is null, we assume that the
value is missing, since every customer must have a name. A null value for the apart-
ment_number attribute could mean that the address does not include an apartment
number (not applicable), that an apartment number exists but we do not know what
it is (missing), or that we do not know whether or not an apartment number is part
of the customer’s address (unknown).

6.3 Constraints

An E-R enterprise schema may define certain constraints to which the contents of
a database must conform. In this section, we examine mapping cardinalities, key
constraints, and participation constraints.

6.3.1 Mapping Cardinalities

Mapping cardinalities, or cardinality ratios, express the number of entities to which
another entity can be associated via a relationship set.

6.3 Constraints 21

(a) (b)

Figure 6.5 Mapping cardinalities. (a) One-to-one. (b) One-to-many.

Mapping cardinalities are most useful in describing binary relationship sets, al-
though they can contribute to the description of relationship sets that involve more
than two entity sets. In this section, we shall concentrate on only binary relationship
sets.

For a binary relationship set R between entity sets A and B, the mapping cardinal-
ity must be one of the following;:

® One-to-one. An entity in A is associated with af most one entity in B, and an
entity in B is associated with at most one entity in A. (See Figure 6.5a.)

e One-to-many. An entity in A is associated with any number (zero or more) of
entities in B. An entity in B, however, can be associated with af most one entity
in A. (See Figure 6.5b.)

e Many-to-one. An entity in A is associated with at most one entity in B. An
entity in B, however, can be associated with any number (zero or more) of
entities in A. (See Figure 6.6a.)

° Many-to-many. An entity in A is associated with any number (zero or more)
of entities in B, and an entity in B is associated with any number (zero or more)
of entities in A. (See Figure 6.6b.)

The appropriate mapping cardinality for a particular relationship set obviously de-
pends on the real-world situation that the relationship set is modeling.

As an illustration, consider the borrower relationship set. If, in a particular bank, a
loan can belong to only one customer, and a customer can have several loans, then the
relationship set from customer to loan is one-to-many. If a loan can belong to several
customers (as can loans taken jointly by several business partners), the relationship
set is many-to-many. Figure 6.2 depicts this type of relationship.

212

Chapter 6 Database Design and the E-R Model

A
- ' -
_

& T b

Figure 6.6 Mapping cardinalities. (a) Many-to-one. (b) Many-to-many.

6.3.2 Keys

We must have a way to specify how entities within a given entity set are distin-
guished. Conceptually, individual entities are distinct; from a database perspective,
however, the difference among them must be expressed in terms of their attributes.

Therefore, the values of the attribute values of an entity must be such that they can
uniquely identify the entity. In other words, no two entities in an entity set are allowed
to have exactly the same value for all attributes.

A key allows us to identify a set of attributes that suffice to distinguish entities
from each other. Keys also help uniquely identify relationships, and thus distinguish
relationships from each other. Recall the definition of keys for relations, from Sec-
tion 2.1.3; we now define corresponding notions of keys for entities and relationships.

6.3.2.1 Entity Sets

A superkey is a set of one or more attributes that, taken collectively, allow us to iden-
tify uniquely an entity in the entity set. For example, the customer-id attribute of the
entity set customer is sufficient to distinguish one customer entity from another. Thus,
customer.id is a superkey. Similarly, the combination of customer.name and customer-id
is a superkey for the entity set customer. The customer_name attribute of customer is not
a superkey, because several people might have the same name.

The concept of a superkey is not sufficient for our purposes, since, as we saw, a
superkey may contain extraneous attributes. If K is a superkey, then so is any superset
of K. We are often interested in superkeys for which no proper subset is a superkey.
Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate key.
Suppose that a combination of customer_-name and customer street is sufficient to dis-
tinguish among members of the customer entity set. Then, both {customer-id} and
{customer_name, customer_street} are candidate keys. Although the attributes customer
id and customer.name together can distinguish customer entities, their combination
does not form a candidate key, since the attribute customer_id alone is a candidate key.

6.3 Constraints 213

We shall use the term primary key to denote a candidate key that is chosen by
the database designer as the principal means of identifying entities within an entity
set. A key (primary, candidate, and super) is a property of the entity set, rather than
of the individual entities. Any two individual entities in the set are prohibited from
having the same value on the key attributes at the same time. The designation of a
key represents a constraint in the real-world enterprise being modeled.

Candidate keys must be chosen with care. As we noted, the name of a person is
obviously not sufficient, because there may be many people with the same name.
In the United States, the social-security number attribute of a person would be a
candidate key. Since non-U.S. residents usually do not have social-security numbers,
international enterprises must generate their own unique identifiers. An alternative
is to use some unique combination of other attributes as a key.

The primary key should be chosen such that its attributes are never, or very rarely,
changed. For instance, the address field of a person should not be part of the primary
key, since it is likely to change. Social-security numbers, on the other hand, are guar-
anteed to never change. Unique identifiers generated by enterprises generally do not
change, except if two enterprises merge; in such a case the same identifier may have
been issued by both enterprises, and a reallocation of identifiers may be required to
make sure they are unique.

6.3.2.2 Relationship Sets

The primary key of an entity set allows us to distinguish among the various entities of
the set. We need a similar mechanism to distinguish among the various relationships
of a relationship set.

Let R be a relationship set involving entity sets £y, E,..., E,. Let primary-key(E;)
denote the set of attributes that forms the primary key for entity set ;. Assume
for now that the attribute names of all primary keys are unique, and each entity set
participates only once in the relationship. The composition of the primary key for a
relationship set depends on the set of attributes associated with the relationship set
R.

If the relationship set R has no attributes associated with it, then the set of at-
tributes

primary-key(Ey) U primary-key(Es) U - - - U primary-key(E,,)
describes an individual relationship in set R.
If the relationship set R has attributes a;, as, . . . , a,, associated with it, then the set
of attributes

primary-key(Ey) U primary-key(E) U - - - U primary-key(E,) U {a1,az,...,am}

describes an individual relationship in set R.
In both of the above cases, the set of attributes

primary-key(E1) U primary-key(Es) U - - - U primary-key(E,,)

214

Chapter 6 Database Design and the E-R Model

forms a superkey for the relationship set.

In case the attribute names of primary keys are not unique across entity sets, the
attributes are renamed to distinguish them; the name of the entity set combined with
the name of the attribute would form a unique name. In case an entity set participates
more than once in a relationship set (as in the works_for relationship in Section 6.2.2),
the role name is used instead of the name of the entity set, to form a unique attribute
name.

The structure of the primary key for the relationship set depends on the map-
ping cardinality of the relationship set. As an illustration, consider the entity sets
customer and account, and the relationship set depositor, with attribute access_date, in
Section 6.2.2. Suppose that the relationship set is many-to-many. Then the primary
key of depositor consists of the union of the primary keys of customer and account.
However, if a customer can have only one account—that is, if the depositor relation-
ship is many-to-one from customer to account—then the primary key of depositor is
simply the primary key of customer. Similarly, if the relationship is many-to-one from
account to customer—that is, each account is owned by at most one customer—then
the primary key of depositor is simply the primary key of account. For one-to-one re-
lationships either primary key can be used.

For nonbinary relationships, if no cardinality constraints are present then the su-
perkey formed as described earlier in this section is the only candidate key, and it
is chosen as the primary key. The choice of the primary key is more complicated if
cardinality constraints are present. Since we have not discussed how to specify cardi-
nality constraints on nonbinary relations, we do not discuss this issue further in this
chapter. We consider the issue in more detail in Section 7.4.

6.3.3 Participation Constraints

The participation of an entity set E in a relationship set R is said to be total if every
entity in E participates in at least one relationship in R. If only some entities in £
participate in relationships in R, the participation of entity set ' in relationship R is
said to be partial. For example, we expect every loan entity to be related to at least
one customer through the borrower relationship. Therefore the participation of loan in
the relationship set borrower is total. In contrast, an individual can be a bank customer
whether or not she has a loan with the bank. Hence, it is possible that only some of
the customer entities are related to the loan entity set through the borrower relationship,
and the participation of customer in the borrower relationship set is therefore partial.

6.4 Entity-Relationship Diagrams

As we saw briefly in Section 1.3.3, an E-R diagram can express the overall logical
structure of a database graphically. E-R diagrams are simple and clear—qualities
that may well account in large part for the widespread use of the E-R model. Such
a diagram consists of the following major components:

e Rectangles, which represent entity sets

e Ellipses, which represent attributes

6.4 Entity-Relationship Diagrams 215

e Diamonds, which represent relationship sets

Lines, which link attributes to entity sets and entity sets to relationship sets

Double ellipses, which represent multivalued attributes

e Dashed ellipses, which denote derived attributes

Double lines, which indicate total participation of an entity in a relation-
ship set

Double rectangles, which represent weak entity sets (described later, in Sec-
tion 6.6)

Consider the entity-relationship diagram in Figure 6.7, which consists of two en-
tity sets, customer and loan, related through a binary relationship set borrower. The
attributes associated with customer are customer_id, customer_name, customer_street, and
customer city. The attributes associated with loan are loan_number and amount. In Fig-
ure 6.7, attributes of an entity set that are members of the primary key are underlined.

The relationship set borrower may be many-to-many, one-to-many, many-to-one,
or one-to-one. To distinguish among these types, we draw either a directed line (—)
or an undirected line (—) between the relationship set and the entity set in question.

e A directed line from the relationship set borrower to the entity set loan speci-
fies that borrower is either a one-to-one or many-to-one relationship set, from
customer to loan; borrower cannot be a many-to-many or a one-to-many rela-
tionship set from customer to loan.

¢ Anundirected line from the relationship set borrower to the entity set loan spec-
ifies that borrower is either a many-to-many or one-to-many relationship set
from customer to loan.

Returning to the E-R diagram of Figure 6.7, we see that the relationship set borrower
is many-to-many. If the relationship set borrower were one-to-many, from customer to
loan, then the line from borrower to customer would be directed, with an arrow point-
ing to the customer entity set (Figure 6.8a). Similarly, if the relationship set borrower
were many-to-one from customer to loan, then the line from borrower to loan would

customer_name) Ccustomer_streef loan_number
customer_id

customer

loan

" borrower

Figure 6.7 E-R diagram corresponding to customers and loans.

216

Chapter6 Database Design and the E-R Model

have an arrow pointing to the loan entity set (Figure 6.8b). Finally, if the relationship
set borrower were one-to-one, then both lines from borrower would have arrows: one
pointing to the loan entity set and one pointing to the customer entity set (Figure 6.8¢).

If a relationship set has also some attributes associated with it, then we link these
attributes to that relationship set. For example, in Figure 6.9, we have the access._date
descriptive attribute attached to the relationship set depositor to specify the most re-
cent date on which a customer accessed that account.

Figure 6.10 shows how composite attributes can be represented in the E-R notation.
Here, a composite attribute name, with component attributes first.name, middle_initial,
and last_name replaces the simple attribute customer_name of customer. Also, a compos-

customer_street
customer—_city > 4

bormw 2 i

customer_nanie
customer_id

custoner

loan

(a)

customer_stree loan_number
customer_city D A >\

(borrower

customer_name
customer_id

customer

loan

(b)

customer_name) (customer_stree loan_number

customer_id

customer

loan

(c)

Figure 6.8 Relationships. (a) One-to-many. (b) Many-to-one. (c) One-to-one.

6.4 Entity-Relationship Diagrams 217

access_date
account_number

customer_name) (Customer_stree
customer._id customer_city> £

customer

account

Figure 6.9 E-R diagram with an attribute attached to a relationship set.

ite attribute address, whose component attributes are street, city, state, and zip_code re-
places the attributes customer_street and customer.city of customer. The attribute street is
itself a composite attribute whose component attributes are street_number, street_name,
and apartment_number.

Figure 6.10 also illustrates a multivalued attribute phone_number, depicted by a
double ellipse, and a derived attribute age, depicted by a dashed ellipse.

We indicate roles in E-R diagrams by labeling the lines that connect diamonds
to rectangles. Figure 6.11 shows the role indicators manager and worker between the
employee entity set and the works._for relationship set.

Nonbinary relationship sets can be specified easily in an E-R diagram. Figure 6.12
consists of the three entity sets employee, job, and branch, related through the relation-
ship set works_on.

We can specify some types of many-to-one relationships in the case of nonbinary
relationship sets. Suppose an employee can have at most one job in each branch (for

street_name
apartment_number

middle_initial

street_number

date_of birth > < A8¢

Figure 6.10 E-R diagram with composite, multivalued, and derived attributes.

218 Chapter6 Database Design and the E-R Model

employee_city

S elephone_number

manager

worker

Figure 6.11 E-R diagram with role indicators.

example, Jones cannot be a manager and an auditor at the same branch). This con-
straint can be specified by an arrow pointing to job on the edge from works_on.

We permit at most one arrow out of a relationship set, since an E-R diagram with
two or more arrows out of a nonbinary relationship set can be interpreted in two
ways. Suppose there is a relationship set R between entity sets A1, As, ..., An, and the
only arrows are on the edges to entity sets Aig1, Aita, ..., An. Then, the two possible
interpretations are:

1. A particular combination of entities from Ay, As, .. ., A; can be associated with
at most one combination of entities from A;.1, Aj1a, ..., An. Thus, the pri-
mary key for the relationship R can be constructed by the union of the primary
keys of Aj, Az,..., A;.

2. For each entity set Ag, i < k < n, each combination of the entities from the
other entity sets can be associated with at most one entity from Aj. Each set
{A1,As, ..., Ax—1,Ak+1,- .-, An}, fori < k < n, then forms a candidate key.

Each of these interpretations has been used in different books and systems. To avoid
confusion, we permit only one arrow out of a relationship set, in which case the two

employee_id

employee_city

branch_city

Ttelephone_number

Figure 6.12 E-R diagram with a ternary relationship.

6.4 Entity-Relationship Diagrams 219

customer_street
customer_city

custonier_name
customer_id

>

Figure 6.13 Total participation of an entity set in a relationship set.

interpretations are equivalent. In Chapter 7 (Section 7.4) we study the notion of func-
tional dependencies, which allow either of these interpretations to be specified in an
unambiguous manner.

Double lines are used in an E-R diagram to indicate that the participation of an
entity set in a relationship set is total; that is, each entity in the entity set occurs in at
least one relationship in that relationship set. For instance, consider the relationship
borrower between customers and loans. A double line from loan to borrower, as in
Figure 6.13, indicates that each loan must have at least one associated customer.

E-R diagrams also provide a way to indicate more complex constraints on the num-
ber of times each entity participates in relationships in a relationship set. An edge
between an entity set and a binary relationship set can have an associated minimum
and maximum cardinality, shown in the form [..h, where [is the minimum and b
the maximum cardinality. A minimum value of 1 indicates total participation of the
entity set in the relationship set. A maximum value of 1 indicates that the entity par-
ticipates in at most one relationship, while a maximum value * indicates no limit.
Note that a label 1..x on an edge is equivalent to a double line.

For example, consider Figure 6.14. The edge between loan and borrower has a car-
dinality constraint of 1..1, meaning the minimum and the maximum cardinality are
both 1. That is, each loan must have exactly one associated customer. The limit 0..%
on the edge from customer to borrower indicates that a customer can have zero or
more loans. Thus, the relationship borrower is one-to-many from customer to loan, and
further the participation of loan in borrower is total.

customer_streef.

customer_naime
customer_id

loan_number amount

Figure 6.14 Cardinality limits on relationship sets.

220

Chapter 6 Database Design and the E-R Model

It is easy to misinterpret the 0..x on the edge between customer and borrower, and
think that the relationship borrower is many-to-one from customer to loan—this is ex-
actly the reverse of the correct interpretation.

If both edges from a binary relationship have a maximum value of 1, the relation-
ship is one-to-one. If we had specified a cardinality limit of 1..+ on the edge between
customer and borrower, we would be saying that each customer must have at least one
loan.

6.5 Entity-Relationship Design Issues

The notions of an entity set and a relationship set are not precise, and it is possible
to define a set of entities and the relationships among them in a number of differ-
ent ways. In this section, we examine basic issues in the design of an E-R database
schema. Section 6.7.4 covers the design process in further detail.

6.5.1 Use of Entity Sets versus Attributes

Consider the entity set employee with attributes employee_id, employee_name, and fele-
phone number. It can easily be argued that a telephone is an entity in its own right
with attributes telephone_number and location; the location may be the office or home
where the telephone is located, with mobile (cell) phones perhaps represented by the
value “mobile.” If we take this point of view, we must redefine the employee entity set
as:

o The employee entity set with attributes employee_id and employee_name
o The telephone entity set with attributes telephone number and location

e The relationship set emp_telephone, denoting the association between employ-
ees and the telephones that they have

These alternatives are shown in Figure 6.15.

What, then, is the main difference between these two definitions of an employee?
Treating a telephone as an attribute telephone.number implies that employees have
precisely one telephone number each. Treating a telephone as an entity telephone per-
mits employees to have several telephone numbers (including zero) associated with
them. However, we could instead easily define telephone_number as a multivalued at-
tribute to allow multiple telephones per employee.

The main difference then is that treating a telephone as an entity better models a
situation where one may want to keep extra information about a telephone, such as
its location, or its type (mobile, video phone, or plain old telephone), or all who share
the telephone. Thus, treating telephone as an entity is more general than treating it
as an attribute and is appropriate when the generality may be useful.

In contrast, it would not be appropriate to treat the attribute employee_name as an
entity; it is difficult to argue that employee.name is an entity in its own right (in contrast

6.5 Entity-Relationship Design Issues 221

employee_city

telephone_number

employee_name

employee_id

(a)

= telephone_number
employee_id

 telephone

(b)

Figure 6.15 Alternatives for employee and telephone.

to the telephone). Thus, it is appropriate to have employee_name as an attribute of the
employee entity set.

Two natural questions thus arise: What constitutes an attribute, and what con-
stitutes an entity set? Unfortunately, there are no simple answers. The distinctions
mainly depend on the structure of the real-world enterprise being modeled, and on
the semantics associated with the attribute in question.

A common mistake is to use the primary key of an entity set as an attribute of an-
other entity set, instead of using a relationship. For example, it is incorrect to model
customer_id as an attribute of loan even if each loan had only one customer. The rela-
tionship borrower is the correct way to represent the connection between loans and
customers, since it makes their connection explicit, rather than implicit via an at-
tribute.

Another related mistake that people sometimes make is to designate the primary-
key attributes of the related entity sets as attributes of the relationship set. For exam-
ple, loan_number (the primary-key attributes of loan) and customer.id (the primary key
of customer) should not appear as attributes of the relationship borrower. This should

222

Chapter 6 Database Design and the E-R Model

loan_numb

customer_name) Customer_street branch_name
customer_id customer—city >

customer

branch

amount

Figure 6.16 loan as a relationship set.

not be done since the primary-key attributes are already implicit in the relationship
set.?

6.5.2 Use of Entity Sets versus Relationship Sets

It is not always clear whether an object is best expressed by an entity set or a rela-
tionship set. In Section 6.2.1, we assumed that a bank loan is modeled as an entity.
An alternative is to model a loan not as an entity, but rather as a relationship between
customers and branches, with loan_number and amount as descriptive attributes, as
shown in Figure 6.16. Each loan is represented by a relationship between a customer
and a branch.

If every loan is held by exactly one customer and is associated with exactly one
branch, we may find satisfactory the design where a loan is represented as a rela-
tionship. However, with this design, we cannot represent conveniently a situation in
which several customers hold a loan jointly. To handle such a situation, we must de-
fine a separate relationship for each holder of the joint loan. Then, we must replicate
the values for the descriptive attributes loan_number and amount in each such relation-
ship. Each such relationship must, of course, have the same value for the descriptive
attributes loan_number and amount.

Two problems arise as a result of the replication: (1) the data are stored multiple
times, wasting storage space, and (2) updates potentially leave the data in an incon-
sistent state, where the values differ in two relationships for attributes that are sup-
posed to have the same value. The issue of how to avoid such replication is treated
formally by normalization theory, discussed in Chapter 7.

The problem of replication of the attributes loan_number and amount is absent in
the original design of Section 6.4, because there loan is an entity set.

3. When we create a relation schema from the E-R schema, the attributes may appear in a table created
from the borrower relationship set, as we shall see later; however, they should not appear in the borrower
relationship set.

6.5 Entity-Relationship Design Issues 223

One possible guideline in determining whether to use an entity set or a relation-
ship set is to designate a relationship set to describe an action that occurs between
entities. This approach can also be useful in deciding whether certain attributes may
be more appropriately expressed as relationships.

6.5.3 Binary versus n-ary Relationship Sets

Relationships in databases are often binary. Some relationships that appear to be
nonbinary could actually be better represented by several binary relationships. For
instance, one could create a ternary relationship parent, relating a child to his/her
mother and father. However, such a relationship could also be represented by two
binary relationships, mother and father, relating a child to his/her mother and father
separately. Using the two relationships mother and father provides us a record of a
child’s mother, even if we are not aware of the father’s identity; a null value would
be required if the ternary relationship parent is used. Using binary relationship sets is
preferable in this case.

In fact, it is always possible to replace a nonbinary (n-ary, for n > 2) relationship
set by a number of distinct binary relationship sets. For simplicity, consider the ab-
stract ternary (n = 3) relationship set R, relating entity sets A, B, and C. We replace
the relationship set R by an entity set I, and create three relationship sets as shown
in Figure 6.17:

® Ry, relating £ and A

e Rp,relating F and B

e R, relating £ and C
If the relationship set & had any attributes, these are assigned to entity set ; further,
a special identifying attribute is created for E (since it must be possible to distinguish
different entities in an entity set on the basis of their attribute values). For each rela-

tionship (a;, bs, ¢;) in the relationship set R, we create a new entity e; in the entity set
E. Then, in each of the three new relationship sets, we insert a relationship as follows:

e (e;,a;)in Ry

Figure 6.17 Ternary relationship versus three binary relationships.

224

Chapter 6 Database Design and the E-R Model

e (63‘, bz') in Rg

® (61‘, Ct') in RC

We can generalize this process in a straightforward manner to n-ary relationship
sets. Thus, conceptually, we can restrict the E-R model to include only binary rela-
tionship sets. However, this restriction is not always desirable.

¢ An identifying attribute may have to be created for the entity set created to
represent the relationship set. This attribute, along with the extra relationship
sets required, increases the complexity of the design and (as we shall see in
Section 6.9) overall storage requirements.

e A n-ary relationship set shows more clearly that several entities participate in
a single relationship.

o There may not be a way to translate constraints on the ternary relationship
into constraints on the binary relationships. For example, consider a constraint
that says that R is many-to-one from A, B to C; that is, each pair of entities
from A and B is associated with at most one C entity. This constraint cannot
be expressed by using cardinality constraints on the relationship sets R4, Rz,
and Rc.

Consider the relationship set works.on in Section 6.2.2, relating employee, branch,
and job. We cannot directly split works.on into binary relationships between employee
and branch and between employee and job. If we did so, we would be able to record
that Jones is a manager and an auditor and that Jones works at Perryridge and Down-
town; however, we would not be able to record that Jones is a manager at Perryridge
and an auditor at Downtown, but is not an auditor at Perryridge or a manager at
Downtown.

The relationship set works.on can be split into binary relationships by creating a
new entity set as described above. However, doing so would not be very natural.

6.5.4 Placement of Relationship Attributes

The cardinality ratio of a relationship can affect the placement of relationship at-
tributes. Thus, attributes of one-to-one or one-to-many relationship sets can be as-
sociated with one of the participating entity sets, rather than with the relationship
set. For instance, let us specify that depositor is a one-to-many relationship set such
that one customer may have several accounts, but each account is held by only one
customer. In this case, the attribute access.date, which specifies when the customer last
accessed that account, could be associated with the account entity set, as Figure 6.18
depicts; to keep the figure simple, only some of the attributes of the two entity sets
are shown. Since each account entity participates in a relationship with at most one
instance of customer, making this attribute designation would have the same meaning
as would placing accessdate with the depositor relationship set. Attributes of a one-to-
many relationship set can be repositioned to only the entity set on the “many” side of

6.6 Weak Entity Sets 225

account (account_number, access_date)
customer (customer_name)

_/defﬂjqu;—f A-101 | 24 May 2005 |
— A-215] 3 June 2005 |
— A-102] 10 June 2005 |
— A-305] 28 May 2005 |
™~ A-201 [17 June 2005 |

><_] A222] 24 June 2005 |
— A-217 | 23 May 2005 |

Figure 6.18 Access.date as attribute of the account entity set.

Johnson

Smith

Hayes

Turner

the relationship. For one-to-one relationship sets, on the other hand, the relationship
attribute can be associated with either one of the participating entities.

The design decision of where to place descriptive attributes in such cases—as a
relationship or entity attribute—should reflect the characteristics of the enterprise
being modeled. The designer may choose to retain access_date as an attribute of depos-
itor to express explicitly that an access occurs at the point of interaction between the
customer and account entity sets.

The choice of attribute placement is more clear-cut for many-to-many relationship
sets. Returning to our example, let us specify the perhaps more realistic case that
depositor is a many-to-many relationship set expressing that a customer may have
one or more accounts, and that an account can be held by one or more customers.
If we are to express the date on which a specific customer last accessed a specific
account, access.date must be an attribute of the depositor relationship set, rather than
either one of the participating entities. If accessdate were an attribute of account, for
instance, we could not determine which customer made the most recent access to a
joint account. When an attribute is determined by the combination of participating
entity sets, rather than by either entity separately, that attribute must be associated
with the many-to-many relationship set. Figure 6.3 depicts the placement of access
date as a relationship attribute; again, to keep the figure simple, only some of the
attributes of the two entity sets are shown.

6.6 Weak Entity Sets

An entity set may not have sufficient attributes to form a primary key. Such an entity
set is termed a weak entity set. An entity set that has a primary key is termed a strong
entity set.

As an illustration, consider the entity set payment, which has the three attributes:
payment_number, payment_date, and payment_amount. Payment numbers are typically
sequential numbers, starting from 1, generated separately for each loan. Thus, al-

226

Chapter 6 Database Design and the E-R Model

though each payment entity is distinct, payments for different loans may share the
same payment number. Thus, this entity set does not have a primary key; it is a weak
entity set.

For a weak entity set to be meaningful, it must be associated with another entity
set, called the identifying or owner entity set. Every weak entity must be associated
with an identifying entity; that is, the weak entity set is said to be existence depen-
dent on the identifying entity set. The identifying entity set is said to own the weak
entity set that it identifies. The relationship associating the weak entity set with the
identifying entity set is called the identifying relationship. The identifying relation-
ship is many-to-one from the weak entity set to the identifying entity set, and the
participation of the weak entity set in the relationship is total.

In our example, the identifying entity set for payment is loan, and a relationship
loan_payment that associates payment entities with their corresponding loan entities is
the identifying relationship.

Although a weak entity set does not have a primary key, we nevertheless need a
means of distinguishing among all those entities in the weak entity set that depend
on one particular strong entity. The discriminator of a weak entity set is a set of at-
tributes that allows this distinction to be made. For example, the discriminator of the
weak entity set payment is the attribute payment_number, since, for each loan, a pay-
ment number uniquely identifies one single payment for that loan. The discriminator
of a weak entity set is also called the partial key of the entity set.

The primary key of a weak entity set is formed by the primary key of the iden-
tifying entity set, plus the weak entity set’s discriminator. In the case of the entity
set payment, its primary key is {loan_number, payment number}, where loan_number is
the primary key of the identifying entity set, namely loan, and payment_number distin-
guishes payment entities within the same loan.

The identifying relationship set should have no descriptive attributes, since any
required attributes can be associated with the weak entity set (see the discussion of
moving relationship set attributes to participating entity sets in Section 6.3.1).

A weak entity set can participate in relationships other than the identifying re-
lationship. For instance, the payment entity could participate in a relationship with
the account entity set, identifying the account from which the payment was made. A
weak entity set may participate as owner in an identifying relationship with another
weak entity set. It is also possible to have a weak entity set with more than one iden-
tifying entity set. A particular weak entity would then be identified by a combination
of entities, one from each identifying entity set. The primary key of the weak entity
set would consist of the union of the primary keys of the identifying entity sets, plus
the discriminator of the weak entity set.

In E-R diagrams, a doubly outlined box indicates a weak entity set, and a dou-
bly outlined diamond indicates the corresponding identifying relationship. In Fig-
ure 6.19, the weak entity set payment depends on the strong entity set loan via the
relationship set loan_payment.

The figure also illustrates the use of double lines to indicate total participation—the
participation of the (weak) entity set payment in the relationship loan_payment is total,
meaning that every payment must be related via loan_payment to some loan. Finally,
the arrow from loan_payment to loan indicates that each payment is for a single loan.

6.7 Extended E-R Features 227

payment_amount

Figure 6.19 E-R diagram with a weak entity set.

The discriminator of a weak entity set also is underlined, but with a dashed, rather
than a solid, line.

In some cases, the database designer may choose to express a weak entity set as
a multivalued composite attribute of the owner entity set. In our example, this alter-
native would require that the entity set loan have a multivalued, composite attribute
payment, consisting of payment number, payment date, and paymentamount. A weak en-
tity set may be more appropriately modeled as an attribute if it participates in only
the identifying relationship, and if it has few attributes. Conversely, a weak entity set
representation will more aptly model a situation where the set participates in rela-
tionships other than the identifying relationship, and where the weak entity set has
several attributes.

As another example of an entity set that can be modeled as a weak entity set,
consider offerings of a course at a university. The same course may be offered in
different semesters, and within a semester there may be several sections for the same
course. Thus we can create a weak entity set course.offering, existence dependent on
course; different offerings of the same course are identified by a semester and a section
-number, which form a discriminator but not a primary key.

6.7 Extended E-R Features

Although the basic E-R concepts can model most database features, some aspects of a
database may be more aptly expressed by certain extensions to the basic E-R model.
In this section, we discuss the extended E-R features of specialization, generalization,
higher- and lower-level entity sets, attribute inheritance, and aggregation.

6.7.1 Specidalization

An entity set may include subgroupings of entities that are distinct in some way
from other entities in the set. For instance, a subset of entities within an entity set
may have attributes that are not shared by all the entities in the entity set. The E-R
model provides a means for representing these distinctive entity groupings.

228

Chapter 6 Database Design and the E-R Model

As an example, consider an entity set person, with attributes person_id, name, street,
and city. A person may be further classified as one of the following:

e customer

o employee

Each of these person types is described by a set of attributes that includes all the
attributes of entity set person plus possibly additional attributes. For example, cus-
tomer entities may be described further by an attribute credit_rating, whereas employee
entities may be described further by the attribute salary. The process of designating
subgroupings within an entity set is called specialization. The specialization of per-
son allows us to distinguish among persons according to whether they are employees
or customers: in general, a person could be an employee, a customer, both, or neither.

As another example, suppose the bank wishes to divide accounts into two cat-
egories, checking account and savings account. Savings accounts need a minimum
balance, but the bank may set interest rates differently for different customers, offer-
ing better rates to favored customers. Checking accounts have a fixed interest rate,
but offer an overdraft facility; the overdraft amount on a checking account must be
recorded. Each of these account types is described by a set of attributes that includes
all the attributes of the entity set account plus additional attributes.

The bank could create two specializations of account, namely savings.account and
checking.account. As we saw earlier, account entities are described by the attributes ac-
count_number and balance. The entity set savings.account would have all the attributes
of account and an additional attribute interest_rate. The entity set checking account would
have all the attributes of account, and an additional attribute overdraft.amount.

We can apply specialization repeatedly to refine a design scheme. For instance,
bank employees may be further classified as one of the following:

o officer

o teller

e secretary

Each of these employee types is described by a set of attributes that includes all the
attributes of entity set employee plus additional attributes. For example, officer entities
may be described further by the attribute office number, teller entities by the attributes
station_number and hours_per_week, and secretary entities by the attribute hours_per_week.
Further, secretary entities may participate in a relationship secretary._for, which identi-
fies which employees are assisted by a secretary.

An entity set may be specialized by more than one distinguishing feature. In our
example, the distinguishing feature among employee entities is the job the employee
performs. Another, coexistent, specialization could be based on whether the person
is a temporary (limited_term) employee or a permanent employee, resulting in the
entity sets temporary.employee and permanent_employee. When more than one special-
ization is formed on an entity set, a particular entity may belong to multiple spe-

6.7 Extended E-R Features 229

@

person

credit_rating

employee [customer 1

[. officer [L teller] L.secr_etgzry I

ation_nunep hours_worked>

Figure 6.20 Specialization and generalization.

cializations. For instance, a given employee may be a temporary employee who is a
secretary.

In terms of an E-R diagram, specialization is depicted by a triangle component
labeled ISA, as Figure 6.20 shows. The label ISA stands for “is a” and represents, for
example, that a customer “is a” person. The ISA relationship may also be referred to as
a superclass-subclass relationship. Higher- and lower-level entity sets are depicted

as regular entity sets—that is, as rectangles containing the name of the entity set.

6.7.2 Generalization

The refinement from an initial entity set into successive levels of entity subgroupings
represents a top-down design process in which distinctions are made explicit. The de-
sign process may also proceed in a bottom-up manner, in which multiple entity sets
are synthesized into a higher-level entity set on the basis of common features. The
database designer may have first identified a customer entity set with the attributes
customer_id, customer_name, customer.street, customer_city, and credit_rating, and an em-
ployee entity set with the attributes employee.id, employee_name, employee_street, employee
—city, and employee salary.

230

Chapter 6 Database Design and the E-R Model

There are similarities between the customer entity set and the employee entity set
in the sense that they have several attributes that are conceptually the same across
the two entity sets: namely, the identifier, name, street, and city attributes. This com-
monality can be expressed by generalization, which is a containment relationship
that exists between a higher-level entity set and one or more lower-level entity sets. In
our example, person is the higher-level entity set and customer and employee are lower-
level entity sets. In this case, attributes that are conceptually the same had different
names in the two lower-level entity sets. To create a generalization, the attributes
must be given a common name and represented with the higher-level entity person.
We can use the attribute names person_id, name, street, and city, as we saw in the ex-
ample in Section 6.7.1.

Higher- and lower-level entity sets also may be designated by the terms superclass
and subclass, respectively. The person entity set is the superclass of the customer and
employee subclasses.

For all practical purposes, generalization is a simple inversion of specialization.
We will apply both processes, in combination, in the course of designing the E-R
schema for an enterprise. In terms of the E-R diagram itself, we do not distinguish be-
tween specialization and generalization. New levels of entity representation will be
distinguished (specialization) or synthesized (generalization) as the design schema
comes to express fully the database application and the user requirements of the
database. Differences in the two approaches may be characterized by their starting
point and overall goal.

Specialization stems from a single entity set; it emphasizes differences among enti-
ties within the set by creating distinct lower-level entity sets. These lower-level entity
sets may have attributes, or may participate in relationships, that do not apply to all
the entities in the higher-level entity set. Indeed, the reason a designer applies special-
ization is to represent such distinctive features. If customer and employee neither have
attributes that person entities do not have nor participate in different relationships
than those in which person entities participate, there would be no need to specialize
the person entity set.

Generalization proceeds from the recognition that a number of entity sets share
some common features (namely, they are described by the same attributes and par-
ticipate in the same relationship sets). On the basis of their commonalities, generaliza-
tion synthesizes these entity sets into a single, higher-level entity set. Generalization
is used to emphasize the similarities among lower-level entity sets and to hide the
differences; it also permits an economy of representation in that shared attributes are
not repeated.

6.7.3 Attribute Inheritance

A crucial property of the higher- and lower-level entities created by specialization
and generalization is attribute inheritance. The attributes of the higher-level entity
sets are said to be inherited by the lower-level entity sets. For example, customer and
employee inherit the attributes of person. Thus, customer is described by its name, street,
and city attributes, and additionally a customer.id attribute; employee is described by
its name, street, and city attributes, and additionally employee.id and salary attributes.

6.7 Extended E-R Features 231

A lower-level entity set (or subclass) also inherits participation in the relationship
sets in which its higher-level entity (or superclass) participates. The officer, teller, and
secretary entity sets can participate in the works_for relationship set, since the super-
class employee participates in the works for relationship. Attribute inheritance applies
through all tiers of lower-level entity sets. The above entity sets can participate in any
relationships in which the person entity set participates.

Whether a given portion of an E-R model was arrived at by specialization or gen-
eralization, the outcome is basically the same:

e A higher-level entity set with attributes and relationships that apply to all of
its lower-level entity sets

e Lower-level entity sets with distinctive features that apply only within a par-
ticular lower-level entity set

In what follows, although we often refer to only generalization, the properties that
we discuss belong fully to both processes.

Figure 6.20 depicts a hierarchy of entity sets. In the figure, employee is a lower-level
entity set of person and a higher-level entity set of the officer, teller, and secretary entity
sets. In a hierarchy, a given entity set may be involved as a lower-level entity set in
only one ISA relationship; that is, entity sets in this diagram have only single inher-
itance. If an entity set is a lower-level entity set in more than one ISA relationship,
then the entity set has multiple inheritance, and the resulting structure is said to be
a lattice.

6.7.4 Constraints on Generalizations

To model an enterprise more accurately, the database designer may choose to place
certain constraints on a particular generalization. One type of constraint involves
determining which entities can be members of a given lower-level entity set. Such
membership may be one of the following:

e Condition-defined. In condition-defined lower-level entity sets, membership
is evaluated on the basis of whether or not an entity satisfies an explicit condi-
tion or predicate. For example, assume that the higher-level entity set account
has the attribute account_type. All account entities are evaluated on the defin-
ing account_type attribute. Only those entities that satisfy the condition account
-fype = “savings account” are allowed to belong to the lower-level entity set
savings.account. All entities that satisfy the condition account type = “checking
account” are included in checking.account. Since all the lower-level entities are
evaluated on the basis of the same attribute (in this case, on account_type), this
type of generalization is said to be attribute-defined.

o User-defined. User-defined lower-level entity sets are not constrained by a
membership condition; rather, the database user assigns entities to a given
entity set. For instance, let us assume that, after three months of employment,
bank employees are assigned to one of four work teams. We therefore repre-
sent the teams as four lower-level entity sets of the higher-level employee entity

232

Chapter 6 Database Design and the E-R Model

set. A given employee is not assigned to a specific team entity automatically
on the basis of an explicit defining condition. Instead, the user in charge of this
decision makes the team assignment on an individual basis. The assignment
is implemented by an operation that adds an entity to an entity set.

A second type of constraint relates to whether or not entities may belong to more
than one lower-level entity set within a single generalization. The lower-level entity
sets may be one of the following:

e Disjoint. A disjointness constraint requires that an entity belong to no more
than one lower-level entity set. In our example, an account entity can satisfy
only one condition for the account type attribute; an entity can be either a sav-
ings account or a checking account, but cannot be both.

e Overlapping. In overlapping generalizations, the same entity may belong to
more than one lower-level entity set within a single generalization. For an
illustration, consider the employee work team example, and assume that cer-
tain managers participate in more than one work team. A given employee may
therefore appear in more than one of the team entity sets that are lower-level
entity sets of employee. Thus, the generalization is overlapping.

As another example, suppose generalization applied to entity sets customer
and employee leads to a higher-level entity set person. The generalization is
overlapping if an employee can also be a customer.

Lower-level entity overlap is the default case; a disjointness constraint must be placed
explicitly on a generalization (or specialization). We can note a disjointedness con-
straint in an E-R diagram by adding the word disjoint next to the triangle symbol.

A final constraint, the completeness constraint on a generalization or specializa-
tion, specifies whether or not an entity in the higher-level entity set must belong to at
least one of the lower-level entity sets within the generalization/specialization. This
constraint may be one of the following:

o Total generalization or specialization. Each higher-level entity must belong
to a lower-level entity set.

e Partial generalization or specialization. Some higher-level entities may not
belong to any lower-level entity set.

Partial generalization is the default. We can specify total generalization in an E-R dia-
gram by using a double line to connect the box representing the higher-level entity set
to the triangle symbol. (This notation is similar to the notation for total participation
in a relationship.)

The account generalization is total: All account entities must be either a savings
account or a checking account. Because the higher-level entity set arrived at through
generalization is generally composed of only those entities in the lower-level entity
sets, the completeness constraint for a generalized higher-level entity set is usually
total. When the generalization is partial, a higher-level entity is not constrained to

6.7 Extended E-R Features 233

appear in a lower-leve] entity set. The work team entity sets illustrate a partial spe-
cialization. Since employees are assigned to a team only after three months on the
job, some employee entities may not be members of any of the lower-level team entity
sets.

We may characterize the team entity sets more fully as a partial, overlapping spe-
cialization of employee. The generalization of checking.account and savings account into
account is a total, disjoint generalization. The completeness and disjointness con-
straints, however, do not depend on each other. Constraint patterns may also be
partial-disjoint and total-overlapping.

We can see that certain insertion and deletion requirements follow from the con-
straints that apply to a given generalization or specialization. For instance, when a
total completeness constraint is in place, an entity inserted into a higher-level en-
tity set must also be inserted into at least one of the lower-level entity sets. With a
condition-defined constraint, all higher-level entities that satisfy the condition must
be inserted into that lower-level entity set. Finally, an entity that is deleted from a
higher-level entity set also is deleted from all the associated lower-level entity sets to
which it belongs.

6.7.5 Aggregation

One limitation of the E-R model is that it cannot express relationships among rela-
tionships. To illustrate the need for such a construct, consider the ternary relationship
works_.on, which we saw earlier, between a employee, branch, and job (see Figure 6.12).
Now, suppose we want to record managers for tasks performed by an employee at a
branch; that is, we want to record managers for (employee, branch, job) combinations.
Let us assume that there is an entity set manager.

-

branch

_Jmanages

- manager

Figure 6.21 E-R diagram with redundant relationships.

234

Chapter 6 Database Design and the E-R Model

One alternative for representing this relationship is to create a quaternary relation-
ship manages between employee, branch, job, and manager. (A quaternary relationship is
required —a binary relationship between manager and employee would not permit us
to represent which (branch, job) combinations of an employee are managed by which
manager.) Using the basic E-R modeling constructs, we obtain the E-R diagram of
Figure 6.21. (We have omitted the attributes of the entity sets, for simplicity.)

It appears that the relationship sets works.on and manages can be combined into
one single relationship set. Nevertheless, we should not combine them into a single
relationship, since some employee, branch, job combinations may not have a manager.

There is redundant information in the resultant figure, however, since every eni-
ployee, branch, job combination in manages is also in works.on. If the manager were a
value rather than a manager entity, we could instead make manager a multivalued at-
tribute of the relationship works_on. But doing so makes it more difficult (logically as
well as in execution cost) to find, for example, employee-branch-job triples for which
a manager is responsible. Since the manager is a manager entity, this alternative is
ruled out in any case.

The best way to model a situation such as the one just described is to use aggrega-
tion. Aggregation is an abstraction through which relationships are treated as higher-
level entities. Thus, for our example, we regard the relationship set works_on (relating
the entity sets employee, branch, and job) as a higher-level entity set called works.on.
Such an entity set is treated in the same manner as is any other entity set. We can
then create a binary relationship manages between works.on and manager to represent
who manages what tasks. Figure 6.22 shows a notation for aggregation commonly
used to represent this situation.

=]ab —

employee @ branch

manages

nger

Figure 6.22 E-R diagram with aggregation.

6.7 Extended E-R Features 235

6.7.6 Alternative E-R Notations

Figure 6.23 summarizes the set of symbols we have used in E-R diagrams. There is
no universal standard for E-R diagram notation, and different books and E-R diagram
software use different notations.

Figure 6.24 indicates some of the alternative notations that are widely used. An
entity set may be represented as a box with the name outside, and the attributes

- entity set @ attribute
—= multivalued
E weak entity set @ attribute

re]ationship set r: g _Ah il :) derived attribute

identifying total

relationship | participation

set for weak of entity set

entity set in relationship
discriminating

primary key attribute of

weak entity set

many-to-many many-to-one

relationship relationship
one-to _ | cardinality
-one | limits
relationship

: ISA

E |role indicator (specialization or

generalization)
total disjoint
generalization generalization

(disjoint

Figure 6.23 Symbols used in the E-R notation.

236

Chapter 6 Database Design and the E-R Model

E
entity set E with Al
attributes A1, A2, A3 = A2 |
and primary key Al

A3
many-to-many * * S R <
relationship E
one-to-one L R
relationship

R

many-to-one
relationship

7

Figure 6.24 Alternative E-R notations.

listed one below the other within the box. The primary key attributes are indicated
by listing them at the top, with a line separating them from the other attributes.

Cardinality constraints can be indicated in several different ways, as Figure 6.24
shows. The labels * and 1 on the edges out of the relationship are sometimes used for
depicting many-to-many, one-to-one, and many-to-one relationships, as the figure
shows. The case of one-to-many is symmetric to many-to-one, and is not shown. In
another alternative notation in the figure, relationship sets are represented by lines
between entity sets, without diamonds; only binary relationships can be modeled
thus. Cardinality constraints in such a notation are shown by “crow’s-foot” notation,
as in the figure.

Unfortunately, there is no one standard E-R notation. The notation we use in this
book, with boxes, diamonds, and ellipses is called Chen’s notation, and was used
by Chen in his paper that introduced the notion of E-R modeling. The U.S. National
Institute for Standards and Technology defined a standard called IDEF1X in 1993, that
uses the crow’s-foot notation. IDEF1X also includes a variety of other notations that
we have not shown, including vertical bars on the relationship edge to denote total
participation and hollow circles to denote partial participation. There are a variety of
tools for constructing E-R diagrams, each of which has its own notational variants.
See the references in the bibliographic notes for more information.

6.8 Database Design for Banking Enterprise

We now look at the database-design requirements of a banking enterprise in more
detail, and develop a more realistic, but also more complicated, design than what
we have seen in our earlier examples. However, we do not attempt to model every

6.8 Database Design for Banking Enterprise =~ 237

aspect of the database design for a bank; we consider only a few aspects, in order to
illustrate the process of database design.

We apply the two initial database-design phases, namely the gathering of data re-
quirements and the design of the conceptual schema, to our banking enterprise exam-
ple. We employ the E-R data model to translate user requirements into a conceptual-
design schema that is depicted as an E-R diagram.

Ultimately, the result of the E-R design process is a relational database schema. In
Section 6.9, we consider the process of generating the relational design given an E-R
design.

Before we start on the banking enterprise database design, we briefly outline the
E-R design alternatives that a database designer may choose from.

6.8.1 E-R Design Alternatives

The E-R data model gives us much flexibility in designing a database schema to
model a given enterprise. We suggest below how a database designer may select
from the wide range of alternatives. Among the designer’s decisions are:

o Whether to use an attribute or an entity set to represent an object (discussed
earlier in Section 6.5.1)

e Whether a real-world concept is expressed more accurately by an entity set or
by a relationship set (Section 6.5.2)

e Whether to use a ternary relationship or a pair of binary relationships (Sec-
tion 6.5.3)

o Whether to use a strong or a weak entity set (Section 6.6); a strong entity set
and its dependent weak entity sets may be regarded as a single “object” in the
database, since weak entities are existence dependent on a strong entity

e Whether using generalization (Section 6.7.2) is appropriate; generalization, or
a hierarchy of ISA relationships, contributes to modularity by allowing com-
mon attributes of similar entity sets to be represented in one place in an E-R
diagram

o Whether using aggregation (Section 6.7.5) is appropriate; aggregation groups
a part of an E-R diagram into a single entity set, allowing us to treat the ag-
gregate entity set as a single unit without concern for the details of its internal
structure.

We shall see that the database designer needs a good understanding of the enter-
prise being modeled to make the various design decisions required.

6.8.2 Data Requirements for the Bank Database

The initial specification of user requirements may be based on interviews with the
database users and on the designer’s own analysis of the enterprise. The description

238 Chapter6 Database Design and the E-R Model

that arises from this design phase serves as the basis for specifying the conceptual
structure of the database. Here are the major characteristics of the banking enterprise.

e The bank is organized into branches. Each branch is located in a particular
city and is identified by a unique name. The bank monitors the assets of each
branch.

e Bank customers are identified by their customer_id values. The bank stores each
customer’s name and the street and city where the customer lives. Customers
may have accounts and can take out loans. A customer may be associated with
a particular banker, who may act as a loan officer or personal banker for that
customer.

e Bank employees are identified by their employee_id values. The bank adminis-
tration stores the name and telephone number of each employee, the names
of the employee’s dependents, and the employee id number of the employee’s
manager. The bank also keeps track of the employee’s start date and, thus,
length of employment.

e The bank offers two types of accounts—savings and checking accounts. Ac-
counts can be held by more than one customer, and a customer can have more
than one account. Each account is assigned a unique account number. The
bank maintains a record of each account’s balance and the most recent date
on which the account was accessed by each customer holding the account. In
addition, each savings account has an interest rate and overdrafts are recorded
for each checking account.

e A loan originates at a particular branch and can be held by one or more cus-
tomers. A loan is identified by a unique loan number. For each loan, the bank
keeps track of the loan amount and the loan payments. Although a loan pay-
ment number does not uniquely identify a particular payment among those
for all the bank’s loans, a payment number does identify a particular payment
for a specific loan. The date and amount are recorded for each payment.

In a real banking enterprise, the bank would keep track of deposits and with-
drawals from savings and checking accounts, just as it keeps track of payments to
loan accounts. Since the modeling requirements for that tracking are similar, and we
would like to keep our example application small, we do not keep track of such de-
posits and withdrawals in our model.

6.8.3 Entity Sets for the Bank Database

Our specification of data requirements serves as the starting point for constructing a
conceptual schema for the database. From the characteristics listed in Section 6.8.2,
we begin to identify entity sets and their attributes:

o The branch entity set, with attributes branch.name, branch_city, and assets.

6.8 Database Design for Banking Enterprise =~ 239

The customer entity set, with attributes customer.id, customer.name, customer
_street, and customer.city. A possible additional attribute is banker_name.

The employee entity set, with attributes employee_id, employee.name, telephone
-number, salary, and manager. Additional descriptive features are the multi-
valued attribute dependent_name, the base attribute start.date, and the derived
attribute employment_length.

Two account entity sets—savings.account and checking account—with the com-
mon attributes of account number and balance; in addition, savings.account has
the attribute inferest rate and checking account has the attribute overdraft amount.

The loan entity set, with the attributes loan_number, amount, and originating
_branch.

The weak entity set loan_payment, with attributes payment_number, payment date,
and payment_amount.

6.8.4 Relationship Sets for the Bank Database

We now return to the rudimentary design scheme of Section 6.8.3 and specify the
following relationship sets and mapping cardinalities. In the process, we also refine
some of the decisions we made earlier regarding attributes of entity sets.

borrower, a many-to-many relationship set between customer and loan.

loan_branch, a many-to-one relationship set that indicates in which branch a
loan originated. Note that this relationship set replaces the attribute originating
_branch of the entity set loan.

loan_payment, a one-to-many relationship from loan to payment, which docu-
ments that a payment is made on a loan.

depositor, with relationship attribute access date, a many-to-many relationship
set between customer and account, indicating that a customer owns an account.

cust_banker, with relationship attribute type, a many-to-one relationship set ex-
pressing that a customer can be advised by a bank employee, and that a bank
employee can advise one or more customers. Note that this relationship set
has replaced the attribute banker_name of the entity set customer.

works._for, a relationship set between employee entities with role indicators man-
ager and worker; the mapping cardinalities express that an employee works
for only one manager and that a manager supervises one or more employees.
Note that this relationship set has replaced the manager attribute of employee.

6.8.5 E-R Diagram for the Bank Database

Drawing on the discussions in Section 6.8.4, we now present the completed E-R dia-
gram for our example banking enterprise. Figure 6.25 depicts the full representation

240 Chapter6 Database Design and the E-R Model

Cmdema> | wds D

customer—name

payment_number ent_amount

payment

Customer

access—date

Account_iimber m
account

ma ﬂage T v
). ¢

worker

Cetiplogeeid> eogs accoun] - [hecingaccount]
C

Figure 6.25 E-R diagram for a banking enterprise.

overdraft_amount

of a conceptual model of a bank, expressed in terms of E-R concepts. The diagram in-
cludes the entity sets, attributes, relationship sets, and mapping cardinalities arrived
at through the design processes of Sections 6.8.2 and 6.8.3, and refined in Section
6.8.4.

The E-R diagram for our simplified view of a banking enterprise is already quite
complex. E-R diagrams for realistic enterprises cannot be drawn on a single page, and
must be split up into multiple parts. Entities may need to appear multiple times, in
different parts of the diagram. The attributes of the entity are shown in one occur-
rence of the entity (preferably the first occurrence), and all other occurrences of the
entity are shown without any attributes.

6.9 Reduction to Relational Schemas 241

6.9 Reduction to Relational Schemas

We can represent a database that conforms to an E-R database schema by a collection
of relation schemas. For each entity set and for each relationship set in the database,
there is a unique relation schema to which we assign the name of the corresponding
entity set or relationship set.

Both the E-R model and the relational database model are abstract, logical repre-
sentations of real-world enterprises. Because the two models employ similar design
principles, we can convert an E-R design into a relational design.

In this section, we describe how an E-R schema can be represented by relation
schemas and how constraints arising from the E-R design can be mapped to con-
straints on a relation schemas.

6.9.1 Representation of Strong Entity Sets

Let E be a strong entity set with descriptive attributes a1, as,...,a,. We represent
this entity by a schema called E with n distinct attributes. Each tuple in a relation on
this schema corresponds to one entity of the entity set E. (We describe how to handle
composite and multivalued attributes later, in Section 6.9.4.)

For schemas derived from strong entity sets, the primary key of the entity set
serves as the primary key of the resulting schema. This follows directly from the
fact that each tuple corresponds to a specific entity in the entity set.

As an illustration, consider the entity set loan of the E-R diagram in Figure 6.7. This
entity set has two attributes: loan_number and amount. We represent this entity set by
a schema called loan, with two attributes:

loan = (loan_number, amount)

Note that since loan.number is the primary key of the entity set, it is also the primary
key of the relation schema.
A relation on this schema is shown in Figure 6.26. The tuple

(L-17, 1000)

| loan_number | amount |

L-11 900
L-14 1500
L-15 1500
L-16 1300
L-17 1000
L-23 2000
L-93 500

Figure 6.26 The loan table.

242

Chapter 6 Database Design and the E-R Model

means that loan number L-17 has a loan amount of $1000. We can add a new entity to
the database by inserting a tuple into the corresponding relation. We can also delete
or modify entities by modifying the corresponding tuple.

6.9.2 Representation of Weak Entity Sets

Let A be a weak entity set with attributes a1, as, . .., . Let B be the strong entity set
on which A depends. Let the primary key of B consist of attributes by, bs,...,b,. We
represent the entity set A by a relation schema called A with one attribute for each
member of the set:

{al,GQ,...,am} U {bl)bZV--:bn}

For schemas derived from a weak entity set the combination of the primary key
of the strong entity set and the discriminator of the weak entity set serves as the
primary key of the schema. In addition to creating a primary key, we also create a
foreign-key constraint on the relation A, specifying that the attributes by, [T
reference the primary key of the relation B. The foreign-key constraint ensures that
for each tuple representing a weak entity, there is a corresponding tuple representing
the corresponding strong entity.

As an illustration, consider the entity set payment in the E-R diagram of Figure 6.19.
This entity set has three attributes: payment_number, payment_date, and payment_amount.
The primary key of the loan entity set, on which payment depends, is loan_number.
Thus, we represent payment by a schema with four attributes:

payment = (loan_number, payment_number, payment. date, payment amount)

The primary key consists of the primary key of loan, along with the discriminator
of payment, which is payment_number. We also create a foreign-key constraint on the
payment schema, with the attribute loan_number referencing the primary key of the
loan schema.

6.9.3 Representation of Relationship Sets

Let R be a relationship set, let a1, az, ..., an, be the set of attributes formed by the
union of the primary keys of each of the entity sets participating in R, and let the
descriptive attributes (if any) of R be by, b, . .., b,. We represent this relationship set
by a relation schema called R with one attribute for each member of the set:

{ﬂ'laa%'-'aﬂ‘m}u {b1!b2:"‘$bﬂ}

We described earlier, in Section 6.3.2.2, how to choose a primary key for a binary
relationship set. As we saw in that section, taking all the primary-key attributes from
all the related entity sets serves to identify a particular tuple, but for one-to-one,
many-to-one, and one-to-many relationship sets, this turns out to be a larger set of
attributes than we need in the primary key. The primary key is instead chosen as
follows:

6.9 Reduction to Relational Schemas 243

e For a binary many-to-many relationship, the union of the primary-key at-
tributes from the participating entity sets becomes the primary key.

e For a binary one-to-one relationship set, the primary key of either entity set
can be chosen as the primary key for the relationship. The choice of entity set
from those related by the relationship set can be made arbitrarily.

e For a binary many-to-one or one-to-many relationship set, the primary key of
the entity set on the “many” side of the relationship set serves as the primary
key.

e For an n-ary relationship set without any arrows on its edges, the union of the
primary key-attributes from the participating entity sets becomes the primary
key.

e For an n-ary relationship set with an arrow on one of its edges, the primary
keys of the entity sets not on the “arrow” side of the relationship set serve as
the primary key for the schema. Recall that we allowed only one arrow out of
a relationship set.

We also create foreign-key constraints on the relation R as follows. For each entity
set Ej related to relationship set R, we create a foreign-key constraint from relation R,
with the attributes of R that were primary-key attributes of E referencing the primary
key of the relation representing F;.

As an illustration, consider the relationship set borrower in the E-R diagram of Fig-
ure 6.7. This relationship set involves the following two entity sets:

e customer, with the primary key customer._id

e loan, with the primary key loan_number
Since the relationship set has no attributes, the borrower schema has two attributes:

borrower = (customer_id, loan_number)

The primary key for the borrower relation is the union of the primary-key attributes of
customer and loan. We also create two foreign-key constraints on the borrower relation,
with attribute customer_id referencing the primary key of customer and attribute loan
-number referencing the primary key of loan.

6.9.3.1 Redundancy of Schemas

A relationship set linking a weak entity set to the corresponding strong entity set
is treated specially. As we noted in Section 6.6, these relationships are many-to-one
and have no descriptive attributes. Furthermore, the primary key of a weak entity
set includes the primary key of the strong entity set. In the E-R diagram of Fig-
ure 6.19, the weak entity set payment is dependent on the strong entity set loan via
the relationship set loan_payment. The primary key of payment is {loan_number, pay-
mentnumber} and the primary key of loan is {loan_number}. Since loan_payment has

244

Chapter 6 Database Design and the E-R Model

no descriptive attributes, the loan_payment schema has two attributes, loan_number
and payment number. The schema for the entity set payment has four attributes, loan
_number, payment_number, payment_date, and payment amount. Every (loan_number, pay-
ment_number) combination in a loan_payment relation would also be present in the rela-
tion on schema payment, and vice versa. Thus, the loan_payment schema is redundant.
In general, the schema for the relationship set linking a weak entity set to its corre-
sponding strong entity set is redundant and does not need to be present in a relational
database design based upon an E-R diagram.

6.9.3.2 Combination of Schemas

Consider a many-to-one relationship set AB from entity set A to entity set B. Using
our relational-schema construction scheme outlined previously, we get three schemas:
A, B, and AB. Suppose further that the participation of A in the relationship is total;
that is, every entity a in the entity set A must participate in the relationship AB. Then
we can combine the schemas A and AB to form a single schema consisting of the
union of columns of both schemas.

As an illustration, consider the E-R diagram of Figure 6.27. The double line in the
E-R diagram indicates that the participation of account in the account-branch is total.
Hence, an account cannot exist without being associated with a particular branch.
Further, the relationship set account_branch is many-to-one from account to branch.
Therefore, we can combine the schema for account_branch with the schema for account
and require only the following two schemas:

e gccount = (account_number, balance, branch_name)

e branch = (branch_name, branch_city, assets)

In the case of one-to-one relationships, the relation schema for the relationship set
can be combined with the schemas for either of the entity sets.

We can combine schemas even if the participation is partial, by using null values;
in the above example we would store null values for the branch-name attribute for
accounts that have no associated branch.

branch_name

account_number balance

account

account_

Figure 6.27 E-R diagram.

6.9 Reduction to Relational Schemas 245

The primary key of the combined schema is the primary key of the entity set into
whose schema the relationship set schema was merged. In the above example, the
primary key is account_number.

The schema representing the relationship set would have had foreign-key con-
straints referencing each of the entity sets participating in the relationship set. We
drop the constraint referencing the entity set into whose schema the relationship
set schema is merged, and add the other foreign-key constraints to the combined
schema. In our example above, the foreign-key constraint referencing account is drop-
ped, but the foreign-key constraint with branch_name referencing branch is retained as
a constraint on the combined account schema.

6.9.4 Composite and Multivalued Attributes

We handle composite attributes by creating a separate attribute for each of the com-
ponent attributes; we do not create a separate attribute for the composite attribute
itself. Suppose address is a composite attribute of entity set customer, and the com-
ponents of address are street and city. The schema generated from customer contains
attributes address_street and address_city; there is no separate attribute or schema for
address. We revisit this matter in Section 7.2.

We have seen that attributes in an E-R diagram generally map directly into columns
for the appropriate relation schemas. Multivalued attributes, however, are an excep-
tion; new relation schemas are created for these attributes.

For a multivalued attribute M, we create a relation schema R with an attribute A
that corresponds to M and attributes corresponding to the primary key of the entity
set or relationship set of which M is an attribute.

As an illustration, consider the E-R diagram in Figure 6.25. The diagram includes
the entity set employee with a multivalued attribute dependent_name. The primary key
of employee is employee_id. For this multivalued attribute, we create a relation schema

dependent_name (employee_id, d_name)

Each dependent of an employee is represented as a unique tuple in the relation on
this schema. Thus, if we had an employee with employee_id 12-234, and dependents
John and Mary, the relation d_name would have two tuples (12-234, John) and (12-234,
Mary).

We create a primary key of the relation schema consisting of all attributes of the
schema. In the above example, the primary key consists of both the attributes of the
relation dependent_name.

In addition we create a foreign key on the relation schema, with the attribute gen-
erated from the primary key of the entity set referencing the relation generated from
the entity set. In the above example, the constraint would be that attribute employee
-id references the employee relation.

6.9.5 Representation of Generalization

There are two different methods of designing relation schemas for an E-R diagram
that includes generalization. Although we refer to the generalization in Figure 6.20

246 Chapter6

in this

Database Design and the E-R Model

discussion, we simplify it by including only the first tier of lower-level entity

sets—that is, employee and customer. We assume that person_id is the primary key of

person.

1.

Create a schema for the higher-level entity set. For each lower-level entity set,
create a schema that includes an attribute for each of the attributes of that
entity set plus one for each attribute of the primary key of the higher-level
entity set. Thus, for the E-R diagram of Figure 6.20, we have three schemas:

person = (person_id, name, street, city)
employee = (person_id, salary)
customer = (person_id, credit_rating)

The primary-key attributes of the higher-level entity set become primary-key
attributes of the higher-level entity set as well as all lower-level entity sets.
These can be seen underlined in the above example.

In addition, we create foreign-key constraints on the lower-level entity sets,
with their primary-key attributes referencing the primary key of the relation
created from the higher-level entity set. In the above example, the person_id
attribute of employee would reference the primary key of person, and similarly
for customer.

An alternative representation is possible, if the generalization is disjoint and
complete—that is, if no entity is a member of two lower-level entity sets di-
rectly below a higher-level entity set, and if every entity in the higher-level
entity set is also a member of one of the lower-level entity sets. Here, do not
create a schema for the higher-level entity set. Instead, for each lower-level
entity set, create a schema that includes an attribute for each of the attributes
of that entity set plus one for each attribute of the higher-level entity set. Then,
for the E-R diagram of Figure 6.20, we have two schemas:

employee = (person_id, name, street, city, salary)
customer = (person_id, name, street, city, credit_rating)

Both these schemas have person_id, which is the primary-key attribute of the
higher-level entity set person, as their primary key.

One drawback of the second method lies in defining foreign-key constraints. To il-
lustrate the problem, suppose we had a relationship set R involving entity set person.
With the first method, when we create a relation schema R from the relationship set,
we would also define a foreign-key constraint on R, referencing the schema person.
Unfortunately, with the second method, we do not have a single relation to which
a foreign-key constraint on R can refer. To avoid this problem, we need to create a
relation schema person containing at least the primary-key attributes of the person

entity.

6.9 Reduction to Relational Schemas 247

If the second method were used for an overlapping generalization, some values
would be stored multiple times, unnecessarily. For instance if a person is both an
employee and a customer, values for street and city would be stored twice. If the
generalization were not complete—that is, if some person is neither an employee nor
a customer—then an extra table person would be required to represent such persons.

6.9.6 Representation of Aggregation

Designing schemas for an E-R diagram containing aggregation is straightforward.
Consider the diagram of Figure 6.22. The schema for the relationship set manages
between the aggregation of works.on and the entity set manager includes an attribute
for each attribute in the primary keys of the entity set manager and the relationship
set works.on. It also includes an attribute for any descriptive attributes, if they exist, of
the relationship set manages. We then transform the relationship sets and entity sets
within the aggregated entity following the rules we have already defined.

The rules we saw earlier for creating primary-key and foreign-key constrains on
relationship sets can be applied to relationship sets involving aggregations as well,
with the aggregation treated like any other entity. The primary key of the aggregation
is the primary key of its defining relationship set. No separate relation is required to
represent the aggregation; the relation created from the defining relationship is used
instead.

6.9.7 Relational Schemas for Banking Enterprise

In Figure 6.25, we showed an E-R diagram for a banking enterprise. The correspond-
ing set of relation schemas, generated using the techniques described earlier in this
section, is shown below. We denote the primary key for each relation schema by an
underscore.

e Schemas derived from a strong entity:

branch = (branch_name, branch_city, assets)
customer = (custoner_id, customer_name, customer.street, customer.city)
loan = (loan_number, amount)

account = (account_number, balance)

employee = (employee_id, employee_name, telephone_number, start date)

e Schemas derived from a multivalued attribute: (We do not represent derived
attributes.) They are defined in a view or specially defined function.

dependent_name = (employee_id, d_name)

e Schemas derived from a relationship set involving strong entity sets:

248

Chapter 6 Database Design and the E-R Model

account_branch = (account_ number, branch_name)
loan_branch = (loan_number, branch_name)

borrower = (customer_id, loan_number)

depositor = (customer_id, account_number, access_date)
cust_banker = (customer_id, employee_id, type)
works_for = (worker_employee_id, manager_employee_id)

e Schemas derived from a weak entity set (recall that the table for loan_payment
was shown in Section 6.9.3.1 to be redundant):

payment = (loan_number, payment_number, payment_date, payment_amount)

e Schemas derived from an ISA relationship: (We have chosen the first of the
two alternatives presented in Section 6.9.5 so as to allow for accounts that are
neither savings accounts nor checking accounts.)

savings.account = (account_number, interest_rate)
checking account = (account_number, overdraft.amount)

We leave it as an exercise to you to create appropriate foreign-key constraints for
the above relations.

6.10 Other Aspects of Database Design

Our extensive discussion of schema design in this chapter may create the false im-
pression that schema design is the only component of a database design. There are
indeed several other considerations that we address more fully in subsequent chap-
ters, and survey briefly here.

6.10.1 Data Constraints and Relational Database Design

We have seen a variety of data constraints that can be expressed using SQL, including
primary-key constraints, foreign-key constraints, check constraints, assertions, and
triggers. Constraints serve several purposes. The most obvious one is the automation
of consistency preservation. By expressing constraints in the SQL data-definition lan-
guage, the designer is able to ensure that the database system itself enforces the con-
straints. This is more reliable than relying on each application program individually
to enforce constraints. It also provides a central location for the update of constraints
and the addition of new ones.

A further advantage of stating constraints explicitly is that certain constraints are
particularly useful in designing relational database schema. If we know, for exam-
ple, that a social-security number uniquely identifies a person, then we can use a
person’s social-security number to link data related to that person even if these data
appear in multiple relations. Contrast that with, for example, eye color, which is not
a unique identifier. Eye color could not be used to link data pertaining to a specific
person across relations because that person’s data could not be distinguished from
data pertaining to other people with the same eye color.

6.10 Other Aspects of Database Design 249

In Section 6.9, we generated a set of relation schemas for a given E-R design using
the constraints specified in the design. In Chapter 7, we formalize this idea and re-
lated ones, and show how it can assist in the design of relational database schema.
The formal approach to relational database design allows us to state in a precise man-
ner when a given design is a good one and to transform poor designs into better ones.
We shall see that the process of starting with an entity-relationship design and gener-
ating relation schemas algorithmically from that design provides a good start to the
design process.

Data constraints are useful as well in determining the physical structure of data. It
may be useful to store data that are closely related to each other in physical proximity
on disk so as to gain efficiencies in disk access. Certain index structures work better
when the index is on a primary key.

Constraint enforcement comes at a potentially high price in performance each time
the database is updated. For each update, the system must check all of the constraints
and either reject updates that fail the constraints or execute appropriate triggers. The
significance of the performance penalty depends not only on the frequency of update
but also on how the database is designed. Indeed efficiency of the testing of certain
types of constraints is an important aspect of the discussion of relational database
schema design in Chapter 7.

6.10.2 Usage Requirements: Queries, Performance

Database system performance is a critical aspect of most enterprise information sys-
tems. Performance pertains not only to the efficient use of the computing and storage
hardware being used, but also to the efficiency of people who interact with the sys-
tem and of processes that depend upon database data.

There are two main metrics for performance.

e Throughput—the number of queries or updates (often referred to as transac-
tions) that can be processed on average per unit of time.

¢ Response time—the amount of time a single transaction takes from start to
finish in either the average case or the worst case.

Systems that process large numbers of transactions in a batch style focus on having
high throughput. Systems that interact with people or time-critical systems often fo-
cus on response time. These two metrics are not equivalent. High throughput arises
from obtaining high utilization of system components. Doing so may result in cer-
tain transactions being delayed until such time that they can be run more efficiently.
Those delayed transactions suffer poor response time.

Most commercial database systems historically have focused on throughput, how-
ever, a variety of applications including Web-based applications and telecommuni-
cation information systems require good response time on average and a reasonable
bound on worst-case response time.

An understanding of types of queries that are expected to be the most frequent
helps in the design process. Queries that involve joins require more resources to eval-
uate than those that do not. In cases where a join is required, the database adminis-

250

Chapter 6 Database Design and the E-R Model

trator may choose to create an index that facilitates evaluation of that join. For queries
—whether a join is involved or not—indices can be created to speed evaluation of
selection predicates (SQL where clause) that are likely to appear. Another aspect of
queries that affects the choice of indices is the relative mix of update and read oper-
ations. While an index may speed queries, it also slows updates, which are forced to
do extra work to maintain the accuracy of the index.

6.10.3 Authorization Requirements

Authorization constraints affect design of the database as well because SQL allows
access to be granted to users on the basis of components of the logical design of the
database. A relation schema may need to be decomposed into two or more schema to
facilitate the granting of access rights in SQL. For example, an employee record may
include data relating to payroll, job functions, and medical benefits. Because different
administrative units of the enterprise may manage each of these types of data, some
users will need access to payroll data while being denied access to the job data, med-
ical data, etc. If these data are all in one table, the desired division of access, though
still feasible through the use of views, is more cumbersome. Division of data in this
manner becomes even more critical when the data are distributed across systems in
a computer network, an issue we consider in Chapter 22.

6.10.4 Data Flow, Workflow

Database applications are often part of a larger enterprise application that interacts
not only with the database system but also with various specialized applications.
For example, in a manufacturing company, a computer-aided design (CAD) system
may assist in the design of new products. The CAD system may extract data from the
database via an SQL statement, process the data internally, perhaps interacting with
a product designer, and then update the database. During this process, control of the
data may pass among several product designers as well as other people. As another
example, consider a travel expense report. It is created by an employee returning
from a business trip (possibly by means of a special software package) and is sub-
sequently routed to the employee’s manager, perhaps other higher-level managers,
and eventually to the accounting department for payment (at which point it interacts
with the enterprise’s accounting information systems).

The term workflow refers to the combination of data and tasks involved in pro-
cesses like those of the preceding examples. Workflows interact with the database
system as they move among users and users perform their tasks on the workflow. In
addition to the data on which workflows operate, the database may store data about
the workflow itself, including the tasks making up a workflow and how they are to
be routed among users. Workflows thus specify a series of queries and updates to
the database that may be taken into account as part of the database-design process.
Put in other terms, modeling the enterprise requires us not only to understand the
semantics of the data but also the business processes that use those data.

6.11 The Unified Modeling Language UMLx* 251

6.10.5 Other Issues in Database Design

Database design is usually not a one-time activity. The needs of an organization
evolve continually, and the data that it needs to store also evolve correspondingly.
During the initial database-design phases, or during the development of an applica-
tion, the database designer may realize that changes are required at the conceptual,
logical, or physical schema levels. Changes in the schema can affect all aspects of the
database application. A good database design anticipates future needs of an organi-
zation, and to design the schema in such a way that minimal changes are required as
the needs evolve.

It is important to distinguish between fundamental constraints and constraints
that are anticipated to change. For example, the constraint that a customer-id identify
a unique customer is fundamental. On the other hand, a bank may have a policy that
a customer can have only one account, which may change at a later date. A database
design that only allows one account per customer would require major changes if
the bank changes its policy. Such changes should not require a major change in the
database design.

Furthermore, the enterprise that the database is serving likely interacts with other
enterprises and, therefore, multiple databases may need to interact. Conversion of
data between different schemas is an important problem in real-world applications.
Various solutions have been proposed for this problem. The XML data model, which
we study in Chapter 10, is widely used for representing data when it is exchanged
between different applications.

Finally, it is worth noting that database design is a human-oriented activity in two
senses: the end users of the system are people (even if an application sits between the
database and the end users); and the database designer needs to interact extensively
with experts in the application domain to understand the data requirements of the
application. All of the people involved with the data have needs and preferences
that should be taken into account in order for a database design and deployment to
succeed within the enterprise.

6.11 The Unified Modeling Language UMLxx

Entity-relationship diagrams help model the data representation component of a soft-
ware system. Data representation, however, forms only one part of an overall system
design. Other components include models of user interactions with the system, spec-
ification of functional modules of the system and their interaction, etc. The Unified
Modeling Language (UML), is a standard developed under the auspices of the Ob-
ject Management Group (OMG) for creating specifications of various components of
a software system. Some of the parts of UML are:

e Class diagram. A class diagram is similar to an E-R diagram. Later in this
section we illustrate a few features of class diagrams and how they relate to
E-R diagrams.

e Use case diagram. Use case diagrams show the interaction between users and
the system, in particular the steps of tasks that users perform (such as with-
drawing money or registering for a course).

252

Chapter 6 Database Design and the E-R Model

e Activity diagram. Activity diagrams depict the flow of tasks between various
components of a system.

e Implementation diagram. Implementation diagrams show the system com-
ponents and their interconnections, both at the software component level and
the hardware component level.

We do not attempt to provide detailed coverage of the different parts of UML here.
See the bibliographic notes for references on UML. Instead we illustrate some features
of that part of UML that relates to data modeling through examples.

Figure 6.28 shows several E-R diagram constructs and their equivalent UML class
diagram constructs. We describe these constructs below. UML shows entity sets as
boxes and, unlike E-R, shows attributes within the box rather than as separate el-
lipses. UML actually models objects, whereas E-R models entities. Objects are like
entities, and have attributes, but additionally provide a set of functions (called meth-
ods) that can be invoked to compute values on the basis of attributes of the objects,
or to update the object itself. Class diagrams can depict methods in addition to at-
tributes. We cover objects in Chapter 9.

We represent binary relationship sets in UML by just drawing a line connecting
the entity sets. We write the relationship set name adjacent to the line. We may also
specify the role played by an entity set in a relationship set by writing the role name
on the line, adjacent to the entity set. Alternatively, we may write the relationship set
name in a box, along with attributes of the relationship set, and connect the box by a
dotted line to the line depicting the relationship set. This box can then be treated as
an entity set, in the same way as an aggregation in E-R diagrams, and can participate
in relationships with other entity sets.

Since UML version 1.3, UML supports nonbinary relationships, using the same di-
amond notation used in E-R diagrams. Nonbinary relationships could not be directly
represented in earlier versions of UML—they had to be converted to binary relation-
ships by the technique we have seen earlier in Section 6.5.3.

Cardinality constraints are specified in UML in the same way as in E-R diagrams, in
the form I..h, where [denotes the minimum and h the maximum number of relation-
ships an entity can participate in. However, you should be aware that the positioning
of the constraints is exactly the reverse of the positioning of constraints in E-R dia-
grams, as shown in Figure 6.28. The constraint 0..x on the £2 side and 0..1 on the E'1
side means that each E2 entity can participate in at most one relationship, whereas
each E1 entity can participate in many relationships; in other words, the relationship
is many-to-one from E2 to E1.

Single values such as 1 or * may be written on edges; the single value 1 on an edge
is treated as equivalent to 1..1, while * is equivalent to 0..x.

We represent generalization and specialization in UML by connecting entity sets
by a line with a triangle at the end corresponding to the more general entity set.
For instance, the entity set person is a generalization of customer and employee. UML
diagrams can also represent explicitly the constraints of disjoint/overlapping on gen-
eralizations. Figure 6.28 shows disjoint and overlapping generalizations of customer
and employee to person. Recall that if the customer/employee to person generalization is

6.11 The Unified Modeling Language UML#+ 253

customier_name
customer—_id

customer_stree
customer_cify

1. Entity sets customer

and attributes

customer_id
customer_name
customer_street
customer_city

customer

2. Relationships role] o role2

3. Cardinalil’y 0.# 0.1 y 0.1 R 0.*
o 6 El 5]

(overlapping
4. Generalization and generalization)
specialization
|_ customer I | employee |
‘ customer | | employee J
(disjoint
generalization) disjoint
disjoint
: | customer I I empldyee’l
‘ customer | | employee J
E-R diagram class diagram in UML

Figure 6.28 Symbols used in the UML class diagram notation.

disjoint, it means that no one can be both a customer and an employee. An overlapping
generalization allows a person to be both a custoner and an employee.

UML class diagrams include several other notations that do not correspond to the
E-R notations we have seen. For example, a line between two entity sets with a di-
amond at one end specifies that the entity on the diamond side contains the other

254 Chapter6 Database Design and the E-R Model

entity (containment is called “aggregation” in UML terminology). For example, a ve-
hicle entity may contain an engine entity. UML class diagrams also provide notations
to represent object-oriented language features such as public or private annotations
of class members, and interfaces (these should be familiar to anyone who knows the
Java or C# languages). See the references in the bibliographic notes for more infor-
mation on UML class diagrams.

6.12 Summary

o Database design mainly involves the design of the database schema. The entity-
relationship (E-R) data model is a widely used data model for database de-
sign. It provides a convenient graphical representation to view data, relation-
ships, and constraints.

e The model is intended primarily for the database-design process. It was de-
veloped to facilitate database design by allowing the specification of an en-
terprise schema. Such a schema represents the overall logical structure of the
database. This overall structure can be expressed graphically by an E-R dia-
gram.

o An entity is an object that exists in the real world and is distinguishable from
other objects. We express the distinction by associating with each entity a set
of attributes that describes the object.

e A relationship is an association among several entities. A relationship set is
a collection of relationships of the same type, and an entity set is a collection
of entities of the same type.

e A superkey of an entity set is a set of one or more attributes that, taken collec-
tively, allows us to identify uniquely an entity in the entity set. We choose a
minimal superkey for each entity set from among its superkeys; the minimal
superkey is termed the entity set’s primary key. Similarly, a relationship set
is a set of one or more attributes that, taken collectively, allows us to identify
uniquely a relationship in the relationship set. Likewise, we choose a mini-
mal superkey for each relationship set from among its superkeys; this is the
relationship set’s primary key.

e Mapping cardinalities express the number of entities to which another entity
can be associated via a relationship set.

e An entity set that does not have sufficient attributes to form a primary key
is termed a weak entity set. An entity set that has a primary key is termed a
strong entity set.

o Specialization and generalization define a containment relationship between
a higher-level entity set and one or more lower-level entity sets. Specialization
is the result of taking a subset of a higher-level entity set to form a lower-
level entity set. Generalization is the result of taking the union of two or more

Review Terms 255

disjoint (lower-level) entity sets to produce a higher-level entity set. The at-
tributes of higher-level entity sets are inherited by lower-level entity sets.

e Aggregation is an abstraction in which relationship sets (along with their as-
sociated entity sets) are treated as higher-level entity sets, and can participate
in relationships.

e The various features of the E-R model offer the database designer numerous
choices in how to best represent the enterprise being modeled. Concepts and
objects may, in certain cases, be represented by entities, relationships, or at-
tributes. Aspects of the overall structure of the enterprise may be best de-
scribed by using weak entity sets, generalization, specialization, or aggrega-
tion. Often, the designer must weigh the merits of a simple, compact model
versus those of a more precise, but more complex, one.

e A database design specified by an E-R diagram can be represented by a col-
lection of relation schemas. For each entity set and for each relationship set in
the database, there is a unique relation schema that is assigned the name of the
corresponding entity set or relationship set. This forms the basis for deriving
a relational database design from an E-R diagram.

e The Unified Modeling Language (UML) provides a graphical means of mod-
eling various components of a software system. The class diagram compo-
nent of UML is based on E-R diagrams. However, there are some differences
between the two that one must beware of.

Review Terms

e Entity-relationship data model Superkey, candidate key, and pri-

o Entity mary key

e Entity set ¢ Mapping cardinality:

e Relationship and relationship set 0 One-to-one relationship

e Role [One-to-many relationship
e Recursive relationship set 0 Many-to-one relationship

» Descriptive abtribiites [0 Many-to-many relationship

e Binary relationship set Participation
[J Total participation

e Degree of relationship set O Partial participation

Attribut 2 .
¢ Attributes o Weak entity sets and strong entity

e Domain sets

e Simple and composite attributes [0 Discriminator attributes

e Single-valued and multivalued at- [Identifying relationship
tributes

Specialization and generalization

e Null value O Superclass and subclass
e Derived attribute [Attribute inheritance

256

Chapter 6

Database Design and the E-R Model

O Single and multiple inheri- o Completeness constraint

tance O Total and partial generaliza-
O Condition-defined and user- tion

defined membership o/ Kopaipsl
[0 Disjoint and overlapping gen- ggregation

eralization e E-R diagram

e Unified Modeling Language (UML)

Practice Exercises

6.1

6.2

6.3

6.4

6.5

6.6

Construct an E-R diagram for a car insurance company whose customers own
one or more cars each. Each car has associated with it zero to any number of
recorded accidents.

A university registrar’s office maintains data about the following entities: (a)
courses, including number, title, credits, syllabus, and prerequisites; (b) course
offerings, including course number, year, semester, section number, instructor(s),
timings, and classroom; (c) students, including student-id, name, and program;
and (d) instructors, including identification number, name, department, and ti-
tle. Further, the enrollment of students in courses and grades awarded to stu-
dents in each course they are enrolled for must be appropriately modeled.

Construct an E-R diagram for the registrar’s office. Document all assumptions
that you make about the mapping constraints.

Consider a database used to record the marks that students get in different ex-
ams of different course offerings.

a. Construct an E-R diagram that models exams as entities, and uses a ternary
relationship, for the database.

b. Construct an alternative E-R diagram that uses only a binary relationship
between students and course-offerings. Make sure that only one relationship
exists between a particular student and course_offering pair, yet you can
represent the marks that a student gets in different exams of a course offer-

ing.
Design an E-R diagram for keeping track of the exploits of your favorite sports
team. You should store the matches played, the scores in each match, the players

in each match, and individual player statistics for each match. Summary statis-
tics should be modeled as derived attributes

Consider an E-R diagram in which the same entity set appears several times.
Why is allowing this redundancy a bad practice that one should avoid whenever
possible?

Consider a university database for the scheduling of classrooms for final exams.
This database could be modeled as the single entity set exam, with attributes
coursename, section_number, room_number, and time. Alternatively, one or more
additional entity sets could be defined, along with relationship sets to replace
some of the attributes of the exam entity set, as

Practice Exercises 257

e course with attributes name, department, and c_number

e section with attributes s.number and enrollment, and dependent as a weak
entity set on course

e room with attributes r_number, capacity, and building

a. Show an E-R diagram illustrating the use of all three additional entity sets
listed.

b. Explain what application characteristics would influence a decision to in-
clude or not to include each of the additional entity sets.

6.7 When designing an E-R diagram for a particular enterprise, you have several
alternatives from which to choose.

a. What criteria should you consider in making the appropriate choice?

b. Design three alternative E-R diagrams to represent the university registrar’s
office of Practice Exercise 6.2. List the merits of each. Argue in favor of one
of the alternatives.

6.8 AnE-R diagram can be viewed as a graph. What do the following mean in terms
of the structure of an enterprise schema?

a. The graph is disconnected.
b. The graph is acyclic.

6.9 Consider the representation of a ternary relationship using binary relationships
as described in Section 6.5.3 and illustrated in Figure 6.29 (attributes not shown).

Figure 6.29 E-R diagram for Practice Exercise 6.9 and Exercise 6.22.

258

Chapter 6

6.10

6.11

6.12

Database Design and the E-R Model

a. Show a simple instance of £, A, B,C, Ra, R, and R¢ that cannot corre-
spond to any instance of 4, B, C, and R.

b. Modify the E-R diagram of Figure 6.29b to introduce constraints that will
guarantee that any instance of E, A, B, C, R4, Rp, and R that satisfies the
constraints will correspond to an instance of A, B, C, and R.

¢. Modify the translation above to handle total participation constraints on the
ternary relationship.

d. The above representation requires that we create a primary-key attribute for
E. Show how to treat E as a weak entity set so that a primary-key attribute
is not required.

A weak entity set can always be made into a strong entity set by adding to its
attributes the primary-key attributes of its identifying entity set. Outline what
sort of redundancy will result if we do so.

Figure 6.30 shows a lattice structure of generalization and specialization (at-
tributes not shown). For entity sets 4, B, and C, explain how attributes are in-
herited from the higher-level entity sets X and Y. Discuss how to handle a case
where an attribute of X has the same name as some attribute of Y.

Consider two separate banks that decide to merge. Assume that both banks
use exactly the same E-R database schema—the one in Figure 6.25. (This as-
sumption is, of course, highly unrealistic; we consider the more realistic case in
Section 22.8.) If the merged bank is to have a single database, there are several
potential problems:

e The possibility that the two original banks have branches with the same
name

e The possibility that some customers are customers of both original banks

o The possibility that some loan or account numbers were used at both origi-
nal banks (for different loans or accounts, of course)

For each of these potential problems, describe why there is indeed a potential
for difficulties. Propose a solution to the problem. For your solution, explain any
changes that would have to be made and describe what their effect would be on
the schema and the data.

Figure 6.30 E-R diagram for Practice Exercise 6.11.

Exercises 259

6.13 Reconsider the situation described for Practice Exercise 6.12 under the assump-
tion that one bank is in the United States and the other is in Canada. As before,
the banks use the schema of Figure 6.25, except that the Canadian bank uses
the social_insurance number assigned by the Canadian government, whereas the
U.S. bank uses the social-security number to identify customers. What problems
(beyond those identified in Practice Exercise 6.11) might occur in this multina-
tional case? How would you resolve them? Be sure to consider both the schema
and the actual data values in constructing your answer.

Exercises

6.14 Explain the distinctions among the terms primary key, candidate key, and su-
perkey.

6.15 Construct an E-R diagram for a hospital with a set of patients and a set of medi-
cal doctors. Associate with each patient a log of the various tests and examina-
tions conducted.

6.16 Constructappropriate tables for each of the E-R diagrams in Practice Exercises 6.1
to 6.2.

6.17 Extend the E-R diagram of Practice Exercise 6.4 to track the same information
for all teams in a league.

6.18 Explain the difference between a weak and a strong entity set.

6.19 We can convert any weak entity set to a strong entity set by simply adding ap-
propriate attributes. Why, then, do we have weak entity sets?

6.20 Define the concept of aggregation. Give two examples of where this concept is
useful.

6.21 Consider the E-R diagram in Figure 6.31, which models an online bookstore.

a. List the entity sets and their primary keys.

b. Suppose the bookstore adds music cassettes and compact disks to its col-
lection. The same music item may be present in cassette or compact disk
format, with differing prices. Extend the E-R diagram to model this addi-
tion, ignoring the effect on shopping baskets.

c¢. Now extend the E-R diagram, using generalization, to model the case where
a shopping basket may contain any combination of books, music cassettes,
or compact disks.

6.22 In Section 6.5.3, we represented a ternary relationship (repeated in Figure 6.29a)
using binary relationships, as shown in Figure 6.29b. Consider the alternative
shown in Figure 6.29c. Discuss the relative merits of these two alternative rep-
resentations of a ternary relationship by binary relationships.

260 Chapter6 Database Design and the E-R Model

author

customer

shopping_basket

Figure 6.31 E-R diagram for Exercise 6.21.

6.23 Consider the relation schemas shown in Section 6.9.7, which were generated
from the E-R diagram in Figure 6.25. For each schema, specify what foreign-key
constraints, if any, should be created.

6.24 Design a generalization—specialization hierarchy for a motor vehicle sales com-
pany. The company sells motorcycles, passenger cars, vans, and buses. Justify
your placement of attributes at each level of the hierarchy. Explain why they
should not be placed at a higher or lower level.

6.25 Explain the distinction between condition-defined and user-defined constraints.
Which of these constraints can the system check automatically? Explain your
answer.

6.26 Explain the distinction between disjoint and overlapping constraints.
6.27 Explain the distinction between total and partial constraints.

6.28 Draw the UML equivalents of the E-R diagrams of Figures 6.8¢, 6.9, 6.11, 6.12,
and 6.20.

Tools 261

Bibliographical Notes

The E-R data model was introduced by Chen [1976]. A logical design methodol-
ogy for relational databases using the extended E-R model is presented by Teorey
et al. [1986]. The Integration Definition for Information Modeling (IDEF1X) standard
IDEF1X [1993] released by the United States National Institute of Standards and Tech-
nology (NIST) defined standards for E-R diagrams. However, a variety of E-R nota-
tions are in use today.

Thalheim [2000] provides a detailed textbook coverage of research in E-R mod-
eling. Basic textbook discussions are offered by Batini et al. [1992] and Elmasri and
Navathe [2003]. Davis et al. [1983] provide a collection of papers on the E-R model.

As of 2004, the current UML version was 1.5, with UML version 2.0 near final adop-
tion. See www.uml.org for more information on UML standards and tools.

Tools

Many database systems provide tools for database design that support E-R dia-
grams. These tools help a designer create E-R diagrams, and they can automati-
cally create corresponding tables in a database. See bibliographic notes of Chap-
ter 1 for references to database-system vendors’ Web sites. There are also some
database-independent data modeling tools that support E-R diagrams and UML
class diagrams. These include Rational Rose (www.rational.com/products/rose), Mi-
crosoft Visio (see www.microsoft.com/office/visio), ERwin (search for ERwin at the site
www.cai.com/products), Poseidon for UML(www.gentleware.com), and SmartDraw
(www.smartdraw.com).

Relational Database Design

In this chapter, we consider the problem of designing a schema for a relational database.
Many of the issues in doing so are similar to design issues we considered in Chapter 6
using the E-R model.

In general, the goal of a relational database design is to generate a set of rela-
tion schemas that allows us to store information without unnecessary redundancy,
yet also allows us to retrieve information easily. This is accomplished by design-
ing schemas that are in an appropriate normal form. To determine whether a relation
schema is in one of the desirable normal forms, we need information about the real-
world enterprise that we are modeling with the database. Some of this information
exists in a well-designed E-R diagram, but additional information about the enter-
prise may be needed as well.

In this chapter, we introduce a formal approach to relational database design based
on the notion of functional dependencies. We then define normal forms in terms of
functional dependencies and other types of data dependencies. First, however, we
view the problem of relational design from the standpoint of the schemas derived
from a given entity-relationship design.

7.1 Features of Good Relational Designs

Our study of entity-relationship design in Chapter 6 provides an excellent starting
point for creating a relational database design. We saw in Section 6.9 that it is possible
to generate a set of relation schemas directly from the E-R design. Obviously, the
goodness (or badness) of the resulting set of schemas depends on how good the E-R
design was in the first place. Later in this chapter, we shall study precise ways of
assessing the desirability of a collection of relation schemas. However, we can go a
long way toward a good design using concepts we have already studied.
For ease of reference, we repeat the schemas from Section 6.9.7 in Figure 7.1.

263

264

Chapter7 Relational Database Design

branch = (branch-name, branch_city, assets)

customer = (customer_id, customer_name, customer_street, customer_city)
loan = (loan_number, amount)

account = (account_number, balance)

employee = (employee_id, employee_name, telephone_number, start date)
dependent_name = (employee_id, dname)

account_branch = (account_number, branch_name)

loan_branch = (loan_number, branch_name)

borrower = (customer_id, loan_number)

depositor = (customer_id, account_number)

cust_banker = (customer_id, employee_id, type)

works_for = (worker_employee_id, manager_employee_id)

payment = (loan_number, payment_number, payment_date, payment_amount)
savings_account = (account_number, interest_rate)

checking account = (account_number, overdraft amount)

Figure 7.1 The banking schemas from Section 6.9.7.

7.1.1 Design Alternative: Larger Schemas

Now, let us explore features of this relational database design as well as some alter-
natives. Suppose that instead of the schemas borrower and loan we had the schema:

bor_loan = (customer_id, loan_number, amount)

This represents the result of a natural join on the relations corresponding to borrower
and loan. This seems like a good idea because some queries can be expressed using
fewer joins, until we think carefully about the facts about our bank enterprise that
led to our E-R design. Notice that the borrower relationship set is many-to-many. This
allows a customer to have several loans and also allows a loan to be made to several
customers. We made that choice so that we could represent loans made jointly to
a married couple or to a consortium of people (who might be in a joint business
venture). That is why the primary key of the borrower schema consists of customer.id
and loan_number rather than just loan_number.

Let us consider a loan that is made to such a consortium and consider the tuples
that must be in the relation on schema bor_loan. Suppose loan number L-100 is made
to a consortium consisting of the following customers: James (with customer-id 23-
652), Anthony (with customer-id 15-202), and Jordan (with customer-id 23-521) in the
amount of 10,000 dollars.

Figure 7.2 shows how this would be represented using loan and borrower, and how
it would be represented in the alternative design using bor_loan. The tuple (L-100,
10000) in the relation on schema loan joins with three tuples in the relation on schema
borrower, generating three tuples in the relation on schema bor_loan. Notice that in bor
_loan, we had to repeat the loan amount once for each customer in the consortium
of people who took out the loan. It is important that all these tuples agree as to the

7.1 Features of Good Relational Designs 265
| customer_id | loan_number
logn_number | amount : :
: : 23-652 L-100
L-100 10000 15-202 L-100
: : 23-521 L-100
loan
borrower
| customer_id | loan_number | amount
23-652 L-100 10000
15-202 L-100 10000
23-521 L-100 10000
bor_loan

Figure 7.2 Partial list of tuples in relations loan, borrower, and bor_loan.

amount of loan L-100 since otherwise our database would be inconsistent. In our
original design using loan and borrower, we stored the amount of each loan exactly
once. This suggests that using bor_loan is a bad idea since it stores loan amounts re-
dundantly and runs the risk that some user might update the loan amount in one
tuple but not all, and thus create inconsistency.

Now, let us consider another alternative. Let loan.amt br = (loan_number, amount,
branchname) be created from loan_branch and loan (via a join of the corresponding
relations). This appears similar to the example we just considered, but with one major
difference. Here, loan_number is the primary key of both schemas loan_branch and loan
and so it is also the primary key of loan_amt_br. This arose from the fact that the loan
-branch relationship set is many-to-one, unlike the borrower relationship set in our
earlier example. For a given loan, there is only one associated branch. Therefore, a
particular loan number appears in loan_branch only once. Let us suppose that loan
L-100 is associated with the Springfield branch. Figure 7.3 shows how this would be
represented using loan_amt_br. The tuple (L-100, 10000) in the relation on schema loan
joins with just one tuple in the relation on schema loan_branch, generating only one
tuple in the relation on schema loan_amt br. There is no repetition of information in
loan_amt_br and so it avoids the problems we found in our earlier example.

Before we finally agree to use loan_ami_br in place of loan and loan_branch, there is
one more issue for us to consider. Might we want to record a loan and its associated
branch in the database before its amount has been determined? In the old design,
the schema loan_branch can handle this, but under the revised design using loan_amt
_br, we would have to create a tuple with a null value for amount. In some cases null

266

Chapter7 Relational Database Design

| loan_number | amount __| [loan_number | branch_name |
%4-100 %0000 ?-100 :Springﬁeid
loan loan_branch
| loan_number | amount | branch_name |
?-IOD :10000 :Springfield
loan_amt_br

Figure 7.3 Partial list of tuples in relations loan, loan_branch, and loan_amt_br.

values are troublesome, as we saw in our study of SQL. However, if we decide that
this is not a problem to us in this case, then we can proceed to use the revised design.

The two examples we have just considered show the importance of the nature of
primary keys in determining whether combining schemas makes sense. Problems
arose—specifically repetition of information—when the join attribute (loan_number)
was not the primary key for both schemas being combined.

7.1.2 Design Alternative: Smaller Schemas

Suppose again that, somehow, we had started out with the schema borloan. How
would we recognize that it requires repetition of information and should be split into
the two schemas borrower and loan? Since we would not have the schemas borrower
and loan, we would lack the primary-key information that we used to describe the
problem with bor_loan.

By observing the contents of actual relations on schema bor_loan, we could note the
repetition of information resulting from having to list the loan amount once for each
borrower associated with a loan. However, this is an unreliable process. A real-world
database has a large number of schemas and even larger number of attributes. The
number of tuples can be in the millions or higher. Discovering repetition would be
costly. There is an even more fundamental problem with this approach. It does not
allow us to determine whether the lack of repetition is just a “lucky” special case or
whether it is a manifestation of a general rule. In our example, how would we know
that in our bank enterprise each loan (identified by its loan number) must have only
one amount? Is the fact that loan number L-100 appears three times with the same
amount just a coincidence? We cannot answer these questions without going back
to the enterprise itself and understanding its rules. In particular, we would need to

7.1 Features of Good Relational Designs 267

discover that the bank requires that every loan (identified by its loan number) must
have only one amount.

In the case of bor_loan, our process of creating an E-R design successfully avoided
the creation of this schema. However, this fortuitous situation does not always occur.
Therefore, we need to allow the database designer to specify rules such as “each
specific value for loan_number corresponds to at most one amount” even in cases where
loan_number is not the primary key for the schema in question. In other words, we
need to write a rule that says “if there were a schema (loan_number, amount), then loan
-number is able to serve as the primary key.” This rule is specified as a functional
dependency

loan_number — amount

Given such a rule, we now have sufficient information to recognize the problem of the
bor_loan schema. Because loan_number cannot be the primary key for bor_loan (because
a loan may need several tuples in the relation on schema bor_loan), the amount of a
loan may have to be repeated.

Observations such as these and the rules (functional dependencies in particular)
that result from them allow the database designer to recognize situations where a
schema ought to be split, or decomposed, into two or more schema. It is not hard
to see that the right way to decompose bor_loan is into schemas borrower and loan as
in the original design. Finding the right decomposition is much harder for schemas
with a large number of attributes and several functional dependencies. To deal with
this, we shall rely on a formal methodology that we develop later in this chapter.

Not all decompositions of schemas are helpful. Consider an extreme case where
all we had were schemas consisting of one attribute. No interesting relationships of
any kind could be expressed. Now consider a less extreme case where we choose to
decompose the employee schema into

employeel = (employee_id, employee_name)
employee2 = (employee_name, telephone_number, startdate)

The flaw in this decomposition arises from the possibility that the enterprise has two
employees with the same name. This is not unlikely in practice, as many cultures
have certain highly popular names and, also, children may be named after parents.
Of course each person would have a unique employee-id, which is why employee_id
can serve as a primary key. As an example, let us assume two employees, both named
Kim, work for the bank and have the following tuples in the relation on schema
employee in the original design:

(123-45-6789, Kim, 882-0000, 1984-03-29)
(987-65-4321, Kim, 869-9999, 1981-01-16)

Figure 7.4 shows these tuples, the resulting tuples using the schemas resulting from
the decomposition, and the result if we attempted to regenerate the original tuples
using a natural join. As we see in the figure, the two original tuples appear in the
result along with two new tuples that incorrectly mix date values pertaining to the

268

Chapter 7

Relational Database Design

two employees named Kim. Although we have more tuples, we actually have less
information in the following sense. We can indicate that a certain telephone number
and start date pertain to someone named Kim, but we are unable to distinguish which
one. Thus, our decomposition is unable to represent certain important facts about the
bank enterprise. Clearly, we would like to avoid such decompositions. We shall refer
to such decompositions as being lossy decompositions, and, conversely, to those that

employee_id | employee_name |telephone_number| start_date
123-45-6789 | Kim 882-0000 1984-03-29
987-65-4321 | Kim 869-9999 1981-01-16
employee
employee_id | employee_name employee_nanie |felephone_number| starf_date
123-45-6789 | Kim Kim 882-0000 1984-03-29
987-65-4321 | Kim Kim 869-9999 1981-01-16
\ : /
y
employee_id | employee_name | telephone_number| start_date
123-45-6789 | Kim 882-0000 1984-03-29
123-45-6789 | Kim 869-9999 1981-01-16
987-65-4321 | Kim 882-0000 1984-03-29
987-65-4321 | Kim 869-9999 1981-01-16

Figure 7.4 Loss of information via a bad decomposition.

are not as lossless decompositions.

7.2 Atomic Domains and First Normal Form

The E-R model allows entity sets and relationship sets to have attributes that have
some degree of substructure. Specifically, it allows multivalued attributes such as

7.2 Atomic Domains and First Normal Form 269

dependent name in Figure 6.25 and composite attributes (such as an attribute address
with component attributes street and city). When we create tables from E-R designs
that contain these types of attributes, we eliminate this substructure. For composite
attributes, we let each component be an attribute in its own right. For multivalued
attributes, we create one tuple for each item in a multivalued set.

In the relational model, we formalize this idea that attributes do not have any
substructure. A domain is atomic if elements of the domain are considered to be
indivisible units. We say that a relation schema R is in first normal form (INF) if the
domains of all attributes of R are atomic.

A set of names is an example of a nonatomic value. For example, if the schema of
a relation employee included an attribute children whose domain elements are sets of
names, the schema would not be in first normal form.

Composite attributes, such as an attribute address with component attributes street
and city, also have nonatomic domains.

Integers are assumed to be atomic, so the set of integers is an atomic domain; the
set of all sets of integers is a nonatomic domain. The distinction is that we do not
normally consider integers to have subparts, but we consider sets of integers to have
subparts—namely, the integers making up the set. But the important issue is not
what the domain itself is, but rather how we use domain elements in our database.
The domain of all integers would be nonatomic if we considered each integer to be
an ordered list of digits.

As a practical illustration of the above point, consider an organization that as-
signs employees identification numbers of the following form: The first two letters
specify the department and the remaining four digits are a unique number within
the department for the employee. Examples of such numbers would be C'S0012 and
EF1127. Such identification numbers can be divided into smaller units, and are there-
fore nonatomic. If a relation schema had an attribute whose domain consists of iden-
tification numbers encoded as above, the schema would not be in first normal form.

When such identification numbers are used, the department of an employee can
be found by writing code that breaks up the structure of an identification number.
Doing so requires extra programming, and information gets encoded in the applica-
tion program rather than in the database. Further problems arise if such identification
numbers are used as primary keys: When an employee changes department, the em-
ployee’s identification number must be changed everywhere it occurs, which can be
a difficult task, or the code that interprets the number would give a wrong result.

The use of set valued attributes can lead to designs with redundant storage of data,
which in turn can result in inconsistencies. For instance, instead of the relationship
between accounts and customers being represented as a separate relation depositor,
a database designer may be tempted to store a set of owners with each account, and
a set of accounts with each customer. Whenever an account is created, or the set of
owners of an account is updated, the update has to be performed at two places; fail-
ure to perform both updates can leave the database in an inconsistent state. Keeping
only one of these sets would avoid repeated information, but would complicate some
queries.

Some types of nonatomic values can be useful, although they should be used with
care. For example, composite-valued attributes are often useful, and set-valued at-

270

Chapter 7 Relational Database Design

tributes are also useful in many cases, which is why both are supported in the E-R
model. In many domains where entities have a complex structure, forcing a first nor-
mal form representation represents an unnecessary burden on the application pro-
grammer, who has to write code to convert data into atomic form. There is also a
run-time overhead of converting data back and forth from the atomic form. Sup-
port for nonatomic values can thus be very useful in such domains. In fact, modern
database systems do support many types of nonatomic values, as we shall see in
Chapter 9. However, in this chapter we restrict ourselves to relations in first normal
form and, thus, all domains are atomic.

7.3 Decomposition Using Functional Dependencies

In Section 7.1, we noted that there is a formal methodology for evaluating whether a
relational schema should be decomposed. This methodology is based upon the con-
cepts of keys and functional dependencies.

7.3.1 Keys and Functional Dependencies

Keys and, more generally, functional dependencies, are constraints on the database
that require relations to satisfy certain properties. Relations that satisfy all such con-
straints are legal relations.

In Chapter 6, we defined the notion of a superkey as follows. Let R be a relation
schema. A subset K of R is a superkey of R if, in any legal relation r(R), for all pairs
t; and ¢, of tuples in r such that#; # o, then t;[K] # #3[K]. Thatis, no two tuples
in any legal relation r(R) may have the same value on attribute set K.

Whereas a key is a set of attributes that uniquely identifies an entire tuple, a func-
tional dependency allows us to express constraints that uniquely identify the values
of certain attributes. Consider a relation schema R, and let & C R and 3 C R. The func-
tional dependency o — 3 holds on schema R if, in any legal relation (), for all pairs
of tuples t; and t, in r such that t,[a] = #s[a/, it is also the case that t110] = [0

Using the functional-dependency notation, we say that K is a superkey of R if K
— R. That is, K is a superkey if, whenever t,[K] = t,[K], it is also the case that
3] [R} = tg[R] (that iS, B = tz).

Functional dependencies allow us to express constraints that we cannot express
with superkeys. In Section 7.1.2, we considered the schema

bor_loan = (customer.id, loan_number, amount)

in which the functional dependency loan_number — amount holds because for each
loan (identified by loan_number) there is a unique amount. We denote the fact that the
pair of attributes (customer-id, loan_number) forms a superkey for bor_loan by writing:

customer_id, loan_number — customer.id, loan_number, amount
or, equivalently,

customer_id, loan_number — bor_loan

7.3 Decomposition Using Functional Dependencies 271

We shall use functional dependencies in two ways:

1. To test relations to see whether they are legal under a given set of functional
dependencies. If a relation is legal under a set F of functional dependencies,
we say that r satisfies F.

2. To specify constraints on the set of legal relations. We shall thus concern our-
selves with only those relations that satisfy a given set of functional dependen-
cies. If we wish to constrain ourselves to relations on schema R that satisfy a
set F of functional dependencies, we say that F holds on R.

Let us consider the relation r of Figure 7.5, to see which functional dependencies
are satisfied. Observe that A — C is satisfied. There are two tuples that have an A
value of a;. These tuples have the same C value—namely, ¢;. Similarly, the two tu-
ples with an A value of a; have the same C value, ¢2. There are no other pairs of
distinct tuples that have the same A value. The functional dependency C — A is not
satisfied, however. To see that it is not, consider the tuples t; = (a9, bs, c2,d3) and
ta = (as, bs, ca,dy). These two tuples have the same C values, ¢;, but they have dif-
ferent A values, ay and as, respectively. Thus, we have found a pair of tuples t; and
ts such that ¢; [C} = 15 [C], but ¢; [A] % tg[A]

Some functional dependencies are said to be trivial because they are satisfied by
all relations. For example, A — A is satisfied by all relations involving attribute A.
Reading the definition of functional dependency literally, we see that, for all tuples ¢,
and t; such that ¢1[A] = t5[4], it is the case that ¢,[A] = #,[A]. Similarly, AB — A
is satisfied by all relations involving attribute A. In general, a functional dependency
of the form a — f3 is trivial if 8 C .

It is important to realize that a particular relation may, at any point in time, satisfy
some functional dependencies that are not required to hold on the relation’s schema.
In the customer relation of Figure 2.4, we see that customer_street —s customer_city is
satisfied. However, we believe that, in the real world, two cities can have streets with
the same name. Thus, it is possible, at some time, to have an instance of the cusfomer
relation in which customer.street — customer_city is not satisfied. So, we would not
include customer.street — customer.city in the set of functional dependencies that hold
on the schema for the customer relation.

Given that a set of functional dependencies F holds on a relation r, it may
be possible to infer that certain other functional dependencies must also hold on

[AIB]C[P]
ap | by |cr | dq
ag | by | e | dy
ay by | ez | da
ay b3 |cz | dsz
a3 | b3 | cp | dyg

Figure 7.5 Sample relation r.

272

Chapter 7 Relational Database Design

the relation. For example, given a schema r = (A, B, C), if functional dependencies
A — Band B — (, hold on r, we can infer the functional dependency A — C must
also hold on r. For, given any value of A there can be only one corresponding value
for B, and for that value of B, there can only be one corresponding value for C. We
study later, in Section 7.4.1, how to make such inferences.

We will use the notation F'* to denote the closure of the set F', that is, the set of all
functional dependencies that can be inferred given the set F. Clearly F'* is a superset
of F.

7.3.2 Boyce—Codd Normal Form

One of the more desirable normal forms that we can obtain is Boyce—Codd normal
form (BCNF). It eliminates all redundancy that can be discovered based on functional
dependencies, though, as we shall see in Section 7.6, there may be other types of
redundancy remaining. A relation schema R is in BCNF with respect to a set F of
functional dependencies if, for all functional dependencies in F'* of the form a — f3,
where o C R and 3 C R, at least one of the following holds:

e o — (3 isa trivial functional dependency (that is, 3 C).

e a is a superkey for schema R.

A database design is in BCNF if each member of the set of relation schemas that con-
stitutes the design is in BCNF.

We have already seen an example of a schema that is not in BCNF, borloan =
(customer_id, loan_number, amount). The functional dependency loan_number — amount
holds on borloan, but loan_number is not a superkey (because, as we recall, a loan
may be made to a consortium of many customers). In Section 7.1.2, we saw that the
decomposition of bor_loan into borrower and loan was a better design. The borrower
schema is in BCNF because no nontrivial functional dependencies hold on it. The loan
schema has one nontrivial functional dependency that holds, loan_number — amount,
but loan_number is a superkey (actually, in this case, the primary key) for loan. Thus,
loan is in BCNF.

We now state a general rule for decomposing schema that are not in BCNF. Let
R be a schema that is not in BCNF. Then there is at least one nontrivial functional
dependency o — f3 such that a is not a superkey for R. We replace R in our design
with two schemas:

e (aUf)
e (R—(B—a)

In the case of bor_loan above, a = loan_number, 3 = amount, and bor_loan is replaced by

e (U B) = (loan_number, amount)

o (R — (B —) = (customer_id, loan_number)

7.3 Decomposition Using Functional Dependencies 273

In this example, it turns out that 83—« = 3. We need to state the rule as we did so as to
deal correctly with functional dependencies that have attributes that appear on both
sides of the arrow. The technical reasons for this are covered later in Section 7.5.1.

When we decompose a schema that is not in BCNF, it may be that one or more
of the resulting schemas are not in BCNF. In such cases, further decomposition is
required, the eventual result of which is a set of BCNF schemas.

7.3.3 BCNF and Dependency Preservation

We have seen several ways of expressing database consistency constraints: primary-
key constraints, functional dependencies, check constraints, assertions, and triggers.
Testing these constraints each time the database is updated can be costly and, there-
fore, it is useful to design the database in a way that constraints can be tested effi-
ciently. In particular, if testing a functional dependency can be done by considering
just one relation, then the cost of testing this constraint is low. We shall see that de-
composition into BCNF can prevent efficient testing of certain functional dependen-
cies.

To illustrate this, suppose that we make an apparently small change in the way
our bank enterprise operates. In the design of Figure 6.25, a customer may have only
one employee as “personal banker.” This follows from the relationship set cust banker
being many-to-one from customer to employee. The “small” change we shall make is
that a customer may have more than one personal banker, but at most one at a given
branch.

We may implement this in the E-R design by making the cust_banker relationship set
many-to-many (since a customer may now have more than one personal banker), and
by adding a new relationship set, works_in, between employee and branch indicating
employee-branch pairs where the employee works in the branch. We make works_in
many-to-one from employee to branch since a branch may have many employees but
an employee may work in only one branch. Figure 7.6 shows a subset of Figure 6.25,
with these additions.

There is, however, one flaw in this design. It allows a customer to have two (or
more) personal bankers working for the same branch, something the bank does not
allow. It would be ideal if there were a single relationship set that we could reference
to enforce this constraint. This requires us to consider a different way to change our
E-R design. Instead of adding the works_in relationship set, we replace the cust_banker
relationship set with a ternary relationship cust.banker_branch involving entity sets
customer, employee, and branch that is many-to-one from the pair customer, employee
to branch as shown in Figure 7.7. Because this design allows a single relationship set
to represent the constraint, it has a significant advantage over the first approach we
considered.

The comparison between these two approaches is not that clear, however. The
schema derived from cust_banker_branch is

cust banker branch = (customer_id, employee_id, branch_name, type)

Because an employee can work in only one branch, we know that in the relation on

274 Chapter7 Relational Database Design

customer_stree
customer—_city

customer—_name
customer_id

customer

employee

Figure 7.6 The cust_banker and works.in relationship sets.

schema cust_banker_branch there can be only one branch.name value associated with
each employee_id value; that is:

employee_id — branch_name

However, we are forced to repeat the branch name once for each time an employee
participates in a cust_banker_branch relationship. We see that cust_banker_branch is not

7.3 Decomposition Using Functional Dependencies 275

 branch

customer_stree
customer_city

_customer_name

employee_id l

Figure 7.7 The cust_banker_branch relationship set.
in BCNF because employee_id is not a superkey. Following our rule for BCNF decom-
position, we get:

(customer_id, employee_id, type)
(employee_id, branch_name)

This design, which is exactly the same as our first approach using the works.in rela-
tionship set, makes it difficult to enforce the constraint that a customer may have at
most one personal banker at a given branch. We can express that constraint by the
functional dependency

customer_id, branch-name — employee_id

and note that in our BCNF design, there is no schema that includes all the attributes
appearing in this functional dependency. Because our design makes it computation-

276

Chapter 7 Relational Database Design

ally hard to enforce this functional dependency, we say our design is not dependency
preserving.! Because dependency preservation is usually considered desirable, we
consider another normal form, weaker than BCNF, that will allow us to preserve de-
pendencies. That normal form is called third normal form.?

7.3.4 Third Normal Form

BCNF requires that all nontrivial dependencies be of the form a — 3, where a is a
superkey. Third normal form (3NF) relaxes this constraint slightly by allowing non-
trivial functional dependencies whose left side is not a superkey. Before we define
3NF, we recall that a candidate key is a minimal superkey—that is, a superkey no
proper subset of which is also a superkey.

A relation schema R is in third normal form with respect to a set F of functional
dependencies if, for all functional dependencies in F'* of the form o — &, where
a € Rand 8 C R, at least one of the following holds:

e o — [3is a trivial functional dependency.
e «is a superkey for R.

e Each attribute A in 3 — a is contained in a candidate key for R.

Note that the third condition above does not say that a single candidate key should
contain all the attributes in § — «; each attribute A in § — @ may be contained in a
different candidate key.

The first two alternatives are the same as the two alternatives in the definition of
BCNF. The third alternative of the 3NF definition seems rather unintuitive, and it is
not obvious why it is useful. It represents, in some sense, a minimal relaxation of the
BCNF conditions that helps ensure that every schema has a dependency-preserving
decomposition into 3NF. Its purpose will become more clear later, when we study
decomposition into 3NF.

Observe that any schema that satisfies BCNF also satisfies 3NF, since each of its
functional dependencies would satisfy one of the first two alternatives. BCNF is there-
fore a more restrictive normal form than is 3NF.

The definition of 3NF allows certain functional dependencies that are not allowed
in BCNF. A dependency o — [that satisfies only the third alternative of the 3NF
definition is not allowed in BCNF, but is allowed in 3NF.?

Now let us again consider cust_banker branch and the functional dependency

employee_id — branch_-name

1. Technically, it is possible that a dependency whose attributes do not all appear in any one schema is
still implicitly enforced, because of the presence of other dependencies that imply it logically. We address
that case later, in Section 7.4.5.

2. You may have noted that we skipped second normal form. It is of historical significance only and is
not used in practice.

3. These dependencies are examples of transitive dependencies (see Practice Exercise 7.14). The original
definition of 3NF was in terms of transitive dependencies. The definition we use is equivalent but easier
to understand.

7.3 Decomposition Using Functional Dependencies 277

that caused the schema not to be in BCNF. Note that here o = employee.id, 3 = branch
_name, and 3 — o = branch_name. It turns out that branch_name is contained in a can-
didate key and that, therefore, custbanker branch is in 3NF. To show this, however,
requires a bit of effort.

We know that in addition to the functional dependencies

employee_id — branch_name
customer_id, branch-name — employee_id

holding, the functional dependency
customer_id, employee_id — cust_banker_branch

holds as a result of (customer.id, employee_id) being the primary key. This makes (cus-
tomer_id, employee.id) a candidate key. Of course, it does not contain branch_name, so
we need to see if there are other candidate keys. As it turns out, the set of attributes
(customer_id, branch-name) is a candidate key. Let us see why this is the case.

Given a particular customer.id value and branch_name value, we know there is only
one associated employee_id value because

customer_id, branch_name — employee_id

But then, for that particular customer.id value and employee_id value, there can be only
one associated cust_banker_branch tuple because

customer_id, employee_id — cust banker_branch

Thus, we have argued that (customer_id, branch-name) is a superkey. Because neither
customer-id nor branch-name alone is a superkey, (customer.id, branch-name) is a candi-
date key. Since this candidate key contains branch_name, the functional dependency

employee_id — branch_name

does not violate the rules of 3NF.

Our argument that cust_banker_branch is in 3NF took some effort. For this reason
(and others), it is useful to take a structured, formal approach to reasoning about
functional dependencies, normal forms, and decomposition of schemas, which we
do in Section 7.4.

We have seen the trade-off that must be made between BCNF and 3NF when there
is no dependency-preserving BCNF design. These trade-offs are described in more
detail in Section 7.5.3; in that section we also outline an approach to dependency
checking using materialized views that allows us to get the benefits of BCNF and
3NF.

7.3.5 Higher Normal Forms

Using functional dependencies to decompose schemas may not be sufficient to avoid
unnecessary repetition of information in certain cases. Consider a slight variation

278

Chapter7 Relational Database Design

in the employee entity set definition in which we allow employees to have several
phone numbers, some of which may be shared by multiple employees. Then fele-
phone_number would be a multivalued attribute and, following our rules for generat-
ing schemas from an E-R design, we would have two schemas, one for each of the
multivalued attributes, telephone_number and dname:

(employee_id, dname)
(employee.id, telephone_number)

If we were to combine these schemas to get
(employee_id, dname, telephone_number)

we would find the result to be in BCNF because only nontrivial functional depen-
dencies hold. As a result we might think that such a combination is a good idea.
However, such a combination is a bad idea, as we can see by considering the exam-
ple of an employee with two dependents and two phone numbers. For example, let
the employee with employee_id 999-99-9999 have two dependents named “David” and
“William” and two phone numbers, 512-555-1234 and 512-555-4321. In the combined
schema, we must repeat the phone numbers once for each dependent:

(999-99-9999, David, 512-555-1234)
(999-99-9999, David, 512-555-4321)
(999-99-9999, William, 512-555-1234)
(999-99-9999, William, 512-555-4321)

If we did not repeat the phone numbers, and stored only the first and last tuple,
we would have recorded the dependent names and the phone numbers, but the re-
sultant tuples would imply that David corresponded to 512-555-1234, while William
corresponded to 512-555-4321. As we know, this would be incorrect.

Because normal forms based on functional dependencies are not sufficient to deal
with situations like this, other dependencies and normal forms have been defined.
We cover these in Sections 7.6 and 7.7.

7.4 Functional-Dependency Theory

We have seen in our examples that it is useful to be able to reason systematically
about functional dependencies as part of a process of testing schemas for BCNF or
3NF.

7.4.1 Closure of a Set of Functional Dependencies

It is not sufficient to consider the given set of functional dependencies. Rather, we
need to consider all functional dependencies that hold. We shall see that, given a set F
of functional dependencies, we can prove that certain other functional dependencies
hold. We say that such functional dependencies are “logically implied” by F.

74 Functional-Dependency Theory 279

More formally, given a relational schema R, a functional dependency f on R is log-
ically implied by a set of functional dependencies F on R if every relation instance
r(R) that satisfies F' also satisfies f.

Suppose we are given a relation schema R = (4, B, C, G, H, I) and the set of
functional dependencies

A—B
A—=C
CG—H
CG—1
B—H

The functional dependency
A—H

is logically implied. That is, we can show that, whenever our given set of functional
dependencies holds on a relation, A — H must also hold on the relation. Suppose that
t; and t; are tuples such that

ti[A] = t3[4]
Since we are given that A — B, it follows from the definition of functional dependency
that

t1[B] = t3[B]
Then, since we are given that B — H, it follows from the definition of functional
dependency that

t1[H] = t3[H]
Therefore, we have shown that, whenever ¢; and £, are tuples such that ¢, [A] = ¢,[4],
it must be that ¢;[H] = t»[H]. But that is exactly the definition of 4 — H.

Let F be a set of functional dependencies. The closure of F, denoted by F'*, is the
set of all functional dependencies logically implied by F. Given F, we can compute
F* directly from the formal definition of functional dependency. If F were large, this
process would be lengthy and difficult. Such a computation of F'* requires argu-
ments of the type just used to show that A — H is in the closure of our example set
of dependencies.

Axioms, or rules of inference, provide a simpler technique for reasoning about
functional dependencies. In the rules that follow, we use Greek letters (@, 8,7)
for sets of attributes, and uppercase Roman letters from the beginning of the alphabet
for individual attributes. We use o3 to denote o U f.

We can use the following three rules to find logically implied functional dependen-
cies. By applying these rules repeatedly, we can find all of F'*, given F. This collection
of rules is called Armstrong’s axioms in honor of the person who first proposed it.

e Reflexivity rule. If o is a set of attributes and 8 C «, then o — 3 holds.

e Augmentation rule.If « — 8 holds and v is a set of attributes, then Yo — 3
holds.

280 Chapter7 Relational Database Design

o Transitivity rule. If « — holds and 3 — - holds, then a — v holds.

Armstrong’s axioms are sound, because they do not generate any incorrect func-
tional dependencies. They are complete, because, for a given set F of functional de-
pendencies, they allow us to generate all F'*. The bibliographical notes provide ref-
erences for proofs of soundness and completeness.

Although Armstrong’s axioms are complete, it is tiresome to use them directly
for the computation of F'*. To simplify matters further, we list additional rules. It is
possible to use Armstrong’s axioms to prove that these rules are correct (see Practice
Exercises 7.4 and 7.5 and Exercise 7.21).

e Union rule. If & — 8 holds and & — « holds, then o — G~y holds.
e Decomposition rule. If o — 37 holds, then & — 3 holds and a — ~ holds.

e Pseudotransitivity rule. If « — 3 holds and 3 — d holds, then a-y — § holds.

Let us apply our rules to the example of schema R = (4, B, C, G, H, I) and the
set F of functional dependencies {A — B, A — C, CG — H, CG — I, B — H}. We
list several members of F'* here:

e A — H.Since A — Band B — H hold, we apply the transitivity rule. Observe
that it was much easier to use Armstrong’s axioms to show that A — H holds
than it was to argue directly from the definitions, as we did earlier in this
section.

e CG — HI.Since CG — H and CG — I, the union rule implies that CG — HI.

e AG — I.Since A — C and CG — I, the pseudotransitivity rule implies that
AG — I holds.
Another way of finding that AG — I holds is as follows. We use the aug-
mentation rule on A — C to infer AG — CG. Applying the transitivity rule to
this dependency and CG — I, we infer AG — I.

Figure 7.8 shows a procedure that demonstrates formally how to use Armstrong’s
axioms to compute F'F. In this procedure, when a functional dependency is added to

FT=F
repeat
for each functional dependency f in F'*
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F'*
for each pair of functional dependencies f; and f; in F*
if f; and f, can be combined using transitivity
add the resulting functional dependency to F'*
until F* does not change any further

Figure 7.8 A procedure to compute F'*.

74 Functional-Dependency Theory 281

F*, it may be already present, and in that case there is no change to F'*. We shall see
an alternative way of computing F* in Section 7.4.2.

The left-hand and right-hand sides of a functional dependency are both subsets
of 1. Since a set of size n has 2" subsets, there are a total of 2" x 2" = 22n possible
functional dependencies, where n is the number of attributes in R. Each iteration of
the repeat loop of the procedure, except the last iteration, adds at least one functional
dependency to F'*. Thus, the procedure is guaranteed to terminate.

7.4.2 Closure of Attribute Sets

We say that an attribute B is functionally determined by « if « — B. To test whether
a set aris a superkey, we must devise an algorithm for computing the set of attributes
functionally determined by a. One way of doing this is to compute F'*, take all func-
tional dependencies with « as the left-hand side, and take the union of the right-hand
sides of all such dependencies. However, doing so can be expensive, since F can be
large.

f\n efficient algorithm for computing the set of attributes functionally determined
by « is useful not only for testing whether « is a superkey, but also for several other
tasks, as we will see later in this section.

Let a be a set of attributes. We call the set of all attributes functionally determined
by o under a set F of functional dependencies the closure of o under F; we denote
it by a*. Figure 7.9 shows an algorithm, written in pseudocode, to compute a*. The
input is a set F of functional dependencies and the set « of attributes. The output is
stored in the variable result.

To illustrate how the algorithm works, we shall use it to compute (AG)* with the
functional dependencies defined in Section 7.4.1. We start with result = AG. The first
time that we execute the while loop to test each functional dependency, we find that

e A — B causes us to include B in result. To see this fact, we observe that A — B
isin F, A C result (which is AG), so result := result UB.

e A — C causes result to become ABCG.
e CG — H causes result to become ABCGH.
e CG — I causes result to become ABCGHI.

The second time that we execute the while loop, no new attributes are added to result,
and the algorithm terminates.

result := o
while (changes to result) do
for each functional dependency 3 — « in F do
begin
if 8 C result then result := result U~;
end

Figure 7.9 An algorithm to compute a, the closure of o under F.

282

Chapter 7 Relational Database Design

Let us see why the algorithm of Figure 7.9 is correct. The first step is correct, since
o — a always holds (by the reflexivity rule). We claim that, for any subset 3 of result,
o — f3. Since we start the while loop with a — result being true, we can add 7y to result
only if 8 C result and 3 — <. But then result — J by the reflexivity rule, so « — (by
transitivity. Another application of transitivity shows that oz — (using @ — 3 and
B —). The union rule implies that o — result U vy, so a functionally determines any
new result generated in the while loop. Thus, any attribute returned by the algorithm
isina™.

It is easy to see that the algorithm finds all a*. If there is an attribute in o™ that
is not yet in result, then there must be a functional dependency 8 — 7 for which 8 C
result, and at least one attribute in y is not in result.

It turns out that, in the worst case, this algorithm may take an amount of time
quadratic in the size of F. There is a faster (although slightly more complex) algorithm
that runs in time linear in the size of F; that algorithm is presented as part of Practice
Exercise 7.8.

There are several uses of the attribute closure algorithm:

o To test if a is a superkey, we compute a*, and check if o™ contains all at-
tributes of R.

e We can check if a functional dependency oz — § holds (or, in other words,
is in F*), by checking if # C a*. That is, we compute o™ by using attribute
closure, and then check if it contains (. This test is particularly useful, as we
will see later in this chapter.

e It gives us an alternative way to compute F'*: For each v C R, we find the
closure v+, and for each S C v, we output a functional dependency v — S.

7.4.3 Canonical Cover

Suppose that we have a set of functional dependencies I on a relation schema. When-
ever a user performs an update on the relation, the database system must ensure that
the update does not violate any functional dependencies, that is, all the functional
dependencies in F are satisfied in the new database state.

The system must roll back the update if it violates any functional dependencies in
the set F.

We can reduce the effort spent in checking for violations by testing a simplified set
of functional dependencies that has the same closure as the given set. Any database
that satisfies the simplified set of functional dependencies will also satisfy the origi-
nal set, and vice versa, since the two sets have the same closure. However, the sim-
plified set is easier to test. We shall see how the simplified set can be constructed in a
moment. First, we need some definitions.

An attribute of a functional dependency is said to be extraneous if we can remove
it without changing the closure of the set of functional dependencies. The formal
definition of extraneous attributes is as follows. Consider a set F of functional de-
pendencies and the functional dependency a — Fin F.

74 Functional-Dependency Theory = 283

o Attribute A is extraneous in a if A € , and F logically implies (F — {a —
AH U {(a—4)— 8}

o Attribute A is extraneousin Bif A € 3, and the set of functional dependencies
(F—{a—pPU{a — (8 — A)}logically implies F.

For example, suppose we have the functional dependencies AB — C and A — C
in F". Then, B is extraneous in AB — C. As another example, suppose we have the
functional dependencies AB — CD and A — C in F. Then C would be extraneous
in the right-hand side of AB — CD.

Beware of the direction of the implications when using the definition of extraneous
attributes: If you exchange the left-hand side with right-hand side, the implication
will always hold. That is, (F — {a — }) U {(a — A) — B} always logically implies
F, and also F always logically implies (F — {a —) U {a — (8 — A)}

Here is how we can test efficiently if an attribute is extraneous. Let R be the rela-
tion schema, and let F* be the given set of functional dependencies that hold on R.
Consider an attribute 4 in a dependency o — f.

e If A € (3, to check if A is extraneous consider the set
F'=(F-{a=pPU{a — (8 — A)}
and check if @ — A can be inferred from F". To do so, compute a* (the closure
of &) under F'; if ™ includes A, then A is extraneous in 3.

e If A € o, to check if A is extraneous, let v = a — {4}, and check if y —
can be inferred from F. To do so, compute ™ (the closure of v) under F’; if v+
includes all attributes in 3, then A is extraneous in a.

For example, suppose F' contains AB — CD, A — E, and E — C. To check
if C is extraneous in AB — CD, we compute the attribute closure of AB under
F'={AB—-D,A— E,and E — C}. The closure is ABCDE, which includes C'D,
so we infer that C is extraneous.

A canonical cover F. for F is a set of dependencies such that F logically implies all
dependencies in F, and F, logically implies all dependencies in F. Furthermore, F.,
must have the following properties:

¢ No functional dependency in F, contains an extraneous attribute.

o Each left side of a functional dependency in F, is unique. That is, there are no
two dependencies &y — f; and as — B; in F, such that a; = .

A canonical cover for a set of functional dependencies F can be computed as de-
picted in Figure 7.10. It is important to note that when checking if an attribute is
extraneous, the check uses the dependencies in the current value of F,, and not the
dependencies in . If a functional dependency contains only one attribute in its right-
hand side, for example A — C, and that attribute is found to be extraneous, we would
get a functional dependency with an empty right-hand side. Such functional depen-
dencies should be deleted.

284 Chapter7 Relational Database Design

Fo=F
repeat
Use the union rule to replace any dependencies in F of the form
a; — franda; — B withay — i Be.
Find a functional dependency a — 3 in F, with an extraneous
attribute either in « or in 3.
/* Note: the test for extraneous attributes is done using F, not F' */
If an extraneous attribute is found, delete it from o — f.
until F, does not change.

Figure 7.10 Computing canonical cover.

The canonical cover of I, F., can be shown to have the same closure as F; hence,
testing whether F is satisfied is equivalent to testing whether I is satisfied. However,
F. is minimal in a certain sense—it does not contain extraneous attributes, and it
combines functional dependencies with the same left side. It is cheaper to test F.
than it is to test F itself.

Consider the following set F of functional dependencies on schema (4, B, C):

A — BC
B—=C
A—B
AB—C

Let us compute the canonical cover for F.

e There are two functional dependencies with the same set of attributes on the
left side of the arrow:

A — BC
A—B

We combine these functional dependencies into A — BC.

o A is extraneous in AB — C because F logically implies (F — {AB — C}) U
{B — C}. This assertion is true because B — C is already in our set of func-
tional dependencies.

e Cis extraneous in A — BC, since A — BC is logically implied by A — B and B
—C.

Thus, our canonical cover is

A—B
B—C

Given a set F' of functional dependencies, it may be that an entire functional de-
pendency in the set is extraneous, in the sense that dropping it does not change the
closure of F. We can show that a canonical cover F, of F' contains no such extraneous

74 Functional-Dependency Theory 285

functional dependency. Suppose that, to the contrary, there were such an extraneous
functional dependency in F,. The right-side attributes of the dependency would then
be extraneous, which is not possible by the definition of canonical covers.

A canonical cover might not be unique. For instance, consider the set of functional
dependencies F = {A — BC, B — AC, and C — AB}. If we apply the extraneity
test to A — BC, we find that both B and C are extraneous under F. However, it is
incorrect to delete both! The algorithm for finding the canonical cover picks one of
the two, and deletes it. Then,

L. If C is deleted, we get the set F/ = {A — B, B — AC, and C — AB}. Now,
B is not extraneous in the right hand side of A — B under F". Continuing the
algorithm, we find A and B are extraneous in the right-hand side of C — AB,
leading to two canonical covers

F.={A— B,B— C,and C — A}, and
F.={A— B,B— AC,and C — B}.

2. If B is deleted, we get the set {4 — C, B — AC, and C — AB}. This case is
symmetrical to the previous case, leading to the canonical covers

F.={A—C,C — B,and B — A}, and
Fo={A—C,B— C,and C — AB}.

As an exercise, can you find one more canonical cover for F?

7.4.4 Lossless Decomposition

Let R be a relation schema, and let F be a set of functional dependencies on R. Let R;
and R, form a decomposition of R. Let 7(R) be a relation with schema R. We say that
the decomposition is a lossless decomposition if for all legal database instances (that
is, database instances that satisfy the specified functional dependencies and other
constraints),

Hg, (r) X Ig,(r) =1

In other words, if we project r onto R; and R», and compute the natural join of the
projection results, we get back exactly . A decomposition that is not a lossless de-
composition is called a lossy decomposition. The terms lossless-join decomposition
and lossy-join decomposition are sometimes used in place of lossless decomposition
and lossy decomposition.

We can use functional dependencies to show when certain decompositions are
lossless. Let R, Ry, Ry, and F be as above. R; and R, form a lossless decomposition
of R if at least one of the following functional dependencies is in F'*:

® RlﬂRQ—“*Rl
° RlﬂRg—‘Rz

286

Chapter 7 Relational Database Design

In other words, if Ry N R, forms a superkey of either R; or R, the decomposition
of R is a lossless decomposition. We can use attribute closure to test efficiently for
superkeys, as we have seen earlier.

To illustrate this, consider the schema

bor_loan = (customer.id, loan_number, amount)

that we decomposed in Section 7.1.2 into

borrower = (customer_id, loan_number)
loan = (loan_number, amount)

Here borrow N loan = loan_number and loan_number — amount, satisfying the lossless-
decomposition rule.

For the general case of decomposition of a schema into multiple schemas at once,
the test for lossless decomposition is more complicated. See the bibliographical notes
for references on the topic.

While the test for binary decomposition is clearly a sufficient condition for loss-
less decomposition, it is a necessary condition only if all constraints are functional
dependencies. We shall see other types of constraints later (in particular, a type of
constraint called multivalued dependencies discussed in Section 7.6.1), that can en-
sure that a decomposition is lossless even if no functional dependencies are present.

7.4.5 Dependency Preservation

Using the theory of functional dependencies, it is easier to characterize dependency
preservation than using the ad-hoc approach we took in Section 7.3.3.

Let F be a set of functional dependencies on a schema R, and let Ry, Ry, ..., R, be
a decomposition of R. The restriction of F to R; is the set F; of all functional depen-
dencies in F'* that include only attributes of R;. Since all functional dependencies in
a restriction involve attributes of only one relation schema, it is possible to test such
a dependency for satisfaction by checking only one relation.

Note that the definition of restriction uses all dependencies in F'*, not just those in
F. For instance, suppose F = {A — B, B — C}, and we have a decomposition into
AC and AB. The restriction of F to AC is then A — C, since A — C is in F'T, even
though it is not in F.

The set of restrictions I, Fb, ..., F, is the set of dependencies that can be checked
efficiently. We now must ask whether testing only the restrictions is sufficient. Let
F' = F, U F3 U --- U F,. F'is a set of functional dependencies on schema R, but,
in general, I’ # F. However, even if F’ # F, it may be that F'+ = FT_If the latter is
true, then every dependency in F is logically implied by F’, and, if we verify that F”
is satisfied, we have verified that F is satisfied. We say that a decomposition having
the property F'* = F'* is a dependency-preserving decomposition.

Figure 7.11 shows an algorithm for testing dependency preservation. The input
isaset D= {R;, Ra,...,R,} of decomposed relation schemas, and a set F of func-
tional dependencies. This algorithm is expensive since it requires computation of F'*.
Instead of applying the algorithm of Figure 7.11, we consider two alternatives.

74 Functional-Dependency Theory 287

compute F't;

for each schema R; in D do
begin
F; : = the restriction of F* to R;;
end
F =0
for each restriction F; do
begin
F' = F'UF;
end

compute F'F;
if (F'* = F'*) then return (true)
else return (false);

Figure 7.11 Testing for dependency preservation.

First, note that if each member of F can be tested on one of the relations of the
decomposition, then the decomposition is dependency preserving. This is an easy
way to show dependency preservation; however, it does not always work. There are
cases where, even though the decomposition is dependency preserving, there is a
dependency in F that cannot be tested in any one relation in the decomposition. Thus,
this alternative test can be used only as a sufficient condition that is easy to check; if
it fails we cannot conclude that the decomposition is not dependency preserving;
instead we will have to apply the general test.

We now give a second alternative test for dependency preservation that avoids
computing F'*. We explain the intuition behind the test after presenting the test. The
test applies the following procedure to each @ — S in F.

result = o
while (changes to result) do
for each R; in the decomposition
t=(result N Ry))T N R;
result = result U t

The attribute closure here is under the set of functional dependencies F. If result
contains all attributes in /3, then the functional dependency oo — f3 is preserved. The
decomposition is dependency preserving if and only if the procedure shows that all
the dependencies in F' are preserved.

The two key ideas behind the above test are as follows.

e The first idea is to test each functional dependency & — 3 in F to see if it is
preserved in F' (where F” is as defined in Figure 7.11). To do so we compute
the closure of o under F’; the dependency is preserved exactly when the clo-
sure includes f. The decomposition is dependency preserving if (and only if)
all the dependencies in F' are found to be preserved.

e The second idea is to use a modified form of the attribute-closure algorithm
to compute closure under F’, without actually first computing F”. We wish to

288 Chapter 7 Relational Database Design

avoid computing F” since computing it is quite expensive. Note that F’ is the
union of F;, where F; is the restriction of F' on R;. The algorithm computes the
attribute closure of (result N R;) with respect to F, intersects the closure with
R;, and adds the resultant set of attributes to result; this sequence of steps is
equivalent to computing the closure under of result under F;. Repeating this
step for each i inside the while loop gives the closure of result under F’.

To understand why this modified attribute-closure approach works cor-
rectly, we note that for any v C R;, ¥ — 7 is a functional dependency in F'*,
and ¥ — vt N R; is a functional dependency that is in Fj, the restriction of Fr
to R;. Conversely, if v — § were in F}, then § would be a subset of v N R;.

This test takes polynomial time, instead of the exponential time required to com-
pute F*.

7.5 Algorithms for Decomposition

Real-world database schemas are much larger than the examples that fit in the pages
of a book. For this reason, we need algorithms for the generation of designs that are
in appropriate normal form. In this section, we present algorithms for BCNF and 3NF.

7.5.1 BCNF Decomposition

The definition of BCNF can be used to directly test if a relation is in BCNF. However,
computation of F* can be a tedious task. We first describe below simplified tests for
verifying if a relation is in BCNF. If a relation is not in BCNF, it can be decomposed
to create relations that are in BCNF. Later in this section we describe an algorithm to
create a lossless decomposition of a relation, such that the decomposition is in BCNF.

7.5.1.1 Testing for BCNF

Testing of a relation to see if it satisfies BCNF can be simplified in some cases:

e To check if a nontrivial dependency a — 3 causes a violation of BCNF, com-
pute ot (the attribute closure of @), and verify that it includes all attributes of
R; that is, it is a superkey of R.

o To check if a relation schema R is in BCNF, it suffices to check only the depen-
dencies in the given set F for violation of BCNF, rather than check all depen-
dencies in F.

We can show that if none of the dependencies in F' causes a violation of
BCNF, then none of the dependencies in F'* will cause a violation of BCNF
either.

Unfortunately, the latter procedure does not work when a relation is decomposed.
That is, it does not suffice to use F when we test a relation R;, in a decomposition
of R, for violation of BCNF. For example, consider relation schema R (4, B,C, D, E),
with functional dependencies F containing A — B and BC — D. Suppose this were
decomposed into R (A, B) and Ry(A, C, D, E). Now, neither of the dependencies in

7.5 Algorithms for Decomposition 289

result := {R};
done := false;
compute F'F;
while (not done) do
if (there is a schema R; in result that is not in BCNF)
then begin
let @ — (3 be a nontrivial functional dependency that holds
on R; such thata — R;isnotin F*,and a N B = §;
result := (result — R;) U (R; — B) U («a, B);
end
else done := true;

Figure 7.12 BCNF decomposition algorithm.

F contains only attributes from (4, C, D, E) so we might be misled into thinking R,
satisfies BCNF. In fact, there is a dependency AC — D in F* (which can be inferred
using the pseudotransitivity rule from the two dependencies in F), that shows that
5 is not in BCNF. Thus, we may need a dependency that is in /T, but is not in F, to
show that a decomposed relation is not in BCNF.

An alternative BCNF test is sometimes easier than computing every dependency
in F'*. To check if a relation R; in a decomposition of R is in BONF, we apply this test:

e For every subset « of attributes in R;, check that ot (the attribute closure of o
under F) either includes no attribute of R; — «, or includes all attributes of R;.

If the condition is violated by some set of attributes « in R;, consider the following
functional dependency, which can be shown to be present in F'*:

a— (et —a)NR;.
The above dependency shows that R; violates BCNF.

7.5.1.2 BCNF Decomposition Algorithm

We are now able to state a general method to decompose a relation schema so as to
satisfy BCNF. Figure 7.12 shows an algorithm for this task. If R is not in BCNF, we
can decompose R into a collection of BCNF schemas Ri, Ry, . . ., R, by the algorithm.
The algorithm uses dependencies that demonstrate violation of BCNF to perform the
decomposition.

The decomposition that the algorithm generates is not only in BCNF, but is also
a lossless decomposition. To see why our algorithm generates only lossless decom-
positions, we note that, when we replace a schema R; with (R; — 3) and (a, 3), the
dependency o — § holds, and (R; — 8) N (a,) = o

If we did not require a N 8 = (), then those attributes in o: N 3 would not appear in
the schema (R; — 3) and the dependency o — £ would no longer hold.

It is easy to see that our decomposition of bor.loan in Section 7.3.2 would result
from applying the algorithm. The functional dependency loan_number — amount satis-
fies the N @ = () condition and would therefore be chosen to decompose the schema.

290

Chapter7 Relational Database Design

The BCNF decomposition algorithm takes time exponential in the size of the initial
schema, since the algorithm for checking if a relation in the decomposition satisfies
BCNF can take exponential time. The bibliographical notes provide references to an
algorithm that can compute a BCNF decomposition in polynomial time. However, the
algorithm may “overnormalize,” that is, decompose a relation unnecessarily.

As a longer example of the use of the BCNF decomposition algorithm, suppose we
have a database design using the lending schema below:

lending = (branch-name, branch_city, assets, customer_name,
loan_number, amount)

The set of functional dependencies that we require to hold on lending are

branch_name — assets branch_city
loan_number — amount branch_name

A candidate key for this schema is {loan_number, customer_name}.
We can apply the algorithm of Figure 7.12 to the lending example as follows:

e The functional dependency
branch_name — assets branch_city

holds, but branch.name is not a superkey. Thus, lending is not in BCNF. We
replace lending by

branch = (branch.name, branch_city, assets)
loan_info = (branch_name, customer_name, loan_number, amoun f)

e The only nontrivial functional dependencies that hold on branch include branch
_name on the left side of the arrow. Since branch_name is a key for branch, the
relation branch is in BCNF.

e The functional dependency
loan_number — amount branch.name

holds on loan_info, but loan_number is not a key for loan.info. We replace loan
_info by

loanb = (loan_number, branch_name, amount)

borrower = (customer_name, loan_number)

e loanb and borrower are in BCNE.

Thus, the decomposition of lending results in the three relation schemas brarnch, loanb,
and borrower, each of which is in BCNF. You can verify that the decomposition is
lossless and dependency preserving.

Note that although the loanb schema above is in BCNF, we could choose to de-
compose it further using the functional dependency loan-number — amount, to get the
schemas

loan = (loan_number, amount)
loan_branch = (loan_number, branch_name)

7.5 Algorithms for Decomposition ~ 291

let F, be a canonical cover for F;

i:=0;
for each functional dependency o — 3 in F, do
if none of the schemas R;,j = 1,2,...,i contains o. 8
then begin
i=i+1;
R =« B;
end
if none of the schemas R;,j = 1,2, ..., i contains a candidate key for R
then begin
i:=i+1;
R; := any candidate key for R;
end

return (Ry, R, ..., R;)
Figure 7.13 Dependency-preserving, lossless decomposition into 3NF.

These correspond to the schemas that we have used in this chapter.

7.5.2 3NF Decomposition

Figure 7.13 shows an algorithm for finding a dependency-preserving, lossless de-
composition into 3NF. The set of dependencies F, used in the algorithm is a canonical
cover for F. Note that the algorithm considers the set of schemas R;,i=1,2,...,5
initially 4 = 0, and in this case the set is empty.

Let us apply this algorithm to our example of Section 7.3.4 where we showed that

cust banker_branch = (customer_id, employee_id, branch_name, type)

is in 3NF even though it is not in BCNF. The algorithm would use the following func-
tional dependencies in F:

Fy: customer-id, employee_id — branch_name, type
Fy: employee_id — branch-name
Fy: customer_id, branch_name — employee_id

The attribute branch-name is extraneous in the right-hand side of F;. No other at-
tribute is extraneous, so F, contains customer-id, employee_id — type, as well as F, and
F5. The algorithm then generates as R, the schema (customer.id, employee_id, type), as
Rj the schema, (employee_id, branch.name), and as Rj the schema (customer_id, branch
-name, employee_id). The algorithm then finds that R, contains a candidate key, so no
further relation schema is created.

Before creating a schema R;, the algorithm checks if it is contained in an already
created schema R;. The algorithm can be extended to delete any already created
schema R; that is contained in a schema R; that is created later. In the above ex-
ample, I, is contained in Rs, and hence R, can be deleted from the decomposition,
by this algorithm extension.

The algorithm ensures the preservation of dependencies by explicitly building a
schema for each dependency in a canonical cover. It ensures that the decomposition

292

Chapter 7 Relational Database Design

is a lossless decomposition by guaranteeing that at least one schema contains a can-
didate key for the schema being decomposed. Practice Exercise 7.12 provides some
insight into the proof that this suffices to guarantee a lossless decomposition.

This algorithm is also called the 3NF synthesis algorithm, since it takes a set of de-
pendencies and adds one schema at a time, instead of decomposing the initial schema
repeatedly. The result is not uniquely defined, since a set of functional dependencies
can have more than one canonical cover, and, further, in some cases the result of the
algorithm depends on the order in which it considers the dependencies in F¢. The
algorithm may decompose a relation even if it is already in 3NF, as the preceding
example illustrated; however, the decomposition is still guaranteed to be in 3NF.

If a relation R; is in the decomposition generated by the synthesis algorithm, then
R, is in 3NF. Recall that when we test for 3NF, it suffices to consider functional de-
pendencies whose right-hand side is a single attribute. Therefore, to see that R; is in
3NF, you must convince yourself that any functional dependency 7 — B that holds
on R; satisfies the definition of 3NF. Assume that the dependency that generated R;
in the synthesis algorithm is @ — 3. Now, B must be in a or §, since B is in R; and
a — (3 generated R;. Let us consider the three possible cases:

e Bisinboth a and 8. In this case, the dependency o — § would not have been
in F, since B would be extraneous in (. Thus, this case cannot hold.

e Bisin 3 but not a. Consider two cases:

O v is a superkey. The second condition of 3NF is satisfied.

0 ~ is not a superkey. Then a must contain some attribute not in 7. Now,
since v — B is in F'*, it must be derivable from F by using the attribute
closure algorithm on ~. The derivation could not have used @ — 3—
if it had been used, & must be contained in the attribute closure of 7,
which is not possible, since we assumed 7 is not a superkey. Now, us-
ing & — (8—{B}) and v — B, we can derive « — B (since y C o/, and
cannot contain B because v — B is nontrivial). This would imply that B
is extraneous in the right-hand side of @ — 3, which is not possible since
o — f is in the canonical cover F.. Thus, if B is in 3, then v must be a
superkey, and the second condition of 3NF must be satisfied.

e Bisin a butnot .
Since a is a candidate key, the third alternative in the definition of 3NF is
satisfied.

Interestingly, the algorithm we described for decomposition into 3NF can be imple-
mented in polynomial time, even though testing a given relation to see if it satisfies
3NF is NP-hard (which means that it is very unlikely that a polynomial-time algo-
rithm will ever be invented for this task).

7.5.3 Comparison of BCNF and 3NF

Of the two normal forms for relational database schemas, 3NF and BCNF, there are
advantages to 3NF in that we know that it is always possible to obtain a 3NF design
without sacrificing losslessness or dependency preservation. Nevertheless, there are

7.6 Decomposition Using Multivalued Dependencies 293

disadvantages to 3NF: We may have to use null values to represent some of the possi-
ble meaningful relationships among data items, and there is the problem of repetition
of information.

Our goals of database design with functional dependencies are:

1. BCNF
2. Losslessness

3. Dependency preservation

Since it is not always possible to satisfy all three, we may be forced to choose between
BCNF and dependency preservation with 3NF.

Itis worth noting that SQL does not provide a way of specifying functional depen-
dencies, except for the special case of declaring superkeys by using the primary key
or unique constraints. It is possible, although a little complicated, to write assertions
that enforce a functional dependency (see Practice Exercise 7.9); unfortunately, test-
ing the assertions would be very expensive in most database systems. Thus even if
we had a dependency-preserving decomposition, if we use standard SQL we can test
efficiently only those functional dependencies whose left-hand side is a key.

Although testing functional dependencies may involve a join if the decomposition
is not dependency preserving, we can reduce the cost by using materialized views,
which many database systems support. Given a BCNF decomposition that is not de-
pendency preserving, we consider each dependency in a minimum cover F,. that is
not preserved in the decomposition. For each such dependency a — 3, we define
a materialized view that computes a join of all relations in the decomposition, and
projects the result on /8. The functional dependency can be easily tested on the ma-
terialized view, by means of a constraint unique (a). On the negative side, there is a
space and time overhead due to the materialized view, but on the positive side, the
application programmer need not worry about writing code to keep redundant data
consistent on updates; it is the job of the database system to maintain the material-
ized view, that is, keep it up to date when the database is updated. (Later in the book,
in Section 14.5, we outline how a database system can perform materialized view
maintenance efficiently.)

Thus, in case we are not able to get a dependency-preserving BCNF decomposition,
it is generally preferable to opt for BCNF, and use techniques such as materialized
views to reduce the cost of checking functional dependencies.

7.6 Decomposition Using Multivalued Dependencies

Some relation schemas, even though they are in BCNF, do not seem to be sufficiently
normalized, in the sense that they still suffer from the problem of repetition of infor-
mation. Consider again our banking example. Assume that, in an alternative design
for the bank database schema, we have the schema

cust loan = (loan_number, customer_id, customer_name, customer.street, customer_city)

294

Chapter 7 Relational Database Design

The astute reader will recognize this schema as a non-BCNF schema because of the
functional dependency

customer_id — customer-name, customer_street customer_city

and because customer.id is not a key for cust_loan. However, assume that our bank is
attracting wealthy customers who have several addresses (say, a winter home and
a summer home). Then, we no longer wish to enforce the functional dependency
customer.id — customer.street customer.city, though, of course, we still want to enforce
customer.id — customer-name (that is, the bank is not dealing with customers who
operate under multiple aliases!). Following the BCNF decomposition algorithm, we
obtain two schemas:

Ry = (customer.id, customer_name)
Ry = (loan_number, customer_id, customer_street, customer_city)

Both of which are in BCNF (recall that not only may customers have more than one
Joan but also that a loan may be made to a group of people, and therefore, neither
customer_id — loan_number nor loan_number — customer_id hold).

Despite Ry being in BCNF, there is redundancy. We repeat the address of each
residence of a customer once for each loan that that customer has. We could solve
this problem by decomposing Rp further into:

loan_cust_id = (loan_number, customer_id)
cust_residence = (customer_id, customer_street, customer_city)

but there is no constraint that would lead us to do this.

To deal with this problem, we must define a new form of constraint, called a mul-
tivalued dependency. As we did for functional dependencies, we shall use multivalued
dependencies to define a normal form for relation schemas. This normal form, called
fourth normal form (4NF), is more restrictive than BCNF. We shall see that every 4NF
schema is also in BCNF, but there are BCNF schemas that are not in 4NF.

7.6.1 Multivalued Dependencies

Functional dependencies rule out certain tuples from being in a relation. If A — B,
then we cannot have two tuples with the same A value but different B values. Mul-
tivalued dependencies, on the other hand, do not rule out the existence of certain
tuples. Instead, they require that other tuples of a certain form be present in the rela-
tion. For this reason, functional dependencies sometimes are referred to as equality-
generating dependencies, and multivalued dependencies are referred to as tuple-
generating dependencies.

Let R be a relation schema and let « C R and 8 C R. The multivalued dependency

a— f3

holds on R if, in any legal relation r(R), for all pairs of tuples ¢; and ¢3 in r such that
t1[a] = tz[a], there exist tuples ¢3 and t4 in 7 such that

7.6 Decomposition Using Multivalued Dependencies =~ 295

Bl e
tl aj...a; ﬂi'_',]...ﬂ}' ﬂj_{,l...ﬂn
tz'. ay...4; bf+1...bj j+1"'bn
ts ay...4; ﬂ;_',]...ﬂj bj+1...bﬂ
f4 ay...a; bi_,,]...b}' a}'+1.”ﬂn

Figure 7.14 Tabular representation of o —- 3.

ti[o] = ta[a] = t3[a] = t4[a]

t3[8] = t1[A]
ts[R —] = t2[R -]
ta[B] = t2[0]

talR—] = t1[R - 3]

This definition is less complicated than it appears to be. Figure 7.14 gives a tabular
picture of ¢, 2, t3, and t4. Intuitively, the multivalued dependency a — 3 says that
the relationship between « and /3 is independent of the relationship between o and
R — (3. If the multivalued dependency a@ —— /3 is satisfied by all relations on schema
R, then o — (3 is a trivial multivalued dependency on schema R. Thus, a — 3 is
trivialif 3 C aor fUa = R.

To illustrate the difference between functional and multivalued dependencies, we
consider the schema R; again, and an example relation on that schema shown in Fig-
ure 7.15. We must repeat the loan number once for each address a customer has, and
we must repeat the address for each loan a customer has. This repetition is unnec-
essary, since the relationship between a customer and his address is independent of
the relationship between that customer and a loan. If a customer with customer-id
99-123 has a loan (say, loan number L-23), we want that loan to be associated with all
of that customer’s addresses. Thus, the relation of Figure 7.16 is illegal. To make this
relation legal, we need to add the tuples (L-23, 99-123, Main, Manchester) and (L-27,
99-123, North, Rye) to the relation of Figure 7.16.

Comparing the preceding example with our definition of multivalued dependency,
we see that we want the multivalued dependency

customer_id —— customer_street customer_city

to hold. (The multivalued dependency customer.id — loan-number will do as well.
We shall soon see that they are equivalent.)

| loan_number | customer_id_| customer_street | customer_city |

L-23 99-123 North Rye
L-23 99-123 Main Manchester
L-93 15-106 Lake Horseneck

Figure 7.15 An example of redundancy in a relation on a BCNF schema.

296 Chapter7 Relational Database Design

[Toan_number | customer_id | customer_street | customer_city |
L-23 99-123 North Rye
L-27 99-123 Main Manchester

Figure 7.16 Anillegal R; relation.

As with functional dependencies, we shall use multivalued dependencies in two
ways:

1. To test relations to determine whether they are legal under a given set of func-
tional and multivalued dependencies

2. To specify constraints on the set of legal relations; we shall thus concern our-
selves with only those relations that satisfy a given set of functional and mul-
tivalued dependencies

Note that, if a relation r fails to satisfy a given multivalued dependency, we can con-
struct a relation 7/ that does satisfy the multivalued dependency by adding tuples
tor.

Let D denote a set of functional and multivalued dependencies. The closure D
of D is the set of all functional and multivalued dependencies logically implied by D.
As we did for functional dependencies, we can compute D" from D, using the formal
definitions of functional dependencies and multivalued dependencies. We can man-
age with such reasoning for very simple multivalued dependencies. Luckily, multi-
valued dependencies that occur in practice appear to be quite simple. For complex
dependencies, it is better to reason about sets of dependencies by using a system of
inference rules. (Section C.1.1 of the appendix outlines a system of inference rules for
multivalued dependencies.)

From the definition of multivalued dependency, we can derive the following rule:

o Ifa — 3, thena — f.
In other words, every functional dependency is also a multivalued dependency.
7.6.2 Fourth Normal Form
Consider again our example of the BCNF schema

Ry = (loan_number, customer.id, customer_street, customer_city)

in which the multivalued dependency customerid —- customer.street customercity
holds. We saw in the opening paragraphs of Section 7.6 that, although this schema is
in BCNF, the design is not ideal, since we must repeat a customer’s address informa-
tion for each loan. We shall see that we can use the given multivalued dependency
to improve the database design, by decomposing this schema into a fourth normal
form decomposition.

7.6 Decomposition Using Multivalued Dependencies =~ 297

result := {R};
done := false;
compute D; Given schema R;, let D; denote the restriction of Dt to R;
while (not done) do
if (there is a schema R; in result that is not in 4NF w.r.t. D;)
then begin
let « —- (3 be a nontrivial multivalued dependency that holds
on R; such thatee — R;isnotin Dj,anda N 3 = 0;
result := (result — R;) U (R; — B) U (o, B);
end
else done := true;

Figure 7.17 4NF decomposition algorithm.

A relation schema R is in fourth normal form (4NF) with respect to a set D of
functional and multivalued dependencies if, for all multivalued dependencies in D+
of the form o — 3, where o« C R and 3 C R, at least one of the following holds

e a — (Jis a trivial multivalued dependency.

e «is a superkey for schema R.

A database design is in 4NF if each member of the set of relation schemas that consti-
tutes the design is in 4NF.

Note that the definition of 4NF differs from the definition of BCNF in only the use
of multivalued dependencies instead of functional dependencies. Every 4NF schema
is in BCNF. To see this fact, we note that, if a schema R is not in BCNF, then there is
a nontrivial functional dependency a — (3 holding on R, where « is not a superkey.
Since o — 3 implies @ — £3, R cannot be in 4NF.

Let R be a relation schema, and let Ry, Rs,..., R, be a decomposition of R. To
check if each relation schema R; in the decomposition is in 4NF, we need to find
what multivalued dependencies hold on each R;. Recall that, for a set F of functional
dependencies, the restriction F; of F to R; is all functional dependencies in F*+ that
include only attributes of R;. Now consider a set D of both functional and multivalued
dependencies. The restriction of D to R; is the set D; consisting of

1. All functional dependencies in D* that include only attributes of R;

2. All multivalued dependencies of the form
a— BN R;
where ¢ C R; and @ —— Bisin DT

7.6.3 4NF Decomposition

The analogy between 4NF and BCNF applies to the algorithm for decomposing a
schema into 4NF. Figure 7.17 shows the 4NF decomposition algorithm. It is identical

298

Chapter7 Relational Database Design

to the BCNF decomposition algorithm of Figure 7.12, except that it uses multivalued,
instead of functional, dependencies and uses the restriction of DT to R;.

If we apply the algorithm of Figure 7.17 to (loan_number, customer_id, customer street,
customer_city), we find that customer_id —- loan_number is a nontrivial multivalued de-
pendency, and customer_id is not a superkey for the schema. Following the algorithm,
we replace it by two schemas:

loan_cust_id = (loan_number, customer_id)
cust_residence = (customer_id, customer_street, customer_city)

This pair of schemas, which is in 4NF, eliminates the redundancy we encountered
earlier.

As was the case when we were dealing solely with functional dependencies, we
are interested in decompositions that are lossless and that preserve dependencies.
The following fact about multivalued dependencies and losslessness shows that the
algorithm of Figure 7.17 generates only lossless decompositions:

e Let R be a relation schema, and let D be a set of functional and multivalued
dependencies on R. Let R; and R form a decomposition of R. This decompo-
sition is lossless of R if and only if at least one of the following multivalued
dependencies is in D

R] nRg—'HR]_
R‘l ﬂRg—**RQ

Recall that we stated in Section 7.4.4 that, if B; N Ry — R; or B; N Ry — Ry, then
R; and R; are a lossless decomposition of R. The preceding fact about multivalued
dependencies is a more general statement about losslessness. It says that, for every
lossless decomposition of R into two schemas R; and R, one of the two dependen-
cies Ry N Ry —= Ry or Ry N Ry —— R must hold.

The issue of dependency preservation when we decompose a relation becomes
more complicated in the presence of multivalued dependencies. Section C.1.2 of the
appendix pursues this topic.

7.7 More Normal Forms

The fourth normal form is by no means the “ultimate” normal form. As we saw ear-
lier, multivalued dependencies help us understand and tackle some forms of rep-
etition of information that cannot be understood in terms of functional dependen-
cies, There are types of constraints called join dependencies that generalize multi-
valued dependencies, and lead to another normal form called project-join normal
form (PJNF) (PJNF is called fifth normal form in some books). There is a class of even
more general constraints that leads to a normal form called domain-key normal form
(DKNEF).

A practical problem with the use of these generalized constraints is that they are
not only hard to reason with, but there is also no set of sound and complete inference

7.8 Database-Design Process 299

rules for reasoning about the constraints. Hence PINF and DKNF are used quite rarely.
Appendix C provides more details about these normal forms.

Conspicuous by its absence from our discussion of normal forms is second nor-
mal form (2NF). We have not discussed it, because it is of historical interest only. We
simply define it, and let you experiment with it in Practice Exercise 7.15.

7.8 Database-Design Process

So far we have looked at detailed issues about normal forms and normalization. In
this section we study how normalization fits into the overall database-design process.

Earlier in the chapter, starting in Section 7.3, we assumed that a relation schema
R is given, and proceeded to normalize it. There are several ways in which we could
have come up with the schema R:

1. R could have been generated in converting an E-R diagram to a set of relation
schemas.

2. Rcould have been a single relation containing all attributes that are of interest.
The normalization process then breaks up R into smaller relations.

3. R could have been the result of an ad-hoc design of relations that we then test
to verify that it satisfies a desired normal form.

In the rest of this section, we examine the implications of these approaches. We also
examine some practical issues in database design, including denormalization for per-
formance and examples of bad design that are not detected by normalization.

7.8.1 E-R Model and Normalization

When we carefully define an E-R diagram, identifying all entities correctly, the re-
lation schemas generated from the E-R diagram should not need much further nor-
malization. However, there can be functional dependencies between attributes of an
entity. For instance, suppose an employee entity had attributes department number and
department.address, and there is a functional dependency department_number — depart-
ment address. We would then need to normalize the relation generated from employee.

Most examples of such dependencies arise out of poor E-R diagram design. In the
above example, if we had designed the E-R diagram correctly, we would have created
a department entity with attribute department_address and a relationship between em-
ployee and department. Similarly, a relationship involving more than two entities may
not be in a desirable normal form. Since most relationships are binary, such cases
are relatively rare. (In fact, some E-R diagram variants actually make it difficult or
impossible to specify nonbinary relations.)

Functional dependencies can help us detect poor E-R design. If the generated re-
lations are not in desired normal form, the problem can be fixed in the E-R diagram.
That is, normalization can be done formally as part of data modeling. Alternatively,
normalization can be left to the designer’s intuition during E-R modeling, and can be
done formally on the relations generated from the E-R model.

300

Chapter 7 Relational Database Design

A careful reader will have noted that in order for us to illustrate a need for mul-
tivalued dependencies and fourth normal form, we had to begin with schemas that
were not derived from our E-R design. Indeed, the process of creating an E-R design
tends to generate 4NF designs. If a multivalued dependency holds and is not im-
plied by the corresponding functional dependency, it usually arises from one of the
following sources:

e A many-to-many relationship

e A multivalued attribute of an entity set

For a many-to-many relationship, each related entity set has its own schema and
there is an additional schema for the relationship set. For a multivalued attribute,
a separate schema is created consisting of that attribute and the primary key of the
entity set (as in the case of the dependent_name attribute of the entity set employee).
The universal-relation approach to relational database design starts with an as-
sumption that there is one single relation schema containing all attributes of interest.
This single schema defines how users and applications interact with the database.

7.8.2 Naming of Attributes and Relationships

A desirable feature of a database design is the unique-role assumption, which means
that each attribute name has a unique meaning in the database. This prevents us from
using the same attribute to mean different things in different schemas. For exam-
ple, we might otherwise consider using the attribute number for loan number in the
loan schema and for account number in the account schema. The join of a relation on
schema loan with one on account is meaningless (“information on loan-account pairs
where the loan and the account happen to have the same number”). While users
and application developers can work carefully to ensure use of the right number in
each circumstance, having a different attribute name for loan number and for account
number serves to reduce user errors. Indeed, we have observed the unique-role as-
sumptions in our database designs in this book, and this is a good general practice to
follow.

While it is a good idea to keep names for incompatible attributes distinct, if at-
tributes of different relations have the same meaning, it may be a good idea to use
the same attribute name. For example, we used attribute names customer_id and em-
ployee_id in the customer and employee entity sets (and relations). If we wished to gen-
eralize these entity sets by creating a person entity set, we would have to rename the
attribute. Thus, even if we do not currently have a generalization of customer and em-
ployee, if we foresee such a possibility it is best to use the same name in both entity
sets (and relations).

Although technically, the order of attribute names in a schema does not matter, it
is convention to list primary-key attributes first. This makes reading default output
(as from select *) easier to read.

In large database schemas, relationship sets (and schemas derived therefrom) are
often named via a concatenation of the names of related entity sets, perhaps with
an intervening hyphen or underscore. We have used a few such names, for exam-

7.8 Database-Design Process 301

ple account_branch and loan_branch. We used the names borrower or depositor instead of
using longer concatenated names such as customer_loan or customer account. This was
acceptable since it is not hard for you to remember the associated entities for a few re-
lationships. We cannot always create relationship names by simple concatenation; for
example, a manager or works-for relationship between employees would not make
much sense if it were called employee_employee! Similarly, if there are multiple relation-
ship sets possible between a pair of entity sets, the relationship names must include
extra parts to identify the relationship.

Different organizations have different conventions for naming entities. For exam-
ple, we may call an entity set of customers customer or customers. We have chosen
to use the singular form in our database designs. Using either singular or plural is
acceptable, as long as the convention is used consistently across all entities.

As schemas grow larger, with increasing numbers of relationships, using consis-
tent naming of attributes, relationships, and entities makes life much easier for the
database designer and application programmers.

7.8.3 Denormalization for Performance

Occasionally database designers choose a schema that has redundant information;
that is, it is not normalized. They use the redundancy to improve performance for
specific applications. The penalty paid for not using a normalized schema is the extra
work (in terms of coding time and execution time) to keep redundant data consistent.

For instance, suppose that the name of an account holder has to be displayed along
with the account number and balance, every time the account is accessed. In our
normalized schema, this requires a join of account with depositor.

One alternative to computing the join on the fly is to store a relation containing all
the attributes of account and depositor. This makes displaying the account information
faster. However, the balance information for an account is repeated for every person
who owns the account, and all copies must be updated by the application, when-
ever the account balance is updated. The process of taking a normalized schema and
making it nonnormalized is called denormalization, and designers use it to tune per-
formance of systems to support time-critical operations.

A better alternative, supported by many database systems today, is to use the nor-
malized schema, and additionally store the join of account and depositor as a mate-
rialized view. (Recall that a materialized view is a view whose result is stored in
the database, and brought up to date when the relations used in the view are up-
dated.) Like denormalization, using materialized views does have space and time
overheads; however, it has the advantage that keeping the view up to date is the job
of the database system, not the application programmer.

7.8.4 Other Design Issues

There are some aspects of database design that are not addressed by normalization,
and can thus lead to bad database design. Data pertaining to time or to ranges of time
have several such issues. We give examples here; obviously, such designs should be
avoided.

302

Chapter 7 Relational Database Design

Consider a company database, where we want to store earnings of companies in
different years. A relation earnings(company_id, year, amount) could be used to store
the earnings information. The only functional dependency on this relation is company
_id, year — amount, and the relation is in BCNF.

An alternative design is to use multiple relations, each storing the earnings for a
different year. Let us say the years of interest are 2000, 2001, and 2002; we would then
have relations of the form earnings 2000, earnings 2001, earnings_2002, all of which are
on the schema (company._id, earnings). The only functional dependency here on each
relation would be company_id — earnings, so these relations are also in BCNF.

However, this alternative design is clearly a bad idea—we would have to create
a new relation every year, and would also have to write new queries every year, to
take each new relation into account. Queries would also be more complicated since
they may have to refer to many relations.

Yet another way of representing the same data is to have a single relation company
_year(company._id, earnings 2000, earnings 2001, earnings 2002). Here the only functional
dependencies are from company.id to the other attributes, and again the relation is in
BCNF. This design is also a bad idea since it has problems similar to the previous de-
sign—namely we would have to modify the relation schema and write new queries
every year. Queries would also be more complicated, since they may have to refer to
many attributes.

Representations such as those in the company_year relation, with one column for
each value of an attribute, are called crosstabs; they are widely used in spreadsheets
and reports and in data analysis tools. While such representations are useful for dis-
play to users, for the reasons just given, they are not desirable in a database design.
SQL extensions have been proposed to convert data from a normal relational repre-
sentation to a crosstab, for display.

7.9 Modeling Temporal Data

Suppose we retain data in our bank showing not only the address of each customer,
but also all former addresses of which the bank is aware. We may then ask queries
such as “Find all customers who lived in Princeton in 1981.” In this case, we may
have multiple addresses for customers. Each address has an associated start and end
date, indicating when the customer was resident at that address. A special value for
the end date, e.g., null, or a value well into the future such as 9999-12-31, can be used
to indicate that the customer is still resident at that address.

In general, temporal data are data that have an associated time interval during
which they are valid.* We use the term snapshot of data to mean the value of the
data at a particular point in time. Thus a snapshot of customer data gives the values
of all attributes, such as address, of customers at a particular point in time.

Modeling temporal data is a challenging problem for several reasons. For example,
suppose we have a customer entity with which we wish to associate a time-varying
address. To add temporal information to an address, we would then have to cre-

4. There are other models of temporal data that distinguish between valid time and transaction time,
the latter recording when a fact was recorded in the database. We ignore such details for simplicity.

7.9 Modeling Temporal Data 303

ate a multivalued attribute, each of whose values is a composite value containing
an address and a time interval. In addition to time-varying attribute values, entities
may themselves have an associated valid time. For example, an account entity may
have a valid time from the date it is opened to the date it is closed. Relationships
too may have associated valid times. For example, the depositor relationship between
a customer and an account may record when the customer became an owner of the
account. We would thus have to add valid time intervals to attribute values, enti-
ties, and relationships. Adding such detail to an E-R diagram makes it very difficult
to create and to comprehend. There have been several proposals to extend the E-R
notation to specify in a simple manner that an attribute or relationship is time vary-
ing, but there are no accepted standards.

When we track data values across time, functional dependencies that we assumed
to hold, such as

customer_id — customer_street, customer._city

may no longer hold. The following constraint (expressed in English) would hold in-
stead: “A customer.id has only one customer.street and customer_city value for any given
time ¢.”

Functional dependencies that hold at a particular point in time are called temporal
functional dependencies. Formally, a temporal functional dependency X 5 Y holds
on a relation schema R if, for all legal instances r of R, all snapshots of r satisfy the
functional dependency X — Y.

We could extend the theory of relational database design to take temporal func-
tional dependencies into account. However, reasoning with regular functional de-
pendencies is difficult enough already, and few designers are prepared to deal with
temporal functional dependencies.

In practice, database designers fall back to simpler approaches to designing tem-
poral databases. One commonly used approach is to design the entire database (in-
cluding E-R design and relational design) ignoring temporal changes (equivalently,
taking only a snapshot into consideration). After this, the designer studies the vari-
ous relations and decides which relations require temporal variation to be tracked.

The next step is to add valid time information to each such relation, by adding
start and end time as attributes. For example, assume we have a relation

course(course_id, course_title)

associating a course title with each course, which is identified by a course-id. The title
of the course may change over time, which can be handled by adding a valid time
range; the resultant schema would be

course(course_id, course_title, start, end)

An instance of this relation might have two records (CS101, “Introduction to Pro-
gramming”, 1985-01-01, 2000-12-31) and (CS101, “Introduction to C”, 2001-01-01, 9999-
12-31). If the relation is updated by changing the course title to “Introduction to Java,”
the time “9999-12-31” would be updated to the time until which the old value (“In-
troduction to C”) is valid, and a new tuple would be added containing the new title
(“Introduction to Java”), with an appropriate start time.

304

Chapter7 Relational Database Design

If another relation had a foreign key referencing a temporal relation, the database
designer has to decide if the reference is to the current version of the data or to the
data as of a particular point in time. For example, a relation that records the cur-
rent room assignments for each course may implicitly refer to the temporally current
value associated with each course_id. On the other hand, a record in a student’s tran-
script should refer to the course title at the time when the student took the course. In
this latter case, the referencing relation must also record time information, to identify
a particular record from the course relation.

The original primary key for a temporal relation would no longer uniquely iden-
tify a tuple. To resolve this problem, we could add the start and end time attributes
to the primary key. However, some problems remain:

e It is possible to store data with overlapping intervals, which the primary-key
constraint would not catch. If the system supports a native valid time type, it
can detect and prevent such overlapping time intervals.

e To specify a foreign key referencing such a relation, the referencing tuples
would have to include the start and end time attributes as part of their for-
eign key, and the values must match that in the referenced tuple. Further, if
the referenced tuple is updated (and the end time which was in the future is
updated), the update must propagate to all the referencing tuples.

If the system supports temporal data in a better fashion, we can allow the
referencing tuple to specify a point in time, rather than a range, and rely on
the system to ensure that there is a tuple in the referenced relation whose valid
time interval contains the point in time. For example, a transcript record may
specify a course-id and a time (say the start date of a semester), which is enough
to identify the correct record in the course relation.

As a common special case, if all references to temporal data refer to only the cur-
rent data, a simpler solution is to not add time information to the relation, but instead
create a corresponding history relation that has temporal information, for past values.
For example, in our bank database, we could use the design we have created, ignor-
ing temporal changes, to store only the current information. All historical information
is moved to historical relations. Thus, the customer relation may store only the current
address, while a relation customer_history may contain all the attributes of customer,
with additional start_time and end._time attributes.

Although we have not provided any formal way to deal with temporal data, the
issues we have discussed and the examples we have provided should help you in
designing a database that records temporal data. Further issues in handling temporal
data, including temporal queries, are covered later, in Section 24.2.

7.10 Summary

e We showed pitfalls in database design, and how to systematically design a
database schema that avoids the pitfalls. The pitfalls included repeated infor-
mation and inability to represent some information.

[]

Review Terms 305

We showed the development of a relational database design from an E-R de-
sign, when schema may be combined safely, and when a schema should be
decomposed. All valid decompositions must be lossless.

We described the assumptions of atomic domains and first normal form.

We introduced the concept of functional dependencies, and used it to present
two normal forms, Boyce—Codd normal form (BCNF) and third normal form
(3NF).

If the decomposition is dependency preserving, given a database update, all
functional dependencies can be verifiable from individual relations, without
computing a join of relations in the decomposition.

We showed how to reason with functional dependencies. We placed special
emphasis on what dependencies are logically implied by a set of dependen-
cies. We also defined the notion of a canonical cover, which is a minimal set of
functional dependencies equivalent to a given set of functional dependencies.

We outlined an algorithm for decomposing relations into BCNF. There are re-
lations for which there is no dependency-preserving BCNF decomposition.

We used the canonical covers to decompose a relation into 3NF, which is a
small relaxation of the BCNF condition. Relations in 3NF may have some re-
dundancy, but there is always a dependency-preserving decomposition into
3NF.

We presented the notion of multivalued dependencies, which specify con-
straints that cannot be specified with functional dependencies alone. We de-
fined fourth normal form (4NF) with multivalued dependencies. Section C.1.1
of the appendix gives details on reasoning about multivalued dependencies.

Other normal forms, such as PJNF and DKNF, eliminate more subtle forms
of redundancy. However, these are hard to work with and are rarely used.
Appendix C gives details on these normal forms.

In reviewing the issues in this chapter, note that the reason we could define
rigorous approaches to relational database design is that the relational data
model rests on a firm mathematical foundation. That is one of the primary
advantages of the relational model compared with the other data models that
we have studied.

Review Terms

E-R model and normalization e First normal form (INF)
Decomposition e Legal relations
Functional dependencies e Superkey

Lossless decomposition o R satisfies F

Atomic domains e Fholdson R

306 Chapter7 Relational Database Design

e Boyce—Codd normal form e BCNF decomposition algorithm
(BCNF)

e Dependency preservation
¢ Third normal form (3NF)
e Trivial functional dependencies

e Closure of a set of functional
dependencies

3NF decomposition algorithm

Multivalued dependencies
Fourth normal form (4NF)

o Restriction of a multivalued
dependency

[]

Project-join normal form (PJNF)

Armstrong’s axioms
Closure of attribute sets
Restriction of F to R;
Canonical cover

Domain-key normal form (DKNF)

Universal relation

[]

Unique-role assumption

Denormalization

Extraneous attributes

Practice Exercises
7.1 Suppose that we decompose the schema R = (4, B, C, D, E) into

(A,B,C)
(A, D, E)

Show that this decomposition is a lossless decomposition if the following set F
of functional dependencies holds:

A — BC
CD — E
B—D
E— A

7.2 List all functional dependencies satisfied by the relation of Figure 7.18.

7.3 Explain how functional dependencies can be used to indicate the following:

o A one-to-one relationship set exists between entity sets account and customer.
e A many-to-one relationship set exists between entity sets account and cus-
tomer.

ap | b | o
a | by | ¢
a | by | o
ay | by cs

Figure 7.18 Relation of Practice Exercise 7.2.

7.4

(4]
7.6

7.7

7.8

7.9

7.10

711

7.12

7.13

7.14

Practice Exercises 307

Use Armstrong’s axioms to prove the soundness of the union rule. (Hin#: Use the
augmentation rule to show that, if « — §, then & — a8. Apply the augmentation
rule again, using a — =, and then apply the transitivity rule.)

Use Armstrong’s axioms to prove the soundness of the pseudotransitivity rule.

Compute the closure of the following set F of functional dependencies for rela-
tionschema R = (A, B, C, D, E).

A — BC
CD— E
B—D
E— A

List the candidate keys for R.

Using the functional dependencies of Practice Exercise 7.6, compute the canon-
ical cover F..

Consider the algorithm in Figure 7.19 to compute a*. Show that this algorithm
is more efficient than the one presented in Figure 7.9 (Section 7.4.2) and that it
computes a™ correctly.

Given the database schema R(a, b, ¢), and a relation on the schema R, write an
SQL query to test whether the functional dependency b — ¢ holds on relation
r. Also write an SQL assertion that enforces the functional dependency. Assume
that no null values are present.

Let Ry, Rs,...,R,bea decomposition of schema U. Let u(U) be a relation, and
let 7; = Ilg,(u). Show that

ugT]Mf‘QN---Mrn

Show that the decomposition in Practice Exercise 7.1 is not a dependency-preser-
ving decomposition.

Show that it is possible to ensure that a dependency-preserving decomposition
into 3NF is a lossless decomposition by guaranteeing that at least one schema
contains a candidate key for the schema being decomposed. (Hint: Show that
the join of all the projections onto the schemas of the decomposition cannot
have more tuples than the original relation.)

Give an example of a relation schema R’ and set F’ of functional dependencies
such that there are at least three distinct lossless decompositions of R’ into BCNF.

Let a prime attribute be one that appears in at least one candidate key. Let « and
3 be sets of attributes such that @ — £ holds, but # — « does not hold. Let A be
an attribute that is not in «, is not in 3, and for which 8 — A holds. We say that
A is transitively dependent on c.. We can restate our definition of 3NF as follows:
A relation schema R is in 3NF with respect to a set F of functional dependencies
if there are no nonprime attributes A in R for which A is transitively dependent
on a key for R.

308 Chapter7

Relational Database Design

result := 0;

/* fdcount is an array whose ith element contains the number
of attributes on the left side of the ith FD that are
not yet known to be in o™ */

fori := 1to|F|do
begin

let 3 — ~ denote the ith FD;
fdcount [1] = |B|;
end

/* appears is an array with one entry for each attribute. The
entry for attribute A is a list of integers. Each integer
i on the list indicates that A appears on the left side
of the ith FD */

for each attribute A do
begin

appears [A] := NIL;
fori := 1to |F|do
begin
let 3 — ~ denote the ith FD;
if A € [then add i to appears [A];
end
end
addin (o);
return (result);

procedure addin (a);
for each attribute A in o do
begin
if A & result then
begin
result := result U {A};
for each element i of appears[A] do
begin
fdcount [i] := fdcount [i] — 1;
if fdcount [i] := 0 then
begin
let 3 — -~ denote the ith FD;
addin (v);
end
end
end
end

Figure 7.19 An algorithm to compute o

Exercises 309

Show that this new definition is equivalent to the original one.

7.15 A functional dependency a — f is called a partial dependency if there is a
proper subset 7 of o such that ¥ — 3. We say that /3 is partially dependent on o.. A
relation schema R is in second normal form (2NF) if each attribute A in R meets
one of the following criteria:

e It appears in a candidate key.
e Itis not partially dependent on a candidate key.

Show that every 3NF schema is in 2NF. (Hint: Show that every partial depen-
dency is a transitive dependency:.)

7.16 Give an example of a relation schema R and a set of dependencies such that R is
in BCNF, but is not in 4NF.

Exercises

7.17 Explain what is meant by repetition of information and inability to represent in-
formation. Explain why each of these properties may indicate a bad relational
database design.

7.18 Why are certain functional dependencies called trivial functional dependencies?

7.19 Use the definition of functional dependency to argue that each of Armstrong’s
axioms (reflexivity, augmentation, and transitivity) is sound.

7.20 Consider the following proposed rule for functional dependencies: If @ — 3 and
v — B, then @ — ~. Prove that this rule is nof sound by showing a relation r that
satisfies @« — 3 and v — £, but does not satisfy oo — .

7.21 Use Armstrong’s axioms to prove the soundness of the decomposition rule.
7.22 Using the functional dependencies of Practice Exercise 7.6, compute B*.

7.23 Show that the following decomposition of the schema R of Practice Exercise 7.1
is not a lossless decomposition:

(4, B,C)
(C, D, E)

Hint: Give an example of a relation r on schema R such that

Ila,B,c(r) W g, p,e(r) # r

7.24 List the three design goals for relational databases, and explain why each is
desirable.

7.25 Give a lossless decomposition into BCNF of schema R of Practice Exercise 7.1.
7.26 In designing a relational database, why might we choose a non-BCNF design?

7.27 Give a lossless, dependency-preserving decomposition into 3NF of schema R of
Practice Exercise 7.1.

310

Chapter7 Relational Database Design

7.28 Given the three goals of relational database design, is there any reason to design
a database schema that is in 2NF, but is in no higher-order normal form? (See
Practice Exercise 7.15 for the definition of 2NF.)

7.29 Given arelational schemar(A4, B,C, D), does A — BC logically imply A — B
and A — C7? If yes prove it, else give a counter example.

7.30 Explain why 4NF is a normal form more desirable than BCNF.

Bibliographical Notes

The first discussion of relational database design theory appeared in an early paper
by Codd [1970]. In that paper, Codd also introduced functional dependencies and
first, second, and third normal forms.

Armstrong’s axioms were introduced in Armstrong [1974]. Significant develop-
ment of relational database theory occurred in the late 1970s. These results are col-
lected in several texts on database theory including Maier [1983], Atzeni and An-
tonellis [1993] and Abiteboul et al. [1995].

BCNF was introduced in Codd [1972]. Biskup et al. [1979] give the algorithm we
used to find a lossless dependency-preserving decomposition into 3NF. Fundamental
results on the lossless decomposition property appear in Aho et al. [1979al.

Beeri et al. [1977] give a set of axioms for multivalued dependencies, and proves
that the authors’ axioms are sound and complete. The notions of 4NF, PJNF, and DKNF
are from Fagin [1977], Fagin [1979], and Fagin [1981], respectively. See the biblio-
graphical notes of Appendix C for further references to literature on normalization.

Jensen et al. [1994] presents a glossary of temporal-database concepts. Gregersen
and Jensen [1999] present a survey of extensions to E-R modeling to handle temporal
data. Tansel et al. [1993] covers temporal database theory, design and implementa-
tion. Jensen et al. [1996] describes extensions of dependency theory to temporal data.

Application Design
and Development

Practically all use of databases occurs from within application programs. Correspond-
ingly, almost all user interaction with databases is indirect, via application programs.
Not surprisingly, therefore, database systems have long supported tools such as form
and GUI builders, which help in rapid development of applications that interface
with users. In recent years, the Web has become the most widely used user interface
to databases.

In the first part of this chapter (Sections 8.1 through 8.4), we study tools and tech-
nologies that are required to build database applications. In particular, we concen-
trate on tools that help in the development of user interfaces to databases. We start
with an overview of tools for constructing forms interfaces and reports. We then pro-
vide a detailed overview of how to develop applications with Web-based interfaces.

Later in the chapter, we cover triggers. Triggers allow applications to monitor
database events (activities) and take actions when specified events take place. They
also provide a way of adding rules and actions without modifying existing applica-
tion code. Triggers were a late addition to the SQL standard. We present SQL syntax
both as it exists in the SQL:1999 standard and as it exists in some commercial systems.

Finally, we cover authorization and security. We describe the authorization mech-
anisms provided by SQL and the syntax for their use. We then discuss the limitations
of the SQL authorization mechanisms and present further concepts and technologies
required for securing databases and applications.

8.1 User Interfaces and Tools

Although many people interact with databases, few people use a query language to
directly interact with a database system. Most people interact with a database system
through one of the following means:

31

312

Chapter8 Application Design and Development

1. Forms and graphical user interfaces allow users to enter values that com-
plete predefined queries. The system executes the queries and appropriately
formats and displays the results to the user. Graphical user interfaces provide
an easy-to-use way to interact with the database system.

2. Report generators permit predefined reports to be generated on the current
database contents. Analysts or managers view such reports in order to make
business decisions.

3. Data analysis tools permit users to interactively browse and analyze data.

It is worth noting that such interfaces use query languages to communicate with
database systems.

In this section, we provide an overview of forms, graphical user interfaces, and
report generators. Chapter 18 covers data analysis tools in more detail. Unfortunately,
there are no standards for user interfaces, and each database system usually provides
its own user interface. In this section, we describe the basic concepts, without going
into the details of any particular user-interface product.

8.1.1 Forms and Graphical User Interfaces

Forms interfaces are widely used to enter data into databases, and extract informa-
tion from databases, via predefined queries. For example, World Wide Web search
engines provide forms that are used to enter keywords. Hitting a “submit” button
causes the search engine to execute a query using the entered keywords and display
the result to the user.

As a more database-oriented example, you may connect to a university registra-
tion system, where you are asked to fill in your identification number and password
into a form. The system uses this information to verify your identity, as well as to
extract information, such as your name and the courses you have registered for, from
the database and display it. There may be further links on the Web page that let you
search for courses and find further information about courses such as the syllabus
and the instructor.

Programmers can create forms and graphical user interfaces by using Web browsers
as the front end, or by using forms and other facilities provided by programming
language application-programmer interfaces (APIs), such as Java Swing, or the APIs
provided with Visual Basic or Visual C++. Web browsers supporting HTML consti-
tute the most widely used forms and graphical user interface today. While the Web
browser provides the front end for user interaction, the back-end processing is done
at the Web server, using technologies such as Java servlets, Java Server Pages (JSP), or
Active Server Page (ASP). We study how to create forms using HTML in Section 8.3.2
and how to create back-end systems using Java servlets in Section 8.4.

There are a variety of tools that simplify the creation of graphical user interfaces
and forms. These tools allow application developers to create forms in an easy declar-
ative fashion, using form-editor programs. Users can define the type, size, and for-
mat of each field in a form by using the form editor. System actions can be associated
with user actions, such as filling in a field, hitting a function key on the keyboard, or

"poyiow
106 a3 sasn wrxoj 3y} jey) saywads 7'g mSL] Ul ULIoy Y], “I9SMOI] 3} pue I9AIdS
goM Y3 usamiaq adueydxa [00030id JILH 9y3 jo 1ed se sanjea 1ojpwered ayj puas
pue ‘woo-ejfoobmmm a8ed ayy o5 3senbar v puss peajsur pnom poyiawr jsod Yy,

zieyosiaqis=b¢ yoress/uwioo e|6006 mmmy/:dny

:IOAIDS M 9} Woy TN Surmor|o] ayj 3sanbar pnom 1asmoliq ay “wiiog ayy
paypnugns pue zyeydsiaqrrs,, Surns ayy ur pad4) 1esn ayy pue ‘poyiaur 186 a3 yim
b pawreu isjowrered ndur ue yym wioy e pasn a8ed yoreas aj30on) a3 ji ‘opdurexs
10 "TMN 2y} jo 1red se sanfea 3y} sapodua poyaw 18b Y] ID9AISS gIp| U} 0} U9
3¢ Ued 19SMOIq V) JB I12sn B Aq PaIduL san[eA YoM Ul sAem oM} sauyep JLLH

‘¢H'g PUe §'g ‘g8 suondag ur surexdoxd
oNs JOTLISUOD 0] MOY 39S [[IM M “19Sn 9y} 03 pakedsip pure speq Juds Uy} ST PIM
“uawmoop TWLH ue sajerouad weiSoxd sy, *(spey indul pue joejes ay} ut paynads)
Jequinu pue adA} sjuawnBre ayj 10j sanjea papraoid-1asn Ay} YIIM ‘I9AIIS ap Y3
Je PaInoaxa aq 03 (P[AY UoNoe Wio} 3y} ul paynads) Alenoyueg uwrerdoxd ayj sasned
uoyng jruqans a3 uo Suppr ‘sadAy mdur oy3o [eraass syroddns ospe TNLH Xoq
1X9] B Ul Joquinu e ndur 03 pue nuswr e WoIy (o] J0 JUnodde) ad A3 ay3 309798 03 s19SN
smore jeys wioy ajdus e pue a[qe; e Aefdsip ued TALH MOy moys sam3y ay [,

'$9183ID JUIWNDOP STy Jey) afewr pakerdsip
33 SMOYs £'g 231 "JUSWNOOP TALLH Ue JO 221n0s ayj jo ajdurexa ue s g'g an3ry

ab6pnbup dnjpy a1 1dAH Z°€°8

“PUD JUOLJ Y3 03 JUSS U} ST YDIYM “JUaUmOop TALLH U SUINJSI pue ‘sjuswumn3
-1e uaAIS a3 Sursn ‘sanoaxs wexoxd oy, ‘zieyosiaqis=b jusuum3re o) YIm pano
-9xa aq P[MoYs Wo2'9|B00H MMM IaAIss ayj uo yosees werdord ayy jeyy sdes yorym

zyeyosiaq|is=b yoleas/woo s|6oob mmm//:dny

ST N € yons jo ajdurexs uy "urerdoxd ayy

03 uaAIS 2q 03 syuswn3Ie Se [[oM Se ‘DUIDeW J9AIIS GapA A3 uo pajedo] werdoid e jo
ISYIIUIPI Y3 UILJU0D Ued TN V "Pajesauad A[fesonuueudp are gap) Y3 uo ejep Auep

"UIDRW S} UIYIIM JUSWNIO0P E JO IdYnuapt anbrun 1ay30 10 ‘surydeur

Ay} uo a[y a3 Jo sureu yyed oy St TN Y3 JO ISAI A “TOAIIS GOAA € Skl Jey} durorur

® Jo awreu 3y saA1S jred puodas Y, “spuswnoop TNLH SuLLeysuer) 105 [020301d e s

UDIYM ‘{00301] Iajsuel] IxaIodA] ay) Aq passadoe aq 03 SI JUWINDOP 3} Jel) Sa3ed
-iput , dj3y,, :passador aq 0 ST JUSWINDOP Y3 MOY SDJLdIPUL T Y3 Jo 3red 381y oy [,

powbis/Blo:woe mmm//:dny

SI TN € Jo odurexa uy "qap) 2} U0 passadde aq ued
JeY} Juswmoop yoea 103 aureu anbrum £jreqord e st (1¥0) 103ed0] 30IN0SAI WIOFIUN Y/

SA031D207 32iN0Say WLIoJIiUN L°E'8

yawrdofaaa(pue udisaq uoneoiddy g amdey)

ole

‘PM
9PIM PHOM a3 Surdpzapun A30[0unda) Sy} Y3IM Ie[[Iuue) J0U I8 OyM SISPEaI I0]
‘GOM IPIM PIIOM Y3 puryaq A30[0ulda} [EJUSWEPUN] 3Yj JO SWOS MITAII M SISL]

s|jpjudwppund oM\ €°S

‘suoneordde aseqesep jo Ajarrea are e 10§ sadRyIRIUT
Tosn asodimd-rerads pasdipa aaey pue ‘eandenie A[rensia pue nyzamod are ssdejie)
-Ul qopA ‘snyJ, "axremijos Aue Surfeisur pue SUIpeo[UMOp JNOYJIM pasn aq ued jey)
sadeyIaquT “TALLH Isnl yam s[qrssod st yeym puohaq ‘sedejrejur resn pajeonsmydos jo
uondnysuod ayj jrueiad swerdoxd asay, "aABMDOYS 10 Yse[q se yons saFenduey ur
UM suonewrue 10 ‘93enuef eaef ay; ur uapum syordde,, aq ued 10 4duosese(
se yons ‘safendue] Sundrds SpIs-JUST UT US)ILIM 3q ued sweidol] 1onduod s,1asn
Y} U0 ejep Surdeurep MOYIIM ‘ST Jey}—apPOUur Jes Ul I19smo1q ayj uo surerdoxd ayy
unJ pue sjuswmnoop TALLH Yim Suore swrerSoxd yojey ued Lepoj s1esmoiq ‘Arreury
"paa1sap se ejep 3 jo syred jo s[rejop
arouwr 393 03 srasn Sumruuied ‘ejep Sursmoiq 10§ (nyasn A1vA are syurradAR Jusux
-noop paxur a3 sAerdsip pue sayp3ej yurradAy e uo Suppr) ejep pakerdsip ayy
JO SUOIaI YIIM PIJRIDOSSE 3 UED ‘SJUWUNDOP IYJ0 0 SYUI] oI8 dIyMm ‘sopurrad Al
“Payy 31y 3y uonewLIoFuT jureirodwr YIIm ‘pajjeutio) A[1eau aq 03 1X3) SMOJ[E PIEpUR]S
(TWLH) 23enSue dmrejy xo119dAy oy, "uoneziueSio aj3urs & yim L[uo pasn
axe jey) suonedidde aseqejep 10j UsA SJOUA] dALDEI)E apIA0Id SadeRIaIUT I
‘aseqejep
9} UI PaI0JS UOHRWLIOJUT I9ST JO SISeq 9} UO IISN Y} 0] PAIO[Ie} 3q OSe ULd justun
-00p pajerousd ay, "a3ep-03-dn awodaq A[redonewome [[LM SJUAWNOP pajerausd oy}
“parepdn are sseqejep 9y} Ul BJep JUBAS[RI JOASUIYAA "S)nsa1 A1anb ayy jo siseq a3
U0 Juswmoop pajsanbar ayj sajersual pue aseqejep e uo souenb suni wmng ur yorym
‘2115 Ia9A1s 3] Je payndaxa s3e8 werdoxd e ‘pajsenbar st juswmdop e uay) “aseq
-ejep e woyy Afesruwreudp syuawmdop gap Surerousd Aq swapqord asayy xg wed ap)

‘payepdn aq jsnuu [re
pue “eyep jueyrodur sjedrjdar spuswumdop gapy S[dnnu JT 9)noe 210U SaUI0daq
wepqod 3y, A[snosueynurts pajepdn jou axe £dy JI 239[0Sq0 SWI0A] eIELP
3] U0 paseq SUsWNOOp qap) ‘pazepdn st uonezueSio ue jnoqe ejep Usyp| e

"I9STL 3} 0} JSAIIUT JO 3q 03 A[AI[Xe Je) SAPNIE SMAU 03 sousurnuold aA18
03 “stseq 1asn-1ad e uo Aefdsip st 1ofrey o3 juem Lewr sadedsmau e ‘oduejsur
10, "I13Sn 3y} 03 paIo[re; aq 03 AefdsIp ayj MO[[e J0U Op SUDWNIOP GIAL POXL] ©

:3urssaooxd uonpesuern 10 Surlronb Aue Surop

JOU ST JOSN B} UdYM USAS ‘SUOHRIIWI] SWOS SBY 331S (oAA B U0 SJUSWNIOP (Paxy)
ones Afuo Sunuasard jeys st gap) Y3 03 saseqejep SUBLISIUL 10§ UOSEI IIOUY

1I9SN 33 0} Oeq Way}

SpUas pue uondesuRI} a3 JO S)NSII A} SJEULIOJ ISAIDS Y["9)IS IDAIIS) Je aseqejep

€ UO SUO[DeSUEI} S9INI9Xa Winj UT UOLDR SIU} PUR ‘ULIOf 19pIo ay3 03 Surpuodsariod

wres8ord voneoridde ue sandaxe 1AL Y], 194138 9y} 03 98essaw & puds 03 Uojnq

SlE S[ejuewEpunygopM €8

8.1 User Interfaces and Tools 313

submitting a form. For instance, the execution of a query to fill in name and address
fields may be associated with filling in an identification number field, and execution
of an update statement may be associated with submitting a form. Examples of such
systems include Oracle Forms, Sybase PowerBuilder, and Oracle HTML-DB.

Simple error checks can be performed by defining constraints on the fields in the
form. For example, a constraint on a date field may check that the date entered by the
user is correctly formatted, and lies in a desired range (for example, a reservation sys-
tem may require the date to be not before today’s date and not more than 6 months
into the future). Although such constraints can be checked when the transaction is
executed, detecting errors early helps the user to correct errors quickly. Menus that
indicate the valid values that can be entered in a field can help eliminate the possi-
bility of many types of errors. System developers find that the ability to control such
features declaratively with the help of a user-interface development tool, instead of
creating a form directly by using a scripting or programming language, makes their
job much easier.

8.1.2 Report Generators

Report generators are tools to generate human-readable summary reports from a
database. They integrate querying the database with the creation of formatted text
and summary charts (such as bar or pie charts). For example, a report may show the
total sales in each of the past 2 months for each sales region.

The application developer can specify report formats by using the formatting fa-
cilities of the report generator. Variables can be used to store parameters such as the
month and the year and to define fields in the report. Tables, graphs, bar charts, or
other graphics can be defined via queries on the database. The query definitions can
make use of the parameter values stored in the variables.

Once we have defined a report structure on a report-generator facility, we can
store it and can execute it at any time to generate a report. Report-generator systems
provide a variety of facilities for structuring tabular output, such as defining table
and column headers, displaying subtotals for each group in a table, automatically
splitting long tables into multiple pages, and displaying subtotals at the end of each
page.

Figure 8.1 is an example of a formatted report. The data in the report are generated
by aggregation on information about orders.

Report-generation tools are available from a variety of vendors, such as Crystal
Reports and Microsoft (SQL Server Reporting Services). Several application suites,
such as Microsoft Office, provide a way of embedding formatted query results from a
database directly into a document. Chart generation facilities provided by Crystal Re-
ports, or by spreadsheets such as Excel can be used to access data from databases, and
generate tabular depictions of data or graphical depictions using charts or graphs.
One or more of these charts can be embedded within text documents created using,
for example, Microsoft Word. A Microsoft Office feature called OLE (object linking
and embedding) is used to link the charts into the text document. The charts are
created initially from data generated by executing queries against the database; the

314

Chapter8 Application Design and Development

Acme Supply Company, Inc.
Quarterly Sales Report

Period: Jan. 1 to March 31, 2005

Region Category Sales Subtotal
North Computer Hardware 1,000,000

Computer Software 500,000

All categories 1,500,000
South Computer Hardware 200,000

Computer Software 400,000

All categories 600,000

Total Sales 2,100,000
Figure 8.1 A formatted report.

queries can be re-executed and the charts regenerated when required, to generate a
current version of the overall report.

In addition to generating static reports, report-generation tools support the cre-
ation of interactive reports. For example, a user can “drill down” into areas of inter-
est, for example move from an aggregate view showing the total sales across an entire
year to the monthly sales figures for a particular year. We revisit interactive analysis
of data later, in Section 18.2.

8.2 Web Interfaces to Databases

The World Wide Web (Web, for short), is a distributed information system based
on hypertext. Web interfaces to databases have become very important. After outlin-
ing several reasons for interfacing databases with the Web, we provide an overview
of Web technology (Section 8.3). We then outline techniques for building Web inter-
faces to databases, using servlets and server-side scripting languages (Section 8.4. We
round out this topic by outlining techniques for building large scale Web applications
and improving their performance in Section 8.5.

The Web has become important as a front end to databases for several reasons: Web
browsers provide a universal front end to information supplied by back ends located
anywhere in the world. The front end can run on any computer system, and there is
no need for a user to download any special-purpose software to access information.
Further, today, almost everyone who can afford it has access to the Web.

With the growth of information services and electronic commerce on the Web,
databases used for information services, decision support, and transaction process-
ing must be linked with the Web. The HTML forms interface is convenient for trans-
action processing. The user can fill in details in an order form, then click a submit

8.3 Web Fundamentals 317

<html>

<body>

<table BORDER COLS=3>

<tr> <td>A-101</tid> <td>Downtown</td> <td>500</td> </tr>
<tr> <td>A-102</td> <td>Perryridge</td> <td>400</td> </tr>
<tr> <td>A-201</td> <td>Brighton </td> <td>900</td> </tr>
</table>

<center> The <i>account</i> relation </center>

<form action="BankQuery” method=get>
Select account/loan and enter number

<select name="“type”>
<option value="“account” selected>Account </option>
<option value=“loan”> Loan </option>
</select>
<input type=text size=5 name=“number’>
<input type=submit value=“submit”>
<fform>
</body>
</html>

Figure 8.2 An HTML source text.

Although HTML code can be created using a plain text editor, there are a number
of editors that permit direct creation of HTML text by using a graphical interface.
Such editors allow constructs such as forms, menus, and tables to be inserted into the
HTML document from a menu of choices, instead of manually typing in the code to
generate the constructs.

HTML supports stylesheets, which can alter the default definitions of how an HTML
formatting construct is displayed, as well as other display attributes such as back-
ground color of the page. The cascading stylesheet (CSS) standard allows the same
stylesheet to be used for multiple HTML documents, giving a distinctive but uniform
look to all the pages on a Web site.

A-101 Downtown 500
A-102 Perryridge 400
A-201 Brighton 900

The account relation

Select account/loan and enter number

Account V : submit

Figure 8.3 Display of HTML source from Figure 8.2.

318

Chapter8 Application Design and Development

8.3.3 Client-Side Scripting and Applets

Embedding of program code in documents allows Web pages to be active, carrying
out activities such as animation by executing programs at the local site, instead of just
presenting passive text and graphics. The primary use of such programs is flexible
interaction with the user, beyond the limited interaction power provided by HTML
and HTML forms. Further, executing programs at the client site speeds up interaction
greatly, compared to every interaction being sent to a server site for processing.

A danger in supporting such programs is that, if the design of the system is done
carelessly, program code embedded in a Web page (or equivalently, in an email mes-
sage) can perform malicious actions on the user’s computer. The malicious actions.
could range from reading private information, to deleting or modifying information
on the computer, up to taking control of the computer and propagating the code
to other computers (through email, for example). A number of email viruses have
spread widely in recent years in this way.

One of the reasons that the Java language became very popular is that it provides
a safe mode for executing programs on users’ computers. Java code can be compiled
into platform-independent “byte-code” that can be executed on any browser that sup-
ports Java. Unlike local programs, Java programs (applets) downloaded as part of a
Web page have no authority to perform any actions that could be destructive. They
are permitted to display data on the screen, or to make a network connection to the
server from which the Web page was downloaded, in order to fetch more informa-
tion. However, they are not permitted to access local files, to execute any system
programs, or to make network connections to any other computers.

While Java is a full-fledged programming language, there are simpler languages,
called scripting languages, that can enrich user interaction, while providing the same
protection as Java. These languages provide constructs that can be embedded with
an HTML document. Client-side scripting languages are languages designed to be
executed on the client’s Web browser. Of these, the Javascript language is by far the
most widely used. Javascript is commonly used for a variety of tasks. For example,
functions written in Javascript can be used to perform error checks (validation) on
user input, such as a date string being properly formatted, or a value entered (such
as age) being in an appropriate range.

Javascript can even be used to dynamically modify the HTML code being dis-
played. The browser parses HTML code into an in-memory tree structure defined by
a standard called the Document Object Model (DOM). Javascript code can modify
the tree structure to carry out certain operations. For example, suppose a user needs
to enter a number of rows of data such as items in a bill being created. A table con-
taining text boxes and other form input methods can be used to gather user input.
The table may have a default size, but if more rows are needed, the user may click
on a button labeled (for example) “Add Item.” This button can be set up to invoke a
Javascript function that modifies the DOM tree by adding an extra row in the table.

There are also special-purpose scripting languages for specialized tasks such as
animation (for example, Macromedia Flash and Shockwave) and three-dimensional
modeling [Virtual Reality Markup Language (VRML)]. Scripting languages can also
be used on the server side, as we shall see.

8.3 Web Fundamentals 319

Lweb]server j
[

(application server)

|
[database serva

 network

browser

Figure 8.4 Three-layer Web architecture.

8.3.4 Web Servers and Sessions

A Web server is a program running on the server machine, which accepts requests
from a Web browser and sends back results in the form of HTML documents. The
browser and Web server communicate by a protocol called the HyperText Trans-
fer Protocol (HTTP). HTTP provides powerful features, beyond the simple transfer
of documents. The most important feature is the ability to execute programs, with
arguments supplied by the user, and deliver the results back as an HTML document.

As a result, a Web server can easily act as an intermediary to provide access to
a variety of information services. A new service can be created by creating and in-
stalling an application program that provides the service. The common gateway in-
terface (CGI) standard defines how the Web server communicates with application
programs. The application program typically communicates with a database server,
through ODBC, JDBC, or other protocols, in order to get or store data.

Figure 8.4 shows a Web service using a three-layer architecture, with a Web server,
an application server, and a database server. Using multiple levels of servers in-
creases system overhead; the CGI interface starts a new process to service each re-
quest, which results in even greater overhead.

Most Web services today therefore use a two-layer Web architecture, where the
application program runs within the Web server, as in Figure 8.5. We study systems
based on the two-layer architecture in more detail in subsequent sections.

There is no continuous connection between the client and the Web server; when
a Web server receives a request, a connection is temporarily created to send the re-
quest and receive the response from the Web server. But the connection is then closed,
and the next request comes over a new connection. In contrast, when a user logs on
to a computer, or connects to a database using ODBC or JDBC, a session is created,
and session information is retained at the server and the client until the session is
terminated —information such as the user-identifier of the user and session options
that the user has set. One important reason that HTTP is connectionless is that most

320 Chapter8 Application Design and Development

web server and
application server

(database server J

browser

Figure 8.5 Two-layer Web architecture.

computers have limits on the number of simultaneous connections they can accom-
modate, and if a large number of sites on the Web open connections, this limit would
be exceeded, denying service to further users. With a connectionless service, the con-
nection is broken as soon as a request is satisfied, leaving connections available for
other requests.

Most Web-based information services, however, need session information to allow
meaningful user interaction. For instance, services typically restrict access to informa-
tion, and therefore need to authenticate users. Authentication should be done once
per session, and further interactions in the session should not require reauthentica-
tion.

To implement sessions in spite of connections getting closed, extra information has
to be stored at the client and returned with each request in a session; the server uses
this information to identify that a request is part of a user session. Extra information
about the session also has to be maintained at the server.

This extra information is usually maintained in the form of a cookie at the client;
a cookie is simply a small piece of text containing identifying information, and with
an associated name. For example, google.com may set a cookie with the name prefs,
which encodes preferences set by the user such as the preferred language and the
number of answers displayed per page. On each search request, google.com can re-
trieve the cookie named prefs from the user’s browser, and display results according
to the specified preferences. A domain (Web site) is permitted to retrieve only cook-
ies that it has set, not cookies set by other domains, and cookie names can be reused
across domains.

For the purpose of tracking a user session, an application may generate a session
identifier (usually a random number not currently in use as a session identifier), and
send a cookie named (for instance) sessionid containing the session identifier. The
session identifier is also stored locally at the server. When a request comes in, the
application server requests the cookie named sessionid from the client. If the client
does not have the cookie stored, or returns a value that is not currently recorded as a

84 Servletsand JSP 321

valid session identifier at the server, the application concludes that the request is not
part of a current session. If the cookie value matches a stored session identifier, the
request is identified as part of an ongoing session.

If an application needs to securely identify users, it can set the cookie only after
authenticating the user; for example a user may be authenticated only when a valid
user name and password are submitted. !

For applications that do not require high security, such as publicly available news
sites, cookies can be stored permanently at the browser and at the server; they iden-
tify the user on subsequent visits to the same site, without any identification infor-
mation being typed in. For applications that require higher security, the server may
invalidate (drop) the session after a time-out period, or when the user logs out. (Typ-
ically a user logs out by hitting a logout button, which submits a logout form, whose
action is to invalidate the current session.) Invalidating a session merely consists
of dropping the session identifier from the list of active sessions at the application
server.

8.4 Servlets and JSP

In a two-layer Web architecture, an application runs as part of the Web server it-
self. One way of implementing such an architecture is to load Java programs into
the Web server. The Java servlet specification defines an application programming
interface for communication between the Web server and the application program.
The HttpServiet class in Java implements the servlet API specification; servlet classes
used to implement specific functions are defined as subclasses of this class. 2 Often
the word servlet is used to refer to a Java program (and class) that implements the
servlet interface. Figure 8.6 shows a servlet example; we explain it in detail shortly.

The code for a servlet (that is, a Java program that implements the servlet inter-
face) is loaded into the Web server when the server gets started, or when the server
receives a remote HTTP request to execute a particular servlet. The task of a servlet
is to process such a request, which may involve accessing a database to retrieve nec-
essary information, and dynamically generate an HTML page to be returned to the
client browser.

8.4.1 A Servlet Example

Servlets are commonly used to dynamically generate responses to HTTP requests.
They can access inputs provided through HTML forms, apply “business logic” to

1. The user identifier could be stored at the client end, in a cookie named, for example, userid. Such
cookies can be used for low-security applications, such as free Web sites identifying their users. However,
for applications that require a higher level of security, such a mechanism creates a security risk: The value
of a cookie can be changed at the browser by a malicious user, who can then masquerade as a different
user. Setting a cookie (named sessionid, for example) to a randomly generated session identifier (from a
large space of numbers) makes it highly improbable that a user can masquerade as (that is, pretend to
be) another user. A sequentially generated session identifier, on the other hand, would be susceptible to
masquerading.

2. The servlet interface can also support non-HTTP requests, although our example uses only HTTP.

322

Chapter 8 Application Design and Development

decide what response to provide, and then generate HTML output to be sent back
to the browser.

Figure 8.6 shows an example of servlet code to implement the form in Figure 8.2.
The servlet is called BankQueryServlet, while the form specifies that action="Bank-
Query.” The Web server must be told that this servlet is to be used to handle requests
for BankQuery. The form specifies that the HTTP get mechanism is used for transmit-
ting parameters. So the doGet() method of the servlet, as defined in the code, gets
invoked.

Each request results in a new thread within which the call is executed, so multiple
requests can be handled in parallel. Any values from the form menus and input fields
on the Web page, as well as cookies, pass through an object of the HttpServietRequest
class that is created for the request, and the reply to the request passes through an
object of the class HitpServietResponse.

The doGet() method in the example extracts values of the parameter’s type and
number by using request.getParameter(), and uses these values to run a query against
a database. The code used to access the database is not shown; refer to Section 4.5.2
for details of how to use JDBC to access a database. The servlet code returns the results
of the query to the requester by printing them out in HTML format to the HttpServiet-
Response object response.

import java.io.”;
import javax.servlet.”;
import javax.servlet.http.”;

public class BankQueryServlet extends HitpServiet {
public void doGet(HttpServietRequest request, HttpServletResponse response)
throws ServletException, IOException
{

String type = request.getParameter(“type”);

String number = request.getParameter(“number”);

... code to find the loan amount/account balance ...

... using JDBC to communicate with the database ..

... we assume the value is stored in the variable balance

response.setContentType(“text/html”);

PrintWriter out = response.getWriter();
out.printin(“<HEAD><TITLE> Query Result</TITLE></HEAD>");
out.printin(“<BODY>");

out.printin(“Balance on ” + type + number + “ = + balance);
out.printin(“</BODY >");

out.close();

Figure 8.6 Example of servlet code.

84 Servletsand JSP 323

8.4.2 Servlet Sessions

Recall that the interaction between a browser and a Web server is stateless. That is,
each time the browser makes a request to the server, the browser needs to connect to
the server, request some information, then disconnect from the server. Cookies can
be used to recognize that a request is from the same browser session as an earlier
request. However, cookies form a low-level mechanism, and programmers require a
better abstraction to deal with sessions.

The servlet API provides a method of tracking sessions and storing session-related
information. Invoking the method getSession(false) of the class HittpServletRequest
retrieves the HttpSession object corresponding to the browser that sent the request.
An argument value of true would have specified that a new session object must be
created if the request is a new request. When the getSession() method is invoked, the
server first asks the client to return a cookie with a specified name.

If the client does not have a cookie of that name, or returns a value that does not
match any ongoing session, then the request is not part of an ongoing session. In
this case, the servlet could direct the user to a login page, which could allow the
user to provide a user name and password. The servlet corresponding to the login
page could verify that the password matches the user (for example, by looking up
authentication information in the database). Other methods for authenticating users
are possible. If the user is properly authenticated, the login servlet would execute a
getSession(true), which would return a new session object. To create a new session
the Web server would internally carry out the following tasks: set a cookie (called,
for example, sessionld) with a session identifier as its associated value at the client
browser, create a new session object, and associate the session identifier value with
the session object.

The servlet code can also store and look up (attribute-name, value) pairs in the
HttpSession object, to maintain state across multiple requests within a session. For
example, the login servlet could store the user-id of the user as a session parameter
by executing the method session.setAttribute(“userid”, userid) on the session object
(where the Java variable userid contains the user identifier), after the user is authen-
ticated and the session object has been created.

If the request was part of an ongoing session, the browser would have returned the
cookie value, and the corresponding session object is returned by the Web server. The
servlet can then retrieve session parameters such as user-id from the session object
by executing the method session.getAttribute(“userid”). If the attribute userid is not
set, the function would return a null value, which would indicate that the client user
has not been authenticated.

8.4.3 Servlet Life Cycle

The life cycle of a servlet is controlled by the Web server in which the servlet has been
deployed. When there is a client request for a specific servlet, the server first checks
if an instance of the servlet exists or not. If not, the Web server loads the servlet class
into the Java virtual machine (JVM), and creates an instance of the servlet class. In
addition, the server calls the init() method to initialize the servlet instance. Notice
that each servlet instance is initialized only once when it is loaded.

324

Chapter 8 Application Design and Development

After making sure the servlet instance does exist, the server invokes the service
method of the servlet, with a request object and a response object as parameters. By
default, the server creates a new thread to execute the service method; thus, multi-
ple requests on a servlet can execute in parallel, without having to wait for earlier
requests to complete execution. The service method calls doGet or doPost as appro-
priate.

When no longer required, a servlet can be shut down by calling the destroy()
method. The server can be set up to automatically shut down a servlet if no requests
have been made on a servlet within a time-out period; the time-out period is a server
parameter that can be set as appropriate for the application.

8.4.4 Servlet Support

The Sun Java servletrunner program provides minimal support for running servlets
and is a quick way to get started with servlets. It can receive requests on a specified
port, invoke appropriate servlets, and send the response back to the client.

Many application servers provide built-in support for servlets. Examples include
the open-source JBoss application server, Sun’s Java Web Server, Netscape’s Enter-
prise Server, BEA Weblogic Application Server, Oracle Application Server, and IBM’s
WebSphere Application Server. One of the most popular stand-alone servlet engines
is the Tomcat Server from the Apache Jakarta Project, which is a free open-source
project.

These application servers provide a variety of other services, in addition to the
basic servlet support provided by servletrunner. For example, if a servlet code is
modified, they can detect this and recompile and reload the servlet transparently.
As another example, many application servers allow the server to run on multiple
machines to improve performance and route requests to an appropriate copy. They
also provide functionality to monitor the status of the application server, including
performance statistics. Many application servers also support the Java 2 Enterprise
Edition (J2EE) platform, which provides support and APIs for a variety of tasks, such
as for handling objects, parallel processing across multiple application servers, and
for handling XML data (XML is described later in Chapter 10).

8.4.5 Server-Side Scripting

Writing even a simple Web application in a programming language such as Java or C
is a time-consuming task that requires many lines of code and programmers who are
familiar with the intricacies of the language. An alternative approach, that of server-
side scripting, provides a much easier method for creating many applications. Script-
ing languages provide constructs that can be embedded within HTML documents. In
server-side scripting, before delivering a Web page, the server executes the scripts
embedded within the HTML contents of the page. Each piece of script, when exe-
cuted, can generate text that is added to the page (or may even delete content from
the page). The source code of the scripts is removed from the page, so the client may
not even be aware that the page originally had any code in it. The executed script
may contain SQL code that is executed against a database.

84 Servletsand JSP 325

Several scripting languages have appeared in recent years, including Server-Side
Javascript from Netscape, JScript from Microsoft, Java Server Pages (JSP) from Sun,
the PHP Hypertext Preprocessor (PHP), ColdFusion’s ColdFusion Markup Language
(CFML), and Zope's DTML. In fact, it is even possible to embed code written in older
scripting languages such as VBScript, Perl, and Python into HTML pages. For in-
stance, Microsoft’s Active Server Pages (ASP) supports embedded VBScript and JScript.
These languages support similar features, but differ in the style of programming and
the ease with which simple applications can be created.

We briefly describe below Java Server Pages (JSP), a scripting language that allows
HTML programmers to mix static HTML with dynamically-generated HTML. The mo-
tivation is that, for many dynamic Web pages, most of their content is still static (that
is, the same content is present whenever the page is generated). The dynamic content
of the Web pages (which are generated, for example, on the basis of form parameters)
is often a small part of the page. Creating such pages by writing servlet code results
in a large amount of HTML being coded as Java strings. JSP instead allows Java code
to be embedded in static HTML; the embedded Java code generates the dynamic part
of the page. JSP scripts are actually translated into servlet code which is then com-
piled, but the application programmer is saved the trouble of writing much of the
Java code to create the servlet.

Figure 8.7 shows the source text of an HTML page that includes a JSP script. The
Java code is distinguished from the surrounding HTML code by being enclosed in
<% ... %>. The script calls the request.getParameter() to get the value of the at-
tribute name. Depending on the value, the script decides what should be printed
after “Hello.” A more realistic example may perform more complex actions, such as
looking up values from a database using JDBC.

JSP also supports the concept of a tag library, which allows the use of tags that look
much like HTML tags, but are interpreted at the server, and are replaced by appropri-
ately generated HTML code. JSP provides a standard set of tags that define variables
and control flow (iterators, if-then-else), along with an expression language based on
Javascript (but interpreted at the server). The set of tagsis extensible, and a number of
tag libraries have been implemented. For example, there is a tag library that supports

<html>
<head> <title> Hello </title> </head>
<body>
<H1>
< % if (request.getParameter(“name”) == null)
{ out.printin(“Hello World”); }
else { out.printin(“Hello, * + request.getParameter(“name”)): }
Y%o>
</H1>
</body>
</html>

Figure 8.7 An HTML source text with a JSP script.

326

Chapter8 Application Design and Development

paginated display of large data sets, and a library that simplifies display and parsing
of dates and times. See the bibliographic notes for references to more information on
JSP tag libraries.

8.5 Building Large Web Applications

In building Web applications, much of the programming effort goes into the user
interface, rather than into database-related tasks. In the first part of this section we
study ways to reduce the programming effort for this task. Later in this section, we
describe some techniques to improve application performance.

8.5.1 Constructing Web Interfaces

We describe below several techniques to reduce the programming effort in building
the user interface.

Many HTML constructs are best generated by using appropriately defined Java
functions, instead of being written as part of the code of each Web page. For exam-
ple, address forms typically require a menu containing country or state names. In-
stead of writing lengthy HTML code to create the required menu each time it is used,
it is preferable to define a function that outputs the menu, and to call the function
wherever required.

Menus are often best generated from data in the database, such as a table con-
taining country names or state names. The function generating the menu executes a
database query and populates the menu, using the query result. Adding a country or
state then requires only a change to the database, not to the application code. This
approach has the potential drawback of requiring increased database interaction,
but such overheads can be minimized by caching query results at the application
server.

Forms to input dates and times, or inputs that require validation, are similarly
best generated by calling appropriately defined functions. Such functions can output
Javascript code to perform validation at the browser.

Displaying a set of results from a query is a common task for many database appli-
cations. It is possible to build a generic function that takes an SQL query (or ResultSet)
as argument, and display the tuples in the query result (or ResultSet) in a tabular
form. JDBC metadata calls can be used to find information such as the number of
columns and the name and types of the columns in the query result; this information
is then used to display the query result.

To handle situations where the query result is very large, such a query result dis-
play function can provide for pagination of results. The function can display a fixed
number of records in a page and provide controls to step to the next or previous page
or jump to a particular page of the results.

There is unfortunately no (widely used) standard Java API for functions to carry
out the user-interface tasks described above. Building such a library can be an inter-
esting programming project.

8.5 Building Large Web Applications 327

8.5.2 Microsoft Active Server Pages

Microsoft’s Active Server Pages (ASP), and its more recent version, Active Server
Pages NET(ASP.NET), is a widely used alternative to JSP/Java. ASPNET is similar to
JSP, in that code in a language such as Visual Basic or C# can be embedded within
HTML code. In addition, ASPNET provides a variety of controls (scripting commands)
that are interpreted at the server, and generate HTML that is then sent to the client.
These controls can significantly simplify the construction of Web interfaces. We pro-
vide a brief overview of the benefits that these controls offer.

For example, controls such as drop-down menus and list boxes can be associated
with a DataSet object. The DataSet object is similar to a JDBC ResultSet object, and is
typically created by executing a query on the database. The HTML menu contents are
then generated from the DataSet object’s contents; for example, a query may retrieve
the names of all departments in an organization into the DataSet, and the associated
menu would contain these names. Thus, menus that depend on database contents
can be created in a convenient manner with very little programming.

Validator controls can be added to form input fields; these declaratively specify
validity constraints such as value ranges, or whether the input is a required input for
which a value must be provided by the user. The server creates appropriate HTML
code combined with JavaScript to perform the validation at the user’s browser. Er-
ror messages to be displayed on invalid input can be associated with each validator
control.

User actions can be specified to have an associated action at the server. For exam-
ple, a menu control can specify that selecting a value from a menu has an associated
server-side action (this is implemented by JavaScript code generated by the server).
Visual Basic/C# code that displays data pertaining to the selected value can be asso-
ciated with the action at the server. Thus, selecting a value from a menu can result in
associated data on the page getting updated, without requiring the user to click on a
submit button.

The DataGrid control provides a very convenient way of displaying query results.
A DataGrid is associated with a DataSet object, which is typically the result of a
query. The server generates HTML code that displays the query result as a table. Col-
umn headings are generated automatically from query result metadata. In addition,
DataGrids provide several features, such as pagination, and allow the user to sort
the result on chosen columns. All the HTML code as well as server-side functionality
to implement these features is generated automatically by the server. The DataGrid
even allows users to edit the data and submit changes back to the server. The appli-
cation developer can specify a function, to be executed when a row is edited, that can
perform the update on the database.

Microsoft Visual Studio provides a graphical user interface for creating ASP pages
using these features, further reducing the programming effort.

See the bibliographic notes for references to more information on ASPNET.

8.5.3 Improving Application Performance

Web sites may be accessed by millions of people from across the globe, at rates of
thousands of requests per second, or even more, for the most popular sites. Ensuring

328

Chapter 8 Application Design and Development

that requests are served with low response times is a major challenge for Web site
developers.

Caching techniques of various types are used to exploit commonalities between
transactions. For instance, suppose the application code for servicing each user re-
quest needs to contact a database through JDBC. Creating a new JDBC connection
may take several milliseconds, so opening a new connection for each user request is
not a good idea if very high transaction rates are to be supported.

Connection pooling is used to reduce this overhead; it works as follows. The con-
nection pool manager (a part of the application server) creates a pool (that is, a set) of
open ODBC/JDBC connections. Instead of opening a new connection to the database,
the code servicing a user request (typically a servlet) asks for (requests) a connec-
tion from the connection pool and returns the connection to the pool when the code
(servlet) completes its processing. If the pool has no unused connections when a con-
nection is requested, a new connection is opened to the database (taking care not
to exceed the maximum number of connections that the database system can sup-
port concurrently). If there are many open connections that have not been used for
a while, the connection pool manager may close some of the open database connec-
tions. Many application servers, and newer ODBC/JDBC drivers provide a built-in
connection pool manager.

A common error that many programmers make when creating Web applications
is to forget to close an opened JDBC connection (or equivalently, when connection
pooling is used, to forget to return the connection to the connection pool). Each re-
quest then opens a new connection to the database, and the database soon reaches
the limit of how many open connections it can have at a time. Such problems often
do not show up on small-scale testing, since databases often allow hundreds of open
connections, but show up only on intensive usage. Some programmers assume that
connections, like memory allocated by Java programs, are garbage collected auto-
matically. Unfortunately, this does not happen, and programmers are responsible for
closing connections that they have opened.

Certain requests may result in exactly the same query being resubmitted to the
database. The cost of communication with the database can be greatly reduced by
caching the results of earlier queries and reusing them, so long as the query result has
not changed at the database. Some Web servers support such query-result caching.

Costs can be further reduced by caching the final Web page that is sent in response
to a request. If a new request comes with exactly the same parameters as a previous
request and if the resultant Web page is in the cache, then it can be reused to avoid
the cost of recomputing the page. Caching can be done at the level of fragments of
Web pages, which are then assembled to create complete Web pages.

Cached query results and cached Web pages are forms of materialized views. If the
underlying database data change, they can be discarded, or can be recomputed, or
even incrementally updated, as in materialized-view maintenance (described later, in
Section 14.5). Some database systems (such as Microsoft SQL Server) provide a way
for the application server to register a query with the database, and get a notification
from the database when the result of the query changes. Such a notification mech-
anism can be used to ensure that query results cached at the application server are
up-to-date.

86 Triggers 329

8.6 Triggers

A trigger is a statement that the system executes automatically as a side effect of
a modification to the database. To design a trigger mechanism, we must meet two
requirements:

1. Specify when a trigger is to be executed. This is broken up into an event that
causes the trigger to be checked and a condition that must be satisfied for trig-
ger execution to proceed.

2. Specify the actions to be taken when the trigger executes.

The above model of triggers is referred to as the event-condition-action model for
triggers.

The database stores triggers just as if they were regular data, so that they are per-
sistent and are accessible to all database operations. Once we enter a trigger into the
database, the database system takes on the responsibility of executing it whenever
the specified event occurs and the corresponding condition is satisfied.

8.6.1 Need for Triggers

Triggers are useful mechanisms for alerting humans or for starting certain tasks au-
tomatically when certain conditions are met. As an illustration, suppose that, instead
of allowing negative account balances, the bank deals with overdrafts by setting the
account balance to zero and creating a loan in the amount of the overdraft. The bank
gives this loan a loan number identical to the account number of the overdrawn ac-
count. For this example, the condition for executing the trigger is an update to the ac-
count relation that results in a negative balance value. Suppose that Jones’ withdrawal
of some money from an account made the account balance negative. Let ¢ denote the
account tuple with a negative balance value. The actions to be taken are:

e Insert a new tuple s in the loan relation with

s|loan_number] = t{account_number]
s|branch_name) = t[branch_name
slamount| = —t[balance]

(Note that, since t[balance] is negative, we negate f[balance] to get the loan
amount—a positive number.)

e Insert a new tuple u in the borrower relation with

ulcustomer_name] = “Jones”
ulloan_number| = t{account_number]

e Set f[balance] to 0.

As another example of the use of triggers, suppose a warehouse wishes to main-
tain a minimum inventory of each item; when the inventory level of an item falls

330 Chapter8 Application Design and Development

create trigger overdraft_trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic
insert into borrower
(select customer_name, account_number
from depositor
where nrow.account_number = depositor.account _number);
insert into loan values
(nrow.account_number, nrow.branch_name, — nrow.balance);
update account set balance = 0
where account.account_number = nrow.account_number
end

Figure 8.8 Example of SQL:1999 syntax for triggers.

below the minimum level, an order should be placed automatically. This is how the
business rule can be implemented by triggers: On an update of the inventory level
of an item, the trigger should compare the level with the minimum inventory level
for the item, and if the level is at or below the minimum, a new order is added to an
orders relation.

Note that trigger systems cannot usually perform updates outside the database,
and hence, in the inventory replenishment example, we cannot use a trigger to di-
rectly place an order in the external world. Instead, we add an order to the orders
relation as in the inventory example. We must create a separate permanently run-
ning system process that periodically scans the orders relation and places orders. This
system process would also note which tuples in the orders relation have been pro-
cessed and when each order was placed. The process would also track deliveries of
orders and alert managers in case of exceptional conditions such as delays in deliv-
eries. Some database systems provide built-in support for sending email from SQL
queries and triggers, using the above approach.

8.6.2 Triggers in SQL

SQL-based database systems use triggers widely, although before SQL:1999 they were
not part of the SQL standard. Unfortunately, each database system implemented its
own syntax for triggers, leading to incompatibilities. We outline in Figure 8.8 the
SQL:1999 syntax for triggers (which is similar to the syntax in the IBM DB2 and Oracle
database systems).

This trigger definition specifies that the trigger is initiated after any update of the
relation account is executed. An SQL update statement could update multiple tuples
of the relation, and the for each row clause in the trigger code would then explicitly
iterate over each updated row. The referencing new row as clause creates a variable
nrow (called a transition variable), which stores the value of an updated row after
the update.

8.6 Triggers 331

The when statement specifies a condition, namely nrow.balance < 0. The system
executes the rest of the trigger body only for tuples that satisfy the condition. The
begin atomic ... end clause serves to collect multiple SQL statements into a single
compound statement. The two insert statements with the begin ... end structure
carry out the specific tasks of creating new tuples in the borrower and loan relations to
represent the new loan. The update statement serves to set the account balance back
to 0 from its earlier negative value.

The triggering event and actions can take many forms:

o The triggering event can be insert or delete, instead of update.

For example, the action on delete of an account could be to check if the
holders of the account have any remaining accounts, and if they do not, to
delete them from the depositor relation. You can define this trigger as an exer-
cise (Practice Exercise 8.5).

As another example, if a new depositor is inserted, the triggered action could
be to send a welcome letter to the depositor. Obviously a trigger cannot di-
rectly cause such an action outside the database, but could instead add a tu-
ple to a relation storing addresses to which welcome letters need to be sent. A
separate process would go over this table, and print out letters to be sent.

Many database systems support a variety of other triggering events, such
as when a user (application) logs on to the database (that is, opens a connec-
tion), the system shuts down, or changes are made to system settings.

o For updates, the trigger can specify columns whose update causes the trigger
to execute. For instance, if the first line of the overdraft trigger were replaced

by
create trigger overdraft_trigger after update of balance on account

then the trigger would be executed only on updates to balance; updates to
other attributes would not cause it to be executed.

o The referencing old row as clause can be used to create a variable storing the
old value of an updated or deleted row. The referencing new row as clause
can be used with inserts in addition to updates.

e Triggers can be activated before the event (insert/delete/update) instead of
after the event.

Such triggers can serve as extra constraints that can prevent invalid up-
dates. For instance, if we wish not to permit overdrafts, we can create a be-
fore trigger that checks if the new balance is negative, and if so it rolls back
the transaction. Although an after trigger could have been used for this pur-
pose, its use would result in the update being done first, and the transaction
rolled back.

As another example, suppose the value in a phone number field of an in-
serted tuple is blank, which indicates absence of a phone number. We can

332

Chapter 8

Application Design and Development

define a trigger that replaces the value by the null value. The set statement
can be used to carry out such modifications.

create trigger setnull_trigger before update on r
referencing new row as nrow

for each row

when nrow.phone_number ="’

set nrow.phone_number = null

Instead of carrying out an action for each affected row, we can carry out a sin-
gle action for the entire SQL statement that caused the insert/delete/update.
To do so, we use the for each statement clause instead of the for each row
clause.

The clauses referencing old table as or referencing new table as can then
be used to refer to temporary tables (called transition tables) containing all the
affected rows. Transition tables cannot be used with before triggers, but can
be used with after triggers, regardless of whether they are statement triggers
or row triggers.

A single SQL statement can then be used to carry out multiple actions on
the basis of the transition tables.

Triggers can be disabled or enabled; by default they are enabled when they
are created, but can be disabled by using alter trigger trigger name disable
(some databases use alternative syntax such as disable trigger trigger_name).
A trigger that has been disabled can be enabled again. A trigger can instead be
dropped, which removes it permanently, by using the command drop trigger
trigger name.

Returning to our warehouse inventory example, suppose we have the following
relations:

inventory(item, level), which notes the current amount (number/weight/vol-
ume) of the item in the warehouse

minlevel(item, level), which notes the minimum amount of the item to be main-
tained

reorder(item, amount), which notes the amount of the item to be ordered when
its level falls below the minimum

orders(item, amount), which notes the amount of the item to be ordered.

Note that we have been careful to place an order only when the amount falls from
above the minimum level to below the minimum level. If we check only that the
new value after an update is below the minimum level, we may place an order er-
roneously when the item has already been reordered. We can then use the trigger
shown in Figure 8.9 for reordering the item.

Many database systems provide nonstandard trigger implementations, or imple-
ment only some of the trigger features. For instance, many database systems do not

8.6 Triggers 333

create trigger reorder_trigger after update of amount on inventory
referencing old row as orow, new row as nrow
for each row
when nrow.level <= (select level
from minlevel
where minlevel.item = orow.item)
and orow.level > (select level
from minlevel
where minlevel .item = orow.item)

begin
insert into orders
(select item, amount
from reorder
where reorder.item = orow.item)
end

Figure 8.9 Example of trigger for reordering an item.

implement the before clause, and the keyword on is used instead of after. They may
not implement the referencing clause. Instead, they may specify transition tables by
using the keywords inserted or deleted. Figure 8.10 illustrates how the overdraft trig-
ger would be written in Microsoft SQL Server. Read the user manual for the database
system you use for more information about the trigger features it supports.

8.6.3 When Not to Use Triggers

There are many good uses for triggers, such as those we have just seen in Section 8.6.2,
but some uses are best handled by alternative techniques. For example, in the past,
system designers used triggers to maintain summary data. For instance, they used
triggers on insert/delete/update of a employee relation containing salary and dept at-
tributes to maintain the total salary of each department. However, many database
systems today support materialized views (see Section 3.9.1), which provide a much
easier way to maintain summary data. Designers also used triggers extensively for
replicating databases; they used triggers on insert/delete/update of each relation to
record the changes in relations called change or delta relations. A separate process
copied over the changes to the replica (copy) of the database, and the system executed
the changes on the replica. Modern database systems, however, provide built-in fa-
cilities for database replication, making triggers unnecessary for replication in most
cases.

In fact, many trigger applications, including our example overdraft trigger, can be
substituted by appropriate use of stored procedures. For example, suppose updates
to the balance attribute of account are done only through a particular stored procedure.
That procedure would in turn check for negative balance, and carry out the actions
of the overdraft trigger. Programmers should be careful to not directly update the
balance value but only update it through the stored procedure; this could be ensured

334 Chapter8 Application Design and Development

create trigger overdraft_trigger on account
for update
as
if inserted.balance < 0
begin
insert into borrower
(select customer_name, account_number
from depositor, inserted
where inserted.account_number = depositor.account_number)
insert into loan values
(inserted.account_number, inserted.branch_name, — inserted.balarnce)
update account set balance = 0
from account, inserted
where account.account_number = inserted.account_number
end

Figure 8.10 Example of trigger in MS-SQL Server syntax.

by not giving the application/user update authorization to the balance attribute, but
providing execute authorization on the associated stored procedure. Similar encap-
sulation can be used to replace the reorder trigger by a stored procedure.

Another problem with triggers lies in unintended execution of the triggered action
when data is loaded from a backup copy, or when database updates at a site are repli-
cated on a backup site. In such cases, the triggered action has already been executed,
and typically should not be executed again. When loading data, triggers can be ex-
plicitly disabled. For backup replica systems that may have to take over from the
primary system, triggers would have to be disabled initially, and enabled when the
backup site takes over processing from the primary. As an alternative, some database
systems allow triggers to be specified as not for replication, which ensures that they
are not executed on the backup site during database replication. Other database sys-
tems provide a system variable that denotes that the database is a replica on which
database actions are being replayed; the trigger body should check this variable and
exit if it is true. Both solutions remove the need for explicit disabling and enabling of
triggers.

Triggers should be written with great care, since a trigger error detected at run-
time causes the failure of the insert/delete/update statement that set off the trigger.
Furthermore, the action of one trigger can set off another trigger. In the worst case,
this could even lead to an infinite chain of triggering. For example, suppose an insert
trigger on a relation has an action that causes another (new) insert on the same rela-
tion. The insert action then triggers yet another insert action, and so on ad infinitum.
Database systems typically limit the length of such chains of triggers (for example, to
16 or 32) and consider longer chains of triggering an error.

Triggers are occasionally called rules, or active rules, but should not be confused
with Datalog rules (see Section 5.4), which are really view definitions.

8.7 Authorizationin SQL 335

8.7 Authorization in SQL

We saw the basic set of privileges in SQL in Section 4.3 including the privileges delete,
insert, select, and update.

In addition to these forms of privileges for access to data, we may (conceptually)
grant a user different types of authorization to modify the database schema:

e Authorization to create new relations
e Authorization to add attributes to, or delete attributes from, a relation

e Authorization to drop a relation

The SQL standard specifies a primitive authorization mechanism for the database
schema: Only the owner of the schema can carry out any modification to the schema.
Thus, schema modifications—such as creating or deleting relations, adding or drop-
ping attributes of relations, and adding or dropping indices—may be executed by
only the owner of the schema. Several database implementations have more power-
ful authorization mechanisms for database schemas, similar to those discussed ear-
lier, but these mechanisms are nonstandard.

SQL also includes a references privilege that permits a user to declare foreign keys
when creating relations. Initially, it may appear that there is no reason ever to pre-
vent users from creating foreign keys referencing another relation. However, recall
that foreign-key constraints restrict deletion and update operations on the referenced
relation. Suppose U, creates a foreign key in a relation r referencing the branch_name
attribute of the branch relation and then inserts a tuple into 7 pertaining to the Per-
ryridge branch. It is no longer possible to delete the Perryridge branch from the
branch relation without also modifying relation r. Thus, the definition of a foreign
key by U, restricts future activity by other users; therefore, there is a need for the
references privilege.

The references privilege on s is also required to create a check constraint on a
relation r if the constraint has a subquery referencing relation s.

SQL defines an execute privilege; this privilege authorizes a user to execute a func-
tion or procedure. Thus, only a user who has the execute privilege on a function f()
can call the function (either directly or from within an SQL query).

SQL also includes a usage privilege that authorizes a user to use a specified domain
(recall that a domain corresponds to the programming-language notion of a type, and
may be user defined).

The ultimate form of authority is that given to the database administrator. The
database administrator may authorize new users, restructure the database, and so
on. This form of authorization is analogous to that of a superuser or operator for an
operating system.

8.7.1 Granting of Privileges

A user who has been granted some form of authorization may be allowed to pass
on this authorization to other users. However, we must be careful how authorization

336

Chapter8 Application Design and Development

/ . i :
DBA > > Uz

U,

Us

Figure 8.11 Authorization-grant graph.

may be passed among users, to ensure that such authorization can be revoked at
some future time.

Consider, as an example, the granting of update authorization on the loan rela-
tion of the bank database. Assume that, initially, the database administrator grants
update authorization on loan to users Uy, Us, and Us, who may in turn pass on this
authorization to other users. The passing of authorization from one user to another
can be represented by an authorization graph. The nodes of this graph are the users.
The graph includes an edge U; — U; if user U; grants update authorization on loan
to Uj. The root of the graph is the database administrator. In the sample graph in
Figure 8.11, observe that user Us is granted authorization by both U; and Us; Uy is
granted authorization by only U;.

A user has an authorization if and only if there is a path from the root of the autho-
rization graph (namely, the node representing the database administrator) down to
the node representing the user.

Suppose that the database administrator decides to revoke the authorization of
user U;. Since Uy has authorization from Uy, that authorization should be revoked as
well. However, Us was granted authorization by both U; and Us. Since the database
administrator did not revoke update authorization on loan from Us, Us retains update
authorization on loan. If Uy eventually revokes authorization from Us, then Us loses
the authorization.

A pair of devious users might attempt to defeat the rules for revocation of
authorization by granting authorization to each other, as shown in Figure 8.12a. If
the database administrator revokes authorization from Us;, U, retains authorization
through Us, as in Figure 8.12b. If authorization is revoked subsequently from Us, Us
appears to retain authorization through Uy, as in Figure 8.12c. However, when the
database administrator revokes authorization from Us, the edges from Us to U; and
from U, to Us are no longer part of a path starting with the database administrator.
We require that all edges in an authorization graph be part of some path originating
with the database administrator. The edges between U; and Us are deleted, and the
resulting authorization graph is as in Figure 8.13.

8.7 Authorizationin SQL 337

U U, U
()
DBA DBA
/ / .
U u, Q U, u Uy~ U,
(b) (c)

Figure 8.12 Attempt to defeat authorization revocation.

8.7.2 Granting Privileges in SQL

We saw the basic SQL syntax for granting and revoking privileges in Section 4.3.
Recall that the grant statement is used to confer authorization. The basic form of this
statement is:

grant <privilege list> on <relation name or view name> to <user/role list>

The privilege list allows the granting of several privileges in one command. The notion
of roles is covered later, in Section 8.7.3.

The following grant statement grants users U;, Uy, and Us the select privilege on
the account relation:

grant select on account to Uy, Uy, Uy

The update privilege may be given either on all attributes of the relation or on only
some. If the update privilege is included in a grant statement, the list of attributes
on which update authorization is to be granted optionally appears in parentheses
immediately after the update keyword. If the list of attributes is omitted, the update
privilege will be granted on all attributes of the relation.

DBA
u, u, u,

Figure 8.13 Authorization graph.

338

Chapter8 Application Design and Development

This grant statement gives users Uy, Us, and Uz update authorization on the amount
attribute of the loan relation:

grant update (amount) on loan to Uy, Uy, Us

The insert privilege may also specify a list of attributes; any inserts to the relation
must specify only these attributes, and the system either gives each of the remaining
attributes default values (if a default is defined for the attribute) or sets them to null.
The user name public refers to all current and future users of the system. Thus,
privileges granted to public are implicitly granted to all current and future users.
The SQL references privilege is granted on specific attributes in a manner like
that for the update privilege. The following grant statement allows user U, to create
relations that reference the key branch_name of the branch relation as a foreign key:

grant references (branch_name) on branch to U;

By default, a user/role that is granted a privilege is not authorized to grant that
privilege to another user/role. If we wish to grant a privilege and to allow the recip-
ient to pass the privilege on to other users, we append the with grant option clause
to the appropriate grant command. For example, if we wish to allow U; the select
privilege on branch and allow U, to grant this privilege to others, we write

grant select on branch to U, with grant option

The creator of an object (relation/view /role) gets all privileges on the object, in-
cluding the privilege to grant privileges to others.

8.7.3 Roles

Consider a bank where there are many tellers. Each teller must have the same types
of authorizations to the same set of relations. Whenever a new teller is appointed, she
will have to be given all these authorizations individually.

A better scheme would be to specify the authorizations that every teller is to be
given, and to separately identify which database users are tellers. The system can use
these two pieces of information to determine the authorizations of each person who
is a teller. When a new person is hired as a teller, a user identifier must be allocated
to him, and he must be identified as a teller. Individual permissions given to tellers
need not be specified again.

The notion of roles captures this scheme. A set of roles is created in the database.
Authorizations can be granted to roles, in exactly the same fashion as they are granted
to individual users. Each database user is granted a set of roles (which may be empty)
that he or she is authorized to perform.

In our bank database, examples of roles could include teller, branch-manager, audi-
tor, and system_administrator.

A less preferable alternative would be to create a feller userid, and permit each
teller to connect to the database using the teller userid. The problem with this scheme

8.7 AuthorizationinSQL 339

is that it would not be possible to identify exactly which teller carried out a transac-
tion, leading to security risks. The use of roles has the benefit of requiring users to
connect to the database with their own userid.

Any authorization that can be granted to a user can be granted to a role. Roles
are granted to users just as authorizations are. And like other authorizations, a user
may also be granted authorization to grant a particular role to others. Thus, branch
managers may be granted authorization to grant the teller role.

Roles can be created in SQL:1999 as follows

create role teller

Roles can then be granted privileges just as the users can, as illustrated in this state-
ment:

grant select on account
to teller

Roles can be granted to users, as well as to other roles, as these statements show.

grant teller to john
create role manager
grant teller to manager
grant manager to mary

Thus the privileges of a user or a role consist of

e All privileges directly granted to the user/role
e All privileges granted to roles that have been granted to the user/role

Note that there can be a chain of roles; for example, the role employee may be
granted to all fellers. In turn the role teller is granted to all managers. Thus, the man-
ager role inherits all privileges granted to the roles employee and to teller in addition
to privileges granted directly to manager.

The actions executed by a session have all the privileges granted directly to the
user, as well as all privileges granted to roles that are granted (directly or indirectly
via other roles) to that user. Thus, if a user John has been granted the role manager,
actions executed by the user John get all privileges granted directly to John, as well
as privileges granted to manager, plus privileges granted to teller if the role teller was
granted to the role manager.

In addition to the notion of the (current) user of a session, SQL also has a notion
of the current role associated with a session. By default, the current role associated
with a session is null (except in some special cases). The current role associated with
a session can be set by executing set role role_name. The specified role must have been
granted to the user, else the set role statement fails.

When a privilege is granted, by default it is treated as having been granted by
the current user, that is, the grantor is the current user. To grant a privilege with
the grantor set to the current role associated with a session, we can add the clause

340

Chapter 8 Application Design and Development

granted by current role to the grant statement, provided the current role is not null.
The motivation for specifying that the grantor of a privilege is a specified role will
become clear later, when we discuss revocation of privileges.

8.7.4 Revoking of Privileges

To revoke an authorization, we use the revoke statement. It takes a form almost iden-
tical to that of grant:

revoke <privilege list> on <relation name or view name>
from <user/role list> [restrict | cascade]

Thus, to revoke the privileges that we granted previously, we write

revoke select on branch from Uy, Us, Us
revoke update (amount) on loan from Uy, Us, Us
revoke references (branch_name) on branch from U,

As we saw in Section 8.7.1, the revocation of a privilege from a user/role may cause
other users/roles also to lose that privilege. This behavior is called cascading of the
revoke. In most database systems, cascading is the default behavior; the keyword cas-
cade can thus be omitted, as we have done in the preceding examples. The revoke
statement may alternatively specify restrict:

revoke select on branch from U, Us, U restrict

In this case, the system returns an error if there are any cascading revokes, and does
not carry out the revoke action. The following revoke statement revokes only the
grant option, rather than the actual select privilege:

revoke grant option for select on branch from Uy

Cascading of revokes is inappropriate in many situations. Suppose Mary has the
role of manager, grants teller to John, and later the role manager is revoked from Mary
(perhaps because Mary leaves the company); John continues to be employed, and
should retain the teller role.

To deal with the above situation, SQL:1999 permits a privilege to be granted by a
role rather than by a user. Suppose the granting of the role teller (or other privileges)
to John is done with the grantor set to the role manager (using the granted by cur-
rent_role clause we saw earlier, with the current role set to manager), instead of the
grantor being the user Mary. Then, revoking of roles/privileges (including the role
manager) from Mary will not result in revoking of privileges that had the grantor set
to the role manager, even if Mary was the user who executed the grant; thus, John
would retain the teller role even after Mary’s privileges are revoked.

8.7 Authorization in SQL. 341

8.7.5 Authorization on Views, Functions, and Procedures

In Chapter 3, we introduced the concept of views as a means of providing a user
with a personalized model of the database. A view can hide data that a user does
not need to see. The ability of views to hide data serves both to simplify usage of the
system and to enhance security. Views simplify system usage because they restrict
the user’s attention to the data of interest. Although a user may be denied direct
access to a relation, that user may be allowed to access part of that relation through a
view. Thus, a combination of relational-level security and view-level security limits a
user’s access to precisely the data that the user needs.

In our banking example, consider a clerk who needs to know the names of all
customers who have a loan at each branch. This clerk is not authorized to see infor-
mation regarding specific loans that the customer may have. Thus, the clerk must be
denied direct access to the loan relation. But, if she is to have access to the information
needed, the clerk must be granted access to the view cust_loan, which consists of only
the names of customers and the branches at which they have a loan. This view can
be defined in SQL as follows:

create view cust_loan as
(select branch_name, customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number)

Suppose that the clerk issues the following SQL query:

select *
from cust_loan

Clearly, the clerk is authorized to see the result of this query. However, when the
query processor translates it into a query on the actual relations in the database, it
produces a query on borrower and loan. Thus, the system must check authorization
on the clerk’s query before it begins query processing.

A user who creates a view does not necessarily receive all privileges on that view.
She receives only those privileges that provide no additional authorization beyond
those that she already had. For example, a user cannot be given update authorization
on a view without having update authorization on the relations used to define the
view. If a user creates a view on which no authorization can be granted, the system
will deny the view creation request. In our cust_loan view example, the creator of the
view must have read authorization on both the borrower and loan relations.

The execute privilege can be granted on a function or procedure, enabling a user to
execute the function/procedure. By default, just like views, functions and procedures
have all the privileges that the creator of the function or procedure had. In effect, the
function or procedure runs as if it were invoked by the user who created the function.
The current user of the session is set to the creator of the function or procedure while
it is executing.

Although this behavior is appropriate in many situations, it is not always appro-
priate. In SQL:2003, if the function definition has an extra clause sql security invoker,

342

Chapter8 Application Design and Development

then it is executed under the privileges of the user who invokes the function, rather
than the privileges of the definer of the function. This allows the creation of libraries
of functions that can run under the same authorization as the invoker.

8.7.6 Limitations of SQL Authorization

The current SQL standards for authorization have some shortcomings. For instance,
suppose you want all students to be able to see their own grades, but not the grades
of anyone else. Authorization must then be at the level of individual tuples, which is
not possible in the SQL standards for authorization.

Furthermore, with the growth in the Web, database accesses come primarily from
Web application servers. The end users may not have individual user identifiers on
the database, and indeed there may only be a single user identifier in the database
corresponding to all users of an application server.

The task of authorization then falls on the application server; the entire authoriza-
tion scheme of SQL is bypassed. The benefit is that fine-grained authorizations, such
as those to individual tuples, can be implemented by the application. The problems
are these:

e The code for checking authorization becomes intermixed with the rest of the
application code.

o Implementing authorization through application code, rather than specifying
it declaratively in SQL, makes it hard to ensure the absence of loopholes. Be-
cause of an oversight, one of the application programs may not check for au-
thorization, allowing unauthorized users access to confidential data. Verifying
that all application programs make all required authorization checks involves
reading through all the application server code, a formidable task in a large
system.

Some database systems provide mechanisms for fine-grained authorization. For
example, the Oracle Virtual Private Database (VPD) allows a system administrator
to associate a function with a relation; the function returns a predicate that must
be added to any query that uses the relation (different functions can be defined for
relations that are being updated). For example, the function for the account relation
could return a predicate such as

account_number in
(select account_number
from depositor
where depositor.name = syscontext.user id())

This predicate would get added to the where clause of every query that used the
account relation. As a result (assuming that the depositor’s name should match the
database user_id) each database user can see only the tuples corresponding to ac-
counts that she owns. Thus, VPD provides authorization at the level of specific rows
of a relation, and is therefore said to be a row-level authorization mechanism.

88 Application Security =~ 343

You should be aware that adding the predicate may change the meaning of a query
significantly. For example, if a user wrote a query to find the average account balance,
she would end up getting the average of the balances of her own accounts.

To handle Web applications where the application connects to the database using
a single user identifier, Oracle also allows applications to set the user id on a connec-
tion. See the bibliographic notes for pointers to more information on Oracle VPD.

The various provisions that a database system may make for authorization may
still not provide sufficient protection for highly sensitive data. In such cases, data may
be stored in encrypted form. Encryption is described in more detail in Section 8.8.1.

8.7.7 Audit Trails

Many secure database applications require an audit trail be maintained. An audit
trail is a log of all changes (inserts/deletes/updates) to the database, along with in-
formation such as which user performed the change and when the change was per-
formed.

The audit trail aids security in several ways. For instance, if the balance on an
account is found to be incorrect, the bank may wish to trace all the updates performed
on the account to find out incorrect (or fraudulent) updates as well as the persons
who carried out the updates. The bank could then also use the audit trail to trace all
the updates performed by these persons, in order to find other incorrect or fraudulent
updates.

It is possible to create an audit trail by defining appropriate triggers on relation
updates (using system-defined variables that identify the user name and time). How-
ever, many database systems provide built-in mechanisms to create audit trails, which
are much more convenient to use. Details of how to create audit trails vary across
database systems, and you should refer to the database-system manuals for details.

8.8 Application Security

Application data security has to deal with several security threats and issues beyond
those handled by SQL authorization. For example, data must be protected while they
are being transmitted; data may need be protected from intruders who are able to
bypass operating system security; and data may have complex privacy restrictions
that go beyond what a database can enforce. We address these and other related
issues in this section.

8.8.1 Encryption Techniques

There are a vast number of techniques for the encryption of data. Simple encryption
techniques may not provide adequate security, since it may be easy for an unautho-
rized user to break the code. As an example of a weak encryption technique, consider
the substitution of each character with the next character in the alphabet. Thus,

Perryridge

344

Chapter8 Application Design and Development

becomes
Qfsszsjehf

If an unauthorized user sees only “Qfsszsjehf,” she probably has insufficient infor-
mation to break the code. However, if the intruder sees a large number of encrypted
branch names, she could use statistical data regarding the relative frequency of char-
acters to guess what substitution is being made (for example, E is the most common
letter in English text, followed by T, A, O, N, I and so on).

A good encryption technique has the following properties:

e Itis relatively simple for authorized users to encrypt and decrypt data.

e It depends not on the secrecy of the algorithm, but rather on a parameter of
the algorithm called the encryption key.

e Its encryption key is extremely difficult for an intruder to determine.

One approach, the Data Encryption Standard (DES), issued in 1977, does both a
substitution of characters and a rearrangement of their order on the basis of an en-
cryption key. For this scheme to work, the authorized users must be provided with
the encryption key via a secure mechanism. This requirement is a major weakness,
since the scheme is no more secure than the security of the mechanism by which
the encryption key is transmitted. The DES standard was reaffirmed in 1983, 1987,
and again in 1993. However, weakness in DES was recognized in 1993 as reaching a
point where a new standard to be called the Advanced Encryption Standard (AES),
needed to be selected. In 2000, the Rijndael algorithm (named for the inventors
V. Rijmen and J. Daemen), was selected to be the AES. The Rijndael algorithm was
chosen for its significantly stronger level of security and its relative ease of imple-
mentation on current computer systems as well as such devices as smart cards. Like
the DES standard, the Rijndael algorithm is a shared-key (or symmetric-key) algo-
rithm in which the authorized users share a key.

Public-key encryption is an alternative scheme that avoids some of the problems
that we face with the DES. It is based on two keys: a public key and a private key. Each
user U; has a public key E; and a private key D;. All public keys are published: They
can be seen by anyone. Each private key is known to only the one user to whom the
key belongs. If user U; wants to store encrypted data, U; encrypts them using public
key E;. Decryption requires the private key D;.

Because the encryption key for each user is public, it is possible to exchange infor-
mation securely by this scheme. If user U; wants to share data with Uy, U encrypts
the data using F, the public key of U,. Since only user U knows how to decrypt the
data, information is transferred securely.

For public-key encryption to work, there must be a scheme for encryption that
can be made public without making it easy for people to figure out the scheme for
decryption. In other words, it must be hard to deduce the private key, given the public
key. Such a scheme does exist and is based on these conditions:

e There is an efficient algorithm for testing whether or not a number is prime.

8.8 Application Security =~ 345

e No efficient algorithm is known for finding the prime factors of a number.

For purposes of this scheme, data are treated as a collection of integers. We create
a public key by computing the product of two large prime numbers: P, and P,. The
private key consists of the pair (P;, P,). The decryption algorithm cannot be used
successfully if only the product P, P, is known; it needs the individual values P; and
P,. Since all that is published is the product P; P;, an unauthorized user would need
to be able to factor P; P, to steal data. By choosing P; and P, to be sufficiently large
(over 100 digits), we can make the cost of factoring P, P, prohibitively high (on the
order of years of computation time, on even the fastest computers).

The details of public-key encryption and the mathematical justification of this tech-
nique’s properties are referenced in the bibliographic notes.

Although public-key encryption by this scheme is secure, it is also computation-
ally expensive. A hybrid scheme used for secure communication is as follows: DES
keys are exchanged via a public-key encryption scheme, and DES encryption is used
on the data transmitted subsequently.

8.8.2 Encryption Support in Databases

Many file systems and database systems today support encryption of data. Such en-
cryption protects the data from someone who is able to access the data, but is not
able to access the decryption key. In the case of file-system encryption, the data to be
encrypted is usually large files and directories containing information about files.

In the context of databases, encryption can be done at several different levels. At
the lowest level, the disk blocks containing database data can be encrypted, using a
key available to the database-system software. When a block is retrieved from disk,
it is first decrypted and then used in the usual fashion. Such disk-block-level en-
cryption protects against attackers who can access the disk contents but do not have
access to the encryption key. It also has the advantage of requiring relatively low
time and space overheads. For example, if data in a laptop computer database need
to be protected from theft of the computer itself, such encryption can be used. The
decryption key would have to be provided by the user whenever the database soft-
ware is restarted. Similarly, someone who gets access to backup tapes of a database
would not be able to access the data contained in the backups without knowing the
decryption key.

In a shared database system, disk-block encryption cannot be used to protect data
from other privileged users such as database administrators who can issue queries on
the database. To protect data against such access, encryption must be done before the
data reach the database. The application must encrypt the data before sending it to
the database. Several database systems provide APIs for encryption that provide such
support for specified columns. A single key may be used for all encrypted columns
and for all rows for a particular column. Using a different key for each row is not
feasible, since it would make the job of key management very difficult.

The secure storage of decryption keys is another related problem. If they are stored
as a file in the operating system, someone who is able to breach operating system
security would be able to get access to the keys. Some operating systems provide

346

Chapter8 Application Design and Development

secure storage; that is, they allow only the application that stored the key to retrieve it.
The application itself may be identified by a hash value on its executable, so attackers
who replace the application by a modified copy cannot get access to the key.

Encryption of small values, such as identifiers or names, is made complicated by
the possibility of dictionary attacks, particularly if the encryption key is publicly
available. For example, if date-of-birth fields are encrypted, an attacker trying to de-
crypt a particular encrypted value e could try encrypting every possible date of birth
until he finds one whose encrypted value matches e. Such attacks can be deterred by
adding extra random bits to the end of the value before encryption (and removing
them after decryption). Such extra bits (sometimes referred to as salt bits) provide
good protection against dictionary attack.

8.8.3 Authentication

Authentication refers to the task of verifying the identity of a person/software con-
necting to a database. The simplest form of authentication consists of a secret pass-
word which must be presented when a connection is opened to a database.

Password-based authentication is used widely by operating systems as well as
databases. However, the use of passwords has some drawbacks, especially over a
network. If an eavesdropper is able to “sniff” the data being sent over the network,
she may be able to find the password as it is being sent across the network. Once
the eavesdropper has a user name and password, she can connect to the database,
pretending to be the legitimate user.

8.8.3.1 Chadllenge—Response Systems

A more secure scheme involves a challenge—response system. The database system
sends a challenge string to the user. The user encrypts the challenge string using a
secret password as encryption key and then returns the result. The database system
can verify the authenticity of the user by decrypting the string with the same secret
password and checking the result with the original challenge string. This scheme
ensures that no passwords travel across the network.

Public-key systems can be used for encryption in challenge-response systems.
The database system encrypts a challenge string using the user’s public key and
sends it to the user. The user decrypts the string using her private key, and returns
the result to the database system. The database system then checks the response.
This scheme has the added benefit of not storing the secret password in the database,
where it could potentially be seen by system administrators.

Storing the private key of a user on a computer (even a personal computer) has the
risk that if the computer is compromised, the key may be revealed to an attacker who
can then masquerade as the user. Smart cards provide a solution to this problem. In
a smart card, the key can be stored on an embedded chip; the operating system of the
smart card guarantees that the key can never be read, but allows data to be sent to
the card for encryption or decryption, using the private key.?

3. Smart cards provide other functionality too, such as the ability to store cash digitally and make pay-
ments, which is not relevant in our context.

88 Application Security =~ 347

8.8.3.2 Digital Signatures

Another interesting application of public-key encryption is in digital signatures to
verify authenticity of data; digital signatures play the electronic role of physical sig-
natures on documents. The private key is used to sign data, and the signed data can
be made public. Anyone can verify them by the public key, but no one could have
generated the signed data without having the private key. Thus, we can authenticate
the data; that is, we can verify that the data were indeed created by the person who
claims to have created them.

Furthermore, digital signatures also serve to ensure nonrepudiation. That is, in
case the person who created the data later claims she did not create it (the electronic
equivalent of claiming not to have signed the check), we can prove that that person
must have created the data (unless her private key was leaked to others).

8.8.3.3 Digital Certificates

Authentication is in general a two-way process, where each of a pair of interacting
entities authenticate themselves to the other. Such pairwise authentication is needed
even when a client contacts a Web site, to prevent a malicious site from masquerading
as a legal Web site. Such masquerading could be done, for example, if the network
routers were compromised, and data rerouted to the malicious site.

For a user to ensure that she is interacting with an authentic Web site, she must
have the site’s public key. This raises the problem of how the user can get the public
key —if it is stored on the Web site, the malicious site could supply a different key,
and the user would have no way of verifying if the supplied public key is itself au-
thentic. Authentication can be handled by a system of digital certificates, whereby
public keys are signed by a certification agency, whose public key is well known. For
example, the public keys of the root certification authorities are stored in standard
Web browsers. A certificate issued by them can be verified by using the stored public
keys.

A two-level system would place an excessive burden of creating certificates on the
root certification authorities, so a multilevel system is used instead, with one or more
root certification authorities and a tree of certification authorities below each root.
Each authority (other than the root authorities) has a digital certificate issued by its
Pparent.

A digital certificate issued by a certification authority A consists of a public key
K4 and an encrypted text that can be decoded by using the public key K 4. The
encrypted text contains the name of the party to whom the certificate was issued
and their public key K. In case the certification authority A is not a root certification
authority, the encrypted text also contains the digital certificate issued to A by its
parent certification authority; this certificate authenticates the key K4 itself. (That
certificate may in turn contain a certificate from a further parent authority, and so
on.)

To verify a certificate, the encrypted text E is decrypted by using the public key,
and if A is not a root authority, the public key K 4 is verified recursively by using the
digital certificate contained within E; recursion terminates when a certificate issued

348

Chapter8 Application Design and Development

by the root authority is reached. Verifying the certificate establishes the chain through
which a particular site was authenticated, and provides the name and authenticated
public key for the site.

Digital certificates are widely used to authenticate Web sites to users, to prevent
malicious sites from masquerading as other Web sites. In the HTTPS protocol (the
secure version of the HTTP protocol), the site provides its digital certificate to the
browser, which then displays it to the user. If the user accepts the certificate, the
browser then uses the provided public key to encrypt data. A malicious site will have
access to the certificate, but not the private key, and will thus not be able to decrypt
the data sent by the browser. Only the authentic site, which has the corresponding
private key, can decrypt the data sent by the browser. We note that public-/ private-
key encryption and decryption costs are much higher than encryption/decryption
costs using symmetric private keys. To reduce encryption costs, HTTPS actually cre-
ates a one-time symmetric key after authentication, and uses it to encrypt data for the
rest of the session.

Digital certificates can also be used for authenticating users. The user must submit
a digital certificate containing their public key to a site, which verifies that the certifi-
cate has been signed by a trusted authority. The user’s public key can then be used
in a challenge-response system to ensure that the user possesses the corresponding
private key, thereby authenticating the user.

8.8.3.4 Central Authentication

When users access multiple Web sites, it is often annoying for the user to have to au-
thenticate herself to each site separately, often with different passwords on each site.
There are systems that allow the user to authenticate herself to one central authenti-
cation service, and other Web sites can authenticate the user through this Web site;
the same password can then be used to access multiple sites.

A single-sign-on system further allows the user to be authenticated once (typically
by entering a password) and multiple applications can then verify the user’s identity
through the central authentication service without requiring reauthentication. Such
single-sign-on mechanisms have long been used in distributed operating systems
such as Kerberos, and implementations are now available for Web applications. See
the bibliographic notes for more information.

In addition to authenticating users, a central authentication service can provide
other services, such as providing information about the user such as name, email,
and address information, to the application. This obviates the need to enter this in-
formation separately in each application. Directory systems such as LDAP and Active
Directories, and authentication systems such as Microsoft’s Passport service, provide
mechanisms for authenticating users as well as for providing user information.

8.8.4 Securing Applications

There are many ways in which an application’s security can be compromised, even
if the database system is itself secure. We outline some potential security holes, and
how to guard against them.

8.8 Application Security =~ 349

In SQL injection attacks, the attacker manages to get an application to execute
an SQL query created by the attacker. Such attacks work as follows. Consider the
form source text shown in Figure 8.2. Suppose the corresponding servlet shown in
Figure 8.6 creates an SQL query string using the following Java expression:

“select balance from account where account_number =" -~ number o

where number is a variable containing the string input by the user. A malicious at-
tacker using the Web form can then type a string such as *“’;<some SQL statement>;",
where <some SQL statement> denotes any SQL statement that the attacker desires,
in place of a valid account number. The servlet would then create and submit the
following string.

select balance from account where account_number =" '; <some SQL statement>;’

The quote inserted by the attacker closes the string, the following semicolon termi-
nates the query, and the following text inserted by the attacker gets interpreted as
an SQL query. Thus, the malicious user has managed to insert an arbitrary SQL state-
ment, which gets executed by the application. The statement can cause significant
damage, since it can bypass all security measures implemented in the application
code.

To avoid such attacks, it is best to use prepared statements to execute SQL queries.
When setting a parameter of a prepared query, JDBC automatically adds escape char-
acters so that the user-supplied quote would no longer be able to terminate the string,.
Equivalently, a function that adds such escape characters could be applied on input
strings before they are concatenated with the SQL query, instead of using prepared
statements.

Another problem that application developers must deal with is storing passwords
in clear text in the application code. For example, programs such as JSP scripts often
contain passwords in clear text. If such scripts are stored in a directory accessible by
a Web server, an external user may be able to access the source code of the script, and
get access to the password for the database account used by the application. To avoid
such problems, many application servers provide mechanisms to store passwords
in encrypted form, which the server decrypts before passing it on to the database.
Such a feature removes the need for storing passwords as clear text in application
programs.

As another measure against compromised database passwords, many database
systems allow access to the database to be restricted to a given set of Internet ad-
dresses. Attempts to connect to the database from other Internet addresses are re-
jected.

8.8.5 Privacy

In a world where an increasing amount of personal data are available online, people
are increasingly worried about the privacy of their data. For example, most people
would want their personal medical data to be kept private and not revealed publicly.

350

Chapter 8 Application Design and Development

However, the medical data must be made available to doctors and emergency med-
ical technicians who treat the patient. Many countries have laws on privacy of such
data, which define when and to whom the data may be revealed. Violation of privacy
law can result in criminal penalties in some countries. Applications that access such
private data must be built carefully, keeping the privacy laws in mind.

On the other hand, aggregated private data can play an important role in many
tasks such as detecting drug side effects, or in detecting the spread of epidemics.
How to make such data available to researchers carrying out such tasks, without
compromising the privacy of individuals, is an important real-world problem. As
an example, suppose a hospital hides the name of the patient, but provides a re-
searcher with the date of birth and the zip code (postal code) of the patient (both of
which may be useful to the researcher). Just these two pieces of information can be
used to uniquely identify the patient in many cases (using information from an exter-
nal database), compromising their privacy. In this particular situation, one solution
would be to give the year of birth but not the date of birth, along with the zip code,
which may suffice for the researcher. This would not provide enough information to
uniquely identify most individuals.*

As another example, Web sites often collect personal data such as address, tele-
phone, email, and credit card information. Such information may be required to carry
out a transaction such as purchasing an item from a store. However, the customer
may not want the information to be made available to other organizations, or may
want part of the information (such as credit card numbers) to be erased after some
period of time as a way to prevent it from falling into unauthorized hands in the
event of a security breach. Many Web sites allow customers to specify their privacy

" preferences, and must then ensure that these preferences are respected.

8.9 Summary

e Most users interact with databases via forms and graphical user interfaces,
and there are numerous tools to simplify the construction of such interfaces.
Report generators are tools that help create human-readable reports from the
contents of the database.

e The Web browser has emerged as the most widely used user interface to
databases. HTML provides the ability to define interfaces that combine hyper-
links with forms facilities. Web browsers communicate with Web servers by
the HTTP protocol. Web servers can pass on requests to application programs,
and return the results to the browser.

e There are several client-side scripting languages—Javascript is the most widely
used —that provide richer user interaction at the browser end.

e Web servers execute application programs to implement desired functionality.
Servlets are a widely used mechanism to write application programs that run

4. For extremely old people, who are relatively rare, even the year of birth plus postal code may be
enough to uniquely identify the individual, so a range of values, such as 80 years or older, may be provided
instead of the actual age for people older than 80 years.

Review Terms 351

as part of the Web server process, in order to reduce overheads. There are also
many server-side scripting languages that are interpreted by the Web server
and provide application program functionality as part of the Web server.

Triggers define actions to be executed automatically when certain events oc-
cur and corresponding conditions are satisfied. Triggers have many uses, such
as implementing business rules, audit logging, and even carrying out actions
outside the database system. Although triggers were added only lately to the
SQL standard as part of SQL:1999, most database systems have long imple-
mented triggers.

A user who has been granted some form of authority may be allowed to pass
on this authority to other users. However, we must be careful about how au-
thorization can be passed among users if we are to ensure that such autho-
rization can be revoked at some future time.

Roles help to assign a set of privileges to a user according to the role that the
user plays in the organization.

SQL authorization mechanisms are coarse grained and of limited value to ap-
plications that deal with large numbers of users. Extensions to provide row-
level access control and to deal with large numbers of application users have
been developed, but are not standard as yet.

Encryption plays a key role in protecting information and in authentication of
users and Web sites. Challenge—-response systems are often used to authenti-
cate users. Digital certificates play a key role in authenticating Web sites.

Application developers must pay careful attention to security, to prevent SQL
injection attacks and other attacks by malicious users.

Protecting the privacy of data is an important task for database applications.
Many countries have legal requirements on maintaining privacy of certain
kinds of data, such as medical data.

Review Terms

Forms e Document Object Model (DOM)
Graphical user interfaces e Applets

Report generators e Client-side scripting language
Web interfaces to databases e Web servers

HyperText Markup Language e Session

{HTML)' e HyperText Transfer Protocol
Hyperlinks (HTTP)

Uniform resource locator (URL)

e Common Gateway Interface
Client-side scripting (Can

Javascript Connectionless

352

Chapter8 Application Design and Development

e Cookie e Revocation of privileges
e Servlets e Authorization on views
e Servlet sessions e Execute authorization

e JSP e Invoker privileges

e Server-side scripting e Row-level authorization
e Connection pooling e Audit trails

e ASP.NET e Encryption

o Trigger e Public-key encryption
e Event-condition-action model e Authentication

¢ Before and after triggers o Challenge-response

e Transition variables and tables e Digital signatures

e Authorization e Digital certificates

e Privileges e Central authentication
e Privilege to grant privileges e Single-sign-on

e Grant option e SQL injection

e Roles e Privacy

Practice Exercises

8.1 What is the main reason why servlets give better performance than programs
that use the common gateway interface (CGI), even though Java programs gen-
erally run slower than C or C++ programs?

8.2 List some benefits and drawbacks of connectionless protocols over protocols
that maintain connections.

8.3 List three ways in which caching can be used to speed up Web server perfor-
mance.

8.4 Consider a view branch_cust defined as follows:

create view branch_cust as
select branch_name, customer_name
from depositor, account
where depositor.account_number = account.account_number

Suppose that the view is materialized; that is, the view is computed and stored.
Write triggers to maintain the view, that is, to keep it up-to-date on insertions to
and deletions from depositor or account. Do not bother about updates.

8.5 Write an SQL trigger to carry out the following action: On delete of an account,
for each owner of the account, check if the owner has any remaining accounts,
and if she does not, delete her from the depositor relation.

8.6

8.7

Exercises 353

Suppose someone impersonates a company and gets a certificate from a certifi-
cate-issuing authority. What is the effect on things (such as purchase orders or
programs) certified by the impersonated company, and on things certified by
other companies?

Perhaps the most important data items in any database system are the pass-
words that control access to the database. Suggest a scheme for the secure stor-
age of passwords. Be sure that your scheme allows the system to test passwords
supplied by users who are attempting to log into the system.

Exercises

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

Write a servlet and associated HTML code for the following very simple appli-
cation: A user is allowed to submit a form containing a value, say n, and should
get a response containing n “*” symbols.

Write a servlet and associated HTML code for the following simple application:
A user is allowed to submit a form containing a number, say n, and should get
a response saying how many times the value n has been submitted previously.
The number of times each value has been submitted previously should be stored
in a database.

Write a servlet that authenticates a user (based on user names and passwords
stored in a database relation), and sets a session variable called userid after au-
thentication.

What is an SQL injection attack? Explain how it works, and what precautions
must be taken to prevent SQL injection attacks.

Write pseudocode to manage a connection pool. Your pseudocode must include
a function to create a pool (providing a database connection string, database
user name and password as parameters), a function to request a connection from
the pool, a connection to release a connection to the pool, and a function to close
the connection pool.

Suppose there are two relations r and s, such that the foreign key B of r refer-
ences the primary key A of s. Describe how the trigger mechanism can be used
to implement the on delete cascade option, when a tuple is deleted from s.

The execution of a trigger can cause another action to be triggered. Most database
systems place a limit on how deep the nesting can be. Explain why they might
place such a limit.

Explain why, when a manager, say Mary, grants an authorization, the grant
should be done by the manager role, rather than by the user Mary.

Suppose user 4, who has all authorizations on a relation r, grants select on
relation r to public with grant option. Suppose user B then grants select on
7 to A. Does this cause a cycle in the authorization graph? Explain why.

354

Chapter8 Application Design and Development

8.17 Make a list of security concerns for a bank. For each item on your list, state

8.18

8.19

8.20

8.21

8.22

8.23

whether this concern relates to physical security, human security, operating-
system security, or database security.

Database systems that store each relation in a separate operating-system file
may use the operating system'’s security and authorization scheme, instead of
defining a special scheme themselves. Discuss an advantage and a disadvantage
of such an approach.

Oracle’s VPD mechanism implements row-level security by adding predicates
to the where clause of each query. Give an example of a predicate that could
be used to implement row-level security, and three queries with the following
properties:

a. For the first query, the query with the added predicate gives the same result
as the original query.

b. For the second query, the query with the added predicates gives a result that
is always a subset of the original query result.

c. For the third query, the query with the added predicate gives incorrect an-
SWers.

What are two advantages of encrypting data stored in the database?

Suppose you wish to create an audit trail of changes to the account relation.

a. Define triggers to create an audit trail, logging the information into a re-
lation called, for example, account_trail. The logged information should in-
clude the user-id (assume a function user-id() provides this information) and
a timestamp, in addition to old and new values. You must also provide the
schema of the account_trail relation.

b. Can the above implementation guarantee that updates made by a malicious
database administrator (or someone who manages to get the administra-
tor’s password) will be in the audit trail? Explain your answer.

Hackers may be able to fool you into believing that their Web site is actually a
Web site (such as a bank or credit card Web site) that you trust. This may be done
by misleading email, or even by breaking into the network infrastructure and
re-routing network traffic destined for, say mybank.com, to the hackers site. If
you enter your user name and password on the hackers’ site, the site can record
it, and use it later to break into your account at the real site. When you use a URL
such as https://mybank.com, the HTTPS protocol is used to prevent such attacks.
Explain how the protocol might use digital certificates to verify authenticity of
the site.

Explain what is a challenge-response system for authentication. Why is it more
secure than a traditional password-based system?

Exercises 355

Project Suggestions

Each of the following is a large project, which can be a semester-long project done by
a group of students. The difficulty of the project can be adjusted easily by adding or
deleting features.

Project 8.1 Consider the E-R schema of Practice Exercise 6.4 (Chapter 6), which repre-
sents information about teams in a league. Design and implement a Web-based
system to enter, update, and view the data.

Project 8.2 Design and implement a shopping cart system that lets shoppers collect
items into a shopping cart (you can decide what information is to be supplied
for each item) and purchased together. You can extend and use the E-R schema
of Exercise 6.21 of Chapter 6. You should check for availability of the item and
deal with nonavailable items as you feel appropriate.

Project 8.3 Design and implement a Web-based system to record student registration
and grade information for courses at a university.

Project 8.4 Design and implement a system that permits recording of course perfor-
mance information—specifically, the marks given to each student in each as-
signment or exam of a course, and computation of a (weighted) sum of marks
to get the total course marks. The number of assignments/exams should not be
predefined; that is, more assignments/exams can be added at any time. The sys-
tem should also support grading, permitting cutoffs to be specified for various
grades.

You may also wish to integrate it with the student registration system of
Project 8.3 (perhaps being implemented by another project team).

Project 8.5 Design and implement a Web-based system for booking classrooms at
your university. Periodic booking (fixed days/times each week for a whole sem-
ester) must be supported. Cancellation of specific lectures in a periodic booking
should also be supported.

You may also wish to integrate it with the student registration system of
Project 8.3 (perhaps being implemented by another project team) so that class-
rooms can be booked for courses, and cancellations of a lecture or extra lectures
can be noted at a single interface, and will be reflected in the classroom booking
and communicated to students via email.

Project 8.6 Design and implement a system for managing online multiple-choice
tests. You should support distributed contribution of questions (by teaching as-
sistants, for example), editing of questions by whoever is in charge of the course,
and creation of tests from the available set of questions. You should also be able
to administer tests online, either at a fixed time for all students, or at any time
but with a time limit from start to finish (support one or both), and give students
feedback on their scores at the end of the allotted time.

Project 8.7 Design and implement a system for managing email customer service.
Incoming mail goes to a common pool. There is a set of customer service agents

356

Chapter 8

Application Design and Development

who reply to email. If the email is part of an ongoing series of replies (tracked
using the in-reply-to field of email) the mail should preferably be replied to by
the same agent who replied earlier. The system should track all incoming mail
and replies, so an agent can see the history of questions from a customer before
replying to an email.

Project 8.8 Design and implement a simple electronic marketplace where items can

be listed for sale or for purchase under various categories (which should form a
hierarchy). You may also wish to support alerting services, whereby a user can
register interest in items in a particular category, perhaps with other constraints
as well, without publicly advertising her interest, and is notified when such an
item is listed for sale.

Project 8.9 Design and implement a Web-based newsgroup system. Users should be

able to subscribe to newsgroups, and browse articles in newsgroups. The system
tracks which articles were read by a user, so they are not displayed again. Also
provide search against old articles.

You may also wish to provide a rating service for articles, so that articles
with high rating are highlighted, permitting the busy reader to skip low-rated
articles.

Project 8.10 Design and implement a Web-based system for managing a sports “lad-

der.” Many people register, and may be given some initial rankings (perhaps
based on past performance). Anyone can challenge anyone else to a match, and
the rankings are adjusted according to the result.

One simple system for adjusting rankings just moves the winner ahead of
the loser in the rank order, in case the winner was behind earlier. You can try to
invent more complicated rank-adjustment systems.

Project 8.11 Design and implement a publication-listing service. The service should

permit entering of information about publications, such as title, authors, year,
where the publication appeared, and pages. Authors should be a separate entity
with attributes such as name, institution, department, email, address, and home
page.

Your application should support multiple views on the same data. For in-
stance, you should provide all publications by a given author (sorted by year,
for example), or all publications by authors from a given institution or depart-
ment. You should also support search by keywords, on the overall database as
well as within each of the views.

Project 8.12 A common task in any organization is to collect structured information

from a group of people. For example, a manager may need to ask employees to
enter their vacation plans, a professor may wish to collect feedback on a partic-
ular topic from students, or a student organizing an event may wish to allow
other students to register for the event, or someone may wish to conduct an
on-line vote on some topic.

Create a system that will allow users to easily create information collection
events. When creating an event, the event creator must define who is eligible

Bibliographical Notes 357

to participate; to do so, your system must maintain user information, and al-
low predicates defining a subset of users. The event creator should be able to
specify a set of inputs (with types, default values, and validation checks) that
the users will have to provide. The event should have an associated deadline,
and the ability to send reminders to users who have not yet submitted their
information. The event creator may be given the option of automatic enforce-
ment of the deadline based on a specified date/time, or may choose to login
and declare the deadline is over. Statistics about the submissions should be gen-
erated—to do so, the event creator may be allowed to create simple summaries
on the entered information. The event creator may choose to make some of the
summaries public, viewable by all users, either continually (e.g., how many peo-
ple have responded) or after the deadline (e.g., what was the average feedback
score).

Project 8.13 Create a library of functions to simplify creation of Web interfaces. You
must implement at least the following functions: a function to display a JDBC
result set (with tabular formatting), functions to create different types of text
and numeric inputs (with validation criteria such as input type and optional
range, enforced at the client by appropriate Javascript code), functions to input
date and time values (with default values), and functions to create menu items
based on a result set. For extra credit, allow the user to set style parameters such
as colors and fonts, and provide pagination support in the tables (hidden form
parameters can be used to specify which page is to be displayed). Build a sample
database application to illustrate the use of these functions.

Project 8.14 Design and implement a Web-based multiuser calendar system. The sys-
tem must track appointments for each person, with multi-occurrence events,
such as weekly meetings, shared events (where an update made by the event
creator gets reflected to all those who share the event). Provide interfaces to
schedule multiuser events, where an event creator can add a number of users
who are invited to the event. Provide email notification of events. For extra cred-
its implement a Web service that can be used by a reminder program running
on the client machine.

Bibliographical Notes

Information about servlets, including tutorials, standard specifications, and software,
is available on java.sun.com/products/serviet. Information about JSP is available at
java.sun.com/products/jsp. Information on JSP tag libraries can also be found at this
URL. Information about the .NET framework and about Web application develop-
ment using ASPNET can be found at msdn.microsoft.com.

The original SQL proposals for assertions and triggers are discussed in Astrahan
etal. [1976], Chamberlin et al. [1976], and Chamberlin et al. [1981]. Melton and Simon
[2001], Melton [2002], and Eisenberg and Melton [1999] provide textbook coverage of
SQL:1999, including coverage of assertions and triggers in SQL:1999.

358

Chapter8 Application Design and Development

More information on Oracle’s Virtual Private Database (VPD), which provides
fine-grained authorization among other features, may be found at www.oracle.com/-
technology/deploy/security/index.html. Fine-grained authorization is also discussed
in Rizvi et al. [2004].

Atreya et al. [2002] provide textbook coverage of digital signatures, including
X.509 digital certificates and public-key infrastructure. Information about the Pub-
cookie single-sign-on system may be found at www.pubcookie.org.

Tools

Development of a Web application requires several software tools such as an ap-
plication server, a compiler and editor for a programming language such as Java
or C#, and other optional tools such as a Web server. We list a few of the better-
known tools here: the Java SDK from Sun (java.sun.com), the Apache Tomcat sys-
tem (jakarta.apache.org), which support servlets and JSP, the Apache Web server
(apache.org), the JBoss application server (jboss.org), Microsoft'’s ASPNET tools
(msdn.microsoft.com/asp.net/), IBM WebSphere (www.software.ibm.com), Caucho’s
Resin (www.caucho.com), Allaire’s Coldfusion and JRun products (www.allaire.com),
and Zope (www.zope.org). A few of these, such as Apache Tomcat and Apache Web
server are free for any use, some are free for noncommercial use or for personal use,
while others need to be paid for. See the respective Web sites for more information.

PART 3

Object-Based Databases
and XML

Several application areas for database systems are limited by the restrictions of the
relational data model. As a result, researchers have developed several data models
based on an object-oriented approach, to deal with these application domains.

The object-relational model, described in Chapter 9, combines features of the rela-
tional and object-oriented models. This model provides the rich type system of object-
oriented languages, combined with relations as the basis for storage of data. It applies
inheritance to relations, not just to types. The object-relational data model provides
a smooth migration path from relational databases, which is attractive to relational
database vendors. As a result, the SQL:1999 standard includes a number of object-
oriented features in its type system, while continuing to use the relational model as
the underlying model.

The term object-oriented database is used to describe a database system that sup-
ports direct access to data from object-oriented programming languages, without re-
quiring a relational query language as the database interface. Chapter 9 also provides
a brief overview of object-oriented databases.

The XML language was initially designed as a way of adding markup informa-
tion to text documents, but has become important because of its applications in data
exchange. XML provides a way to represent data that have nested structure, and fur-
thermore allows a great deal of flexibility in structuring of data, which is important
for certain kinds of nontraditional data. Chapter 10 describes the XML language, and
then presents different ways of expressing queries on data represented in XML, in-
cluding the XQuery XML query language, which is gaining widespread acceptance
and usage.

Obje’c‘t-Based_ Databases

Traditional database applications consist of data-processing tasks, such as banking
and payroll management, with relatively simple data types, which are well suited
to the relational data model. As database systems were applied to a wider range of
applications, such as computer-aided design and geographical information systems,
limitations imposed by the relational model emerged as an obstacle. The solution was
the introduction of object-based databases, which allow one to deal with complex
data types.

9.1 Overview

The first obstacle faced by programmers using the relational data model was the lim-
ited type system supported by the relational model. Complex application domains
require correspondingly complex data types, such as nested record structures, multi-
valued attributes and inheritance, which are supported by traditional programming
languages. Such features are in fact supported in the E-R and extended E-R nota-
tions, but had to be translated to simpler SQL data types. The object-relational data
model extends the relational data model by providing a richer type system including
complex data types and object orientation. Relational query languages, in particu-
lar SQL, need to be correspondingly extended to deal with the richer type system.
Such extensions attempt to preserve the relational foundations—in particular, the
declarative access to data—while extending the modeling power. Object-relational
database systems, that is, database systems based on the object-relation model, pro-
vide a convenient migration path for users of relational databases who wish to use
object-oriented features.

The second obstacle was the difficulty in accessing database data from programs
written in programming languages such as C++ or Java. Merely extending the type
system supported by the database was not enough to solve this problem completely.

361

362

Chapter9 Object-Based Databases

Differences between the type system of the database and the type system of the pro-
gramming language make data storage and retrieval more complicated, and need to
be minimized. Having to express database access using a language (SQL) which is
different from the programming language again makes the job of the programmer
harder. It is desirable, for many applications, to have programming language con-
structs or extensions that permit direct access to data in the database, without having
to go through an intermediate language such as SQL.

The term persistent programming languages refers to extensions of existing pro-
gramming languages to add persistence and other database features, using the native
type system of the programming language. The term object-oriented database sys-
tems is used to refer to database systems that support an object-oriented type system,
and allow direct access to data from an object-oriented programming language using
the native type system of the language.

In this chapter, we first explain the motivation for the development of complex
data types. We then study object-relational database systems; our coverage is based
on the object-relational extensions added to the SQL:1999 version of the SQL standard.
Our description is based on the SQL standard, specifically using features that were
introduced in SQL:1999 and SQL:2003. Note that most database products support only
a subset of the SQL features described here. Refer to the user manual of the database
system you use to find out what features it supports.

We then briefly study object-oriented database systems that add persistence sup-
port to object-oriented programming languages. Finally, we outline situations in which
the object-relational approach is better than the object-oriented approach, and vice
versa, and mention criteria for choosing between them.

9.2 Complex Data Types

Traditional database applications consist of data-processing tasks, such as banking
and payroll management. Such applications have conceptually simple data types.
The basic data items are records that are fairly small and whose fields are atomic—
that is, they are not further structured, and first normal form holds (see Chapter 7).
Further, there are only a few record types.

In recent years, demand has grown for ways to deal with more complex data types.
Consider, for example, addresses. While an entire address could be viewed as an
atomic data item of type string, this view would hide details such as the street ad-
dress, city, state, and postal code, which could be of interest to queries. On the other
hand, if an address were represented by breaking it into the components (street ad-
dress, city, state, and postal code), writing queries would be more complicated since
they would have to mention each field. A better alternative is to allow structured data
types, which allow a type address with subparts street-address, city, state, and postal
_code.

As another example, consider multivalued attributes from the E-R model. Such
attributes are natural, for example, for representing phone numbers, since people
may have more than one phone. The alternative of normalization by creating a new
relation is expensive and artificial for this example.

9.2 Complex Data Types 363

With complex type systems we can represent E-R model concepts, such as com-
posite attributes, multivalued attributes, generalization, and specialization directly,
without a complex translation to the relational model.

In Chapter 7, we defined first normal form (1INF), which requires that all attributes
have atomic domains. Recall that a domain is atomic if elements of the domain are
considered to be indivisible units.

The assumption of INF is a natural one in the bank examples we have considered.
However, not all applications are best modeled by 1NF relations. For example, rather
than view a database as a set of records, users of certain applications view it as a set of
objects (or entities). These objects may require several records for their representation.
A simple, easy-to-use interface requires a one-to-one correspondence between the
user’s intuitive notion of an object and the database system'’s notion of a data item.

Consider, for example, a library application, and suppose we wish to store the
following information for each book:

e Book title
List of authors

Publisher

Set of keywords

We can see that, if we define a relation for the preceding information, several domains
will be nonatomic.

e Authors. A book may have a list of authors, which we can represent as an
array. Nevertheless, we may want to find all books of which Jones was one
of the authors. Thus, we are interested in a subpart of the domain element
“authors.”

o Keywords. If we store a set of keywords for a book, we expect to be able to
retrieve all books whose keywords include one or more specified keywords.
Thus, we view the domain of the set of keywords as nonatomic.

e Publisher. Unlike keywords and authors, publisher does not have a set-valued
domain. However, we may view publisher as consisting of the subfields name
and branch. This view makes the domain of publisher nonatomic.

Figure 9.1 shows an example relation, books.

title author_array publisher keyword_set
i (name, branch)

Compilers | [Smith, Jones] | (McGraw-Hill, NewY ork) | {parsing, analysis}
Networks | [Jones, Frick] (Oxford, London) {Internet, Web)

Figure 9.1 Non-1NF books relation, books.

364

Chapter9 Object-Based Databases

[Hile | author | position |
Compilers | Smith 1
Compilers | Jones 2
Networks | Jones 1

_ Networks | Frick 2

authors
[title | keyword |

Compilers | parsing
Compilers | analysis
Networks | Internet
Networks | Web

keywords
[title [pub_name [pub_branch|
Compilers | McGraw-Hill | New York
Networks Oxford London
books4

Figure 9.2 4NF version of the relation books.

For simplicity we assume that the title of a book uniquely identifies the book.! We
can then represent the same information using the following schema:

o authors(title, author, position)
o keywords(title, keyword)
e books4(title, pubname, pub_branch)

The above schema satisfies 4NF. Figure 9.2 shows the normalized representation of
the data from Figure 9.1.

Although our example book database can be adequately expressed without using
nested relations, the use of nested relations leads to an easier-to-understand model.
The typical user or programmer of an information-retrieval system thinks of the
database in terms of books having sets of authors, as the non-1NF design models.
The 4NF design requires queries to join multiple relation, whereas the non-INF de-
sign makes many types of queries easier.

On the other hand, it may be better to use a first normal form representation
instead of collections in other situations. For instance, consider the depositor rela-
tionship in our bank example. The relationship is many-to-many between custormers
and accounts. We could conceivably store a set of accounts with each customer, or a
set of customers with each account, or both. If we store both, we would have data

1. This assumption does not hold in the real world. Books are usually identified by a 10-digit ISBN
number that uniquely identifies each published book.

9.3 Structured Types and Inheritance in SQL 365

redundancy (the relationship of a particular customer to a particular account would
be stored twice).

The ability to use complex data types such as sets and arrays can be useful in many
applications but should be used with care.

9.3 Structured Types and Inheritance in SQL

Before SQL:1999, the SQL type system consisted of a fairly simple set of predefined
types. SQL:1999 added an extensive type system to SQL, allowing structured types
and type inheritance.

9.3.1 Structured Types

Structured types allow composite attributes of E-R diagrams to be represented di-
rectly. For instance, we can define the following structured type to represent a com-
posite attribute name with component attribute firstname and lastname:

create type Name as
(firstname varchar(20),
lastname varchar(20))
final

Similarly, the following structured type can be used to represent a composite attribute
address:

create type Address as
(street varchar(20),
city varchar(20),
zipcode varchar(9))
not final

Such types are called user-defined types in SQL. The above definition corresponds
to the E-R diagram in Figure 6.4. The final and not final specifications are related to
subtyping, which we describe later, in Section 9.3.2.2

We can now use these types to create composite attributes in a relation, by simply
declaring an attribute to be of one of these types. For example, we could create a table
customer as follows

create table customer (
name Name,
address Address,
dateOfBirth date)

2. The final specification for Name indicates that we cannot create subtypes for name, whereas the not
final specification for Address indicates that we can create subtypes of address.

366 Chapter9 Object-Based Databases

The components of a composite attribute can be accessed using a “dot” notation;
for instance name.firstname returns the firstname component of the name attribute.
An access to attribute name would return a value of the structured type Name.

We can also create a table whose rows are of a user-defined type. For example, we
could define a type CustomerType and create the table customer as follows:

create type CustomerType as (
name Name,
address Address,
dateOfBirth date)
not final
create table customer of CustomerType

An alternative way of defining composite attributes in SQL is to use unnamed row
types. For instance, the relation representing customer information could have been
created using row types as follows:

create table customer.r (
name row (firstname varchar(20),
lastname varchar(20)),
address row (street varchar(20),
city varchar(20),
zipcode varchar(9)),
dateOfBirth date)

This definition is equivalent to the preceding table definition, except that the at-
tributes name and address have unnamed types, and the rows of the table also have
an unnamed type.

The following query illustrates how to access component attributes of a composite
attribute. The query finds the last name and city of each customer.

select name.lastname, address.city
from customer

A structured type can have methods defined on it. We declare methods as part of
the type definition of a structured type:

create type CustomerType as (
name Name,
address Address,
dateOfBirth date)
not final

method ageOnDate(onDate date)
returns interval year

We create the method body separately:

9.3 Structured Types and Inheritance in SQL 367

create instance method ageOnDate (onDate date)
returns interval year
for CustomerType

begin
return onDate — self.dateOfBirth;

end

Note that the for clause indicates which type this method is for, while the keyword
instance indicates that this method executes on an instance of the Customer type.
The variable self refers to the Customer instance on which the method is invoked.
The body of the method can contain procedural statements, which we saw earlier
in Section 4.6. Methods can update the attributes of the instance on which they are
executed.

Methods can be invoked on instances of a type. If we had created a table customer
of type CustomerType, we can invoke the method ageOnDate() as illustrated below, to
find the age of each customer.

select name.lastname, ageOnDate(current_date)
from customer

In SQL:1999 constructor functions are used to create values of structured types. A
function with the same name as a structured type is a constructor function for the
structured type. For instance, we could declare a constructor for the type Name like
this:

create function Name (firstname varchar(20), lastname varchar(20))
returns Name
begin
set self.firstname = firstname;
set self.lastname = lastname;
end

We can then use new Name(’John’, Smith’) to create a value of the type Name.

We can construct a row value by listing its attributes within parentheses. For in-
stance, if we declare an attribute name as a row type with components firstname and
lastname we can construct this value for it:

('Ted’, "Codd")

without using a constructor.

By default every structured type has a constructor with no arguments, which sets
the attributes to their default values. Any other constructors have to be created explic-
itly. There can be more than one constructor for the same structured type; although
they have the same name, they must be distinguishable by the number of arguments
and types of their arguments.

The following statement illustrates how we can create a new tuple in the Customer
relation. We assume that a constructor has been defined for Address, just like the con-
structor we defined for Name.

368

Chapter9 Object-Based Databases

insert into Customer
values
(new Name('John’, ‘Smith’),
new Address('20 Main St’, 'New York’, '11001"),
date "1960-8-22')

9.3.2 Type Inheritance

Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

We may want to store extra information in the database about people who are stu-
dents, and about people who are teachers. Since students and teachers are also peo-
ple, we can use inheritance to define the student and teacher types in SQL:

create type Student
under Person
(degree varchar(20),
department varchar(20))
create type Teacher
under Person
(salary integer,
department varchar(20))

Both Student and Teacher inherit the attributes of Person—namely, name and address.
Student and Teacher are said to be subtypes of Person, and Person is a supertype of
Student, as well as of Teacher.

Methods of a structured type are inherited by its subtypes, just as attributes are.
However, a subtype can redefine the effect of a method by declaring the method
again, using overriding method in place of method in the method declaration.

The SQL standard also requires an extra field at the end of the type definition,
whose value is either final or not final. The keyword final says that subtypes may
not be created from the given type, while not final says that subtypes may be created.

Now suppose that we want to store information about teaching assistants, who
are simultaneously students and teachers, perhaps even in different departments. We
could do this if the type system supports multiple inheritance, where a type is de-
clared as a subtype of multiple types. Note that the SQL standard (up to the SQL:1999
and SQL:2003 versions at least) does not support multiple inheritance, although future
versions of the SQL standard may support it.

For instance, if our type system supports multiple inheritance, we can define a
type for teaching assistant as follows:

create type TeachingAssistant
under Student, Teacher

94 Table Inheritance 369

TeachingAssistant would inherit all the attributes of Student and Teacher. There is a
problem, however, since the attributes name, address, and department are present in
Student, as well as in Teacher.

The attributes name and address are actually inherited from a common source, Per-
son. So there is no conflict caused by inheriting them from Student as well as Teacher.
However, the attribute department is defined separately in Student and Teacher. In fact,
a teaching assistant may be a student of one department and a teacher in another
department. To avoid a conflict between the two occurrences of department, we can
rename them by using an as clause, as in this definition of the type TeachingAssistant:

create type TeachingAssistant
under Student with (department as student dept),
Teacher with (department as teacher dept)

We note again that SQL supports only single inheritance—that is, a type can in-
herit from only a single type; the syntax used is as in our earlier examples. Multiple
inheritance as in the TeachingAssistant example is not supported in SQL.

In SQL, as in most other languages, a value of a structured type must have exactly
one “most-specific type.” That is, each value must be associated with one specific
type, called its most-specific type, when it is created. By means of inheritance, it
is also associated with each of the supertypes of its most-specific type. For example,
suppose that an entity has the type Person, as well as the type Student. Then, the most-
specific type of the entity is Student, since Student is a subtype of Person. However,
an entity cannot have the type Student as well as the type Teacher unless it has a type,
such as TeachingAssistant, that is a subtype of Teacher, as well as of Student (which is
not possible in SQL since multiple inheritance is not supported by SQL).

9.4 Table Inheritance

Subtables in SQL correspond to the E-R notion of specialization/generalization. For
instance, suppose we define the people table as follows:

create table people of Person
We can then define tables students and teachers as subtables of people, as follows:

create table students of Student
under people

create table feachers of Teacher
under people

The types of the subtables must be subtypes of the type of the parent table. Thereby,
every attribute present in people is also present in the subtables.

Further, when we declare students and teachers as subtables of people, every tuple
present in students or teachers becomes also implicitly present in people. Thus, if a

370

Chapter9 Object-Based Databases

query uses the table people, it will find not only tuples directly inserted into that table,
but also tuples inserted into its subtables, namely students and teachers. However,
only those attributes that are present in people can be accessed by that query.

SQL permits us to find tuples that are in people but not in its subtables by using
“only people” in place of people in a query. The only keyword can also be used in
delete and update statements. Without the only keyword, a delete statement on a su-
pertable, such as people, also deletes tuples that were originally inserted in subtables
(such as students); for example, a statement

delete from people where P

would delete all tuples from the table people, as well as its subtables students and
teachers, that satisfy P. If the only keyword is added to the above statement, tuples
that were inserted in subtables are not affected, even if they satisfy the where clause
conditions. Subsequent queries on the supertable would continue to find these tuples.

Conceptually, multiple inheritance is possible with tables, just as it is possible with
types. For example, we can create a table of type TeachingAssistant:

create table teaching assistants
of TeachingAssistant
under students, teachers

As a result of the declaration, every tuple present in the teaching assistants table is
also implicitly present in the teachers and in the students table, and in turn in the
people table. We note, however, that multiple inheritance of tables is not supported by
SQL.

There are some consistency requirements for subtables. Before we state the con-
straints, we need a definition: We say that tuples in a subtable correspond to tuples
in a parent table if they have the same values for all inherited attributes. Thus, corre-
sponding tuples represent the same entity.

The consistency requirements for subtables are:

1. Each tuple of the supertable can correspond to at most one tuple in each of its
immediate subtables.

2. SOL has an additional constraint that all the tuples corresponding to each
other must be derived from one tuple (inserted into one table).

For example, without the first condition, we could have two tuples in students (or
teachers) that correspond to the same person.

The second condition rules out a tuple in people corresponding to both a tuple in
students and a tuple in teachers, unless all these tuples are implicitly present because
a tuple was inserted in a table teaching assistants, which is a subtable of both teachers
and students.

Since SQL does not support multiple inheritance, the second condition actually
prevents a person from being both a teacher and a student. Even if multiple inheri-

9.5 Array and Multiset Types in SQL 371

tance were supported, the same problem would arise if the subtable teaching assistants
is absent. Obviously it would be useful to model a situation where a person can be
a teacher and a student, even if a common subtable teaching assistants is not present.
Thus, it can be useful to remove the second consistency constraint. Doing so would
allow an object to have multiple types, without requiring it to have a most-specific
type.

For example, suppose we again have the type Person, with subtypes Student and
Teacher, and the corresponding table people, with subtables teachers and students. We
can then have a tuple in feachers and a tuple in students corresponding to the same
tuple in people. There is no need to have a type TeachingAssistant that is a subtype of
both Student and Teacher. We need not create a type TeachingAssistant unless we wish
to store extra attributes or redefine methods in a manner specific to people who are
both students and teachers.

We note, however, that SQL unfortunately prohibits such a situation, because of
consistency requirement 2. Since SQL also does not support multiple inheritance, we
cannot use inheritance to model a situation where a person can be both a student
and a teacher. As a result, SQL subtables cannot be used to represent overlapping
specializations from the E-R model.

We can of course create separate tables to represent the overlapping specializa-
tions/generalizations without using inheritance. The process was described earlier,
in Section 6.9.5. In the above example, we would create tables people, students, and
teachers, with the students and teachers tables containing the primary-key attribute of
Person and other attributes specific to Student and Teacher, respectively. The people ta-
ble would contain information about all persons, including students and teachers.
We would then have to add appropriate referential-integrity constraints to ensure
that students and teachers are also represented in the people table.

In other words, we can create our own improved implementation of the subtable
mechanism using existing features of SQL, with some extra effort in defining the table,
as well as some extra effort at query time to specify joins to access required attributes.

To end the section, we note that SQL defines a new privilege called under, which
is required in order to create a subtype or subtable under another type or table. The
motivation for this privilege is similar to that for the references privilege.

9.5 Array and Multiset Types in SQL

SQL supports two collection types: arrays and multisets; array types were added in
SQL:1999, while multiset types were added in SQL:2003. Recall that a multiset is an
unordered collection, where an element may occur multiple times. Multisets are like
sets, except that a set allows each element to occur at most once.

Suppose we wish to record information about books, including a set of keywords
for each book. Suppose also that we wished to store the names of authors of a book
as an array; unlike elements in a multiset, the elements of an array are ordered, so
we can distinguish the first author from the second author, and so on. The following
example illustrates how these array and multiset-valued attributes can be defined in

SQL.

372

Chapter 9 Object-Based Databases

create type Publisher as
(name varchar(20),
branch varchar(20))
create type Book as
(title varchar(20),
author.array varchar(20) array [10],
pub_date date,
publisher Publisher,
keyword_set varchar(20) multiset)
create table books of Book

The first statement defines a type called Publisher, which has two components: a name
and a branch. The second statement defines a structured type Book, which contains
a title, an authorarray, which is an array of up to 10 author names, a publication
date, a publisher (of type Publisher), and a multiset of keywords. Finally, a table books
containing tuples of type Book is created.

Note that we used an array, instead of a multiset, to store the names of authors,
since the ordering of authors generally has some significance, whereas we believe
that the ordering of keywords associated with a book is not significant.

In general, multivalued attributes from an E-R schema can be mapped to multiset-
valued attributes in SQL; if ordering is important, SQL arrays can be used instead of
multisets.

9.5.1 Creating and Accessing Collection Values

An array of values can be created in SQL:1999 in this way:
array['Silberschatz’, "Korth’, ‘Sudarshan’]
Similarly, a multiset of keywords can be constructed as follows
multiset['computer’, ‘database’, "SQL’]
Thus, we can create a tuple of the type defined by the books relation as:

(Compilers’, array|'Smith’, Jones'], new Publisher('McGraw-Hill’, 'New York’),
multiset['parsing’, ‘analysis’])

Here we have created a value for the attribute Publisher by invoking a constructor
function for Publisher with appropriate arguments. Note that this constructor for Pub-
lisher must be explicitly created, and is not present by default; it can be declared just
like the constructor for Name, which we saw earlier in Section 9.3.

If we want to insert the preceding tuple into the relation books, we could execute
the statement

9.5 Array and Multiset Types in SQL 373

insert into books

values

(‘Compilers’, array['Smith’, ‘Jones’],
new Publisher('McGraw-Hill’, 'New York’),
multiset[parsing’, “analysis’])

We can access or update elements of an array by specifying the array index, for
example author.array[1].

9.5.2 Querying Collection-Valued Attributes

We now consider how to handle collection-valued attributes in queries. An expres-
sion evaluating to a collection can appear anywhere that a relation name may appear,
such as in a from clause, as the following paragraphs illustrate. We use the table books
that we defined earlier.

If we want to find all books that have the word “database” as one of their key-
words, we can use this query:

select title
from books
where 'database’ in (unnest(keyword._set))

Note that we have used unnest(keyword_set) in a position where SQL without nested
relations would have required a select-from-where subexpression.
If we know that a particular book has three authors, we could write:

select author_array[1], author.array|2], author.array[3]
from books
where title = ‘Database System Concepts’

Now, suppose that we want a relation containing pairs of the form “title, author
-name” for each book and each author of the book. We can use this query:

select B.title, A.author
from books as B, unnest(B.author.array) as Alauthor)

Since the author.array attribute of books is a collection-valued field, unnest(B.author
-array) can be used in a from clause, where a relation is expected. Note that the tuple
variable B is visible to this expression since it is defined earlier in the from clause.

When unnesting an array, the previous query loses information about the ordering
of elements in the array. The unnest with ordinality clause can be used to get this
information, as illustrated by the following query. This query can be used to generate
the authors relation, which we saw earlier, from the books relation.

select title, A.author, A.position
from books as B,
unnest(B .author_array) with ordinality as A(author, position)

374

Chapter9 Object-Based Databases

The with ordinality clause generates an extra attribute which records the position of
the element in the array. A similar query, but without the with ordinality clause, can
be used to generate the keyword relation.

9.5.3 Nesting and Unnesting

The transformation of a nested relation into a form with fewer (or no) relation-valued
attributes is called unnesting. The books relation has two attributes, author.array and
keyword_set, that are collections, and two attributes, title and publisher, that are not.
Suppose that we want to convert the relation into a single flat relation, with no nested
relations or structured types as attributes. We can use the following query to carry out
the task:

select title, A.author, publisher.name as pub_naime, publisher.branch
as pub_branch, K keyword

from books as B, unnest(B.author_array) as Alauthor),
unnest (B.keyword_set) as K(keyword)

The variable B in the from clause is declared to range over books. The variable A is
declared to range over the authors in author_array for the book B, and K is declared to
range over the keywords in the keyword_set of the book B. Figure 9.1 shows an instance
books relation, and Figure 9.3 shows the relation, which we shall call flat_books that is
the result of the preceding query. Note that the relation flatbooks is in INF, since all
its attributes are atomic valued.

The reverse process of transforming a 1NF relation into a nested relation is called
nesting. Nesting can be carried out by an extension of grouping in SQL. In the nor-
mal use of grouping in SQL, a temporary multiset relation is (logically) created for
each group, and an aggregate function is applied on the temporary relation to get a
single (atomic) value. The collect function returns the multiset of values, instead of
creating a single value, we can create a nested relation. Suppose that we are given the
INF relation flat_books, as in Figure 9.3. The following query nests the relation on the
attribute keyword:

Bl [author | pub_name | pub_branch | keyword |
Compilers | Smith | McGraw-Hill | New York parsing
Compilers | Jones McGraw-Hill | New York parsing
Compilers | Smith | McGraw-Hill | New York | analysis
Compilers | Jones McGraw-Hill | New York analysis
Networks Jones Oxford London Internet
Networks Frick Oxford London Internet
Networks Jones Oxford London Web

| Networks Frick Oxford London Web

Figure 9.3 flatbooks: result of unnesting attributes author.array and keyword set of
relation books.

9.5 Array and Multiset Types in SQL 375

select title, author, Publisher(pub_name, pub_branch) as publisher,
collect(keyword) as keyword_set

from flat_books

group by title, author, publisher

The result of the query on the flat_books relation from Figure 9.3 appears in Figure 9.4.
If we want to nest the author attribute also into a multiset, we can use the query:

select title, collect(author) as author set,
Publisher(pub_name, pub_branch) as publisher,
collect(keyword) as keyword_set
from flat_books
group by title, publisher

Another approach to creating nested relations is to use subqueries in the select
clause. An advantage of the subquery approach is that an order by clause can be
optionally used in the subquery, to generate results in a desired order, which can
then be used to create an array. The following query illustrates this approach; the
keywords array and multiset specify that an array and multiset (respectively) are to
be created from the results of the subqueries.

select title,
array(select author
from authors as A
where A.title = B.title
order by A.position) as author.array,
Publisher(pub_name, pub_branch) as publisher,
multiset(select keyword
from keywords as K
where K title = B.title) as keyword_set,
from books4 as B

The system executes the nested subqueries in the select clause for each tuple gener-
ated by the from and where clauses of the outer query. Observe that the attribute B.title
from the outer query is used in the nested queries, to ensure that only the correct sets
of authors and keywords are generated for each title.

title author publisher keyword_set
' (pub_name,pub_branch)
Compilers | Smith | (McGraw-Hill, New York) | {parsing, analysis}
Compilers | Jones (McGraw-Hill, New York) | (parsing, analysis}
Networks | Jones (Oxford, London) {Internet, Web}
Networks Frick (Oxford, London) {Internet, Web}

Figure 9.4 A partially nested version of the flat_books relation.

376

Chapter9 Object-Based Databases

SQL:2003 provides a variety of operators on multisets, including a function set(}/)
which returns a duplicate free version of a multiset M, an intersection aggregate op-
eration, which returns the intersection of all the multisets in a group, a fusion aggre-
gate operation, which returns the union of all multisets in a group, and a submultiset
predicate, which checks if a multiset is contained in another multiset.

The SQL standard does not provide any way to update multiset attributes except
by assigning a new value. For example, to delete a value v from a multiset attribute
A, we would have to set it to (A except all multiset[v]).

9.6 Object-ldentity and Reference Typesin SQL

Object-oriented languages provide the ability to refer to objects. An attribute of a type
can be a reference to an object of a specified type. For example, in SQL we can define
a type Department with a field name and a field head which is a reference to the type
Person, and a table departments of type Department, as follows:

create type Department (
name varchar(20),
head ref(Person) scope people

)

create table departments of Department

Here, the reference is restricted to tuples of the table people. The restriction of the
scope of a reference to tuples of a table is mandatory in SQL, and it makes references
behave like foreign keys.

We can omit the declaration scope people from the type declaration and instead
make an addition to the create table statement:

create table departments of Department
(head with options scope people)

The referenced table must have an attribute that stores the identifier of the tu-
ple. We declare this attribute, called the self-referential attribute, by adding a ref is
clause to the create table statement:

create table people of Person
ref is person_id system generated

Here, person_id is an attribute name, not a keyword, and the create table statement
specifies that the identifier is generated automatically by the database.

In order to initialize a reference attribute, we need to get the identifier of the tuple
that is to be referenced. We can get the identifier value of a tuple by means of a query.
Thus, to create a tuple with the reference value, we may first create the tuple with a
null reference and then set the reference separately:

9.6 Object-Identity and Reference Typesin SQL. 377

insert into departments
values ('CS’, null)
update departments
set head = (select p.person_id
from people as p
where name = 'John’)
where name ='CS’

An alternative to system-generated identifiers is to allow users to generate iden-
tifiers. The type of the self-referential attribute must be specified as part of the type
definition of the referenced table, and the table definition must specify that the refer-
ence is user generated:

create type Person
(name varchar(20),
address varchar(20))
ref using varchar(20)
create table people of Person
ref is person_id user generated

When inserting a tuple in people, we must then provide a value for the identifier:

insert into people (person_id, name, address) values
('01284567’, "John’, "23 Coyote Run’)

No other tuple for people or its supertables or subtables can have the same identifier.
We can then use the identifier value when inserting a tuple into departments, without
the need for a separate query to retrieve the identifier:

insert into departments
values ('CS’, '01284567’)

Itis even possible to use an existing primary-key value as the identifier, by includ-
ing the ref from clause in the type definition:

create type Person
(name varchar(20) primary key,
address varchar(20))
ref from(name)
create table people of Person
ref is person_id derived

Note that the table definition must specify that the reference is derived, and must still
specify a self-referential attribute name. When inserting a tuple for departments, we
can then use

insert into departments
values ('CS’, ‘John’)

378

Chapter9 Object-Based Databases

References are dereferenced in SQL:1999 by the —> symbol. Consider the depart-
ments table defined earlier. We can use this query to find the names and addresses of
the heads of all departments:

select head—>name, head—>address
from departments

An expression such as “head—>name” is called a path expression.

Since head is a reference to a tuple in the people table, the attribute name in the
preceding query is the name attribute of the tuple from the people table. References can
be used to hide join operations; in the preceding example, without the references, the
head field of department would be declared a foreign key of the table people. To find
the name and address of the head of a department, we would require an explicit
join of the relations departments and people. The use of references simplifies the query
considerably.

We can use the operation deref to return the tuple pointed to by a reference, and
then access its attributes, as shown below.

select deref(head).name
from departments

9.7 Implementing O-R Features

Object-relational database systems are basically extensions of existing relational data-
base systems. Changes are clearly required at many levels of the database system.
However, to minimize changes to the storage system code (relation storage, indices,
etc.), the complex data types supported by object-relational systems can be translated
to the simpler type system of relational databases.

To understand how to do this translation, we need only look at how some features
of the E-R model are translated into relations. For instance, multivalued attributes in
the E-R model correspond to multiset-valued attributes in the object-relational model.
Composite attributes roughly correspond to structured types. ISA hierarchies in the
E-R model correspond to table inheritance in the object-relational model.

The techniques for converting E-R model features to tables, which we saw in Sec-
tion 6.9, can be used, with some extensions, to translate object-relational data to rela-
tional data at the storage level.

Subtables can be stored in an efficient manner, without replication of all inherited
fields, in one of two ways:

e Each table stores the primary key (which may be inherited from a parent table)
and the attributes that are defined locally. Inherited attributes (other than the
primary key) do not need to be stored, and can be derived by means of a join
with the supertable, based on the primary key.

e Each table stores all inherited and locally defined attributes. When a tuple is
inserted, it is stored only in the table in which it is inserted, and its presence is

9.8 Persistent Programming Languages 379

inferred in each of the supertables. Access to all attributes of a tuple is faster,
since a join is not required.

However, in case the type system allows an entity to be represented in two
subtables without being present in a common subtable of both, this represen-
tation can result in replication of information. Further, it is hard to translate
foreign keys referring to a supertable into constraints on the subtables; to ef-
ficiently implement such foreign keys, the supertable will have to be defined
as a view, and the database system would have to support foreign keys on
VIEWS.

Implementations may choose to represent array and multiset types directly, or
may choose to use a normalized representation internally. Normalized representa-
tions tend to take up more space and require an extra join/grouping cost to collect
data in an array or multiset. However, normalized representations may be easier to
implement.

The ODBC and JDBC application program interfaces have been extended to retrieve
and store structured types; for example, JDBC provides a method getObject() which
is similar to getString() but returns a Java Struct object, from which the components
of the structured type can be extracted. It is also possible to associate a Java class with
an SQL structured type, and JDBC will then convert between the types. See the ODBC
or JDBC reference manuals for details.

9.8 Persistent Programming Languages

Database languages differ from traditional programming languages in that they di-
rectly manipulate data that are persistent—that is, data that continue to exist even
after the program that created it has terminated. A relation in a database and tuples
in a relation are examples of persistent data. In contrast, the only persistent data that
traditional programming languages directly manipulate are files.

Access to a database is only one component of any real-world application. While a
data-manipulation language like SQL is quite effective for accessing data, a program-
ming language is required for implementing other components of the application
such as user interfaces or communication with other computers. The traditional way
of interfacing database languages to programming languages is by embedding SQL
within the programming language.

A persistent programming language is a programming language extended with
constructs to handle persistent data. Persistent programming languages can be dis-
tinguished from languages with embedded SQL in at least two ways:

1. With an embedded language, the type system of the host language usually dif-
fers from the type system of the data-manipulation language. The program-
mer is responsible for any type conversions between the host language and
SQL. Having the programmer carry out this task has several drawbacks:

e The code to convert between objects and tuples operates outside the object-
oriented type system, and hence has a higher chance of having undetected
errors.

380

Chapter9 Object-Based Databases

e Conversion between the object-oriented format and the relational format
of tuples in the database takes a substantial amount of code. The format
translation code, along with the code for loading and unloading data from
a database, can form a significant percentage of the total code required for
an application.

In contrast, in a persistent programming language, the query language is
fully integrated with the host language, and both share the same type system.
Objects can be created and stored in the database without any explicit type or
format changes; any format changes required are carried out transparently.

2. The programmer using an embedded query language is responsible for writ-
ing explicit code to fetch data from the database into memory. If any updates
are performed, the programmer must write code explicitly to store the up-
dated data back in the database.

In contrast, in a persistent programming language, the programmer can
manipulate persistent data without writing code explicitly to fetch it into mem-
ory or store it back to disk.

In this section we describe how object-oriented programming languages, such as
C++ and Java, can be extended to make them persistent programming languages.
These language features allow programmers to manipulate data directly from the
programming language, without having to go through a data-manipulation language
such as SQL. Thereby, they provide tighter integration of the programming languages
with the database than, for example, embedded SQL.

There are certain drawbacks to persistent programming languages, however, that
we must keep in mind when deciding whether to use them. Since the programming
language is usually a powerful one, it is relatively easy to make programming er-
rors that damage the database. The complexity of the language makes automatic
high-level optimization, such as to reduce disk I/O, harder. Support for declarative
querying is important for many applications, but persistent programming languages
currently do not support declarative querying well.

In this chapter, we describe a number of conceptual issues that must be addressed
when adding persistence to an existing programming language. We first address
language-independent issues, and in subsequent sections we discuss issues that are
specific to the C++ language and to the Java language. However, we do not cover de-
tails of language extensions; although several standards have been proposed, none
has met universal acceptance. See the references in the bibliographic notes to learn
more about specific language extensions and further details of implementations.

9.8.1 Persistence of Objects

Object-oriented programming languages already have a concept of objects, a type
system to define object types, and constructs to create objects. However, these objects
are transient—they vanish when the program terminates, just as variables in a Java or
C program vanish when the program terminates. If we wish to turn such a language

9.8 Persistent Programming Languages 381

into a database programming language, the first step is to provide a way to make
objects persistent. Several approaches have been proposed.

o Persistence by class. The simplest, but least convenient, way is to declare that
a class is persistent. All objects of the class are then persistent objects by de-
fault. Objects of nonpersistent classes are all transient.

This approach is not flexible, since it is often useful to have both transient
and persistent objects in a single class. Many object-oriented database sys-
tems interpret declaring a class to be persistent as saying that objects in the
class potentially can be made persistent, rather than that all objects in the class
are persistent. Such classes might more appropriately be called “persistable”
classes.

e Persistence by creation. In this approach, new syntax is introduced to create
persistent objects, by extending the syntax for creating transient objects. Thus,
an object is either persistent or transient, depending on how it was created.
Several object-oriented database systems follow this approach.

o Persistence by marking. A variant of the preceding approach is to mark ob-
jects as persistent after they are created. All objects are created as transient
objects, but, if an object is to persist beyond the execution of the program, it
must be marked explicitly as persistent before the program terminates. This
approach, unlike the previous one, postpones the decision on persistence or
transience until after the object is created.

o Persistence by reachability. One or more objects are explicitly declared as
(root) persistent objects. All other objects are persistent if (and only if) they are
reachable from the root object through a sequence of one or more references.

Thus, all objects referenced by (that is, whose object identifiers are stored
in) the root persistent objects are persistent. But also, all objects referenced
from these objects are persistent, and objects to which they refer are in turn
persistent, and so on.

A benefit of this scheme is that it is easy to make entire data structures per-
sistent by merely declaring the root of such structures as persistent. However,
the database system has the burden of following chains of references to detect
which objects are persistent, and that can be expensive.

9.8.2 Object Identity and Pointers

In an object-oriented programming language that has not been extended to handle
persistence, when an object is created, the system returns a transient object identifier.
Transient object identifiers are valid only when the program that created them is
executing; after that program terminates, the objects are deleted, and the identifier
is meaningless. When a persistent object is created, it is assigned a persistent object
identifier.

The notion of object identity has an interesting relationship to pointers in pro-
gramming languages. A simple way to achieve built-in identity is through pointers

382 Chapter 9 Object-Based Databases

to physical locations in storage. In particular, in many object-oriented languages such
as C++, a transient object identifier is actually an in-memory pointer.

However, the association of an object with a physical location in storage may
change over time. There are several degrees of permanence of identity:

e Intraprocedure. Identity persists only during the execution of a single pro-
cedure. Examples of intraprogram identity are local variables within proce-
dures.

e Intraprogram. Identity persists only during the execution of a single pro-
gram or query. Examples of intraprogram identity are global variables in pro-
gramming languages. Main-memory or virtual-memory pointers offer only
intraprogram identity.

o Interprogram. Identity persists from one program execution to another. Point-
ers to file-system data on disk offer interprogram identity, but they may change
if the way data is stored in the file system is changed.

o Persistent. Identity persists not only among program executions, but also
among structural reorganizations of the data. It is the persistent form of iden-
tity that is required for object-oriented systems.

In persistent extensions of languages such as C++, object identifiers for persis-
tent objects are implemented as “persistent pointers.” A persistent pointer is a type of
pointer that, unlike in-memory pointers, remains valid even after the end of a pro-
gram execution, and across some forms of data reorganization. A programmer may
use a persistent pointer in the same ways that she may use an in-memory pointer
in a programming language. Conceptually, we may think of a persistent pointer as a
pointer to an object in the database.

9.8.3 Storage and Access of Persistent Objects

What does it mean to store an object in a database? Clearly, the data part of an ob-
ject has to be stored individually for each object. Logically, the code that implements
methods of a class should be stored in the database as part of the database schema,
along with the type definitions of the classes. However, many implementations sim-
ply store the code in files outside the database, to avoid having to integrate system
software such as compilers with the database system.

There are several ways to find objects in the database. One way is to give names
to objects, just as we give names to files. This approach works for a relatively small
number of objects, but does not scale to millions of objects. A second way is to expose
object identifiers or persistent pointers to the objects, which can be stored externally.
Unlike names, these pointers do not have to be mnemonic, and can even be physical
pointers into a database.

A third way is to store collections of objects, and to allow programs to iterate over
the collections to find required objects. Collections of objects can themselves be mod-
eled as objects of a collection type. Collection types include sets, multisets (that is, sets
with possibly many occurrences of a value), lists, and so on. A special case of a col-

9.8 Persistent Programming Languages 383

lection is a class extent, which is the collection of all objects belonging to the class. If a
class extent is present for a class, then, whenever an object of the class is created, that
object is inserted in the class extent automatically, and, whenever an object is deleted,
that object is removed from the class extent. Class extents allow classes to be treated
like relations in that we can examine all objects in the class, just as we can examine
all tuples in a relation.

Most object-oriented database systems support all three ways of accessing persis-
tent objects. They give identifiers to all objects. They usually give names only to class
extents and other collection objects, and perhaps to other selected objects, but not to
most objects. They usually maintain class extents for all classes that can have per-
sistent objects, but, in many of the implementations, the class extents contain only
persistent objects of the class.

9.8.4 Persistent C++ Systems

Several object-oriented databases based on persistent extensions to C++ have ap-
peared in the past two decades (see the bibliographical notes). There are differences
between them in terms of the system architecture, yet they have many common fea-
tures in terms of the programming language.

Several of the object-oriented features of the C++ language help in providing a
good deal of support for persistence without changing the language itself. For exam-
ple, we can declare a class called Persistent_Object with attributes and methods to
support persistence; any other class that should be persistent can be made a subclass
of this class, and thereby inherit the support for persistence. The C++ language (like
some other modern programming languages) also lets us redefine standard function
names and operators—such as +, —, the pointer dereference operator —>, and so on
—according to the type of the operands on which they are applied. This ability is
called overloading; it is used to redefine operators to behave in the required manner
when they are operating on persistent objects.

Providing persistence support via class libraries has the benefit of making only
minimal changes to C++ necessary; moreover, it is relatively easy to implement.
However, it has the drawback that the programmer has to spend much more time
to write a program that handles persistent objects, and it is not easy for the program-
mer to specify integrity constraints on the schema or to provide support for declara-
tive querying. Some persistent C++ implementations support extensions to the C++
syntax to make these tasks easier.

The following aspects need to be addressed when adding persistence support to
C++ (and other languages):

o Persistent pointers: A new data type has to be defined to represent persis-
tent pointers. For example, the ODMG C++ standard defines a template class
d_Ref< T' > to represent persistent pointers to a class 7. The dereference op-
erator on this class is redefined to fetch the object from disk (if not already
present in memory), and returns an in-memory pointer to the buffer where
the object has been fetched. Thus if p is a persistent pointer to a class T, one

384

Chapter 9

Object-Based Databases

can use standard syntax such as p—>A or p—>f(v) to access attribute A of class
T or invoke method f of class T

The ObjectStore database system uses a different approach to persistent
pointers. It uses normal pointer types to store persistent pointers. This poses
two problems: (1) in-memory pointer sizes may be only 4 bytes, which is too
small to use with databases larger than 4 gigabytes, and (2) when an object is
moved on disk, in-memory pointers to its old physical location are meaning-
less. ObjectStore uses a technique called “hardware swizzling” to address both
problems; it prefetches objects from the database into memory, and replaces
persistent pointers by in-memory pointers, and when data are stored back on
disk, in-memory pointers are replaced by persistent pointers. When on disk,
the value stored in the in-memory pointer field is not the actual persistent
pointer; instead, the value is looked up in a table to find the full persistent
pointer value.

Creation of persistent objects: The C++ new operator is used to create per-
sistent objects by defining an “overloaded” version of the operator that takes
extra arguments specifying that it should be created in the database. Thus in-
stead of new T(), one would call new (db) T() to create a persistent object,
where db identifies the database.

Class extents: Class extents are created and maintained automatically for each
class. The ODMG C++ standard requires the name of the class to be passed
as an additional parameter to the new operation. This also allows multiple
extents to be maintained for a class, by passing different names.

Relationships: Relationships between classes are often represented by storing
pointers from each object to the objects that it is related to. Objects related to
multiple objects of a given class would store a set of pointers. Thus if a pair
of objects is in a relationship, each should store a pointer to the other. Persis-
tent C++ systems provide a way to specify such integrity constraints and to
enforce them by automatically creating and deleting pointers: For example,
if a pointer is created from an object a to an object b, a pointer to a is added
automatically to object b.

Iterator interface: Since programs need to iterate over class members, an in-
terface is required to iterate over members of a class extent. The iterator inter-
face also allows selections to be specified, so that only objects satisfying the
selection predicate need to be fetched.

Transactions: Persistent C++ systems provide support for starting a transac-
tion, and for committing it or rolling it back.

Updates: One of the goals of providing persistence support to a programming
language is to allow transparent persistence. That is, a function that operates
on an object should not need to know that the object is persistent; thereby, the
same functions can be used on objects regardless of whether they are persis-
tent or not.

9.8 Persistent Programming Languages 385

However, one resultant problem is that it is difficult to detect when an ob-
ject has been updated. Some persistent extensions to C++ required the pro-
grammer to explicitly specify that an object has been modified by calling a
function mark_modified(). In addition to increasing programmer effort, this
approach increases the chance of programming errors resulting in a corrupt
database. If a programmer omitted a call to mark_modified(), it is possible that
one update made by a transaction may never be propagated to the database,
while another update made by the same transaction is propagated, violating
atomicity of transactions.

Other systems, such as ObjectStore, use memory protection support pro-
vided by the operating system/hardware to detect writes to a block of mem-
ory and mark the block as a dirty block that should be written later to disk.

e Query language: Iterators provide support for simple selection queries. To
support more complex queries, persistent C++ systems define a query lan-

guage.

A large number of object-oriented database systems based on C++ were developed
in the late 1980s and early 1990s. However, the market for such databases turned out
to be much smaller than anticipated, since most application requirements are more
than met by using SQL through interfaces such as ODBC or JDBC. As a result, most
of the object-oriented database systems developed in that period do not exist any
longer. In the 1990s, the Object Data Management Group (ODMG) defined standards
for adding persistence to C++ and Java. However, the group wound up its activ-
ities around 2002. ObjectStore and Versant are among the original object-oriented
database systems that are still in existence.

Although object-oriented database systems did not find the commercial success
that they had hoped for, the motivation for adding persistence to programming lan-
guage still remains. There are several applications with high performance require-
ments that run on object-oriented database systems; using SQL would impose too
high a performance overhead for many such systems. With object-relational database
systems now providing support for complex data types, including references, it is
easier to store programming language objects in an SQL database. A new generation
of object-oriented database systems using object-relational databases as a backend
may yet emerge.

9.8.5 Persistent Java Systems

The Java language has seen an enormous growth in usage in recent years. Demand
for support for persistence of data in Java programs has grown correspondingly. Ini-
tial attempts at creating a standard for persistence in Java were lead by the ODMG
consortium; the consortium wound up its efforts later, but transferred its design to
the Java Database Objects (JDO) effort, which is coordinated by Sun Microsystems.

The JDO model for object persistence in Java programs differs from the model for
persistence support in C++ programs. Among its features are:

386

Chapter 9

Object-Based Databases

e Persistence by reachability: Objects are not explicitly created in a database.

Explicitly registering an object as persistent (using the makePersistent() meth-
od of the PersistenceManager class) makes the object persistent. In addition,
any object reachable from a persistent object becomes persistent.

Byte code enhancement: Instead of declaring a class to be persistent in the
Java code, classes whose objects may be made persistent are specified in a
configuration file (with suffix .jdo). An implementation-specific enhancer pro-
gram is executed which reads the configuration file and carries out two tasks.
First, it may create structures in a database to store objects of the class. Second,
it modifies the byte code (generated by compiling the Java program) to handle
tasks related to persistence. Below are some examples of such modifications.

O Any code that accesses an object could be changed to first check if the
object is in memory, and if not, take steps to bring it into memory.

O Any code that modifies an object is modified to additionally record the
object as modified, and perhaps to save a pre-updated value used in case
the update needs to be undone (that is, if the transaction is rolled back).

Other modifications to the byte code may also be carried out. Such byte code
modification is possible since the byte code is standard across all platforms,
and includes much more information than compiled object code.

Database mapping: JDO does not define how data are stored in the back-end
database. For example, a common scenario is to store objects in a relational
database. The enhancer program may create an appropriate schema in the
database to store class objects. How exactly it does this is implementation de-
pendent and not defined by JDO. Some attributes could be mapped to rela-
tional attributes, while others may be stored in a serialized form, treated as a
binary object by the database. JDO implementations may allow existing rela-
tional data to be viewed as objects by defining an appropriate mapping.

Class extents: Class extents are created and maintained automatically for each
class declared to be persistent. All objects made persistent are added auto-
matically to the class extent corresponding to their class. JDO programs may
access a class extent, and iterate over selected members. The lterator interface
provided by Java can be used to create iterators on class extents, and step
through the members of the class extent. JDO also allows selections to be spec-
ified when an iterator is created on a class extent, and only objects satisfying
the selection would be fetched.

Single reference type: There is no difference in type between a reference to a
transient object and a reference to a persistent object.

One approach to achieving such a unification of pointer types would be
to load the entire database into memory, replacing all persistent pointers by
in-memory pointers. After updates are done, the process would be reversed,
storing updated objects back on disk. Such an approach would be very ineffi-
cient for large databases.

9.9 Object-Oriented versus Object-Relational ~ 387

We now describe an alternative approach, which allows persistent objects
to be automatically fetched into memory when required, while allowing all
references contained in in-memory objects to be in-memory references. When
an object A is fetched, a hollow object is created for each object B; that it
references, and the in-memory copy of A has references to the corresponding
hollow object for each B;. Of course the system has to ensure that if an object
B; was fetched already, the reference points to the already fetched object in-
stead of creating a new hollow object. Similarly, if an object B; has not been
fetched, but is referenced by another object fetched earlier, it would already
have a hollow object created for it; the reference to the existing hollow object
is reused, instead of creating a new hollow object.

Thus, for every object O; that has been fetched, every reference from 0; is
either to an already fetched object or to a hollow object. The hollow objects
form a fringe surrounding fetched objects.

Whenever the program actually accesses a hollow object O, the enhanced
byte code detects this and fetches the object from the database. When this
object is fetched, the same process of creating hollow objects is carried out for
all objects referenced by O. After this the access to the object is allowed to
proceed.?

An in-memory index structure mapping persistent pointers to in-memory
references is required to implement this scheme. When writing objects back to
disk, this index would be used to replace in-memory references by persistent
pointers in the copy written to disk.

The JDO standard is still at an early stage, and undergoing revisions. Several com-
panies provide implementations of JDO. However, it remains to be seen if JDO will be
widely used, unlike ODMG C++.

9.9 Object-Oriented versus Object-Relational

We have now studied object-relational databases, which are object-oriented data-
bases built on top of the relation model, as well as object-oriented databases, which
are built around persistent programming languages.

Persistent extensions to programming languages and object-relational systems tar-
get different markets. The declarative nature and limited power (compared to a pro-
gramming language) of the SQL language provides good protection of data from pro-
gramming errors, and makes high-level optimizations, such as reducing 1/0O, rela-
tively easy. (We cover optimization of relational expressions in Chapter 14.) Object-
relational systems aim at making data modeling and querying easier by using com-

3. The technique using hollow objects described above is closely related to the hardware swizzling tech-
nique (mentioned earlier in Section 9.8.4). Hardware swizzling is used by some persistent C++ implemen-
tations to provide a single pointer type for persistent and in-memory pointers. Hardware swizzling uses
virtual memory protection techniques provided by the operating system to detect accesses to pages, and
fetches the pages from the database when required. In contrast, the Java version modifies byte code to
check for hollow objects, instead of using memory protection, and fetches objects when required, instead
of fetching whole pages from the database.

388

Chapter9 Object-Based Databases

plex data types. Typical applications include storage and querying of complex data,
including multimedia data.

A declarative language such as SQL, however, imposes a significant performance
penalty for certain kinds of applications that run primarily in main memory, and
that perform a large number of accesses to the database. Persistent programming
languages target such applications that have high performance requirements. They
provide low-overhead access to persistent data, and eliminate the need for data trans-
lation if the data are to be manipulated by a programming language. However, they
are more susceptible to data corruption by programming errors, and usually do not
have a powerful querying capability. Typical applications include CAD databases.

We can summarize the strengths of the various kinds of database systems in this
way:

e Relational systems: Simple data types, powerful query languages, high pro-
tection

e Persistent programming language—based OODBs: Complex data types, in-
tegration with programming language, high performance

e Object-relational systems: Complex data types, powerful query languages,
high protection

These descriptions hold in general, but keep in mind that some database systems
blur the boundaries. For example, object-oriented database systems built around
a persistent programming language can be implemented on top of a relational or
object-relational database system. Such systems may provide lower performance than
object-oriented database systems built directly on a storage system, but provide some
of the stronger protection guarantees of relational systems.

9.10 Summary

o The object-relational data model extends the relational data model by provid-
ing a richer type system including collection types and object orientation.

e Collection types include nested relations, sets, multisets, and arrays, and the
object-relational model permits attributes of a table to be collections.

e Object orientation provides inheritance with subtypes and subtables, as well
as object (tuple) references.

e The SQL:1999 standard extends the SQL data-definition and query language to
deal with the new data types and with object orientation.

e We saw a variety of features of the extended data-definition language, as
well as the query language, and in particular support for collection-valued
attributes, inheritance, and tuple references. Such extensions attempt to pre-
serve the relational foundations—in particular, the declarative access to data
—while extending the modeling power.

Practice Exercises 389

Object-relational database systems (that is, database systems based on the
object-relation model) provide a convenient migration path for users of re-
lational databases who wish to use object-oriented features.

e Persistent extensions to C++ and Java integrate persistence seamlessly and
orthogonally with existing programming language constructs and so are easy
to use.

o The ODMG standard defines classes and other constructs for creating and ac-
cessing persistent objects from C++, while the JDO standard provides equiva-
lent functionality for Java.

o We discussed differences between persistent programming languages and
object-relational systems, and mention criteria for choosing between them.

Review Terms

e Nested relations e Reference types
e Nested relational model e Scope of a reference

o Complex types Self-referential attribute

e Collection types

Path expressions

* Lazge object types e Nesting and unnesting

e Sets
o —_— e SQL functions and procedures
o Muttisem e Persistent programming
languages
e o Persistence b
e Methods aa y
ass
* Row bypes [Creation
e Constructors O Marking
e Inheritance [0 Reachability
[J Single inheritance e ODMG C++ binding
[0 Multiple inheritance e ObjectStore
e Type inheritance e IDO
Mot apedeiiie O Persistence by reachability
e Table inheritance O Roots
e Subtable [J Hollow objects
e Overlapping subtables 0 Object-relational mapping

Practice Exercises

9.1 A car-rental company maintains a database for all vehicles in its current fleet.
For all vehicles, it includes the vehicle identification number, license number,

390 Chapter9 Object-Based Databases

manufacturer, model, date of purchase, and color. Special data are included for
certain types of vehicles:

e Trucks: cargo capacity

e Sports cars: horsepower, renter age requirement

e Vans: number of passengers

e Off-road vehicles: ground clearance, drivetrain (four- or two-wheel drive)

Construct an SQL:1999 schema definition for this database. Use inheritance where
appropriate.

9.2 Consider a database schema with a relation Emp whose attributes are as shown
below, with types specified for multivalued attributes.

Emp = (ename, ChildrenSet multiset(Children), SkillSet multiset(Skills))
Children = (name, birthday)

Skills = (type, ExamSet setof(Exams))

Exams = (year, city)

a. Define the above schema in SQL:2003, with appropriate types for each at-
tribute.
b. Using the above schema, write the following queries in SQL:2003.
i. Find the names of all employees who have a child born on or after Jan-
uary 1, 2000.
ii. Find those employees who took an examination for the skill type “typ-
ing” in the city “Dayton.”
iii. List all skill types in the relation Emp.

9.3 Consider the E-R diagram in Figure 9.5, which contains composite, multivalued,
and derived attributes.

street_name

middle_initial

street_number apartment_number

street/@
address

zip_code

customer_id

customer

cage

date_of_birth

Figure 9.5 E-R diagram with composite, multivalued, and derived attributes.

Exercises 391

a. Give an SQL:2003 schema definition corresponding to the E-R diagram.
b. Give constructors for each of the structured types defined above.

9.4 Consider the relational schema shown in Figure 9.6.

a. Give a schema definition in SQL:2003 corresponding to the relational schema,
but using references to express foreign-key relationships.

b. Write each of the queries given in Exercise 2.9 on the above schema, using
SQL:2003.

9.5 Suppose that you have been hired as a consultant to choose a database system
for your client’s application. For each of the following applications, state what
type of database system (relational, persistent programming language—based
OODB, object relational; do not specify a commercial product) you would rec-
ommend. Justify your recommendation.

a. A computer-aided design system for a manufacturer of airplanes

b. A system to track contributions made to candidates for public office
¢. An information system to support the making of movies

9.6 How does the concept of an object in the object-oriented model differ from the
concept of an entity in the entity-relationship model?

Exercises

9.7 Redesign the database of Practice Exercise 9.2 into first normal form and fourth
normal form. List any functional or multivalued dependencies that you assume.
Also list all referential-integrity constraints that should be present in the first
and fourth normal form schemas.

9.8 Consider the schema from Practice Exercise 9.2.

a. Give 8QL:2003 DDL statements to create a relation EmpA which has the same
information as Emp, but where multiset valued attributes ChildrenSet, Skills-
Set and ExamsSet are replaced by array valued attributes ChildrenArray, Skill-
sArray and ExamsArray.

b. Write a query to convert data from the schema of Emp to that of EmpA, with
the array of children sorted by birthday, the array of skills by the skill type
and the array of exams by the year.

employee (person_name, street, city)

works (person_name, company_name, salary)
company (company_name, city)

manages (person_name, manager_narie)

Figure 9.6 Relational database for Practice Exercise 9.4

392 Chapter9 Object-Based Databases

- D > T

person

employee customer

el e

Figure 9.7 Specialization and generalization.

c. Write an SQL statement to update the Emp relation by adding a child Jeb,
with a birthdate of February 5, 2001, to the employee named George.

d. Write an SQL statement to perform the same update as above but on the
EmpA relation. Make sure that the array of children remains sorted by year.

9.9 Consider the schemas for the table people, and the tables students and teachers,
which were created under people, in Section 9.4. Give a relational schema in third
normal form that represents the same information. Recall the constraints on sub-
tables, and give all constraints that must be imposed on the relational schema
so that every database instance of the relational schema can also be represented
by an instance of the schema with inheritance.

9.10 Explain the distinction between a type x and a reference type ref(x). Under what
circumstances would you choose to use a reference type?

9.11 a. Give an SQL:1999 schema definition of the E-R diagram in Figure 9.7, which
contains specializations, using subtypes and subtables.

Tools 393

b. Give an SQL:1999 query to find the names of all people who are not secre-
taries.

c. Give an SQL:1999 query to print the names of people who are neither em-
ployees nor customers.

d. Canyou create a person who is an employee and a customer with the schema
you created. Explain how, or explain why it is not possible.

9.12 Suppose a JDO database had an object A, which references object B, which in
turn references object C. Assume all objects are on disk initially. Suppose a
program first dereferences A, then dereferences B by following the reference
from A, and then finally dereferences C. Show the objects that are represented
in memory after each dereference, along with their state (hollow or filled, and
values in their reference fields).

Bibliographical Notes

Several object-oriented extensions to SQL have been proposed. POSTGRES (Stone-
braker and Rowe [1986] and Stonebraker [1986]) was an early implementation of an
object-relational system. Other early object-relational systems include the SQL exten-
sions of Oy (Bancilhon et al. [1989]) and UniSQL (UniSQL [1991]). SQL:1999 was the
product of an extensive (and long-delayed) standardization effort, which originally
started off as adding object-oriented features to SQL and ended up adding many
more features, such as procedural constructs which we saw earlier. Support for mul-
tiset types was added as part of SQL:2003.

Textbooks on SQL:1999 include Melton and Simon [2001] and Melton [2002]; the
latter book concentrates on the object-relational features of SQL:1999. Eisenberg et al.
[2004] provides an overview of SQL:2003, including its support for multisets. Refer
to the (online) manuals of the database system you use to find out what features of
SQL:1999/SQL:2003 it supports.

A number of object-oriented database systems were developed in the late 1980s
and early 1990s. Among the notable commercial ones were ObjectStore (Lamb et al.
[1991]), O, (Lecluse et al. [1988]), and Versant. The object database standard ODMG
is described in detail in Cattell [2000]. JDO is described by Roos [2002], Tyagi et al.
[2003], and Jordan and Russell [2003].

Tools

There are considerable differences between different database products in their sup-
port for object-relational features. Oracle probably has the most extensive support
among the major database vendors. The Informix database system provides sup-
port for many object-relational features. Both Oracle and Informix provided object-
relational features before the SQI.:1999 standard was finalized, and have some features
that are not part of SQL:1999.

Information about ObjectStore and Versant, including download of trial versions,
may be obtained from their respective web sites (objectstore.com and versant.com).
The Apache DB project (db.apache.org) provides an object-relational mapping tool

394 Chapter9 Object-Based Databases

for Java that supports both an ODMG Java and JDO APIs. A reference implementation
of JDO may be obtained from sun.com; use a search engine to get the full URL.

Unlike most of the technologies presented in the preceding chapters, the Extensible
Markup Language (XML) was not originally conceived as a database technology. In
fact, like the Hyper-Text Markup Language (HTML) on which the World Wide Web is
based, XML has its roots in document management, and is derived from a language
for structuring large documents known as the Standard Generalized Markup Language
(SGML). However, unlike SGML and HTML, XML can represent database data, as well
as many other kinds of structured data. It is particularly useful as a data format when
an application must communicate with another application, or integrate information
from several other applications. When XML is used in these contexts, many database
issues arise, including how to organize, manipulate, and query the XML data. In
this chapter, we introduce XML and discuss both the management of XML data with
database techniques and the exchange of data formatted as XML documents.

10.1 Motivation

To understand XML, it is important to understand its roots as a document markup
language. The term markup refers to anything in a document that is not intended to
be part of the printed output. For example, a writer creating text that will eventually
be typeset in a magazine may want to make notes about how the typesetting should
be done. It would be important to type these notes in a way so that they could be
distinguished from the actual content, so that a note like “set this word in large size,
bold font” or “insert a line break here” does not end up printed in the magazine. Such
notes convey extra information about the text. In electronic document processing, a
markup language is a formal description of what part of the document is content,
what part is markup, and what the markup means.

Just as database systems evolved from physical file processing to provide a sep-
arate logical view, markup languages evolved from specifying instructions for how
to print parts of the document to specify the function of the content. For instance,

395

396 Chapter 10 XML

<bank>

<account>
<account_number> A-101 </account_number>
<branch_name> Downtown </branch_name>
<balance> 500 </balance>

</account>

<account>
<account_number> A-102 </account_.number>
<branch_name> Perryridge </branch_name>
<balance> 400 </balance>

</account>

<account>
<account_.number> A-201 </account_.number>
<branch_name> Brighton </branch_name>
<balance> 900 </balance>

</account>

<customer>
<customer_name> Johnson </customer_name>
<customer_street> Alma </customer_street>
<customer_city> Palo Alto </customer_city>

</customer>

<customer>
<customer_name>> Hayes </customer_name>
<customer_street> Main </customer_street>
<customer_city> Harrison </customer_city>

</customer>

<depositor>
<account_.number> A-101 </account_number>
<customer_name> Johnson </customer_name>

</depositor>

<depositor>
<account_number> A-201 </account_.number>
<customer_name> Johnson </customer_name>

</depositor>

<depositor>
<account_.number> A-102 </account_number>
<customer_name> Hayes </customer_name>

</depositor>

</bank>
7 Figure 10.1 XML representation of bank information.

with functional markup, text representing section headings (for this section, the word
“Motivation”) would be marked up as being a section heading, instead of being
marked up as text to be printed in large size, bold font. From the viewpoint of type-
setting, such functional markup allows the document to be formatted differently in

10.1 Motivation 397

different situations. It also helps different parts of a large document, or different
pages in a large Web site, to be formatted in a uniform manner. More importantly,
functional markup also helps record what each part of the text represents semanti-
cally, and correspondingly helps automate extraction of key parts of documents.

For the family of markup languages that includes HTML, SGML, and XML, the
markup takes the form of tags enclosed in angle brackets, <>. Tags are used in pairs,
with <tag> and </tag> delimiting the beginning and the end of the portion of the
document to which the tag refers. For example, the title of a document might be
marked up as follows.

<title>Database System Concepts</title>

Unlike HTML, XML does not prescribe the set of tags allowed, and the set may be
chosen as needed by each application. This feature is the key to XML's major role
in data representation and exchange, whereas HTML is used primarily for document
formatting.

For example, in our running banking application, account and customer informa-
tion can be represented as part of an XML document as in Figure 10.1. Observe the
use of tags such as account and account_number. These tags provide context for each
value and allow the semantics of the value to be identified. For this example, the XML
data representation does not provide any significant benefit over the traditional re-
lational data representation; however, we use this example as our running example
because of its simplicity.

Figure 10.2, which shows how information about a purchase order can be repre-
sented in XML, illustrates a more realistic use of XML. Purchase orders are typically
generated by one organization and sent to another. Traditionally they were printed
on paper by the purchaser and sent to the supplier; the data would be manually re-
entered into a computer system by the supplier. This slow process can be greatly sped
up by sending the information electronically between the purchaser and supplier.
The nested representation allows all information in a purchase order to be naturally
represented in a single document. (Real purchase orders have considerably more in-
formation than that depicted in this simplified example.) XML provides a standard
way of tagging the data; the two organizations must of course agree on what tags
appear in the purchase order, and what they mean.

Compared to storage of data in a relational database, the XML representation may
be inefficient, since tag names are repeated throughout the document. However, in
spite of this disadvantage, an XML representation has significant advantages when it
is used to exchange data between organizations, and for storing structured informa-
tion in files:

e First, the presence of the tags makes the message self-documenting; that is, a
schema need not be consulted to understand the meaning of the text. We can
readily read the fragment above, for example.

e Second, the format of the document is not rigid. For example, if some sender
adds additional information, such as a tag last_accessed noting the last date
on which an account was accessed, the recipient of the XML data may simply

398

Chapter 10 XML

<purchase_order>
<identifier> P-101 </identifier>
<purchaser>
<name> Crazy Coyote </name>
<address> Mesa Flat, Route 66, Arizona 12345, USA </address>
</purchaser>
<supplier>
<name> Acme Supplies </name>
<address> 1, Broadway, New York, NY, USA </address>
</supplier>
<itemlist>
<item>
<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>
<quantity> 2 </quantity>
<price> 199.95 </price>
</item>
<item>
<identifier> SG2 </identifier>
<description> Superb glue </description>
<quantity> 1 </quantity>
<unit-of-measure> liter </unit-of-measure>
<price> 29.95 </price>
</item>
</itemlist>
<total_cost> 429.85 </total_cost>
<payment_terms> Cash-on-delivery </payment_terms>
<shipping_mode> 1-second-delivery </shipping-mode>
</purchaseorder>

Figure 10.2 XML representation of a purchase order.

ignore the tag. As another example, in Figure 10.2, the item with identifier 5G2
has a tag called unit-of-measure specified, which the first item does not. The
tag is required for items that are ordered by weight or volume, and may be

omitted for items that are simply ordered by number.

The ability to recognize and ignore unexpected tags allows the format of
the data to evolve over time, without invalidating existing applications. Simi-
larly, the ability to have multiple occurrences of the same tag makes it easy to

represent multivalued attributes.

e Third, XML allows nested structures. The purchase order shown in Figure 10.2
illustrates the benefits of having a nested structure. Each purchase order has
a purchaser and a list of items as two of its nested structures. Each item in
turn has an item identifier, description and a price nested within it, while the

purchaser has a name and address nested within it.

10.2 Structure of XML Data 399

Such information would have been split into multiple relations in a rela-
tional schema. Item information would have been stored in one relation, pur-
chaser information in a second relation, purchase orders in a third, and the
relationship between purchase orders, purchasers and items would have been
stored in a fourth relation.

The relational representation helps to avoid redundancy; for example, item
descriptions would be stored only once for each item identifier in a normal-
ized relational schema. In the XML purchase order, however, the descriptions
may get repeated in multiple purchase orders that order the same item. How-
ever, gathering all information related to a purchase order into a single nested
structure, even at the cost of redundancy, is attractive when information has
to be exchanged with external parties.

e Finally, since the XML format is widely accepted, a wide variety of tools are
available to assist in its processing, including programming language APIs to
create and to read XML data, browser software, and database tools.

We describe several applications for XML data later, in Section 10.7. Just as SQL is the
dominant language for querying relational data, XML has become the dominant format
for data exchange.

10.2 Structure of XML Data

The fundamental construct in an XML document is the element. An element is simply
a pair of matching start- and end-tags and all the text that appears between them.

XML documents must have a single root element that encompasses all other ele-
ments in the document. In the example in Figure 10.1, the <bank> element forms
the root element. Further, elements in an XML document must nest properly. For in-
stance,

<account> ... <balance> ... </balance> ... </account>
is properly nested, whereas
<account> ... <balance> ... </account> ... </balance>

is not properly nested.

<account>
This account is seldom used any more.
<account_.number> A-102 </account_number>
<branch_name> Perryridge </branch_name>
<balance> 400 </balance>

</account>

Figure 10.3 Mixture of text with subelements.

400

Chapter 10 XML

While proper nesting is an intuitive property, we may define it more formally.
Text is said to appear in the context of an element if it appears between the start-tag
and end-tag of that element. Tags are properly nested if every start-tag has a unique
matching end-tag that is in the context of the same parent element.

Note that text may be mixed with the subelements of an element, as in Figure 10.3.
As with several other features of XML, this freedom makes more sense in a document-
processing context than in a data-processing context, and is not particularly useful for
representing more-structured data such as database content in XML.

The ability to nest elements within other elements provides an alternative way to
represent information. Figure 10.4 shows a representation of the bank information
from Figure 10.1, but with account elements nested within customer elements. The
nested representation makes it easy to find all accounts of a customer, although it
would store account elements redundantly if they are owned by multiple customers.

Nested representations are widely used in XML data interchange applications to
avoid joins. For instance, a purchase order would store the full address of sender and

<bank-1>
<customer>
<customer_name> Johnson </customer_name>
<customer_street> Alma </customer_street>
<customer_city> Palo Alto </customer_city>
<account>
<account_number> A-101 </account_number>
<branch_name> Downtown </branch_name>
<balance> 500 </balance>
</account>
<account>
<account_number> A-201 </account_.number>
<branch_name> Brighton </branch_name>
<balance> 900 </balance>
</account>
</customer>
<customer>
<customer_name> Hayes </customer_name>
<customer_street> Main </customer_street>
<customer_city> Harrison </customer_city>
<account>
<account_number> A-102 </account_number>
<branch_name> Perryridge </branch_name>
<balance> 400 </balance>
</account>
</customer>
</bank-1>

Figure 10.4 Nested XML representation of bank information.

10.2 Structure of XML Data 401

<account acct_type= “checking”>
<account_number> A-102 </account_number>
<branch_name>> Perryridge </branch_name>
<balance> 400 </balance>

</account>

Figure 10.5 Use of attributes.

receiver redundantly on multiple purchase orders, whereas a normalized represen-
tation may require a join of purchase order records with a company_address relation to
get address information.

In addition to elements, XML specifies the notion of an attribute. For instance, the
type of an account can be represented as an attribute, as in Figure 10.5. The attributes
of an element appear as name=value pairs before the closing “>" of a tag. Attributes
are strings, and do not contain markup. Furthermore, attributes can appear only once
in a given tag, unlike subelements, which may be repeated.

Note that in a document construction context, the distinction between subelement
and attribute is important—an attribute is implicitly text that does not appear in the
printed or displayed document. However, in database and data exchange applica-
tions of XML, this distinction is less relevant, and the choice of representing data as
an attribute or a subelement is frequently arbitrary.

One final syntactic note is that an element of the form <element></ element>,
which contains no subelements or text, can be abbreviated as <element/>; abbrevi-
ated elements may, however, contain attributes.

Since XML documents are designed to be exchanged between applications, a name-
space mechanism has been introduced to allow organizations to specify globally
unique names to be used as element tags in documents. The idea of a namespace
is to prepend each tag or attribute with a universal resource identifier (for example, a
Web address). Thus, for example, if First Bank wanted to ensure that XML documents
it created would not duplicate tags used by any business partner’s XML documents,
it can prepend a unique identifier with a colon to each tag name. The bank may use
a Web URL such as

http://www.FirstBank.com

as a unique identifier. Using long unique identifiers in every tag would be rather
inconvenient, so the namespace standard provides a way to define an abbreviation
for identifiers.

In Figure 10.6, the root element (bank) has an attribute xmins:FB, which declares
that FB is defined as an abbreviation for the URL given above. The abbreviation can
then be used in various element tags, as illustrated in the figure.

A document can have more than one namespace, declared as part of the root ele-
ment. Different elements can then be associated with different namespaces. A default
namespace can be defined by using the attribute xmins instead of xmiIns:FB in the root

402 Chapter10 XML

<bank xmins:FB="http://www.FirstBank.com”>

<FB:branch>
<FB:branch_name> Downtown </FB:branch_name>
<FB:branch_city> Brooklyn </FB:branch_city>
</FB:branch>

</bank>

Figure 10.6 Unique tag names can be assigned by using namespaces.

element. Elements without an explicit namespace prefix would then belong to the
default namespace.

Sometimes we need to store values containing tags without having the tags inter-
preted as XML tags. So that we can do so, XML allows this construct:

<![CDATA[<account> - - -</account>]]>

Because it is enclosed within CDATA, the text <account> is treated as normal text
data, not as a tag. The term CDATA stands for character data.

10.3 XML Document Schema

Databases have schemas, which are used to constrain what information can be stored
in the database and to constrain the data types of the stored information. In contrast,
by default, XML documents can be created without any associated schema: An el-
ement may then have any subelement or attribute. While such freedom may occa-
sionally be acceptable given the self-describing nature of the data format, it is not
generally useful when XML documents must be processed automatically as part of
an application, or even when large amounts of related data are to be formatted in
XML.

Here, we describe the first schema definition language included as part of the XML
standard, the Document Type Definition, as well as its more recently defined replace-
ment, XML Schema. Another XML schema definition language called Relax NG is also
in use, but we do not cover it here; for more information on Relax NG see the refer-
ences in the bibliographic notes section.

10.3.1 Document Type Definition

The document type definition (DTD) is an optional part of an XML document. The
main purpose of a DTD is much like that of a schema: to constrain and type the infor-
mation present in the document. However, the DTD does not in fact constrain types
in the sense of basic types like integer or string. Instead, it only constrains the appear-
ance of subelements and attributes within an element. The DTD is primarily a list of
rules for what pattern of subelements may appear within an element. Figure 10.7
shows a part of an example DTD for a bank information document; the XML docu-
ment in Figure 10.1 conforms to this DTD.

10.3 XML Document Schema 403

<IDOCTYPE bank [
<IELEMENT bank ((account|customer|depositor)+)>
<!ELEMENT account (account.number branch_name balance)>
<IELEMENT customer (customer_name customer_street customer_city)>
<!ELEMENT depositor (customer_-name account_number)>
<IELEMENT account_.number (#PCDATA)>
<!ELEMENT branch_name (#PCDATA)>
<IELEMENT balance(#PCDATA)>
<IELEMENT customer_name(#PCDATA)>
<IELEMENT customer_street(#PCDATA)>
<!ELEMENT customer_city(#PCDATA)>

15

Figure10.7 Example of a DTD.

Each declaration is in the form of a regular expression for the subelements of an
element. Thus, in the DTD in Figure 10.7, a bank element consists of one or more
account, customer, or depositor elements; the | operator specifies “or” while the +
operator specifies “one or more.” Although not shown here, the * operator is used to
specify “zero or more,” while the ? operator is used to specify an optional element
(that is, “zero or one”).

The account element is defined to contain subelements account_number, branch_-
name and balance (in that order). Similarly, customer and depositor have the at-
tributes in their schema defined as subelements.

Finally, the elements account_.number, branch_name, balance, customer_name, cu-
stomer street, and customer_city are all declared to be of type #PCDATA. The keyword
#PCDATA indicates text data; it derives its name, historically, from “parsed character
data.” Two other special type declarations are empty, which says that the element has
no contents, and any, which says that there is no constraint on the subelements of the
element; that is, any elements, even those not mentioned in the DTD, can occur as
subelements of the element. The absence of a declaration for an element is equivalent
to explicitly declaring the type as any.

The allowable attributes for each element are also declared in the DTD. Unlike
subelements, no order is imposed on attributes. Attributes may be specified to be
of type CDATA, ID, IDREF, or IDREFS; the type CDATA simply says that the attribute
contains character data, while the other three are not so simple; they are explained in
more detail shortly. For instance, the following line from a DTD specifies that element
account has an attribute of type acct_type, with default value checking.

<IATTLIST account acct.type CDATA “checking” >

Attributes must have a type declaration and a default declaration. The default
declaration can consist of a default value for the attribute or #REQUIRED, meaning
that a value must be specified for the attribute in each element, or #IMPLIED, meaning
that no default value has been provided, and the document may omit this attribute.
If an attribute has a default value, for every element that does not specify a value for

404

Chapter 10 XML

<!DOCTYPE bank-2 [
<|ELEMENT account (branch, balance)>
<IATTLIST account
account_number ID #REQUIRED
owners IDREFS #REQUIRED >
<!|ELEMENT customer (customer_name, customer_street, customer_city)>
<IATTLIST customer
customer._id ID #REQUIRED
accounts IDREFS #REQUIRED >
... declarations for branch, balance, customer_name,
customer _street and customer_city - - -
1>

Figure 10.8 DTD with ID and IDREFS attribute types.

the attribute, the default value is filled in automatically when the XML document is
read.

An attribute of type ID provides a unique identifier for the element; a value that
occurs in an ID attribute of an element must not occur in any other element in the
same document. At most one attribute of an element is permitted to be of type ID.

An attribute of type IDREF is a reference to an element; the attribute must contain
a value that appears in the ID attribute of some element in the document. The type
IDREFS allows a list of references, separated by spaces.

Figure 10.8 shows an example DTD in which customer account relationships are
represented by ID and IDREFS attributes, instead of depositor records. The account
elements use account_number as their identifier attribute; to do so, account_number
has been made an attribute of account instead of a subelement. The customer ele-
ments have a new identifier attribute called customer_id. Additionally, each customer
element contains an attribute accounts, of type IDREFS, which is a list of identifiers
of accounts that are owned by the customer. Each account element has an attribute
owners, of type IDREFS, which is a list of owners of the account.

Figure 10.9 shows an example XML document based on the DTD in Figure 10.8.
Note that we use a different set of accounts and customers from our earlier example,
in order to illustrate the IDREFS feature better.

The ID and IDREF attributes serve the same role as reference mechanisms in object-
oriented and object-relational databases, permitting the construction of complex data
relationships.

Document type definitions are strongly connected to the document formatting her-
itage of XML. Because of this, they are unsuitable in many ways for serving as the type
structure of XML for data-processing applications. Nevertheless, a number of data
exchange formats have been defined in terms of DTDs, since they were part of the
original standard. Here are some of the limitations of DTDs as a schema mechanism.

e Individual text elements and attributes cannot be further typed. For instance,
the element balance cannot be constrained to be a positive number. The lack of
such constraints is problematic for data processing and exchange applications,
which must then contain code to verify the types of elements and attributes.

10.3 XML Document Schema 405

<bank-2>

<account account_.number="A-401" owners="C100 C102">
<branch_name> Downtown </branch_name>
<balance> 500 </balance>

<faccount>

<account account_number=“A-402" owners=“C102 C101”>
<branch_name> Perryridge </branch_name>
<balance> 900 </balance>

</account>

<customer customer_id=“C100" accounts="“A-401">
<customer_name>Joe</customer_name>
<customer_street> Monroe </customer_street>
<customer_city> Madison </customer_city>

</customer>

<customer customer_id=“C101” accounts=“A-402">
<customer_name>Lisa</customer_.name>
<customer_street> Mountain </customer_street>
<customer_city> Murray Hill </customer_city>

</customer>

<customer customer_id=*“C102” accounts=“A-401 A-402"~
<customer_name>Mary</customer_name>
<customer_street> Erin </customer_street>
<customer_city> Newark </customer_city>

</customer>

</bank-2>

Figure 10.9 XML data with ID and IDREF attributes.

e It is difficult to use the DTD mechanism to specify unordered sets of subele-
ments. Order is seldom important for data exchange (unlike document lay-
out, where it is crucial). While the combination of alternation (the | operation)
and the or the + operation as in Figure 10.7 permits the specification of un-
ordered collections of tags, it is much more difficult to specify that each tag
may only appear once.

e There is a lack of typing in IDs and IDREFSs. Thus, there is no way to specify
the type of element to which an IDREF or IDREFS attribute should refer. As a
result, the DTD in Figure 10.8 does not prevent the “owners” attribute of an
account element from referring to other accounts, even though this makes no
sense.

10.3.2 XML Schema

An effort to redress the deficiencies of the DTD mechanism resulted in the devel-
opment of a more sophisticated schema language, XML Schema. We provide a brief
overview of XML Schema, and then list some areas in which it improves DTDs.

406

Chapter 10 XML

<xs:schema xmins:xs="“http://www.w3.0rg/2001/XMLSchema”>
<xs:element name="“bank” type="BankType” />
<xs:element name="account”>
<xs:complexType>
<xs:sequence>
<xs:element name="“account_number” type="xs:string”/>
<xs:element name="branch_name” type=“xs:string"/>
<xs:element name="balance” type=“xs:decimal”/>
</xs:sequence>>
</xs:complexType>
</xs:element>
<xs:element name="“customer’>
<xs:element name="“customer_number” type="xs:string”/>
<xs:element name="customer_street” type="xs:string”/>
<xs:element name="“customer_city” type="xs:string”/>
</xs:element>
<xs:element name="“depositor’>
<xs:complexType>
<xs:sequence>
<xs:element name="customer_name” type="xs:string”/>
<xs:element name=*“account_number” type=“xs:string”/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:complexType name="BankType”>
<xs:sequence>
<xs:element ref="account” minOccurs="0" maxOccurs=“unbounded”/>
<xs:element ref=“customer” minOccurs="0" maxOccurs="“unbounded”/>
<xs:element ref="depositor” minOccurs="0" maxOccurs="“unbounded”/>
</xs:sequence>
</xs:complexType>
</xs:schema>

Figure 10.10 XML Schema version of DTD from Figure 10.7.

XML Schema defines a number of built-in types such as string, integer, decimal
date, and boolean. In addition, it allows user-defined types; these may be simple
types with added restrictions, or complex types constructed using constructors such
as complexType and sequence.

Figure 10.10 shows how the DTD in Figure 10.7 can be represented by XML Schema;
we describe below XML Schema features illustrated by the figure.

The first thing to note is that schema definitions in XML Schema are themselves
specified in XML syntax, using a variety of tags defined by XML Schema. To avoid
conflicts with user-defined tags, we prefix the XML Schema tag by the namespace
prefix “xs:”; this prefix is associated with the XML Schema namespace by the xmins:xs
specification in the root element:

10.3 XML Document Schema 407

<xs:schema xmins:xs=“http:/www.w3.0rg/2001/XMLSchema”>

Note that any namespace prefix could be used in place of xs; thus we could replace all
occurrences of “xs:” in the schema definition by “xsd:” without changing the meaning
of the schema definition. All types defined by XML Schema must be prefixed by this
namespace prefix.

The first element is the root element bank, whose type is specified to be BankType,
which is declared later. The example then defines the types of elements account, cus-
tomer, and depositor. Note that each of these is specified by an element with tag
xs:element, whose body contains the type definition.

The type of account is defined to be a complex type, which is further specified to
consist of a sequence of elements account_number, branch_name and balance. Any
type that has either attributes or nested subelements must be specified to be a com-
plex type.

Alternatively, the type of an element can be specified to be a predefined type by
the attribute type; observe how the XML Schema types xs:string and xs:decimal are
used to constrain the types of data elements such as account_number.

Finally the example defines the type BankType as containing zero or more occur-
rences of each of account, customer, and depositor. Note the use of ref to specify the
occurrence of an element defined earlier. XML Schema can define the minimum and
maximum number of occurrences of subelements by using minOccurs and maxOc-
curs. The default for both minimum and maximum occurrences is 1, so these have
to be explicitly specified to allow zero or more account, depositor, and customer ele-
ments. '

Attributes are specified using the xs:attribute tag. For example, we could have de-
fined account_number as an attribute by adding

<xs:attribute name = “account_number’/>

within the declaration of the account element. Adding the attribute use = “required”
to the above attribute specification declares that the attribute must be specified, where-
as the default value of use is optional. Attribute specifications would appear directly
under the enclosing complexType specification, even if elements are nested within a
sequence specification.

We can use the xs:complexType element to create named complex types; the syn-
tax is the same as that used for the xs:complexType element in Figure 10.10, except
that we add an attribute name = typeName to the xs:complexType element, where
typeName is the name we wish to give to the type. We can then use the named type
to specify the type of an element using the type attribute, just as we used xs:decimal
and xs:string in our example.

In addition to defining types, a relational schema also allows the specification of
constraints. XML Schema allows the specification of keys and key references, corre-
sponding to the primary-key and foreign-key definition in SQL. In SOL a primary-key
constraint or unique constraint ensures that the attribute values do not recur within
the relation. In the context of XML, we need to specify a scope within which values
are unique and form a key. The selector is a path expression that defines the scope

408

Chapter 10 XML

for the constraint, and field declarations specify the elements or attributes that form
the key. To specify that account numbers form a key for account elements under the
root bank element, we would add the following constraint specification to the schema
definition:

<xs:key name = “accountkey”>
<xs:selector xpath = “/bank/account”/>
<xs:field xpath = “account_number”/>
</xs:key>

Correspondingly a foreign-key constraint from depositor to account may be de-
fined as follows:

<xs:keyref name = “depositorAccountFKey” refer="accountKey”>
<xs:selector xpath = “/bank/depositor”/>
<xs:field xpath = “account_number”/>

</xs:key>

Note that the refer attribute specifies the name of the key declaration that is being
referenced, while the field specification identifies the referring attributes.

XML Schema offers several benefits over DTDs, and is widely used today. Among
the benefits that we have seen in the examples above are these:

o It allows the text that appears in elements to be constrained to specific types,
such as numeric types in specific formats or complex types such as sequences
of elements of other types.

e It allows user-defined types to be created.
o It allows uniqueness and foreign-key constraints.

o It is integrated with namespaces to allow different parts of a document to
conform to different schemas.

In addition to the features we have seen, XML Schema supports several other features
that DTDs do not, such as these:

e It allows types to be restricted to create specialized types, for instance by spec-
ifying minimum and maximum values.

o It allows complex types to be extended by using a form of inheritance.

Our description of XML Schema is just an overview; to learn more about XML Schema,
see the references in the bibliographic notes.

10.4 Querying and Transformation

Given the increasing number of applications that use XML to exchange, mediate, and
store data, tools for effective management of XML data are becoming increasingly im-
portant. In particular, tools for querying and transformation of XML data are essential

104 Querying and Transformation 409

to extract information from large bodies of XML data, and to convert data between
different representations (schemas) in XML. Just as the output of a relational query is
a relation, the output of an XML query can be an XML document. As a result, querying
and transformation can be combined into a single tool.

Several languages provide increasing degrees of querying and transformation ca-
pabilities:

e XPath is a language for path expressions and is actually a building block for
the remaining two query languages.

° XQuery is the standard language for querying XML data. It is modeled after
SQL but is significantly different, since it has to deal with nested XML data.
XQuery also incorporates XPath expressions.

° XSLT was designed to be a transformation language, as part of the XSL style
sheet system, which is used to control the formatting of XML data into HTML
or other print or display languages. Although designed for formatting, XSLT
can generate XML as output, and can express many interesting queries. It is
currently the most widely available language for manipulating XML data, al-
though XQuery is more appropriate for database manipulation.

A tree model of XML data is used in all these languages. An XML document is mod-
eled as a tree, with nodes corresponding to elements and attributes. Element nodes
can have children nodes, which can be subelements or attributes of the element. Cor-
respondingly, each node (whether attribute or element), other than the root element,
has a parent node, which is an element. The order of elements and attributes in the
XML document is modeled by the ordering of children of nodes of the tree. The terms
parent, child, ancestor, descendant, and siblings are interpreted in the tree model of
XML data.

The text content of an element can be modeled as a text node child of the element.
Elements containing text broken up by intervening subelements can have multiple
text node children. For instance, an element containing “this is a <bold> wonderful
</bold> book” would have a subelement child corresponding to the element bold
and two text node children corresponding to “this is a” and “book.” Since such struc-
tures are not commonly used in database data, we shall assume that elements do not
contain both text and subelements.

10.4.1 XPath

XPath addresses parts of an XML document by means of path expressions. The lan-
guage can be viewed as an extension of the simple path expressions in object-oriented
and object-relational databases (see Section 9.6). The current version of the XPath
standard is XPath 2.0, and our description is based on this version.

A path expression in XPath is a sequence of location steps separated by “/” (in-
stead of the “.” operator that separates steps in SQL:1999). The result of a path ex-
pression is a set of nodes. For instance, on the document in Figure 10.9, the XPath
expression

410

Chapter 10 XML

/bank-2/customer/customer_name

would return these elements:

<customer_name>Joe</customer_name>
<customer_name>Lisa</customer_name>
<customer_name>Mary</customer_name>

The expression
/bank-2/customer/customer_name/text()

would return the same names, but without the enclosing tags.

Path expressions are evaluated from left to right. Like a directory hierarchy, the
initial’/* indicates the root of the document. (Note that this is an abstract root “above”
<bank-2> that is the document tag.)

As a path expression is evaluated, the result of the path at any point consists of
an ordered set of nodes from the document. Initially the “current” set of elements
contains only one node, the abstract root. When the next step in a path expression
is an element name, such as customer, the result of the step consists of the nodes
corresponding to elements of the specified name that are children of elements in the
current element set. These nodes then become the current element set for the next
step of the path expression evaluation. The result of a path expression is then the set
of nodes after the last step of path expression evaluation. The nodes returned by each
step appear in the same order as their appearance in the document.

Since multiple children can have the same name, the number of nodes in the node
set can increase or decrease with each step. Attribute values may also be accessed,
using the “@” symbol. For instance, /bank-2/account/ @account_.number returns a set
of all values of account number attributes of account elements. By default, IDREF
links are not followed; we shall see how to deal with IDREFs later.

XPath supports a number of other features:

e Selection predicates may follow any step in a path, and are contained in square
brackets. For example,

/bank-2/account[balance > 400]
returns account elements with a balance value greater than 400, while
/bank-2/account[balance > 400}/ @account_number

returns the account numbers of those accounts.

We can test the existence of a subelement by listing it without any compar-
ison operation; for instance, if we removed just “> 400" from the above, the
expression would return account numbers of all accounts that have a balance
subelement, regardless of its value.

e XPath provides several functions that can be used as part of predicates, in-
cluding testing the position of the current node in the sibling order and the

104 Querying and Transformation 411

aggregate function count(), which counts the number of nodes matched by
the expression to which it is applied. For example, the path expression

/bank-2/account[count(./customer)> 2]

returns accounts with more than two customers. Boolean connectives and and
or can be used in predicates, while the function not(...) can be used for nega-
tion.

The function id(“fo0”) returns the node (if any) with an attribute of type ID and
value “foo.” The function id can even be applied on sets of references, or even
strings containing multiple references separated by blanks, such as IDREFS.
For instance, the path

/bank-2/account/id(@owner)

returns all customers referred to from the owners attribute of account ele-
ments.

The | operator allows expression results to be unioned. For example, if the
DTD of bank-2 also contained elements for loans, with attribute borrower of
type IDREFS identifying loan borrower, the expression

/bank-2/account/id(@owner) | /bank-2/loan/id(@borrower)

gives customers with either accounts or loans. However, the | operator cannot
be nested inside other operators. It is also worth noting that the nodes in the
union are returned in the order in which they appear in the document.

An XPath expression can skip multiple levels of nodes by using “//”. For in-
stance, the expression /bank-2//customer_name finds all customer_name el-
ements anywhere under the /bank-2 element, regardless of the elements in
which they are contained, and regardless of how many levels of enclosing
elements are present between the bank-2 and customer_name elements. This
example illustrates the ability to find required data without full knowledge of
the schema.

A step in the path need not just select from the children of the nodes in the
current node set. In fact, this is just one of several directions along which a
step in the path may proceed, such as parents, siblings, ancestors, and descen-
dants. We omit details, but note that “//”, described above, is a short form for
specifying “all descendants,” while “..” specifies the parent.

The built-in function doc(name) returns the root of a named document; the
name could be a file name or a URL. The root returned by the function can then
be used in a path expression to access the contents of the document. Thus,
a path expression can be applied on a specified document, instead of being
applied on the current default document.

412

Chapter 10 XML

For example, if the bank data in our bank example is contained in a file
“bank.xml,” the following path expression would return all accounts at the
bank.

doc(“bank.xml”)/bank/account

The function collection(name) is similar to doc, but returns a collection of doc-
uments identified by name.

10.4.2 XQuery

The World Wide Web Consortium (W3C) has developed XQuery as the standard
query language for XML. Our discussion is based on the latest draft of the language
standard available in early January 2005; although the final standard may differ, we
expect the main features we cover here will remain unchanged. The XQuery language
derives from an XML query language called Quilt; Quilt itself included features from
earlier languages such as XPath, discussed in Section 10.4.1, and two other XML query
languages, XQL and XML-QL.

10.4.2.1 FLWOR Expressions

XQuery queries are modeled after SQL queries, but differ significantly from SQL. They
are organized into five sections: for, let, where, order by, and return. They are re-
ferred to as “FLWOR” (pronounced “flower™) expressions, with the letters in FLWOR
denoting the five sections.

A simple FLWOR expression that returns account numbers of accounts with bal-
ance greater than 400, shown below, is based on the XML document of Figure 10.9,
which uses ID and IDREFS:

for $x in /bank-2/account

let $acctno = $x/@account_number

where $x/balance > 400

return <account_number> { $acctno } </account.number>

The for clause is like the from clause of SQL, and specifies variables that range
over the results of XPath expressions. When more than one variable is specified, the
results include the Cartesian product of the possible values the variables can take,
just as the SQL from clause does.

The let clause simply allows the results of XPath expressions to be assigned to
variable names for simplicity of representation. The where clause, like the SQL where
clause, performs additional tests on the joined tuples from the for clause. The order
by clause, like the SQL order by clause, allows sorting of the output. Finally, the
return clause allows the construction of results in XML.

A FLWOR query need not contain all the clauses; for example a query may contain
just the for and return clauses, and omit the let, where, and order by clauses. The
preceding XQuery query did not contain an order by clause. In fact, since this query

104 Querying and Transformation 413

is simple, we can easily do away with the let clause, and the variable $acctno in
the return clause could be replaced with $x/@account_number. Note further that,
since the for clause uses XPath expressions, selections may occur within the XPath
expression. Thus, an equivalent query may have only for and return clauses:

for $x in /bank-2/account[balance > 400]
return <account_number> { $x/@account_.number } </account.number>

However, the let clause helps simplify complex queries. Note also that variables as-
signed by let clauses may contain sequences with multiple elements or values, if the
path expression on the right-hand side returns a sequence of multiple elements or
values.

Observe the use of curly brackets (“{}”) in the return clause. When XQuery finds
an element such as <account.number> starting an expression, it treats its contents
as regular XML text, except for portions enclosed within curly brackets, which are
evaluated as expressions. Thus, if we omitted the curly brackets in the above return
clause, the result would contain several copies of the string “$x/@account_number”
each enclosed in an account_number tag. The contents within the curly brackets are,
however, treated as expressions to be evaluated. Note that this convention applies
even if the curly brackets appear within quotes. Thus, we could modify the above
query to return an element with tag account, with the account number as an attribute,
by replacing the return clause by the following;

return <account account_number="{$x/@account_number}” />

XQuery provides another way of constructing elements using the element and
attribute constructors. For example, if the return clause in the previous query is re-
placed by following return clause, the query would return account elements with
account_number and branch_name as attributes and balance as a subelement.

return element account {
attribute account_number {$x/@account_number},
attribute branch_name {$x/branch_name},
element balance {$x/balance}

Note that as before, the curly brackets are required to treat a string as an expression
to be evaluated.

10.4.2.2 Joins

Joins are specified in XQuery much as they are in SQL. The join of depositor, account,
and customer elements in Figure 10.1, which we write in XSLT in Section 10.4.3, can
be written in XQuery this way:

414

Chapter 10 XML

for $a in /bank/account,
$c in /bank/customer,
$d in /bank/depositor
where $a/account_number = $d/account_number
and $c/customer_name = $d/customer_name
return <cust.acct> { $c $a } </cust.acct>

The same query can be expressed with the selections specified as XPath selections:

for $a in /bank/account,
$c in /bank/customer,
$d in /bank/depositor[account_number = $a/account_number
and customer_name = $c/customer_name]
return <cust.acct> { $c $a } </cust_acct>

Path expressions in XQuery are the same as path expressions in XPath2.0. Path
expressions may return a single value or element, or a sequence of values or elements.
In the absence of schema information it may not be possible to infer whether a path
expression returns a single value or a sequence of values. Such path expressions may
participate in comparison operations such as =, <, and >=.

XQuery has an interesting definition of comparison operations on sequences. For
example the expression $x/balance > 400 would have the usual interpretation if the
result of $x/balance is a single value, but if the result is a sequence containing mul-
tiple values, the expression evaluates to true if at least one of the values is greater
than 400. Similarly, the expression $x/balance = $y/balance evaluates to true if any
one of the values returned by the first expression is equal to any one of the values
returned by the second expression. If this behavior is not appropriate, the operators
eq, ne, It, gt, le, ge can be used instead. These raise an error if either of their inputs is
a sequence with multiple values.

10.4.2.3 Nested Queries

XQuery FLWOR expressions can be nested in the return clause, in order to generate
element nestings that do not appear in the source document. This feature is similar
to nested subqueries in the from clause of SQL queries in Section 9.5.3.

For instance, the XML structure shown in Figure 10.4, with account elements nested
within customer elements, can be generated from the structure in Figure 10.1 by this

query:

<bank-1> {
for $c in /bank/customer
refurn
<customer>
{ $c/* }
{ for $d in /bank/depositor[customer_name = $c/customer_name],
$a in /bank/account[account_number=$d/account_number]
return $a }
</customer>

} </bank-1>

104 Querying and Transformation 415

The query also introduces the syntax $c/*, which refers to all the children of the node
(or sequence of nodes) bound to the variable $c. Similarly, $c/text() gives the text
content of an element, without the tags.

XQuery provides a variety of aggregate functions such as sum() and count() that
can be applied on sequences of elements or values. The function distinct-values() ap-
plied on a sequence returns a sequence without duplication. The sequence (collec-
tion) of values returned by a path expression may have some values repeated because
they are repeated in the document, although an XPath expression result can contain
at most one occurrence of each node in the document. XQuery supports many other
functions; see the references in the bibliographic notes for more information. These
functions are actually common to XPath 2.0 and XQuery, and can be used in any XPath
path expression.

To avoid namespace conflicts, functions are associated with a namespace

http://www.w3.0rg/2004/10/xpath-functions

which has a default namespace prefix of fn. Thus, these functions can be referred to
unambiguously as fn:sum or fn:count.

While XQuery does not provide a group by construct, aggregate queries can be
written by using the aggregate functions on path or FLWOR expressions nested within
the return clause. For example, the following query on the bank XML schema finds
the total balance on all accounts owned by each customer.

for $c in /bank/customer
return
<customer-total-balance>
<customer_name> { $c/customer_name } </customer_name>
<total_balance> { fn:sum(
for $d in /bank/depositorjcustomer_name = $c/customer_name],
$a in /bank/account[account_number = $d/accou nt_number]
return $a/balance
) } <ftotal_balance>
</customer-total-balance>

10.4.2.4 Sorting of Results

Results can be sorted in XQuery by using the order by clause. For instance, this query
outputs all customer elements sorted by the customer_name subelement:

for $c in /bank/customer,
order by $c/customer_name
return <customer> { $c/* } </customer>

To sort in descending order, we can use order by customer_name descending.

Sorting can be done at multiple levels of nesting. For instance, we can get a nested
representation of bank information sorted in customer name order, with accounts of
each customer sorted by account number, as follows.

416

Chapter 10 XML

<bank-1> {
for $c in /bank/customer
order by $c/customer_name

return

<customer>
{ $c/* }
{ for $d in /bank/depositor[customer_name = $c/customer_name],

$a in /bank/account[account_number = $d/account_number]

order by $a/account_number
return <account> { $a/* } </account> }

</customer>

} </bank-1>

10.4.2.5 Functions and Types

XQuery provides a variety of built-in functions, such as numeric functions and string
matching and manipulation functions. In addition, XQuery supports user-defined
functions. The following user-defined function returns a list of all balances of a cus-
tomer with a specified name:

define function balances(xs:string $c) as xs:decimal* {
for $d in /bank/depositor[customer_name = $c],
$a in /bank/account[account_number = $d/account_number]
return $a/balance

The type specifications for function arguments and return values are optional, and
may be omitted. XQuery uses the type system of XML Schema. The namespace prefix
xs: used in the above example is predefined by XQuery to be associated with the XML
Schema namespace.

Types can be suffixed with a * to indicate a sequence of values of that type; for
example, the definition of function balances specifies the return value as a sequence
of numeric values. Types can be partially specified; for example, the type element
allows elements with any tag, while element(account) allows elements with the tag
account.

XQuery performs type conversion automatically whenever required. For example,
if a numeric value represented by a string is compared to a numeric type, type con-
version from string to the numeric type is done automatically. When an element is
passed to a function that expects a string value, type conversion to a string is done
by concatenating all the text values contained (nested) within the element. Thus, the
function contains(a,b), which checks if string a contains string b, can be used with
its first argument set to an element, in which case it checks if the element a contains
the string b nested anywhere inside it. XQuery also provides functions to convert
between types. For instance, number(x) converts a string to a number.

104 Querying and Transformation 417

10.4.2.6 Other Features

XQuery offers a variety of other features, such as if-then-else constructs, which can be
used within return clauses, and existential and universal quantification, which can
be used in predicates in where clauses. For example, existential quantification can be
expressed in the where clause by using

some $e in path satisfies P

where path is a path expression and P is a predicate that can use $e. Universal quan-
tification can be expressed by using every in place of some.

As you can see from the above description, XQuery with XPath is a rather complex
language, and must deal with data having a complex structure. Although it has been
several years since it was first defined (as a draft specification), many implementa-
tions either implement a subset of XQuery or are inefficient on large data sets.

The XQJ standard provides an API to submit XQuery queries to an XML database
system and to retrieve the XML results. Its functionality is similar to the JDBC API.

10.4.3 XSLTxx

A style sheet is a representation of formatting options for a document, usually stored
outside the document itself, so that formatting is separate from content. For example,
a style sheet for HTML might specify the font to be used on all headers, and thus
replace a large number of font declarations in the HTML page. The XML Stylesheet
Language (XSL) was originally designed for generating HTML from XML, and is thus
a logical extension of HTML style sheets. The language includes a general-purpose
transformation mechanism, called XSL Transformations (XSLT), which can be used
to transform one XML document into another XML document, or to other formats
such as HTML.! XSLT transformations are quite powerful, and in fact XSLT can even
act as a query language.
XSLT transformations are expressed as a series of recursive rules, called templates.
In their basic form, templates allow selection of nodes in an XML tree by an XPath
expression. However, templates can also generate new XML content, so that selection
and content generation can be mixed in natural and powerful ways. While XSLT can
be used as a query language, its syntax and semantics are quite dissimilar from those
of SQL.
A simple template for XSLT consists of a match part and a select part. Consider

this XSLT code:

<xsl:template match="/bank-2/customer”>

<xsl:value-of select="customer_name”/>
</xsl:template>
<xsl:template match="+"/>

1. The XSL standard consists of XSLT and a standard for specifying formatting features such as fonts,
page margins, and tables. Formatting is not relevant from a database perspective, so we do not cover it
here.

418

Chapter 10 XML

<xsl:template match="/bank-2/customer”>
<customer>
<xsl:value-of select="customer_name”/>
</customer>

</xsl:template>

<xsl:template match="+"/>

Figure 10.11 Using XSLT to wrap results in new XML elements.

The xsl:template match statement contains an XPath expression that selects one or
more nodes. The first template matches customer elements that occur as children of
the bank-2 root element. The xsl:value-of statement enclosed in the match statement
outputs values from the nodes in the result of the XPath expression. The first template
outputs the value of the customer_name subelement; note that the value does not
contain the element tag.

Note that the second template matches all nodes. This is required because the de-
fault behavior of XSLT on elements of the input document that do not match any
template is to copy their attribute and text contents to the output document, and
apply templates recursively to their subelements.

Any text or tag in the XSLT style sheet that is not in the xsl namespace is copied
unchanged to the output. Figure 10.11 shows how to use this feature to make each
customer name from our example appear as a subelement of a “<customer>" ele-
ment, by placing the xsl:value-of statement between <customer> and </customer>.
Creating an attribute, such as customer_id in the generated customer element, is trick-
ier and requires the use of xsl:attribute; see an XSLT manual for further details.

Structural recursion is a key part of XSLT. Recall that elements and subelements
naturally form a tree structure. The idea of structural recursion is this: When a tem-
plate matches an element in the tree structure, XSLT can use structural recursion to
apply template rules recursively on subtrees, instead of just outputting a value. It
applies rules recursively by the xsl:apply-templates directive, which appears inside
other templates.

For example, the results of our previous query can be placed in a surrounding
<customers> element by the addition of a rule using xsl:apply-templates, as in
Figure 10.12 The new rule matches the outer “bank” tag, and constructs a result doc-
ument by applying all other templates to the subtrees appearing within the bank
element, but wrapping the results in the given <customers> </customers> ele-
ment. Without recursion forced by the <xsl:apply-templates/> clause, the template
would output <customers> </customers>, and then apply the other templates on
the subelements.

In fact, the structural recursion is critical to constructing well-formed XML doc-
uments, since XML documents must have a single top-level element containing all
other elements in the document.

XSLT provides a feature called keys that permits lookup of elements by using val-
ues of subelements or attributes; the goals are similar to that of the id() function in
XPath, but the XSLT-keys feature permits attributes other than the ID attributes to be

104 Querying and Transformation 419

<xsl:template match="/bank”>
<customers>
<xsl:apply-templates/>
</customers>

</xsl:template>

<xsl:template match="/customer’>
<customer>
<xsl:value-of select="customer_name”/>
</customer>

</xslitemplate>

<xsl:template match="+«"/>

Figure 10.12 Applying rules recursively.

used. Keys are defined by an xsl:key directive, which has three parts, for example:
<xsl:key name="acctno” match=*account” use="account_number”/>

The name attribute is used to distinguish different keys. The match attribute specifies
which nodes the key applies to. Finally, the use attribute specifies the expression
to be used as the value of the key. Note that the expression need not be unique to
an element; that is, more than one element may have the same expression value. In
the example, the key named acctno specifies that the account_number subelement of
account should be used as a key for that account.

Keys can be subsequently used in templates as part of any pattern through the
key function. This function takes the name of the key and a value, and returns the
set of nodes that match that value. Thus, the XML node for account “A-401" can be
referenced as key(“acctno”, “A-401").

Keys can be used to implement some types of joins, as in Figure 10.13. The code
in the figure can be applied to XML data in the format in Figure 10.1. Here, the key
function joins the depositor elements with matching customer and account elements.
The result of the query consists of pairs of customer and account elements enclosed
within cust_acct elements.

<xsl:key name="acctno” match="account’use=*account_number?/>
<xsl:key name="custno” match="customer” use="customer_name”/>
<xsl:template match="depositor’>
<cust_acct>
<xsl:value-of select=key(“custno”, “customer_name”)/>
<xsl:value-of select=key(“acctno”, “account_number”)/>
</cust_acct>
</xsl:template>
<xsl:template match="+"/>

Figure 10.13 Joins in XSLT.

420

Chapter 10 XML

XSLT allows nodes to be sorted. A simple example shows how xsl:sort would be
used in our style sheet to return customer elements sorted by name:

<xsl:template match="/bank”>
<xsl:apply-templates select="customer”>
<xsl:sort select="customer_name”/>
</xsl:apply-templates>
</xsl:template>
<xsl:template match="customer”>
<customer>
<xsl:value-of select="customer_.name”/>
<xsl:value-of select="customer_street”/>
<xsl:value-of select="customer_city”/>
</customer>
</xsl:template>
<xsl:template match="%"/>

Here, the xsl:apply-template has a select attribute, which constrains it to be applied
only on customer subelements. The xsl:sort directive within the xsl:apply-template el-
ement causes nodes to be sorted befor