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Database management has evolved from a specialized computer application to a
central component of a modern computing environment, and, as a result, knowl-
edge about database systems has become an essential part of an education in com-
puter science. In this text, we present the fundamental concepts of database manage-
ment. These concepts include aspects of database design, database languages, and
database-system implementation.

This text is intended for a first course in databases at the junior or senior under-
graduate, or first-year graduate, level. In addition to basic material for a first course,
the text contains advanced material that can be used for course supplements, or as
introductory material for an advanced course.

We assume only a familiarity with basic data structures, computer organization,
and a high-level programming language such as Java, C, or Pascal. We present con-
cepts as intuitive descriptions, many of which are based on our running example of
a bank enterprise. Important theoretical results are covered, but formal proofs are
omitted. In place of proofs, figures and examples are used to suggest why a result is
true. Formal descriptions and proofs of theoretical results may be found in research
papers and advanced texts that are referenced in the bibliographical notes.

The fundamental concepts and algorithms covered in the book are often based
on those used in existing commercial or experimental database systems. Our aim is
to present these concepts and algorithms in a general setting that is not tied to one
particular database system. Details of particular database systems are discussed in
Part9, "Case Studies."

In this, the fifth edition of Database System Concepts, we have retained the overall
style of the prior editions while evolving the content and organization to reflect the
changes that are occurring in the way databases are designed, managed, and used.
We have also taken into account trends in the teaching of database concepts and
made adaptations to facilitate these trends where appropriate. Before we describe the
content of the book in detail, we highlight some of the features of the fifth edition.
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Earlier coverage of SQL. Many instructors use SQL as a key comPonent

of term projects (see our Web site, wwwdb-book.com, for sample projects).
In order to give students ample time for the projects, particularly for universi-

ties and colleges on the quarter system, it is essential to teach SQL as early as

possible. With this in mind, we have undertaken several changes in organiza-
tion:

1. Deferring the presentation of the entity-relationship model to Part 2, enti-

tled "Database Design."
2. Streamlining the introduction of the relational model by deferring cover-

age of the relational calculus to Chapter 5, while retaining coverage of the

relational algebra in Chapter 2.
3. Devoting two early chapters to SQL. Chapter 3 covers basic SQL features

including data definition and manipulation. Chapter 4 covers more ad-

vanced features, including integrity constraints, dynamic SQL, and pro-

cedural constructs. New material in this chapter includes expanded cov-

erage of JDBC, procedural constructs in SQL, recursion in SQL, and new

features from SQL:2003. The chapter also includes a short overview of au-

thorization; detailed coverage of authorization is deferred to Chapter 8'

These changes allow students to begin writing SQL queries early in the

course, and gain familiarity with the use of database systems. This also al-

lows students to develop an intuition about database design that facilitates

the teaching of design methodology in Part 2 of the text. We have found that

students appreciate database-design issues better with this organization.

A new part (Part 2) that is devoted to database design. Part 2 of the text

contains three chapters devoted to the design of databases and database ap-

plications. We include here a chapter (Chapter 6) on the entity-relationship
model that includes all of the material from the corresponding chapter of the

fourth edition (Chapter 2), plus several significant updates. We also present in

Chapter 6 abrief overview of the process of database design. Instructors who

prefer to begin their course with the E-R model can begin with this chapter

without loss of continuity, as we have strived to avoid dependencies on any

prior chapter other than Chapter 1.
Chapter 7, on relational design, presents the material covered in Chapter 7

of the fourth edition, but does so in a new more readable style. Design con-

cepts from the E-R model are used to build an intuitive overview of relational

design issues, in advance of the presentation of the formal approach to design

using functional and multivalued dependencies and algorithmic normaliza-

tion. This chapter also includes a new section on temporal issues in database

design.
Part 2 concludes with a new chapter, Chapter 8, that describes the de-

sign and development of database applications, including Web applications,

servlets, JSP, triggers, and security issues. In keeping with the increased need

to secure software from attacks/ covelage of security has been significantly

expanded from the fourth edition.
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o Thoroughly revised and updated coverage of object-based databases and
XML. Part 3 includes a heavily revised chapter on object-based databases that
emphasizes SQL object-relational features, replacing the separate chapters on
object-oriented and object-relational databases from the fourth edition. Some
of the introductory material on object-orientation which students are famil-
iar with from earlier courses has been removed, as have syntactic details of
the now defunct ODMG standard. However, important concepts underlying
object-oriented databases have been retained, including new material on the
jDO standard for adding persistence to java.

Part 3 includes also a chapter on the design and querying of XML data,
which is significantly revised from the corresponding chapter in the fourth
edition. It includes enhanced coverage of XML Schema and XQuery, coverage
of the SQL/XML standard, and more examples of XML applications including
Web services.

o Reorganized material on data mining and information retrieval. Data min-
ing and online analytic processing are now centrally important uses of data-
bases-no longer only "advanced topics." We have, therefore, moved our cov-
erage of these topics into a new part,Part 6, containing a chapter on data min-
ing and analysis along with a chapter on information retrieval.

o New case study covering PostgreSQl. PostgreSQl is an open-source database
system that has gained enormous popularity in the past few years. In addition
to being a platform on which to build database applications, the source code
can be studied and extended in courses that emphasize database internals. A
case study of PostgreSQl is therefore added to Part 9, where it joins three case
studies that appeared in the fourth edition (Oracle, IBM DB2, and Microsoft
SQL Server). The latter three case studies have been updated to reflect the
latest versions of the respective software.

The coverage of topics not listed above, including transaction processing (concur-
rency and recovery), storage structures, query processing, and distributed and par-
allel databases are all updated from their fourth-edition counterparts, though their
overall organization is relatively unchanged. The coverage of QBE in Chapter 5 has
been revised, removing syntactic details of aggregation and updates that do not cor-
respond to any actual implementation, while retaining the key concepts behind QBE.

Orgonizqtion
The text is organized in nine major parts, plus three appendices.

o Overview (Chapter 1). Chapter 1 provides a general overview of the nature
and purpose of database systems. We explain how the concept of a database
system has developed, what the common features of database systems are,
what a database system does for the usel and how a database system inter-
faces with operating systems. We also introduce an example database applica-
tion: a banking enterprise consisting of multiple bank branches. This example



is used as a running example throughout the book. This chapter is motiva-
tional, historical, and explanatory in nature.

Part L: Relational Databases (Chapters 2 through 5). Chapter 2 introduces the
relational model of data, covering basic concepts as well as the relational al-
gebra. The chapter also provides a brief introduction to integrity constraints.
Chapters 3 and 4 focus on the most influentiai of the user-oriented relational
languages: SQL. While Chapter 3 provides a basic introduction to SQL, Chap-
ter 4 describes more advanced features of SQL, including how to interface be-
tween a programming language and a database supporting SQL. Chapter 5
covers other relational languages, including the relational calculus, QBE, and
Datalog.

The chapters in this part describe data manipulation: queries, updates, in-
sertions, and deletions, assuming a schema design has been provided. Schema
design issues are deferred toPart2.

Pafi 2: Database Design (Chapters 6 through 8). Chapter 6 provides an over-
view of the database-design process, with major emphasis on database design
using the entity-relationship data model. The entity-relationship data model
provides a high-level view of the issues in database design, and of the prob-
lems that we encounter in capturing the semantics of realistic applications
within the constraints of a data model. UML class-diagram notation is also
covered in this chapter.

Chapter 7 introduces the theory of relational database design. The theory
of functional dependencies and normalization is covered, with emphasis on
the motivation and intuitive understanding of each normal form. This chapter
begins with an overview of relational design and relies on an intuitive under-
standing of logical implication of functional dependencies. This allows the
concept of normalization to be introduced prior to full coverage of functional-
dependency theory, which is presented later in the chapter. Instructors may
chose to use only this initial coverage in Sections 7.1 through 7.3 without loss
of continuity. Instructors covering the entire chapter will benefit from students
having a good understanding of normalization concepts to motivate some of
the challenging concepts of functional-dependency theory.

Chapter 8 covers application design and development. This chapter em-
phasizes the construction of database applications with Web-based interfaces.
in addition, the chapter covers application security.

Part 3: Object-Based Databases and xML (Chapters 9 and 10). Chapter 9 cov-
ers object-based databases. The chapter describes the object-relational data
model, which extends the relational data model to support complex data tyPes,
type inheritance, and object identity. The chapter also describes database ac-
cess from object-oriented programming languages.

Chapter 10 covers the XML standard for data representation, which is see-
ing increasing use in the exchange and storage of complex data. The chapter
also describes query languages for XML.



Preface

Part4: Data Storage and Querying (Chapters 11 through 14). Chapter 11 deals
with disk, file, and file-system structure. A variety of data-access techniques
are presented in Chapter 12, including hashing and B+-tree indices. Chapters
13 and 14 address query-evaluation algorithms and query optimization. These
chapters provide an understanding of the internals of the storage and retrieval
components of a database.

Part 5: Transaction Management (Chapters 15 through 17). Chapter 15 fo-
cuses on the fundamentals of a transaction-processing system, including trans-
action atomicity, consistency, isolation, and durability, as well as the notion of
serializability.

Chapter 16 focuses on concurrency control and presents several techniques
for ensuring serializability, including locking, timestamping, and optimistic
(validation) techniques. The chapter also covers deadlock issues.

Chapter 17 covers the primary techniques for ensuring correct transaction
execution despite system crashes and disk failures. These techniques include
logs, checkpoints, and database dumps.

Part 6: Data Mining and Information Retrieval (Chapters 18 and 19). Chap-
ter 18 introduces the concept of a data warehouse and explains data mining
and online analytical processing (OLAP), including SQL:1.999 support for OLAP
and data warehousing. Chapter 19 describes information-retrieval techniques
for querying textual data, including hyperlink-based techniques used in Web
search engines.

Part 6 uses the modeling and language concepts from Parts 7 and 2, but
does not depend on Parts 3,4, or 5. It can therefore be incorporated easily into
a course that focuses on SQL and on database design.

Pafi 7z Database-System Architecture (Chapters 20 through 22). Chapter 20
covers computer-system architecture, and describes the influence of the un-
derlying computer system on the database system. We discuss centralized sys-
tems, client-server systems, parallel and distributed architectures, and net-
work types in this chapter.

Chapter 21, onparallel databases, explores a variety of parallelization tech-
niques, including I/O parallelism, interquery and intraquery parallelism, and
interoperation and intraoperation parallelism. The chapter also describes para-
Ilel-system design.

Chapter 22 covers distributed database systems, revisiting the issues of
database design, transaction management, and query evaluation and opti-
mization, in the context of distributed databases. The chapter also covers is-
sues of system availability during failures and describes the LDAP directory
system.

Part 8: Other Topics (Chapters 23 through2S). Chapter 23 covers performance
benchmarks, performance tuning, standardization and application migration
from legacy systems.
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Chapter 24 covers advanced data types and new applications, including

temporal data, spatial and geographic data, multimedia data, and issues in

the management of mobile and personal databases.
Finally, Chapter 25 deals with advanced transaction processing. Topics cov-

ered include transaction-processing monitors, transactional workflows, elec-

tronic commerce, high-performance transaction systems, real-time transaction

systems, long duration transactions, and transaction management in multi-

database systems.

Part 9: Case Studies (Chapters 26 through 29).In this part we present case

studies of four leading database systems, including PostgreSQl, Oracle, IBM

DB2, andMicrosoft SQL Server. These chapters outline unique features of each

of these systems, and describe their internal structure. They provide a wealth

of interesting information about the respective products, and help you see

how the various implementation techniques described in earlier parts are used

in real systems. They also cover several interesting practical aspects in the de-

sign of real systems.

Online Appendices. Although most new database applications use either the

relational model or the object-relational model, the network and hierarchi-

cal data models are still in use in some legacy applications. For the benefit

of readers who wish to learn about these data models, we provide appen-

dices describing the network and hierarchical data models, in Appendices A

and B respectively; the appendices are available only online (http://www.db-

book.com).
Appendix C describes advanced relational database design, including the

theory of multivalued dependencies, join dependencies, and the project-join

and domain-key normal forms. This appendix is for the benefit of individuals

who wish to study the theory of relational database design in more detail, and

instructors who wish to do so in their courses. This appendix, too, is available

only online, on the Web page of the book.

The Fifth Edition
The production of this fifth edition has been guided by the many comments and
suggestions we received concerning the earlier editions, by our own observations
while teaching at Yale University, Lehigh University, and IIT Bombay, and by our
analysis of the directions in which database technology is evolving.

Our basic procedure was to rewrite the material in each chapter, bringing the older
material up-to-date, adding discussions on recent developments in database technol-
ogy, and improving descriptions of topics that students found difficult to understand.
As in the fourth edition, each chapter has a list of review terms that can help readers
review key topics covered in the chapter. Most chapters also have a tools section at
the end of the chapter that provides information on software tools related to the topic
of the chapter. We have also added new exercises and updated references.
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In the fifth edition, we have divided the exercises into two sets: practice exercises
and exercises. The solutions for the practice exercises are publicly available on the
Web page of the book. Students are encouraged to solve the practice exercises on
their own, and later use the solutions on the Web page to check their own solutions.
Solutions to the other exercises are available only to instructors (see "Instructor's
Note," below, for information on how to get the solutions).

Instructor's Note
The book contains both basic and advanced material, which might not be covered in
a single semester. We have marked several sections as advanced, using the symbol
xx. These sections may be omitted if so desired, without a loss of continuity. Exercises
that are difficult (and can be omitted) are also marked using the symbol ",rx."

It is possible to design courses by using various subsets of the chapters. We outline
some of the possibilities here:

o Sections of Chapter 4 from Section 4.6 onward may be omitted from an intro-
ductory course.

o Chapter 5 can be omitted if students will not be using relational calculus, QBE
or Datalog as part of the course.

o Chapters 9 (Object-Based Databases), 10 (XML), and 74 (Query Optimization)
can be omitted from an introductory course.

o Both our coverage of transaction processing (Chapters 15 through 17) and our
coverage of database-system architecture (Chapters 20 through 22) consist of
an overview chapter (Chapters 15 and 20, respectively), followed by chap-
ters with details. You might choose to use Chapters 15 and 20, while omitting
Chapters 16, 17 , 21, and 22, if you defer these latter chapters to an advanced
course.

o Chapters 18 and 19, covering data mining and information retrieval, can be
used as self-study material or omitted from an introductory course.

o Chapters 23 through 25 are suitable for an advanced course or for self-study
by students.

o The case-study Chapters 26 through 29 are suitable for self-study by students.

Model course syllabi, based on the text, can be found on the Web home page of the
book (see the following section).

Web Poge qnd Teqching Supplements
A Web home page for the book is available at the URL:

http ://www d b- boo k. co m
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The Web page contains:

o Slides covering all the chapters of the book

o Answers to the practice exercises

o Laboratory material

o The three appendices

o An up-to-date errata list

o Supplementary material contributed by users of the book

The following additional material is available only to faculty:

o An instructor manual containing solutions to all exercises in the book

r A question bank containing extra exercises

For more information about how to get a copy of the instructor manual and the ques-
tion bank, please send electronic mail to customer.service@mcgraw-hill.com. In the
United States, you may call800-338-3987. The McGraw-Hill Web page for this book
is

http ://www. m h he. com/si I berschatz

Contqcting Us qnd Other Users
We have endeavored to eliminate typos, bugs, and the like from the text. But, as in
new releases of software, bugs probably remain; an up-to-date errata list is accessible
from the book's home page. We would appreciate it if you would notify us of any
errors or omissions in the book that are not on the current list of errata.

We would be glad to receive suggestions on improvements to the books. We also
welcome any contributions to the book Web page that could be of use to other read-
ers, such as programming exercises, project suggestions, online labs and tutorials,
and teaching tips.

Email should be addressed to db-book@cs.yale.edu. Any other correspondence
should be sent to Avi Silberschatz, Department of Computer Science, Yale University,
51 Prospect Street, P.O. Box 208285, New Haven, CT 06520-8285 USA.

We also provide a mailing list through which users of our book can communicate
among themselves and with us, and receive updates on the book and other related
information. The list is moderated, so you will not receive junk mail on the list. Please
follow the mailing list link from the book's home page to subscribe to the mailing list.
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A database-management system (DBMS) is a collection of interrelated data and a
set of programs to access those data. The collection of data, usually referred to as the
database, contains information relevant to an enterprise. The primary goal of a DBMS
is to provide a way to store and retrieve database information that is both conaenient
and efficient.

Database systems are designed to manage large bodies of information. Manage-
ment of data involves both defining structures for storage of information and pro-
viding mechanisms for the manipulation of information. In addition, the database
system must ensure the safety of the information stored, despite system crashes or
attempts at unauthorized access. If data are to be shared among several users, the
system must avoid possible anomalous results.

Because information is so important in most organizations, computer scientists
have developed a large body of concepts and techniques for managing data. These
concepts and techniques form the focus of this book. This chapter briefly introduces
the principles of database systems.

1.1 Dqtqbqse-System Applicqtions
Databases are widely used. Here are some representative applications:

o Banking: For customer information, accounts, loans, and banking transactions.

o Aiilines: For reservations and schedule information. Airlines were among the
first to use databases in a geographically distributed manner.

o Uniaersities: For student information/ course registrations, and grades.

c Credit card transoctions:For purchases on credit cards and generation of month-
ly statements.
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o Telecommunication: For keeping records of calls made, generating monthly bills,
maintaining balances on prepaid calling cards, and storihg information about
the communication networks.

o Finance: For storing information about holdings, sales, and purchases of finan-
cial instruments such as stocks and bonds; also for storing real-time market
data to enable on-line trading by customers and automated trading by the
firm.

. Sales: For customer, product, and purchase information.

o On-line retailers: For sales data noted above plus on-line order tracking/ gen-
eration of recommendation lists, and maintenance of on-line product evalua-
tions.

o Manufacturing:For management of the supply chain and for tracking produc-
tion of items in factories, inventories of items in warehouses and stores, and
orders for items.

. Human resoltrces For information about employees, salaries, payroll taxes, ben-
efits, and for generation of paychecks.

As the list illustrates, databases form an essential part of almost all enterprises today.
Over the course of the last four decades of the twentieth century, use of databases

grew in all enterprises. In the early days, very few people interacted directly with
database systems, although without realizing it they interacted with databases in-
directly-through printed reports such as credit card statements, or through agents
such as bank tellers and airline reservation agents. Then automated teller machines
came along and let users interact directly with databases. Phone interfaces to com-
puters (interactive voice response systems) also allowed users to deal directly with
databases-a caller could dial a number, and press phone keys to enter information
or to select alternative options, to find flight arrival/departure times, for example, or
to register for courses in a university.

The Internet revolution of the late 1990s sharply increased direct user access to
databases. Organizations converted many of their phone interfaces to databases into
Web interfaces, and made a variety of services and information available online. For
instance, when you access an online bookstore and browse a book or music collec-
tion, you are accessing data stored in a database. When you enter an order online,
your order is stored in a database. When you access a bank Web site and retrieve
your bankbalance and transaction information, the information is retrieved from the
bank's database system. When you access a Web site, information about you may be
retrieved from a database to select which advertisements you should see. Further-
more, data about your Web accesses may be stored in a database.

Thus, although user interfaces hide details of access to a database, and most people
are not even aware they are dealing with a database, accessing databases forms an
essential part of almost everyone's life today.

The importance of database systems can be judged in another way-today, data-
base system vendors like Oracle are among the largest software companies in the
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world, and database systems form an important part of the product line of more
diversified companies like Microsoft and IBM.

1.2 Purpose of Dqtqbqse Systems
Database systems arose in response to early methods of computerizedmanagement
of commercial data. As an example of such methods, typical of the 1950s, consider
part of a bank enterprise tha! among other data, keeps information about all cus-
tomers and savings accounts. One way to keep the information on a computer is to
store it in operating system files. To allow users to manipulate the information, the
system has a number of application programs that manipulates the files, including
programs to:

o Debit or credit an account

o Add a new account

o Find the balance of an account

o Generate monthly statements

System programmers wrote these application programs to meet the needs of the
bank.

New application programs are added to the system as the need arises. For exam-
ple, suppose that a savings bank decides to offer checking accounts. As a result, the
bank creates new permanent files that contain information about all the checking ac-
counts maintained in the bank, and it may have to write new application programs
to deal with situations that do not arise in savings accounts, such as overdrafts. Thus,
as time goes by, the system acquires more files and more application programs.

This typical file-processing system is supported by a conventional operating sys-
tem. The system stores permanent records in various files, and it needs different
application programs to extract records from, and add records to, the appropriate
files. Before database management systems (DBMSs) came along, organizations usu-
ally stored information in such systems.

Keeping organizational information in a file-processing system has a number of
major disadvantages:

o Data redundancy and inconsistency. Since different programmers create the
files and application programs over a long period, the various files are likely
to have different structures and the programs may be written in several pro-
gramming languages. Moreovel, the same information may be duplicated in
several places (files). For example, the address and telephone number of a par-
ticular customer may appear in a file that consists of savings-account records
and in a file that consists of checking-account records. This redundancy leads
to higher storage and access cost. In addition, it may lead to data inconsis-
tency; that is, the various copies of the same data may no longer agree. For
example, a changed customer address may be reflected in savings-account
records but not elsewhere in the system.
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r Difficulty in accessing data. Suppose that one of the bank officers needs to

find out the names of all customers who live within a particular postal-code

area. The officer asks the data-processing department to generate such a list.

Because the designers of the original system did not anticipate this request,

there is no application program on hand to meet it. There is, however, an ap-

plication program to generate the list of all customers. The bank officer has

now two choices: either obtain the list of all customers and extract the needed

information manually or ask a system programmer to write the necessary

application program. Both alternatives are obviously unsatisfactory. Suppose

that such a program is written, and that, several days later, the same officer

needs to trim that list to include only those customers who have an account

balance of $10,000 or more. As expected, a program to generate such a list does

not exist. Again, the officer has the preceding two options, neither of which is

satisfactory.
The point here is that conventional file-processing environments do not al-

Iow needed data to be retrieved in a convenient and efficient manner. More

responsive data-retrieval systems are required for general use.

o Data isolation. Because data are scattered in various files, and files may be in

different formats, writing new application programs to retrieve the appropri-

ate data is difficult.

o Integrity problems. The data values stored in the database must satisfy cer-

tain types of consistency constraints. For example, the balance of certain types

of bank accounts may never fall below a prescribed amount (say, $25). Devel-

opers enforce these constraints in the system by adding approPriate code in

the various application programs. However, when new constraints are added,

it is difficult to change the programs to enforce them. The problem is com-

pounded when constraints involve several data items from different files.

o Atomicity problems. A computer system, Iike any other mechanical or elec-

trical device, is subject to failure. In many applications, it is crucial that, if a

failure occurs, the data be restored to the consistent state that existed prior to

the failure. Consider a program to transfer $50 from account A to account B.

If a system failure occurs during the execution of the Program, it is possible

that the $50 was removed from account A but was not credited to account B,

resulting in an inconsistent database state. Clearly, it is essential to database

consistency that either both the credit and debit occur, or that neither occur.

That is, the funds transfer must be atomic-it must happen in its entirety or

not at all. It is difficult to ensure atomicity in a conventional file-processing

system.

o Concurrent-access anomalies. For the sake of overall pelformance of the sys-

tem and faster response, many systems allow multiple users to update the

data simultaneously. Indeed, today, the largest Internet retailers may have mil-

lions of accesses per day to their data by shoppers. In such an environment,

interaction of concurrent updates is possible and may result in inconsistent
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data. Consider bank account A, containing $500. If two customers withdraw
funds (say $50 and $100, respectively) from account A at about the same time,
the result of the concurrent executions may leave the account in an incorrect
(or inconsistent) state. Suppose that the p.ogratrrr executing on behalf of each
withdrawal read the old balance, reduce that value by the amount being with-
drawn, and write the result back. If the two programs run concurrently, they
may both read the value $500, and write back $450 and 9400, respectively. De-
pending on which one writes the value last, the account may contain either
$450 or $400, rather than the correct value of $350. To guard against this pos-
sibility, the system must maintain some form of supervision. But supervision
is difficult to provide because data may be accessed by many different appli-
cation programs that have not been coordinated previously.

r Security problems. Not every user of the database system should be able to
access all the data. For example, in a banking system, payroll personnel need
to see only that part of the database that has information about the various
bank employees. They do not need access to information about customer ac-
counts. But" since application programs are added to the file-processing sys-
tem in an acl hoc manner, enforcing such security constraints is difficult.

These difficulties, among others, prompted the development of database systems.
In what follows, we shall see the concepts and algorithms that enable database sys-
tems to solve the problems with file-processing systems. In most of this book, we
use a bank enterprise as a running example of a typical data-processing application
found in a corporation.

1.3 View of Dqtq
A database system is a collection of interrelated data and a set of programs that allow
users to access and modify these data. A major purpose of a database system is to
provide users with an abstrnct view of the data. That is, the system hides certain
details of how the data are stored and maintained.

1.3.1 Dqtq Abstrqction
For the system to be usable, it must retrieve data efficiently. The need for efficiency
has led designers to use complex data structures to represent data in the database.
Since many database-system users are not computer trained, developers hide the
complexity from users through several levels of abstraction, to simplify users' inter-
actions with the system:

o Physical level. The lowest level of abstraction describes hout the data are actu-
ally stored. Ihe physical level describes complex low-level data structures in
detail.

o Logical level. The next-higher level of abstraction describes rnhat data are
stored in the database, and what relationships exist among those data. The
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Figure 1.1 The three levels of data abstraction.

logical level thus describes the entire database in terms of a small number
of relatively simple structures. Although implementation of the simple struc-
tures at the logical level may involve complex physical-level structures, the
user of the logical level does not need to be aware of this complexity. Database
administrators, who must decide what information to keep in the database,
use the logical level of abstraction.

o View level. The highest level of abstraction describes only part of the entire
database. Even though the logical level uses simpler structures, complexity
remains because of the variety of information stored in a large database. Many
users of the database system do not need all this information; instead, they
need to access only a part of the database. The view level of abstraction exists
to simplify their interaction with the system. The system may provide many
views for the same database.

Figure 1.1 shows the relationship among the three levels of abstraction.
An analogy to the concept of data types in programming languages may clarify

the distinction among levels of abstraction. Most high-level programming languages
support the notion of a structured type. For example, in a Pascal-like language/ we
may declare a record as follows:

type customer = record.
customer-id: string;
customer-name : string;
customer -street : string;
customertity: string;

end;

This code defines a new record type called customer with four fields. Each field has
a name and a type associated with it. A banking enterprise may have several such
record types, including
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. nccount, with fields account_number andbalance

c employee, with fields employee-name and salary

At the physical level, a cLtstomer, account, or employee record can be described as a
block of consecutive storage locations (for example, words or bytes). The compiler
hides this level of detail from programmers. Similarly, the database system hides
many of the lowest{evel storage details from database programmers. Database ad-
ministrators, on the other hand, may be aware of certain details of the physical orga-
nization of the data.

At the logical level, each such record is described by a type definition, as in the
previous code segment, and the interrelationship of these record types is defined as
well. Programmers using a programming language work at this level of abstraction.
Similarly, database administrators usually work at this level of abstraction.

Finally, at the view level, computer users see a set of application programs that
hide details of the data types. Similarly, at the view level" several views of the database
are defined, and database users see these views. In addition to hiding details of the
logical level of the database, the views also provide a security mechanism to prevent
users from accessing certain parts of the database. For example, tellers in a bank see
only that part of the database that has information on customer accounts; they cannot
access information about salaries of employees.

1.3.2 lnstqnces qnd Schemqs
Databases change over time as information is inserted and deleted. The collection of
information stored in the database at a particular moment is called an instance of the
database. The overall design of the datlbase is called the database schema. Schemas
are changed infrequently, if at all.

The concept of database schemas and instances can be understood by analogy to
a program written in a programming language. A database schema corresponds to
the variable declarations (along with associated type definitions) in a program. Each
variable has a particular value at a given instant. The values of the variables in a
program at a point in time correspond to aninstance of a database schema.

Database systems have several schemas, partitioned according to the levels of ab-
straction. The physical schema describes the database design at the physical level,
while the logical schema describes the database design at thelogical level. A database
may also have several schemas at the view level, sometimes called subschemas, that
describe different views of the database.

Of these, the logical schema is by far the most important, in terms of its effect on
application programs, since programmers construct applications by using the logical
schema. The physical schema is hidden beneath the logical schema, and can usually
be changed easily without affecting application programs. Application programs are
said to exhibit physical data independence if they do not depend on the physical
schema, and thus need not be rewritten if the physical schema changes.

We study languages for describing schemas, after introducing the notion of data
models in the next section.
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1.3.3 Dqts Models
Underlying the structure of a database is the data model: a collection of conceptual
tools for describing data, data relationships, data semantics, and consistency con-
straints. A data model provides a way to describe the design of a database at the
physical, Iogical, and view level.

There are a number of different data models that we will cover in the text. The
data models can be classified in four different categories:

Relational Model. The relational model uses a collection of tables to represent
both data and the relationships among those data. Each tabie has multiple
columns, and each column has a unique name. The relational model is an
example of a record-based model. Record-based models are so named because
the database is structured in fixed-format records of several types. Each table
contains records of a particular type. Each record type defines a fixed number
of fields, or attributes. The columns of the table correspond to the attributes of
the record type. The relational data model is the most widely used data model,
and a vast majority of current database systems are based on the relational
model. Chapters 2 through 7 cover the relational model in detail.

The Entity-Relationship Model. The entity-relationship (E-R) data model is
based on a perception of a real world that consists of a collection of basic
objects, called entities, and of relationships among these objects. An entity is a
"thing" or "object" in the real world that is distinguishable from other objects.
The entity-relationship model is widely used in database design, and Chapter
6 explores it in detail.

Object-Based Data Model. The object-oriented data model is another data
model that has seen increasing attention. The object-oriented model can be
seen as extending the E-R model with notions of encapsulation, methods (func-
tions), and object identity. The object-relational data model combines features
of the object-oriented data model and relational data model. Chapter 9 exam-
ines the object-based data model.

Semistructured Data Model. The semistructured data modelpermits the spec-
ification of data where individual data items of the same type may have dif-
ferent sets of attributes. This is in contrast to the data models mentioned ear-
lier, where every data item of a particular tyPe must have the same set of at-
tributes. The Extensible Markup Language (XML) is widely used to represent
semistructured data. Chapter 10 covers it.

Historically, the network data model and the hierarchical data model preceded
the relational data model. These models were tied closely to the underlying imple-
mentation, and complicated the task of modeling data. As a result they are used little
now, except in old database code that is still in service in some places. They are out-
lined in Appendices A and B for interested readers.
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1.4 Dqtqbqse Lqnguqges
A database system provides a data-definition language to specify the database schema
and a data-manipulation language to express database queries and updates. In prac-
tice, the data-definition and data-manipulation languages are not two separate lan-
guagesi instead they simply form parts of a single database language, such as the
widely used SQL language.

1.4.1 Dotq-Mqnipulotion Lqnguqge
A data-manipulation language (DML) is a language that enables users to access or
manipulate data as organizedby the appropriate data model. The types of access are:

o Retrieval of information stored in the database

o Insertion of new information into the database

o Deletion of information from the database

o Modification of information stored in the database

There are basically two types:

o Procedural DMLs require a user to specify whqt dataare needed and. how to
get those data.

o Declarative DMLs (also referred to as nonprocedural DMLs) require a user to
specify what data are needed without specifying how to get those data.

Declarative DMLs are usually easier to learn and use than are procedural DMLs.
However, since a user does not have to specify how to get the data, the database
system has to figure out an efficient means of accessing data.

A query is a statement requesting the retrieval of information. The portion of a
DML that involves information retrieval is called a query language. Although tech-
nically incorrect, it is common practice to use the terms query lnnguage and datn-
manipulation language synonymously.

There are a number of database query languages in use, either commercially or
experimentally. We study the most widely used query language, SQL, in Chapters 3
and 4. We also study some other query languages in Chapter 5.

The levels of abstraction that we discussed in Section 1.3 apply not only to defining
or structuring data, but also to manipulating data. At the physical level, we must
define algorithms that allow efficient access to data. At higher levels of abstraction,
we emphasize ease of use. The goal is to allow humans to interact efficiently with the
system. The query processor component of the database system (which we study in
Chapters 13 and 14) translates DML queries into sequences of actions at the physical
level of the database system.
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1.4.2 Dqtq-Definition Longuoge

We specify a database schema by a set of definitions expressed by a special language
called a data-definition language (DDL). The DDL is also used to specify additional
properties of the data.

We specify the storage structure and access methods used by the database system
by a set of statements in a special type of DDL called a data storage and definition lan-
guage. These statements define the implementation details of the database schemas,
which are usually hidden from the users.

The data values stored in the database must satisfy certain consistency constraints.
For example, suppose the balance on an account should not fall below $100. The DDL
provides facilities to specify such constraints. The database systems check these con-
straints every time the database is updated. In general, a constraint can be an ar-
bitrary predicate pertaining to the database. Howevel, arbitrary predicates may be
costly to test. Thus, database systems concentrate on integrity constraints that can be
tested with minimal overhead:

r Domain Constraints. A domain of possible values must be associated with
every attribute (for example, integer WPes, character WPes, date/time types).
Declaring an attribute to be of a particular domain acts as a constraint on the
values that it can take. Domain constraints are the most elementary form of
integrity constraint. They are tested easily by the system whenever a new data
item is entered into the database.

o Referential Integrity. There are cases where we wish to ensure that a value
that appears in one relation for a given set of attributes also appears for a
certain set of attributes in another relation (referential integrity). Database
modifications can cause violations of referential integrity. When a referential-
integrity constraint is violated, the normal procedure is to reject the action that
caused the violation.

o Assertions. An assertion is any condition that the database must always sat-
isfy. Domain constraints and referential-integrity constraints are special forms
of assertions. However, there are many constraints that we cannot express by
using only these special forms. For example, "Every loan has at least one cus-
tomer who maintains an account with a minimum balance of $1000.00" must
be expressed as an assertion. When an assertion is created, the system tests
it for validity. If the assertion is valid, then any future modification to the
database is allowed only if it does not cause that assertion to be violated.

o Authorization. We may want to differentiate among the users as far as the
type of access they are permitted on various data values in the database. These
differentiations are expressed in terms of authorization, the most common be-
ing: read authorization, which allows reading, but not modification, of data;
insert authorization, which allows insertion of new data, but not modifica-
tion of existing data; update authorization, which allows modification, but
not deletion, of data;.and delete authorization, which allows deletion of data.
We may assign the user all, none, or a combination of these types of autho-
rization.
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The DDL, just like any other programming language, gets as input some instruc-
tions (statements) and generates some output. The output of the DDL is placed in the
dafa dictionary, which contains metadata-that is, data about data. The data dic-
tionary is considered to be a special type of table, which can only be accessed and
updated by the database system itself (not a regular user). A database system con-
sults the data dictionary before reading or modifying actual data.

1.5 Relqtionol Dqtqboses
A relational database is based on the relational model and uses a collection of tables
to representboth data and the relationships among those data. It also includes a DML
and DDL. Most commercial relational database systems employ the SQL language,
which we cover in this section and which will be covered in great detail in Chapters
3 and 4. In Chapter 5 we discuss other influential languages.

1.5.1 Tqbles
Each table has multiple columns, and each column has a unique name. Figure 1.2
presents a sample relational database comprising three tables: one shows details of
bank customers, the second shows accounts, and the third shows which accounts
belong to which customers.

The first table, the customer table, shows, for example, that the customer identified
by customerjd 192-83-7465 is named Johnson and lives at 12 Alma St. in Palo Alto.
The second tabLe, accounf, shows, for example, that account 4-101 has a balance of
$500, and 4-201 has a balance of $900.

The third table shows which accounts belong to which customers. For example,
account number 4-101 belongs to the customer whose customerid is 1,92-83-7465,
namelyfohnson, and customers 1,92-83-7465 (Johnson) and079-28-3746 (Smith) share
account number 4-201 (they may share a business venture).

The relational model is an example of a record-based model. Record-based mod-
els are so named because the database is structured in fixed-format records of several
types. Each table contains records of a particular type. Each record type defines a
fixed number of fields, or attributes. The columns of the table correspond to the at-
tributes of the record type.

It is not hard to see how tables may be stored in files. For instance, a special char-
acter (such as a comma) may be used to delimit the different attributes of a record,
and another special character (such as a new-line character) may be used to de-
limit records. The relational model hides such low-level implementation details from
database developers and users.

The relational data model is the most widely used data model, and a vast majority
of current database systems are based on the relational model. Chapters 2 throughT
cover the relational model in detail.

We also note that it is possible to create schemas in the relational model that have
problems such as unnecessarily duplicated information. For example, suppose we
store account-number as an attribute of the customer record. Then, to represent the fact
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Figure1.2 A sample relational database.

that accounts 4-101 and 4-201 both belong to customer Johnson (with customer-id
192-83-7465), we would need to store two rows in the customer table. The values for
custlmer-nnme, cltstomerstreet, and customer-city for ]ohnson would be unnecessarily
duplicated in the two rows. In Chapter 7, we shall study how to distinguish good
schema designs from bad schema designs.

1.5.2 Dqtq-Mqnipulotion Lqnguqge

The query language of SQL is nonprocedural. It takes as input several tables (possibly

only one) and always returns a single table. Here is an example of an SQL query that
finds the names of all customers who reside in Harrison:

]ohnson
Hayes
Tirrner
Jones
Lindsay
Smith

12 Alma St.
3 Main St.
123 Putnam Ave.
100 Main St.
175 Park Ave.
72 North St.

Harrison
Stamford
Harrison
Pittsfield

192-83-7465
677-89-9011,
782-73-6091,
327-12-3123
336-66-9999
019-28-3746

(a) The customer table

A-101
A-21.5
A-1,02
A-305
A-201,
A-217
A-222

500
700
400
350
900
750
700

fu) The sccount table

192-83-7465
1.92-83-7465
019-28-3746
677-89-9011,
782-73-6091,
327-12-3723
336-66-9999
019-28-3746

A-101
A-201
A-21,5
A-1.02
A-305
A-217
A-222
A-201,

(c) The depositor table
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sele ct cus t omer. cust omer -name

1H,'::::#tr,r. cust omer cit! =, Harrison,

The query specifies that those rows from the table customer where the customerrity is
Harrison must be retrieved, and the customer-name attribute of these rows must be
displayed. More specifically, the result of executing this query is a table with a single
columnlabeled customer-name,andasetof rows,eachof whichcontainsthenameof a
customer whose customer-city is Harrison. If the query is run on the table in Figure7.2,
the result will consist of two rows, one with the name Hayes and the other with the
name Jones.

Queries may involve information from more than one table. For instance, the fol-
lowing query finds the account numbers and corresponding balances of all accounts
owned by the customer with customer-id 192-83-7465.

select account.account-numb er, account.b alance
fuom depositor, account
where depositor.cust omer jd =' 792-83-7 465' and

depositor.accountnumb er = account.accountttumb er

If the above query were run on the tables in Figure 7.2, the system would find that
the two accounts numbered 4-101 and 4-201 are owned by customer 792-83-7465
and the result will consist of a table with two columns (qccount_number,balancd and
two rows (,4.-101, 500) and (A-207,900).

1.5.3 Dqtq-Definition Longuoge
SQL provides a rich DDL that allows one to define tables, integrity constraints, asser-
tions, etc.

For instance, the following statement in the SQL language defines the account table:

create table nccount
(q c c o un t -n umb er char (7 0),
bnlance integer)

Execution of the above DDL statement creates the account table. In addition, it up-
dates the data dictionary, which contains metadata (7.4.2). The schema of a table is
an example of metadata.

1.5.4 Dqtqbqse Access from Applicotion Progrqms
SQL is not as powerful as a universal Turing machine; that is, there are some computa-
tions that can not be obtained by any SQL query. Such computations must be written
in a host language, such as Cobol, C, C++, or lava, with embedded SQL queries that
access the data in the database. Application programs are programs that are used
to interact with the database in this fashion. Examples in a banking system are pro-
grams that generate paynoll checks, debit accounts, credit accounts, or transfer funds
between accounts.
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To access the database, DML statements need to be executed from the host lan-

guage. There are two ways to do this:

o By providing an application program interface (set of procedures) that can be

used to send DML and DDL statements to the database and retrieve the results.

The Open Database Connectivity (ODBC) standard defined by Microsoft

for use with the C language is a commonly used application program inter-

face standard. The ]ava Database Connectivity fDBC) standard provides cor-

responding features to the Java language.

o By extending the host language syntax to embed DML calls within the host

language program. Usually, a special character prefaces DML calls, and a pre-

processor, called the DML precompiler, converts the DML statements to nor-

mal procedure calls in the host language.

1.6 Dqtobqse Design
Database systems are designed to manage large bodies of information. These Iarge
bodies of information do not exist in isolation. They are part of the operation of some
enterprise whose end product may be information from the database or may be some
device or service for which the database plays only a supporting role.

Database design mainly involves the design of the database schema. The design
of a complete database application environment that meets the needs of the enter-
prise being modeled requires attention to a broader set of issues. In this text, we fo-
cus initially on the writing of database queries and the design of database schemas.
Chapter 8 discusses the overall process of application design.

1.6.1 Design Process
A high-level data model serves the database designer by providing a conceptual
framework in which to specify, in a systematic fashion, what the data requirements
of the database users are, and how the database will be structured to fulfill these
requirements. The initial phase of database design, then, is to characterize fully the
data needs of the prospective database users. The database designer needs to interact
extensively with domain experts and users to carry out this task. The outcome of this
phase is a specification of user requirements.

Next, the designer chooses a data model, and by applying the concepts of the
chosen data model, translates these requirements into a conceptual schema of the
database. The schema developed at this conceptual-design phase provides a detailed
overview of the enterprise. The designer reviews the schema to confirm that all data
requirements are indeed satisfied and are not in conflict with one another. The de-
signer can also examine the design to remove any redundant features. The focus at
this point is describing the data and their relationships, rather than on specifying
physical storage details.
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In terms of the relational model, the conceptual-design process involves decisions
onwhat attributes we want to capture in the datab ase andhow to group these attributes
to form the various tables. The "what" part is basically a business decision, and we
will not d.iscuss it further in this text. Tire "how" part is mainly a computer science
problem. There are principally two ways to tackle the problem. The first one is to use
the entity-relationship model (Section 1.6.3); the other is to employ a set of algorithms
(collectively knor,rm as normalization) that takes as input the set of all attributes and
generates a set of tables (Section1.6.4).

A fully developed conceptual schema will also indicate the functional require-
ments of the enterprise. In a specification of functional requirements, users describe
the kinds of operations (or transactions) that will be performed on the data. Example
operations include modifying or updating data, searching for and retrieving specific
data, and deleting data. At this stage of conceptual design, the designer can review
the schema to ensure it meets functional requirements.

The process of moving from an abstract data model to the implementation of the
database proceeds in two final design phases. In the logical-design phase, the de-
signer maps the high-level conceptual schema onto the implementation data model
of the database system that will be used. The designer uses the resulting system-
specific database schema in the subsequent physical-design phase, in which the
physical features of the database are specified. These features include the form of file
organization and the internal storage structures; they are discussed in Chapter 11.

1.6.2 Dqtqbqse Design for Bqnking Enterprise
To illustrate the design process, let us examine how a database for a banking enter-
prise could be designed. The initial specification of user requirements may be based
on interviews with the database users, and on the designer's own analysis of the
enterprise. The description that arises from this design phase serves as the basis for
specifying the conceptual structure of the database. Here are the major characteristics
of the banking enterprise.

The bank is organized into branches. Each branch is located in a particular
city and is identified by a unique name. The bank monitors the assets of each
branch.

Bank customers are identified by their customeridvalues. The bank stores each
customer's name/ and the street and city where the customer lives. Customers
may have accounts and can take out loans. A customer may be associated with
a particular banker, who may act as a loan officer or personal banker for that
customer.

The bank offers two types of accounts-savings and checking accounts. Ac-
counts can be held by more than one customer,lnd. acustomeican have more
than one account. Each account is assigned a unique account number. The
bank maintains a record of each account's balance and the most recent date on
which the account was accessed by each customer holding the account. In ad-
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dition, each savings account has an interest rate, and overdrafts are recorded
for each checking account.

o The bank provides its customers with loans. A loan originates at a particular
branch and can be held by one or more customers. A loan is identified by a
unique loan number. For each loan, the bank keeps track of the loan amount
and the loan payments. Although a loan-payment number does not uniquely
identify a particular payment among those for all the bank's loans, a payment
number does identify a particular payment for a specific loan. The date and
amount are recorded for each payment.

o Bank employees are identified by their employee-id values. The bank adminis-
tration stores the name and telephone number of each employee, the names
of the employee's dependents, and the employee-id number of the employee's
manager. The bank also keeps track of the employee's start date and, thus,
length of employment.

In a real banking enterprise, the bank would keep track of deposits and with-
drawals from savings and checking accounts, just as it keeps track of payments to
loan accounts. Since the modeling requirements for that tracking are similar, and we
would like to keep our example application small, we do not keep track of such de-
posits and withdrawals in our model.

1.6.3 The Entity-Relotionship Model

The entity-relationship (E-R) data model is based on a perception of a real world that
consists of a collection of basic objects, called entities, and of relationships arr.ong these
objects. An entity is a "thing" or "object" in the real world that is distinguishable
from other objects. For example, each person is an entity, and bank accounts can be
considered as entities.

Entities are described in a database by a set of attributes. For example, the at-
tributes account-number and balance may describe one particular account in a bank,
and they form attributes of the nccount entity set. Similarly, attributes customer-name,
customer-streef address and customerity may describe a customer entity'

An extra attribute customer-id is used to uniquely identify customers (since it may
be possible to have two customers with the same name, street address, and city).
A unique customer identifier must be assigned to each customer. In the United States,
many enterprises use the social-security number of a person (a unique number the
U.S. government assigns to every person in the United States) as a customer
identifier.

A relationship is an association among several entities. For example, a depositor
relationship associates a customer with each account that she has. The set of all enti-
ties of the same type and the set of all relationships of the same type are termed an
entity set and relationship sef respectively.

The overall logical structure (schema) of a database can be expressed graphically
by an E-R diagram, which is built up from the following components:
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Figure 1.3 A sample E-R diagram.

o Rectangles, which represent entity sets

o Ellipses, which represent attributes

o Diamonds, which represent sets of relationships among members from each
of several entity sets

o Lines, which link attributes to entity sets and entity sets to relationships

Each component is labeled with the entity or relationship that it represents.
As an illustration, consider part of a database banking system consisting of

customers and of the accounts that these customers have. Figure 1.3 shows the cor-
responding E-R diagram. The E-R diagram indicates that there are two entity sets,
custolner and account, with attributes as outlined earlier. The diagram also shows a
relationship depositor between customer and account.

In addition to entities and relationships, the E-R model represents certain con-
straints to which the contents of a database must conform. One important constraint
is mapping cardinalities, which express the number of entities to which another en-
tity can be associated via a relationship set. For example, if each account must belong
to only one customer, the E-R model can express that constraint.

The entity-relationship model is widelyused in database design, and Chapter 6
explores it in detail.

1.6.4 Normqlizqtion

Another method for designing a relational database is to use a process commonly
known as normalization. The goal is to generate a set of relation schemas that al-
lows us to store information without unnecessary redundancy, yet also allows us to
retrieve information easily. The approach is to design schemas that are in an appro-
priate normnl t'orm. To determine whether a relation schema is in one of the desirable
normal forms, we need additional information about the real-world enterprise that
we are modeling with the database. The most common approach is to use functional
dependencies, which we cover in Section 7.4.

To understand the need for normalization, let us look at what can go wrong in a
bad database design. Among the undesirable properties that a bad design may have
are:
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192-83-7465 | A-10i I 500
192-83-7465 | 4-201 | 900
079-28-3746 1 e-ZtS I ZOO
677-89-9011 | A-102 | 400
782-73-6091 | 4-305 | 350
321.-72-31,23 1 e-ZtZ I ZSO
336-66-9999 1 A-222 | 700
019-28-3746 | a-ZOr I SOO

Figure 1.4 The depositor' table.

o Repetition of information

o Inability to represent certain information

We shall discuss these problems with the help of a modified database design for our
banking example

Suppose that instead of having the two separate tables account and depositor, we
have a single table, depositor' , that combines the information from the two tables (as

depicted in Figure 1.4). Notice that there are two rows in depositor'that contain infor-
mation about account 4-201. The repetition of information in our alternative design
is undesirable. Repeating information wastes space. Furthermore, it complicates up-
dating the database. Suppose that. we wish to change the account balance of A-207
from $900 to $950. This change must be reflected in the two rows; contrast this with
the original design, where this will result in an update in a single row. Thus, updates
are more costly under the alternative design than under the original design. When
we perform the update in the alternative database, we must ensure that eaery tuple
pertaining to account 4-201 is updated, or else our database will show two different
balance values for account A-207.

Let's shift our attention to the issue of "inability to represent certain information."
Suppose that instead of having the two separate tables customer and depositor, we
have a single table, customer', that combines the information from the two tables
(as depicted in Figure 1.5). We cannot represent directly the information concern-
ing a customer (customer-id, customer:name, custlmer-street, customer-city) unless that
customer has at least one account at the bank. This is because rows in the customer'
table require values for accountnumber.

One solution to this problem is to introduce null values. The null value indicates
that the value does not exist (or is not known). An unknown value may be either
missing (the value does exist, but we do not have that information) or not known (we

do not know whether or not the value actually exists). As we shall see later, null val-
ues are difficult to handle, and it is preferable not to resort to them. If we are not
willing to deal with null values, then we can create a particular item of customer
information only when the customer has an account in the bank (note that a cus-
tomer may have a loan but no account). Furthermore, we would have to delete this
information when the customer closes his account. Clearly, this situation is undesir-



1.7 Object-Based and Semist{uctured Databases

192-83-7465
792-83-7465
677-89-9011
182-73-6091
321,-12-3123
336-66-9999
019-28-3746

Johnson
Johnson
Hayes
Turner
|ones
Lindsay
Smith

12 Alma St.
12 Alma St.
3 Main St.
123 Putnam St.
100 Main St.
175 Park Ave.
72 North St.

Palo Alto
Palo Alto
Harrison
Stamford
Harrison
Pittsfield
Rye

A-101
A-201,
A-702
A-305
A-217
A-222
A-207

Figure 1.5 The customer' table.

able, since, under our original database design, the customer information would be
available regardless of whether or not he has an account in the bank, and without
resorting to null values.

1.7 Object-Bqsed qnd Semistructured Dqtqbqses
Several application areas for database systems are limited by the restrictions of the
relational data model. As a result, researchers have developed several data models to
deal with these application domains. The data models that we will cover in the text
are the object-oriented and the object-relational data model, which are representative
of the object-based data models, and XML, which is representative of the semistruc-
tured data models.

1.7.1 Object-Bqsed Dqtq Models
The object-oriented data model is based on the object-oriented programming lan-
guage paradigm, which is now in wide use. Inheritance, object-identity, and encap-
sulation (information hiding), with methods to provide an interface to objects, are
among the key concepts of object-oriented programming that have found applica-
tions in data modeling. The object-oriented data model also supports a rich type sys-
tem, including structured and collection types. The object-oriented model can be seen
as extending the E-R model with notions of encapsulation, methods (functions), and
object identity.

The object-relational data model extends the traditional relational model with a
variety of features such as structured and collection types, as well as object orienta-
tion.

Chapter 9 examines the object-relational databases (that is, databases built on the
object-relational model), as well as the object-oriented databases (that is, databases
built on the object-oriented data model).

1.7.2 Semistructured Dqtq Models
Semistructured data models permit the specification of data where individual data
items of the same type may have different sets of attributes. This is in contrast with
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the data models mentioned earlier, where every data item of a particular type must

have the same set of attributes.
The XML language was initially designed as a way of adding markup informa-

tion to text documents, but has become important because of its applications in data

exchange. XML provides a way to represent data that have nested structure, and fur-

thermore allows a great deal of flexibility in structuring of data, which is important

for certain kinds of nontraditional data. Chapter 10 describes the XML language, dif-

ferent ways of expressing queries on data represented in XML, and transforming XML

data from one form to another.

1.8 Dqtq Storoge qnd Querying
A database system is partitioned into modules that deal with each of the responsibil-
ities of the overall system. The functional components of a database system can be
broadly divided into the storage manager and the query Processor components.

The storage manager is important because databases typically require a large
amount of storage space. Corporate databases range in size from hundreds of giga-
bytes to, for the largest databases, terabytes of data. A gigabyte is 1000 megabytes (1

billion bytes), and a terabyte is 1 million megabytes (1 trillion bytes). Since the main
memory of computers cannot store this much information, the information is stored
on disks. Data are moved between disk storage and main memory as needed. Since
the movement of data to and from disk is slow relative to the speed of the central
processing unit, it is imperative that the database system structure the data so as to
minimize the need to move data between disk and main memory.

The query processor is important because it helps the database system simplify
and facilitate access to data. High-level views help to achieve this goal; with them,
users of the system are not burdened unnecessarily with the physical details of the
implementation of the system. However, quick processing of updates and queries
is important. It is the job of the database system to translate updates and queries
written in a nonprocedural language, at the logical level, into an efficient sequence of
operations at the physical level.

1.8.1 Storoge Monoger
A storage manager is a program module that provides the interface between the low-
level data stored in the database and the application programs and queries submit-
ted to the system. The storage manager is responsible for the interaction with the file
manager. The raw data are stored on the disk by using the file system, which is usu-
ally providedby a conventional operating system. The storage manager translates
the various DML statements into low-level file-system commands. Thus, the storage
manager is responsible for storing, retrieving, and updating data in the database.

The storage manager components include:

o Authorization and integrity manager, which tests for the satisfaction of in-
tegrity constraints and checks the authority of users to access data'
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Tiansaction manager, which ensures that the database remains in a consistent
(correct) state despite system failures, and that concurrent transaction execu-
tions proceed without conflicting.

File manager, which manages the allocation of space on disk storage and the
data structures used to represent information stored on disk.

Buffer manager, which is responsible for fetchingdatafrom disk storage into
main memory, and deciding what data to cache in main memory. The buffer
manager is a critical part of the database system, since it enables the database
to handle data sizes that are much larger than the size of main memory.

The storage manager implements several data structures as part of the physical
system implementation:

Data files, which store the database itself.

Data dictionary, which stores metadata about the structure of the database, in
particular the schema of the database.

Indices, which can provide fast access to data items. Like the index in this
textbook, a database index provides pointers to those data items that hold a
particular value. For example, we could use an index to find all nccourzl records
with a particular account-number.Hashing is an alternative to indexing that is
faster in some but not all cases.

We discuss storage media, file structures, and buffer management in Chapter 11.
Methods of accessing data efficiently via indexing or hashing are discussed in Chap-
ter 12.

a

a

1.8.2 The Query Processor
The query processor components include

DDL interpreter, which interprets DDL statements and records the definitions
in the data dictionary.

DML compiler, which translates DML statements in a query language into an
evaluation plan consisting of low-level instructions that the query evaluation
engine understands.

A query can usually be translated into any of a number of alternative eval-
uation plans that all give the same result. The DML compiler also performs
query optimization; that is, it picks the lowest cost evaluation plan from among
the alternatives.

Query evaluation engine, which executes low-level instructions generated by
the DML compiler.



Chapter 1 Introduction

Query evaluation is covered in Chapter 13, while the methods by which the query op-

timizer chooses from among the possible evaluation strategies is discussed in Chap-

ter 14.

1.9 Trqnsqction Monogement
Often, several operations on the database form a single logical unit of work. An ex-
ample is a funds transfer, as in Section 1.2, in which one account (say A) is debited and
another account (say B) is credited. Clearly, it is essential that either both the credit
and debit occur, or that neither occur. That is, the funds transfer must happen in its
entirety or not at all. This all-or-none requirement is called atomicity. In addition, it
is essential that the execution of the funds transfer preserve the consistency of the
database. That is, the value of the sum A + B must be preserved. This correctness
requirement is called consistency. Finally, after the successfuI execution of a funds
transfer, the new values of accounts A and B must persist, despite the possibility of
system failure. This persistence requirement is called durability.

A transaction is a collection of operations that performs a single logical function
in a database application. Each transaction is a unit of both atomicity and consis-
tency. Thus, we require that transactions do not violate any database-consistency
constraints. That is, if the database was consistent when a transaction started, the
database must be consistent when the transaction successfully terminates. However,
during the execution of a transactiory it may be necessary temporarily to allow incon-
sistency, since either the debit of A or the credit of B must be done before the other.
This temporary inconsistency, although necessar!, ir:ray lead to difficulty if a failure
occurs.

It is the programmer's responsibility to define properly the various transactions,
so that each preserves the consistency of the database. For example, the transaction to
transfer funds from account A to account B could be defined to be composed of two
separate programs: one that debits account A, and another that credits account B. The
execution of these two programs one after the other will indeed preserve consistency.
However, each program by itself does not transform the database from a consistent
state to a new consistent state. Thus, those programs are not transactions.

Ensuring the atomicity and durability properties is the responsibility of the data-
base system itself -specifically, of the transaction-management component. In the
absence of failures, all transactions complete successfully, and atomicity is achieved
easily. However, because of various types of failure, a transaction may not always
complete its execution successfully. If we are to ensure the atomicity propeftY a failed
transaction must have no effect on the state of the database. Thus, the database must
be restored to the state in which it was before the transaction in question started exe-
cuting. The database system must therefore perform failure recovery, that is, detect
system failures and restore the database to the state that existed prior to the occur-
rence of the failure.

Finally, when several transactions update the database concurrently, the consis-
tency of data may no longer be preserved, even though each individual transac-
tion is correct. It is the responsibility of the concurrency-control manager to control
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the interaction among the concurrent transactions, to ensure the consistency of the
database.

The basic concepts of transaction processing are covered in Chapter 15. The man-
agement of concurrent transactions is covered in Chapter 16. Chapter 17 covers fail-
ure recovery in detail.

Database systems designed for use on small personal computers may not have
all these features. For example, many small systems allow only one user to access
the database at a time. Others do not offer backup and recovery, leaving that to the
user. These restrictions allow for a smaller data manager, with fewer requirements for
physical resources-especially main memory. Although such a low-cost, low-feature
approach is adequate for small personal databases, it is inadequate for a medium- to
large-scale enterprise.

The concept of a transaction has been applied broadly in database systems and
applications. While the initial use of transactions was in financial applications, the
concept is now used in real-time applications in telecommunication, as well as in
the management of long-duration activities such as product design or administrative
workflows. These broader applications of the transaction concept are discussed in
Chanter 25.

1.10 Dqtq Mining qnd Anolysis
The term data mining refers loosely to the process of semiautomatically analyzing
large databases to find useful patterns. Like knowledge discovery in artificial intelli-
gence (also called machine learning) or statistical analysis, data mining attempts to
discover rules and patterns from data. However, data mining differs from machine
learning and statistics in that it deals with large volumes of data, stored primarily on
disk. That is, data mining deals with "knowledge discovery in databases."

Some types of knowledge discovered from a database can be represented by a set
of rules. The following is an example of a rule, stated informally: "Young women
with annual incomes greater than $50,000 are the most likely people to buy small
sports cars." Of course such rules are not universally true, but rather have degrees
of "support" and "confidence." Other types of knowledge are represented by equa-
tions relating different variables to each other, or by other mechanisms for predicting
outcomes when the values of some variables are known.

There are a variety of possible types of patterns that may be useful, and different
techniques are used to find different types of patterns. In Chapter 18 we study a
few examples of patterns and see how they may be automatically derived from a
database.

Usually there is a manual component to data mining, consisting of preprocess-
ing data to a form acceptable to the algorithms, and postprocessing of discovered
patterns to find novel ones that could be useful. There may also be more than one
type of pattern that can be discovered from a given database, and manual interaction
may be needed to pick useful types of patterns. For this reason, data mining is really
a semiautomatic process in real life. However, in our description we concentrate on
the automatic aspect of mining.
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Businesses ha to exploit the burgeoning data online to make better deci-

tivities, such as what items to stock and how best to target cus-

les. Many of their queries are rather complicated, however, and

certain types of i tion cannot be extracted even by using SQL.

Several and tools are available to help with decision support. Several

tools for data anal is allow analysts to view data in different ways. Other analy-

summaries of very large amounts of data, in order to give fast

The SQL:1999 standard now contains additional constructs to

support data ana
Textual data, t

sions about their a
tomers to increase

sis tools
responses to q

, has grown explosively. Textual data is unstructured, unlike the
ata in relational databases. Querying of unstructured textual datarigidly structured

is referred to as in mation retrieaal.Information retrieval systems have much in com-

mon with da systems-in particular, the storage and retrieval of data on sec-

ivever, the emphasis in the field of information systems is differ-ondary storage.
ent from that in
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tabase systems, concentrating on issues such as querying based

on keywords; the of documents to the query; and the analysis, classifica-
tion, and indexing documents. In Chapters 18 and 19 we cover decision support,
including on-Iine ytical processing, data mining, and information retrieval.

1.11 Architecture
We are now in a to provide a single picture (Figure 7.6) of the various com-
ponents of a data system and the connections among them.

The architec of a database system is greatly influenced by the underlying com-

puter system on ich the database system runs. Database systems can be central-
ized, or clien ; where one server machine executes work on behalf of multi-

ple client machi Database systems can also be designed to exploit parallel com-
Distributed databases span multiple geographically separatedputer archi

machines.
In Chapter 20 #e cover the general structure of modern computer systems. Chap-

ter 21 describes hdw various actions of a database, in particular query processing,
can be im to exploit parallel processing. Chapter 22 presents a number of

issues that a distributed database, and describes how to deal with each is-

sue. The issues how to store data, how to ensure atomicity of transactions
that execute at mufitiple sites, how to perform concurency control, and how to pro-

vide high availabifity in the presence of failures. Distributed query processing andvide high availabifity in the presence ot tailures. Distrrbuted query processrng and

directory systems Are also described in this chapter.
Most"us-ers of a database system today are not present at the site of the database

system, but conne{t to it through a network. We can therefore differentiate between

ciient machines, dn which remote database users work, and server machines, on
which the databasp system runs.

Database apph(ations are usually partitioned into two or three parts, as in Fig-

ureL.7.In a two-dier architecture, the application is partitioned into a component
that resides at the dhent machine, which invokes database system functionality at the

server machine thfough query language statements. Application Program interface

arlse
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Figure 1.6 System structure.

standards like ODBC and JDBC are used for interaction between the client and the
SCTVCI.

In contrast, in a three-tier architecture, the client machine acts as merely a front
end and does not contain any direct database calls. Instead, the client end communi-
cates with an application server, usually through a forms interface. The application
server in turn communicates with a database system to access data. The business
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client

(a) TWo-tier architecture (b) Three-tier architecture

Figurel.7 TWo-tier and three-tier architectures.

logic of the application, which says what actions to carry out under what conditions,
is embedded in the application server, instead of being distributed across multiple
clients. Three-tier applications are more appropriate for large applications, and for
applications that run on the World Wide Web.

1.12 Dstqbqse Users qnd Administrotors
A primary goal of a database system is to retrieve information from and store new

information in the database. People who work with a database can be categorized as

database users or database administrators'

1.12.1 Dqtqbqse Users qnd User Interfqces

There are four different types of database-system users, differentiated by the way
they expect to interact with the system. Different types of user interfaces have been
designed for the different types of users.

r Naive users are unsophisticated users who interact with the system by invok-
ing one of the application programs that have been written previously. For
example, a bank teller who needs to transfer $50 from account A to account B
invokes a program called transfer. This program asks the teller for the amount
of money to be transferred, the account from which the money is to be trans-
ferred, and the account to which the money is to be transferred.

As another example, consider a user who wishes to find her account bal-
ance over the World Wide Web. Such a user may access a form, where she
enters her account number. An application program at the Web server then
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retrieves the account balance, using the given account numbel, and passes
this information back to the user.

The iypical user interface for naive users is a forms interface, where the
user can fill in appropriate fields of the form. Naive users may also simply
read reports generated from the database.

o Application programmers are computer professionals who write application
programs. Application programmers can choose from many tools to develop
user interfaces. Rapid application development (RAD) tools are tools that en-
able an application programmer to construct forms and reports with minimal
programming effort.

o Sophisticated users interact with the system without writing programs. In-
stead, they form their requests in a database query language. They submit
each such query to a query processor, whose function is to break down DML
statements into instructions that the storage manager understands. Analysts
who submit queries to explore data in the database fall in this category.

o Specialized users are sophisticated users who write specialized database
applications that do not fit into the traditional data-processing framework.
Among these applications are computer-aided design systems, knowledge-
base and expert systems, systems that store data with complex data types (for
example, graphics data and audio data), and environment-modeling systems.
Chapter 9 covers several of these applications.

1.12.2 Dqtqbqse Administrqtor
One of the main reasons for using DBMSs is to have central control of both the data
and the programs that access those data. A person who has such central control over
the system is called a database administrator (DBA). The functions of a DBA include:

Schema definition. The DBA creates the original database schema by execut-
ing a set of data definition statements in the DDL.

Storage structure and access-method definition.

Schema and physical-organization modification. The DBA carries out changes
to the schema and physical organization to reflect the changing needs of the
organization, or to alter the physical organization to improve per{ormance.

Granting of authorization for data access. By granting different types of
authorization, the database administrator can regulate which parts of the data-
base various users can access. The authorization information is kept in a
special system structure that the database system consults whenever some-
one attempts to access the data in the system

Routine maintenance, Examples of the database administrator's routine
maintenance activities are:
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Periodically backing up the database, either onto tapes or onto remote

servers, to prevent loss of data in case of disasters such as flooding.

Ensuring that enough free disk space is available for normal operations,

and upgrading disk space as required.
Monitoring jobs running on the database and ensuring that performance

is not degraded by very expensive tasks submitted by some users.

1.13 History of Dqtqbose Systems
Data processing drives the growth of computers, as it has from the earliest days of

commercial computers. In fact, automation of data processing tasks predates comput-

ers. Punched cards, invented by Herman Hollerith, were used at the very beginning

of the twentieth century to record U.S. census data, and mechanical systems were

used to process the cards and tabulate results. Punched cards were later widely used

as a means of entering data into computers.
Techniques for data storage and processing have evolved over the years:

o 1950s and early 1960s: Magnetic tapes were developed for data storage. Data

processing tasks such as payroll were automated, with data stored on tapes.

Processing of data consisted of reading data from one or more tapes and writ-

ing data to a new tape. Data could also be input from punched card decks, and

output to printers. For example, salary raises were processed by entering the

raises on punched cards and reading the punched card deck in synchroniza-

tion with a tape containing the master salary details. The records had to be

in the same sorted order. The salary raises would be added to the salary read

from the master tape, and written to a new tape; the new tape would become

the new master tape.
Tapes (and card decks) could be read only sequentially, and data sizes were

much larger than main memory; thus, data processing programs were forced

to process data in a particular order, by reading and merging data from tapes

and card decks.

o Late 1960s and 1970s: Widespread use of hard disks in the late 1960s changed

the scenario for data processing greatly, since hard disks allowed direct access

to data. The position of data on disk was immaterial, since any location on disk

could be accessed in just tens of milliseconds. Data were thus freed from the

tyranny of sequentiality. With disks, network and hierarchical databases could

be created that allowed data structures such as lists and trees to be stored on

disk. Programmers could construct and manipulate these data structures.

A landmark paper by Codd [1970] defined the relational model and non-

procedural ways of querying data in the relational model, and relational

databases were born. The simplicity of the relational model and the possibil-

ity of hiding implementation details completely from the programmer were

enticing indeed. Codd later won the prestigious Association of Computing

Machinery Turing Award for his work.
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1980s: Although academically interesting, the relational model was not used
in practice initially, because of its perceived performance disadvantages; re-
lational databases could not match the performance of existing network and
hierarchical databases. That changed with System R" a groundbreaking project
at IBM Research that developed techniques for the construction of an efficient
relational database system. Excellent overviews of System R are provided by
Astrahan et al. 11.9761and Chamberlin et al. [i981]. The fully functional Sys-
tem R prototype led to IBM's first relational database product, SQL/OS. Initial
commercial relational database systems, such as IBM DB2, Oracle, Ingres, and
DEC Rdb, played a major role in advancing techniques for efficient process-
ing of declarative queries. By the early 1980s, relational databases had become
competitive with network and hierarchical database systems even in the area
of performance. Relational databases were so easy to use that they eventually
replaced network/hierarchical databases; programmers using such databases
were forced to deal with many low-level implementation details, and had to
code their queries in a procedural fashion. Most importantly, they had to keep
efficiency in mind when designing their programs, which involved a lot of
effort. In contrast, in a relational database, almost all these low-level tasks
are carried out automatically by the database, leaving the programmer free to
work at a logical level. Since attaining dominance in the 1980s, the relational
model has reigned supreme among data models.

The 1980s also saw much research on parallel and distributed databases, as
well as initial work on object-oriented databases.

Early 1990s: The SQL language was designed primarily for decision support
applications, which are query intensive, yet the mainstay of databases in the
1980s was transaction processing applications, which are update intensive.
Decision support and querying re-emerged as a major application area for
databases. Tools for analyzing large amounts of data saw large growths in
usage.

Many database vendors introduced parallel database products in this pe-
riod. Database vendors also began to add object-relational support to their
databases.

Late 1990s: The major event was the explosive growth of the World Wide Web.
Databases were deployed much more extensively than ever before. Database
systems now had to support very high transaction processing rates, as well as
very high reliability and24xT availability (availability 24 hours a day,7 days a
week, meaning no downtime for scheduled maintenance activities). Database
systems also had to support Web interfaces to data.

Early 2000s: In the early 2000s we have seen the emerging of XML and the
associated query language XQuery as a new database technology. The jury is
still out as far as what role will XML play in future databases. In this time
period we have also witnessed the growth in "autonomic computing/auto
admin" techniques for minimizing system administration effort.
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1.14 Summory
o A database-management system (DBMS) consists of a collection of interre-

lated data and a collection of programs to access that data. The data describe
one particular enterPrise.

o The primary goal of a DBMS is to provide an environment that is both conve-
nient and efficient for people to use in retrieving and storing information.

o Database systems are ubiquitous today, and most people interact, either di-
rectly or indirectly, with databases many times every day.

o Database systems are designed to store large bodies of information. The man-
agement of data involves both the definition of structures for the storage of
information and the provision of mechanisms for the manipulation of infor-
mation. In addition, the database system must provide for the safety of the
information stored, in the face of system crashes or attempts at unauthorized
access. If data are to be shared among several users, the system must avoid
possible anomalous results.

o A major purpose of a database system is to provide users with an abstract
view of the data. That is, the system hides certain details of how the data are
stored and maintained.

o Underlying the structure of a database is the data model: a collection of con-
ceptual tools for describing data, data relationships, data semantics, and data
constraints.

r A data-manipulation language (DML) is a language that enables users to ac-
cess or manipulate data. Nonprocedural DMLs, which require a user to specify
only what data are needed, without specifying exactly how to get those data,
are widely used today.

o A data-definition language (DDL) is a language for specifying the database
schema and as well as other properties of the data.

o The relational data model is the most widely deployed model for storing data
in databases. Other data models are the object-oriented model, the object-
relational model, and semistructured data models.

o Database design mainly involves the design of the database schema. The entity-
relationship (E-R) data model is a widely used data model, for database de-
sign. It provides a convenient graphical representation to view data, relation-
ships and constraints.

o A database system has several subsystems.

n The storage manager subsystem provides the interface between the low-
level data stored in the database and the application programs and queries
submitted to the system.

n The query processor subsystem compiles and executes DDL and DML
statements.
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o Transaction management ensures that the database remains in a consistent
(correct) state despite system failures. The transaction manager ensures that
concurrent transaction executions proceed without conflicting.

o Database applications are typically broken up into a front-end part that runs at
client machines and a part that runs at the back end. In two-tier architectures,
the front end directly communicates with a database running at the back end.
In three-tier architectures, the back end part is itself broken up into an appli-
cation server and a database server.

o Database users can be categorized into several classes, and each class of users
usually uses a different type of interface to the database.

Review Terms

o Database-management system
(DBMS)

o Database-systems applications

o File systems

o Data inconsistency

o Consistencyconstraints

o Data views

r Data abstraction

o Database instance

o Schema

n Database schema
! Physical schema
n Logical schema

o Physical data independence

o Data models

tr Entity-relationship model
n Rehtional data model
n Object-oriented data model
n Object-relational data model

Database languages

X Data-definition language
n Data-manipulation language
n Query language

Data dictionary

Metadata

Transactions

Concurrency

Application program

Database administrator (DBA)

Client and server machines

a

a

a

a

a

a

a

Prqctice Exercises
1.1 This chapter has described several major advantages of a database system. What

are two disadvantages?

1.2 List seven programming languages that are procedural and two that are non-
procedural. Which group is easier to learn and use? Explain your answer.

1.3 List six major steps that you would take in setting up a database for a particular
enterprise.

1.4 Consider a two-dimensional integer array of size n x m that is to be used in
your favorite programming language. Using the array as an example, illustrate
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the difference (a) between the three levels of data abstraction and (b) between a

schema and instances.

Exercises

1.5 List four applications which you have used, that most likely used a database

system to store persistent data.

1.6 List four significant differences between a file-processing system and a DBMS.

1.7 Explain the difference between physical and logical data independence.

1.8 List five responsibilities of a database-management system. For each responsi-

bility, explain the problems that would arise if the responsibility were not dis-

charged.

1.9 List at least two reasons why database systems support data manipulation using

a declarative query language such as SQL, instead of just providing a a library

of C or C++ functions to carry out data manipulation.

1.10 Explain what problems are caused by the design of the table in Figure 1.5.

1.11 What are five main functions of a database administrator?
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Tools
There are a large number of commercial database systems in use today. The ma-
jor ones include: IBM DB2 (www.ibm.com/software/data), Oracle (www.oracle.com),
Microsoft SQL Server (www.microsoft.com/sql), Informix (www.informix.com) (now
owned by IBM) and Sybase (www.sybase.com). Some of these systems are available
free for personal or noncommercial use, or for development, but are not free for ac-
tual deployment.

There are also a number of free/public domain database systems; widely used
ones include MySQL (www. mysq l.com) and PostgreSQl (www. postgresq l.org).

A more complete list of links to vendor Web sites and other information is avail-
able from the home page of this book, at wwwdb-book.com.
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The relational model is today the primary data model for commercial data-processing
applications. It has attained its primary position because of its simplicity, which eases
the job of the programmer, compared to earlier data models such as the network
model or the hierarchical model.

In this chapter, we first study the fundamentals of the relational model. We then
describe the relational algebra, which is used to specify requests for information. The
relational algebra is not user friendly, but instead serves as the formal basis for user-
friendly query languages that we study later, including the widely used SeL query
language, which we cover in detail in Chapters 3 and 4.

A substantial theory exists for relational databases. We study the part of this theory
dealing with queries in this chapter. In Chapters 6 through 7 we shall examine aspects
of relational database theory that help in the design of relational database schemas,
while in Chapters 13 and 14 we discuss aspects of the theory dealing with efficient
processing of queries.

2.1 Structure of Relqtionql Dqtqbqses
A relational database consists of a collection of tables, each of which is assigned a
unique name. A row in a table represents a relationship among a set of values. Infor-
mally, a table is an entity set, and a row is an entity as we discussed in Chapter 1.
Since a table is a collection of such relationships, there is a close correspondence be-
tween the concept of table and the mathematiial concept of relqtion, from which the
relational data model takes its name. In what follows, we introduce the concept of
relation.

In this chapter, we shall be using a number of different relations to illustrate the
various concepts underlying the relational data model. These relations represent part
of a banking enterprise. They may not correspond to the actual way a banking database
may be structured, in order to simplify our presentation. We shall discuss criteria for
the appropriateness of relational structures in great detail in Chapters 6 and7.

37
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2.1.1 Bqsic Structure
Consider the account table of Figure 2.1. It has three column headers: account:number,
branch-name, andbalance. Following the terminology of the relational model, we refer
to these headers as attributes. For each attribute, there is a set of permitted values,
called the domain of that attribute. For the attribute branch-name, for example, the
domain is the set of aII branch names. Let Dl denote the set of all account numbers,
D2 the set of all branch names, and D3 the set of all balances. Any row of account
must consist of a 3-tuple (u1, u2, r.'3), where 'u1 is an account number (that is, irr is in
domain Dr), uz is a branch name (that is, tr2 is in domain D), and T.r3 is a balance (that

is, ,r.r3 is in domain De). In general, account will contain only a subset of the set of all
possible rows. Therefore, account is a subset of

D l x D 2 x D s

In general, a table of n attributes must be a subset of

D1 x D2 x " '  x Dn-1 x Dn

Mathematicians define a relation to be a subset of a Cartesian product of a list of
domains. This definition corresponds almost exactly with our definition of table.The
only difference is that we have assigned names to attributes, whereas mathematicians
rely on numeric "names," using the integer 1 to denote the attribute whose domain
appears first in the list of domains,2 for the attribute whose domain aPpears second,
and so on. Because tables are essentially relations, we shall use the mathematical
terms relation and tuple in place of the terms table and row. A tuple variable is a
variable that stands for a tuple; in other words, a tuple variable is a variable whose
domain is the set of all tuples.

Inthe accounf relation of Figure 2.1., there are seven tuples. Let the tuple variable f
refer to the first tuple of the relation. We use the notation tlaccount-numberl to denote
the value of f on the account-number atttibute' Thus, tlaccount-numberl : "4-101," and
tlbrnnch-namel : "Downtown". Alternatively, we may write f[1] to denote the value
of tuple f on the first attribute (account-number), f[2] to denotebranchtrame, and so on.
Since a relation is a set of tuples, we use the mathematical notation of I € r to denote
that tuple f is in relation r.

Perryridge
Brighton
Mianus
Brighton
Redwood
Round Hill

500
400
900
700
750
700
350

A-101
A-1,02
A-20L
A-21,5
A-217
A-222
A-305

Figure2.1 The account relation.
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A-101
A-215
A-702
A-305
A-201
A-222
A-217

Downtown
Mianus
Perryridge
Round Hill
Brighton
Redwood
Brighton

500
700
400
350
900
700
750

Figure2.2 The account relation with unordered tuples.

The order in which tuples appear in a relation is irrelevant, since a relation is a
sef of tuples. Thus, whether the tuples of a relation are listed in sorted order, as in
Figure 2.7, or are unsorted, as in Figure 2.2, does not matter; the relations in the two
figures are the same, since both contain the same set of tuples.

We require that, for all relations r, the domains of all attributes of rbe atomic. A
domain is atomic if elements of the domain are considered to be indivisible units.
For example, the set of integers is an atomic domain, but the set of all sets of integers
is a nonatomic domain. The distinction is that we do not normally consider inte-
gers to have subparts, but we consider sets of integers to have subparts-namely,
the integers composing the set. The important issue is not what the domain itself is,
but rather how we use domain elements in our database. The domain of all integers
would be nonatomic if we considered each integer to be an ordered list of digits. In
all our examples, we shall assume atomic domains. In Chapter 9, we shall discuss
extensions to the relational data model to permit nonatomic domains.

It is possible for several attributes to have the same domain. For example, suppose
that we have a relation customer that has the three attributes customer-nnme, custoTner
-street, and customertity, and a relation employee that includes the attribute employee
-natne.It is possible that the attributes customer-name and employee-nnme will have the
same domain: the set of all person names, which at the physical level is the set of
all character strings. The domains of balance andbranch-nntne, onthe other hand, cer-
tainly ought to be distinct. It is perhaps less clear whether customer-name and branch
:name should have the same domain. At the physical level, both customer names and
branch names are character strings. Flowever, at the logical level, we may wanl cus-
tomer-name andbranclt_name to have distinct domains.

One domain value that is a member of any possible domain is the null value,
which signifies that the value is unknown or does not exist. For example, suppose
that we include the attribute telephone-number in the customer relation. It may be that
a customer does not have a telephone numbel, or that the telephone number is un-
listed. We would then have to resort to null values to signify that the value is un-
known or does not exist. We shall see later that null values cause a number of diffi-
culties when we access or update the database, and thus should be eliminated if at
all possible. We shall assume null values are absent initially, and in Section 2.5 we
describe the effect of nulls on different operations.
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Figure 2.3 Thebranch relation.

2.1.2 Dqtqbqse Schemq

When we talk about a database, we must differentiate between the database schema,
which is the logical design of the database, and the database instance, which is a

snapshot of the data in the database at a given instant in time.
The concept of a relation corresponds to the programming-language notion of a

variable. The concept of a relation schema corresponds to the programming-language
notion of type definition.

It is convenient to give a name to a relation schema, just as we give names to type
definitions in programming languages. We adopt the convention of using lower-

case names for relations, and names beginning with an uppercase letter for rela-

tion schemas. Following this notation, we use Account-schema to denote the relation

schema for relation account.Thus,

Account-s cherna : (account-number, branchname, balance)

We denote the fact that account is a relation on Accountschemaby

a cco unt ( A c c o unt - s ch e m a)

In general, a relation schema consists of a list of attributes and their corresponding
domalns. We shall not be concerned about the precise definition of the domain of
each attribute until we discuss the SQL language in Chapters 3 and 4.

The concept of a relation instance corresponds to the programming-language no-

tion of a value of a variable. The value of a given variable may change with time;

similarly the contents of a relation instance may change with time as the relation is

updated. However, we often simply say "relation" when we actually mean "relation
instance."

As an example of a relation instance, consider thebrsnchrelation of Figure 2.3. The

schema for that relation is

Branch-s cheynl" : (branch:nnme, brnnch-city, nssets)

Note that the attribute brnnch-nnme appears in both Branchschema and Account

-schema. This duplication is not a coincidence. Rather, using common attributes in
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Figure2.4 The customer relation.

relation schemas is one way of relating tuples of distinct relations. For example, sup-
pose we wish to find the information about all of the accounts maintained in branches
located in Brooklyn. We look first at the branch relation to find the names of all the
branches located in Brooklyn. Then, for each such branch, we look in the account re-
lation to find the information about the accounts maintained at that branch.

Let us continue our banking example. We need a relation to describe information
about customers. The relation schema is

Customer-s chema : (customer_name, customer_street, customerdty)

Figure 2.4 shows a sample relation customer (Customer_schema). Note that we have
omitted the customer-id attribute that we used in Chapter 1, because now we want to
have smaller relation schemas in our running example of a bank database. We assume
that the customer name uniquely identifies a customer-obviously this may not be
true in the real world, but the assumption makes our examples much easier to read.
In a real-world database, the customer-id (which could be a social-security number or
an identifier generated by the bank) would serve to uniquely identify customers.

We also need a relation to describe the association between customers and ac-
counts. The relation schema to describe this association is

D epo si,t or _s chema : (customer _name / frccount_number)

Figure 2.5 shows a sample relation depositor (Depositor-schema).
It would appear that, for our banking example, we could have just one relation

schema, rather than several. That is, it may be easier for a user to think in terms of
one relation schema, rather than in terms of several. Suppose that we used only one
relation for our example, with schema

(brsnch-name, branch-city, assets, customer-naffie, customer-street
customer -city, account_number, b alance)
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Hayes
johnson

Johnson
Jones
Lindsay
Smith
Turner

A-1
A-101
A-201,
A-277
A-222
A-21,5
A-305

Figure 2.5 The depositor relation.

Observe that, if a customer has several accounts, we must list her address once for
each account. That is, we must repeat certain information several times. This repeti-
tion is wasteful and is avoided by the use of several relations, as in our example'

In addition, if a branch has no accounts (a newly created branch, say, that has no
customers yet), we cannot construct a complete tuple on the preceding single rela-
tion, because no data concerning customer and account are available yet. To represent
incomplete tuples, we must use null values that signify that the value is unknown or
does not exist. Thus, in our example, the values for customer:name, customer-street, and
so on must be null. By using several relations, we can represent the branch informa-
tion for a bank with no customers without using null values. We simply use a tuple

onBranch-schema to represent the information about the branch, and create tuples on
the other schemas only when the appropriate information becomes available.

In Chapter 7, we shall study criteria to help us decide when one set of relation
schemas ii more appropriate than anothel in terms of information repetition and
the existence of null values. For now, we shall assume that the relation schemas are
given.

We include two additional relations to describe data about loans maintained in the
various branches in the bank:

L oan-s ch ema : (Ioannumb er, branchttame, amount)
B orrow er -s chema : (customer-name, Ioan-number\1

Figures 2.6 and,2.7, respectively, show the sample relations loan (Loan-schems) and

borrow er (Borrowe r sch ema).
The relation schemas correspond to the set of tables that we might generate by

the method outlined in Section 1.6. Note that the customer relation may contain in-

formation about customers who have neither an account nor a loan at the bank. The

banking enterprise described here will selve as our primary example in this chap-
ter. On occasion, we shall need to introduce additional relation schemas to illustrate
particular points.

2.1.3 Keys
We must have a way to specify how tuples within a given relation are distinguished.
This is expressed in terms of their attributes. That is, the values of the attribute values
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Figure 2.6 Theloan relation.

of a tuple must be such that they can uniquely identify the tuple. In other words, no
two tuples in a relation are allowed to have exactly the same value for all attributes.

A superkey is a set of one or more attributes that, taken collectively, allow us to
identify uniquely a tuple in the relation. For example, the customer-ld attribute of the
relation customer is sufficient to distinguish one customer tuple from another. Thus,
customer-id is a superkey. Similarly, the combination of customer-name and customer_id
is a superkey for the relation customer. The customer-name attribute of customer is not
a superkey, because several people might have the same name.

The concept of a superkey is not sufficient for our purposes, since, as we saw a
superkey may contain extraneous attributes. If K is a superkey, then so is any superset
of K. we are often interested in superkeys for which no proper subset is a superkey.
Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate
key. Suppose that a combination of customer-name and customer-streef is sufficient to
distinguish among members of the customer relation. Then, both {customer*id} and
{customer:name, customer-street} are candidate keys. Although the attributes customer
-id and customer-name together can distinguish customer tuples, their combination
does not form a candidate key, since the attribute customerjd alone is a candidate
k"y.

We shall use the term primary key to denote a candidate key that is chosen by the
database designer as the principal means of identifying tuples within a relation. A
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L-l6
L-17
L-23
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Figure2.7 Theborrowerrelation.
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key (whether primary, candidate, or super) is a property of the entire relation, rather

thin of the individual tuples. Any two individual tuples in the relation are prohibited

from having the same value on the key attributes at the same time. The designation

of a key represents a constraint in the real-world enterprise being modeled.

Candidite keys must be chosen with care. As we noted, the name of a person is

obviously not sufficient, because there may be many people with the same name.

In the United States, the social-security number attribute of a person would be a

candidate key. Since non-U.S. residents usually do not have social-security numbers,

international enterprises must generate their own unique identifiers. An alternative

is to use some unique combination of other attributes as a key.

The primary key should be chosen such that its attribute values are never/ or very

rarely, ihanged. For instance, the address field of a person should not be part of the

prirnary key, since it is likely to change. Social-security numbers, on the other hand,

are guaranteed to never change. Unique identifiers generated by enterprises gener-

ally do not change, except if two enterprises merge; in such a case the same identifier

miy have been issued by both enterprises, and a reallocation of identifiers may be

required to make sure they are unique.

Formally, let R be a relation schema. If we say that a subset K of R is a superkey for

R, we are iestricting consideration to relations r(R) in which no two distinct tuples

have the same values on all attributes in K. That is, if fu and t2 are in r and fu t' t2,

then t1[1r] I tzlKl.
A reiation schema, sa.f 11, may include among its attributes the primary key of

another relation schema, saf 12. This attribute is called a foreign key from 11,ref-

erencing 12. The relation 11 is also called the referencing relation of the foreign key

dependency, and 12 is called the referenced relation of the foreign key. For exam-

ple, the attiibute branch-name in Account-schema is a foreign key from Account-schema
ieferencing Branch-schema, since brsnch-nsme is the primary key of Branch-schema. In

any database instance, given any tuple, say to, from the nccount relation, there must

be some tuple, say f 6, in the branch relation such that the value of the brsnch-name
attribute of to is the same as the value of the primary key, branch-name, of ta.

account customerdepositor

cust0mer_name
Ioan-number

Figure 2.8 Schema diagram for the banking enterprise.
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It is customary to list the primary key attributes of a relation schema before the
other attributes; for example, the branch-name attribute of Branch-schema is listed first,
since it is the primary key.

A database schema, along with primary key and foreign key dependencies, can
be depicted pictorially by schema diagrams. Figure 2.8 shows the schema diagram
for our banking enterprise. Each relation appears as a box, with the attributes listed
inside it and the relation name above it. If there are primary key attributes, a hori-
zontal line crosses the box, with the primary key attributes listed above the line in
gray. Foreign key dependencies appear as arrows from the foreign key attributes of
the referencing relation to the primary key of the referenced relation.

Many database systems provide design tools with a graphical user interface for
creating schema diagrams.

2.1.4 Query Longuoges
A query language is a language in which a user requests information from the data-
base. These languages are usually on a level higher than that of a standard program-
ming language. Query languages can be categorized as either procedural or non-
procedural. In a procedural language, the user instructs the system to perform a
sequence of operations on the database to compute the desired result. In a nonproce-
dural language, the user describes the desired information without giving a specific
procedure for obtaining that information.

Most commercial relational database systems offer a query language that includes
elements of both the procedural and the nonprocedural approaches. We shall study
the very widely used query language sQL in Chapters 3 and 4. Chapter 5 covers the
query languages QBE and Datalog, the latter a query language that resembles the
Prolog programming language.

There are a number of "pure" query languages: The relational algebra is procedu-
ral, whereas the tuple relational calculus and domain relational calculus are nonpro-
cedural. These query languages are terse and formal, lacking the "syntactic sugai" of
commercial languages, but they illustrate the fundamental techniques for extracting
data from the database.

In this chapter, we examine in great detail the relational-algebra language (in Chap-
ter 5 we cover the tuple relational-calculus and domain relational-calculus languages).
Relational algebra consists of a set of operations that take one or two relations aJ itr-
put and produce a new relation as their result.

The fundamental operations in the relational algebra are select, project, union, set
difference, Cartesian product, and rename. In addition to the fundamental operations,
there are several other operations-namely, set intersection, natural join, division,
and assignment. We will define these operations in terms of the fundamental opera-
tions.

Initially, we shall be concerned with only queries. Howeveq, a complete data-
manipulation language includes not only a query language, but also a language for
database modification. Such languages include commands to insert and delete tuples,
as well as commands to modify parts of existing tuples. We shall examine database
modification after we complete our discussion of queries.
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2.2 Fundqmentql Relqtionol-Algebrq Operotions
The select, project, and rename operations are called unary operations, because they

operate on one relation. The other three operations operate on pairs of relations and

are, therefore, called binary operations.

2.2.1 The Select Operotion
The select operation selects tuples that satisfy a given predicate. We use the lowercase
Greek letter sigma (o) to denote selection. The predicate appears as a subscript to o.

The argument relation is in parentheses after the o. Thus, to select those tuples of the

Ioan relationwhere the branch is "Perryridge," we write

o branch-name - *Purrrrl6ru- (loan)

If the loan relation is as shown in Figure 2.6, then the relation that results from the

preceding query is as shown in Figure 2'9.
We can find all tuples in which the amount lent is more than $1200 by writing

oanount l r2oo ( Ioan)

In general, we allow comparisons using :,1, 1, <, >, > in the selection predicate.
Furttrermore, we can combine several predicates into a larger predicate by using the

connectives and (tr,), or (Y), and not (-). Thus, to find those tuples pertaining to loans

of more than $1200 made by the Perryridge branch, we write

obranch-nane:"Perryridge"A o ounl;'12gg lloan)

The selection predicate may include comparisons between two attributes. To illus-

trate, consider the relationloan-officer that consists of three attributes: customer-natne,
banker:name, and loan:number, which specifies that a particular banker is the loan of-

ficer for a loan that belongs to some customer. To find all customers who have the
same name as their loan officet we can write

o cust oner-n am e -- banker-nam" (lo an-offi cer )

2.2.2 The Proiect Operqtion
Suppose we want to list all loan numbers and the amount of the loans, but do not

care about the branch name. The project operation allows us to produce this relation'

The project operation is a unary operation that returns its argument relation, with

certain attributes left out. Since a relation is a set, any duplicate rows are eliminated.

L-15
L-16

I'erryridge
Perryridge

1500
1300

Figure 2.9 Result of o1rron.1r-nome:,,percyrid.gu" (Ioan).
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L-17
L-1.4
L-15
L-L6
L-17
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L-93
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Figure 2.10 Loan number and the amount of the loan.

Projection is denoted by the uppercase Greek letter pi ([). We list those attributes that
we wish to appear in the result as a subscript to II. The argument relation follows in
parentheses. We write the query to list all loan numbers and the amount of the loan
AS

nloan_nu-bur, o ount(Ioan)

Figure 2.10 shows the relation that results from this query.

2.2.3 Composition of Relqtioncl Operotions
The fact that the result of a relational operation is itself a relation is important. Con-
sider the more complicated query "Find those customers who live in Harrison." We
write:

fI custoner-nam. (o.u"to*"r-citg : "Hafiison" (customef))

Notice that, instead of giving the name of a relation as the argument of the projection
operation, we give an expression that evaluates to a relation.

In general, since the result of a relational-algebra operation is of the same type
(relation) as its inputs, relational-algebra operations can be composed together into
a relational-algebra expression. Composing relational-algebra operations into rela-
tional-algebra expressions is just like composing arithmetic operations (such ds *, -,
x, and +) into arithmetic expressions. We study the formal definition of relational-
algebra expressions in Section 2.2.8.

2.2.4 The Union Operotion
Consider a query to find the names of all bank customers who have either an account
or a loan or both. Note that the customer relation does not contain the information,
since a customer does not need to have either an account or a loan at the bank. To
answer this query, we need the information in the depositor relation (Figure 2.5) and
intheborrower relation (Figure 2.7).We know how to find the names of all customers
with a loan in the bank:

n cu"t omer _n a* " 
(b o rro w er)

We also know how to find the names of all customers with an account in the bank:



48 Chapter 2 Relational Model

il 
"u"to*"r-no-. 

( d epo sit or)

To answer the query, we need the union of these two sets; that is, we need all cus-

tomer names that appear in either or both of the two relations. We find these data by

the binary operation union, denoted, as in set theory, by U. So the expression needed

is

fr customer-no*" (borrow er) L) fI 
"u"1o*er-name 

(dep o si't or)

The result relation for this query appears in Figure2.ll.Notice that there are 10 tuples
in the result, even though there are seven distinct borrowers and six depositors. This
apparent discrepancy occuls because Smith, ]ones, and Hayes are borrowers as well
as depositors. since relations are sets, duplicate values are eliminated.

Observe that, in our example, we took the union of two sets, both of which con-
sisted of customerttfime values. In general, we must ensure that unions are taken be-
tween cornpatible relations. For example, it would not make sense to take the union of
theloan relation and the borrower relation. The former is a relation of three attributes;
the latter is a relation of two. Furthermore, consider a union of a set of customer
names and a set of cities. Such a union would not make sense in most situations'
Therefore, for a union operation r U s to be valid, we require that two conditions
hold:

L. The relations r and s must be of the same arity. That is, they must have the

same number of attributes.

2. The domains of the lth attribute of r and the lth attribute of s must be the same,
for all i.

Note that r and s can be either database relations or temporary relations that are the

result of relational-algebra expressions.

Curry
Hayes
]ackson
jones
Smith
Williams
Lindsay
Johnson
Turner

Figure2.1l Names of all customers who have either a loan or an account.
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Johnson
Lindsay
Turner

Figure2.12 Customers with an account but no loan.

us to find tuples that are in one
s produces a relation containing

2.2.5 The Set-Difference Operotion
The set-difference operation, denoted by -, allows
relation but are not in another. The expression r -
those tuples in r but not in s.

We can find all customers of the bank
writing

who have an account but not a loan by

fl.usto-"r_na*" (depo s'itor) - n.u"to-er_name (borrow er)

The result relation for this query appears inFigure 2.72.
As with the union operation, we must ensure that set differences are taken be-

tween compatible relations. Therefore, for a set-difference operation r - s to be valid,
we require that the relations r and s be of the same arity, and that the domains of the
Ith attribute of r and the lth attribute of s be the same.

2.2.6 The Cqrtesiqn-Product Operction
The Cartesian-product operation, denoted by a cross (x), allows us to combine in-
formation from any two relations. We write the Cartesian product of relations 11 and
T2 dS T1 X T2.

Recall that a relation is by definition a subset of a Cartesian product of a set of
domains. From that definition, we should already have an intuition about the defi-
nition of the Cartesian-product operation. Howevel, since the same attribute name
may appear in both 11 and 12, we need to devise a naming schema to distinguish
between these attributes. We do so here by attaching to an attribute the name of the
relation from which the attribute originally came. For example, the relation schema
f o r r :  b o r r o w e r x l o a n i s

(borrow er.customer srame, borrower.loanttumb er, loqn.loan_number,
lo an.b r anch_name, I o an.smount)

With this schema, we can distinguish b orrower.loanstumb er fuom lo an.lo an-numb er. F or
those attributes that appear in only one of the two schemas, we shall usually drop
the relation-name prefix. This simplification does not lead to any ambiguity. We can
then write the relation schema for r as

(customer :nsme, borrow er.loannumber, Ioan.Ioan_number,
branch-name, nmount\
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Figure2.l3 Result of borrower x loan.
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This naming convention requires that the relations that are the arguments of the
Cartesian-product operation have distinct names. This requirement causes problems
in some cases, such as when the Cartesian product of a relation with itself is desired.
A similar problem arises if we use the result of a relational-algebra expression in a
Cartesian product, since we shall need a name for the relation so that we can refer
to the relation's attributes. In Section 2.2.7, we see how to avoid these problems bv
using the rename operation.

Now that we know the relation schema for r : borrower x loan, what tuples ap-
pear in r? As you may suspect, we construct a tuple of r out of each possible pair of
tuples: one from theborrower relation and one from the loanrelation Thus, r is i large
relation, as you can see from Figure 2.13, which includes only a portion of the tuples
that make up r.

Assume that we have n1 tuples in borrower and n2 tuples in loan. Then, there are
711 x rt'2 ways of choosing a pair of tuples-one tuple from each relation; so there
a.rpnv * n2 tuples in r. In particular, note that for some tuples t inr,it may be that
tlborrow er.loan-numberl I tfloan.loan_numb erf .

In general, if we have relations n(Rt) and r2(R), then 11 x 12 is a relation whose
schema is the concatenation of -R1 and /?2. Relation R contains all tuples f for which
there is a tuple t1 in rl and a tuple t2 in 12 for which tfEl] : ,r lfir] and. tl&2] :
tzlRzl.

Suppose that we want to find the names of all customers who have a loan at the
Perryridge branch. We need the information in both thelonn relation and the borrower
relation to do so. If we write

o branch_name:,.perry.idge,.( borrower >, Ioan)

then the result is the relation in Figure 2.74.Wehave a relation that pertains to only
the Perryridge branch. However, tine customer-name column may 

"ot'ttait-t 
customeis

who do not have a loan at the Perryridge branch. (If you do not see why that is true,
recall that the Cartesian product takes all possible pairings of one tuple from borrower
with one tuple of loan.)

Since the Cartesian-product operation associates eaery tuple of loqn with every tu-
ple of borrower, we know that, if a customer has a loan in the perryridge branch, then
there is some tuple inborrower x loanthatcontains his name, andborrower.loan-number
= Ioan.loan-number. So, if we write

O borrou er, lo an-nunber - Ioan. lo an_nunber

(o bron.h-no 
"- 

,.p"rry.idge,, ( b orrower x loan))

we get only those tuples of borcower x loan that pertain to customers who have a
loan at the Perryridge branch.

Finally, since we want only customer_nsme, we do a projection:

TI customer-nq . (o 6orro*"r.loan-number - loan.loan,nunber.

(obron.h_no*"-,.perryridge,, (borrower x loan)))

The result of this expression, shown in Figure 2.15, is the correct answer to our query.
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Figure2.l4 Result of o6ron671-name:"peryridg"- (borrower x loan\,.

2.2.7 The Renqme OPerotion
Unlike relations in the database, the results of relational-algebra expressions do not

have a name that we can use to refer to them. It is useful to be able to give them

names; the rename operator, denoted by the lowercase Greek letter rho (p),lets us do

this. Given a relational-algebra expression E,the expression

p" (E)

returns the result of expression E under the name r.
A relation r by itself is considered a (trivial) relational-algebra expression. Thus,

we can also apply the rename operation to a relation r to get the same relation under

a new name.
A second form of the rename operation is as follows. Assume that a relational-

algebra expression E has arity rz. Then, the expression

P^ (A1 ,A2 ,  " ,A ;  @)

ams

Figure 2.15 Result of ll.u"1o^"r-no*"
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Figure 2.16 Result of the subexpression
i laccount.balar""  (oo"rount .batance {  d, .batance (account x pa (account))) .

returns the result of expression E under the name x, andwith the attributes renamed
t o A 1 , 4 2 , . . . , A n .

To illustrate renaming a relation, we consider the query "Find the largest account
balance in the bank." Our strategy is to (1) compute first a temporary relation consist-
ing of those balances that ate not the largest and (2) take the set difference between
the relation lrbohn." (account) and the temporary relation just computed, to obtain
the result.

step 1: To compute the temporary relation, we need to compare the values of
all account balances. We do this comparison by computing the Cartesian product
account x account and forming a selection to compare the value of any two balances
appearing in one tuple. First, we need to devise a mechanism to distinguish between
the two balance attributes. We shall use the rename operation to rename one reference
to the account relation; thus we can reference the relation twice without ambiguity.

We can now write the temporary relation that consists of the balances that are not
the largest:

naccount.balar.. (oo..oun .balance < d,.batance (account x pa (account)))

This expression gives those balances in the account relationfor which a larger balance
apPears somewhere in the account relation (renamed as d). The result contains all
balances except the largest one. Figure 2.16 shows this relation.

Step 2: The query to find the largest account balance in the bank can be written as:

ilbolon.. (account) -

naccount.balan"" (oo".ount.batance .i d..batance (account x p6 (account)))

Figure 2.17 shows the result of this query.
As one more example of the rename operation, consider the query "Find the names

of all customers who live on the same street and in the same city as Smith." We can

ffil
t-5oo-_-l
1 4 0 0 1
1 7 0 0 1
1 7 5 0 1
1 3 5 0 1

@l
ferill

Flgure2.17 Largest account balance in the bank.
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rry
Smith

Figure 2.18 Customers who live on the same street and in the same city as Smith.

obtain Smith's street and city by writing

TI 
"u"7o*.r-"7r"et, 

customer-cxta (o.urto-.r-n&ne : "3^111'," (customer))

However, in order to find other customers with this street and city, we must refer-

ence the customet relation a second time. In the following query, we use the rename

operation on the preceding expression to give its result the name smith-nddr, and to

."11u*e its attributes to street and citt1, instead of customer-street and customertity:

i l 
"r"t 

o - 
"r. "ust 

o m er -n am e

(O .urto*., ..ustoner-streelt- smith-ad,d,r.street A customer . customer-city: smi'th-ad'dr . citg

(customer X P snith-ad,dr(street,ci.ty)

(fr.u"to-"r-"treet, custoner-ci'tg (o customer-nane: "5*i6- ( cus tomer)))))

The result of this query, when we aPply it to the customer telation of Figure 2'4, ap-

pears in Figure 2.18.
The renime operation is not strictly required, since it is possible to use a positionai

notation for attributes. We can name attributes of a relation implicitly by using a po-

sitional notation, where $1, $2, . . . refer to the first attribute, the second attribute, and

so on. The positional notation also applies to results of relational-algebra operations.

The foltowing relational-algebra expression illustrates the use of positional notation

with the unary operator o:

o8z:53(fi x R)

If a binary operation needs to distinguish between its two operand relations, a similar

positional ttbtutiotr can be used for relation names as weII. For example, $R1 cou-ld

iefer to the first operand, and $.R2 could refer to the second operand. However, the

positional notation is inconvenient for humans, since the position of the attribute is a

i.umber, rather than an easy-to-remember attribute name. Hence, we do not use the

positional notation in this textbook.

2.2.8 Formql Definition of the Relqtionol Algebro

The operations in Section 2.2 allow us to give a complete definition of an expression

in theielational algebra. Abasic expression in the relational algebra consists of either

one of the following:

o A relation in the database

r A constant relation
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A constant relation is written by listing its tuples within { }, for example { (A-101,
Downtown, 500) (4-215, Mianus, 700) ].

A general expression in the relational algebra is constructed out of smaller subex-
pressions. Let E1 and E2 be relational-algebra expressions. Then, the following are
all relational-algebra expressions:

E r 0 E z

E t - E z

E 1 x E 2

op(E), where P is a predicate on attributes in E1

IIs(Er), where S is a list consisting of some of the attributes in -E1

p" (Er), where r is the new name for the result of E1

2.3 Additionql Relqtionql-Algebro Operotions
The fundamental operations of the relational algebra are sufficient to express any
relational-algebra query.l However, if we restrict ourselves to just the fundamental
operations, certain common queries are lengthy to express. Therefore, we define ad-
ditional operations that do not add any power to the algebra,but simplify common
queries. For each new operation, we give an equivalent expression that uses only the
fundamental operations.

2.3.1 The Set-lntersection Operotion
The first additional relational-algebra operation that we shall define is set intersec-
tion (n). Suppose that we wish to find all customers who have both a loan and an
account. Using set intersection, we can write

fI.ust om"r_no-" (b orrow er) ) fI 
"u"7o-er_nane 

( dep o si,t or)

The result relation for this query appears in Figure 2.19.
Note that we can rewrite any relational-algebra expression that uses set intersec-

tion by replacing the intersection operation with a pair of set-difference operations
a s :  

r ? s : r - t ' r - s l

Thus, set intersection is not a fundamental operation and does not add any power
to the relational algebra. It is simply more convenient to write r O s than to write
T - l r - s ) .

1. In Section 2.4, we introduce operations that extend the power of the relational algebra to handie null
and aggregate values.
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Hayes
jones

Smith

Figure 2.19 Customers with both an account and a loan at the bank.

2.3.2 The Nqturol'foin Operotion
It is often desirable to simplify certain queries that require a Cartesian product. Usu-
ally, a query that involves a Cartesian product includes a selection operation on the
result of the Cartesian product. Consider the query "Find the names of all customers
who have a loan at the bank, along with the loan number and the loan amount." We
first form the Cartesian product of the borrower and losn relations. Then, we select
those tuples that pertain to only the same loan-number, followed by the projection of
the resulting customer-name, loanttumber, at:.d nmount:

n.u"to*"r-nome, loan,loan-number, amount

(o bono-.r. toon-nunber : roan. lo aunumb., (borrow er x loan) )

The natural join is a binary operation that allows us to combine certain selections
and a Cartesian product into one operation. It is denoted by the join symbol X. The
natural-join operation forms a Cartesian product of its two arguments, performs a
selection forcing equality on those attributes that appear in both relation schemas,
and finally removes duplicate attributes.

Although the definition of natural join is complicated, the operation is easy to
apply.As an illustration, consider again the example "Find the names of all customers
who have a loan at the bank, and find the amount of the loan." We express this query
by using the natural join as follows:

i l.u"to-.r-nome, loan-number, amount (boffower X loan)

Since the schemas for borrower and loan (that is, Borrower-schema and Loan-schema)
have the attribute loan-number in common, the natural-join operation considers only
pairs of tuples that have the same value on loan:number. It combines each such pair
of tuples into a single tuple on the union of the two schemas (that is, customer:name,
branch-name,loan-number, amount). After performing the projection, we obtain the re-
lation in Figure2.20.

Consider two relation schemas R and S-which are, of course, lists of attribute
names. If we consider the schemas to be sets, rather than lists, we can denote those
attribute names that appear in both R and S by R i S, and denote those attribute
names that appear in R, in S, or in both by /? U ,9. Similarly, those attribute names that
appear in R but not S are denoted by R -,9, whereas S - R denotes those attribute
names that appear in ,5 but not in R. Note that the union, intersection, and difference
operations here are on sets of attributes, rather than on relations.
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A d a m s  I  L - 1 6  1 1 3 0 0
C u r r y l L - 9 3  1 5 0 0
H a y e s  i  L - 1 5  1 1 5 0 0
Jackson I  L-14 11500
] o n e s  I  L - 1 7  1 1 0 0 0
smi th  I  t - zz  12000
S m i t h l L - 1 1  l g O O
W i l l i a m s  I  L - 1 7  1 1 0 0 0

Figure2.2o Result of fI.u"7o-ur_name, toan_number, amount (borrower x toan).

We are now ready for a formal definition of the natural join. Consider two relations
r(/?) and s(,S). The natural join of r and s, denoted by r x s, is a relation on schema
,R U ^9 formally defined as follows:

r X  s :  l I R u s  ( o r . A r : " . n r A r . A 2 : s . 1 2 A . . . A r . A n : " . a _ ( r  x  s ) )

w h e r e  R  a  S  =  { A t ,  4 2 , . . . ,  A n ) .
Because the natural join is central to much of relational database theory and prac-

tice, we give several examples of its use.

r Find the names of all branches with customers who have an account in the
bank and who live in Harrison.

nbron"h-rrurrr"

(o customer-c,it?/:,,Harrison,, (customer X account x deposi,tor))

The result relation for this query appears inFigure2.27.
Notice that we wrote custotner X account X depositor without inserting

parentheses to specify the order in which the natural-join operations on-the
three relations should be executed. In the preceding case, there are two possi-
bilities:

(customer X account) X depos'itor
customer X (account X deposi,tor)

We did not specify which expression we intended, because the two are equiv-
alent. That is, the natural ioin is associative.

Figure2.2l Result of
flbron.h-no*.(ocustomer_citE-,,Harrison,, (customer X account X de,positor)).

W
trGlton--_-l
I Perryridge I
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Figure2.22 Result of lI6ron.7r-no*"(o6ron"o-.rs :,.Brookiyn,, (branch)).

r Find all customers who haveboth a loan and an account at the bank.

ncu"to^.r-na*u (borrower X depos'itor)

Note that in Section 2.3.1, we wrote an expression for this query by using set
intersection. We repeat this expression here.

n.u"to^ur-no*" (borrow er) ) TI.u"1o-", -no-. (dep o s'it or)

The result relation for this query appeared earlier in Figure 2.19. This example
illustrates a general fact about the relational algebra: It is possible to write
several equivalent relational-algebra expressions that are quite different from
one another.

r Let r(/?) and s(S) be relations without any attributes in common; that is,
R n ^9 :0.Odenotestheemptyset.)Then,r X s :  r  x s.

T}re theta join operation is an extension to the natural-join operation that allows
us to combine a selection and a Cartesian product into a single operation. Consider
relations r(fi) and s(S), and let 0 be a predicate on attributes in the schema R U ,S.
The theta join operation r xe s is defined as follows:

r x g s : o e l r x s )

2.3.3 The Division Operotion
The division operation, denoted by +, is suited to queries that include the phrase
"for all." Suppose that we wish to find all customers who have an account at sll the
branches located in Brooklyn. We can obtain all branches in Brooklyn by the exPres-
sion

T1 : Il6ron.h-no*" (o 6ronch-citE : ";,1sokry"" (branch))

The result relation for this expression appears inFigure2.22.
We can find all (customer-name,branch*name) pairs for which the customer has-an

account at a branch by writing

12 : lI.u"lomer-n&me, branch-nqme (deposi,tor X account)

Figure 2.23 shows the result relation for this expression.
Now, we need to find customers who appear in 12 with ersery brandn name in

11. The operation that provides exactly those customers is the divide operation. We
formulate the query by writing

l"u"to*"r-nome, branch-nam" (deposi'tor X account)

1 Tlbron"h-no*. (o 6ron.r-"i.tg : "g1gtf<1tt" (branch))

ffi
F4hton 

-_1

lDowntown I
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Hayes I P
Iohnson I Downtown
]ohnson I Brighton
jones I Brighton
Lindsav I Redwood
Smith I Mianus
Turner I Round Hill

Figure2.23 Result of fI.u"1o*.r_name, branch_no-. (depos,itor x account),

The result of this expression is a relation that has the schema (customer-name) andthat
contains the tuple (Johnson).

Formally, let r(R) and s(S) be relations, and let S e R; that is, every attribute of
schema S is also in schema R. The relation r + s is a relation on schema B -,S (that
is, on the schema containing all attributes of schema,R that are not in schema ,9). A
tuple f is in r + s if and only if both of two conditions hold:

L. f is in IIn-s(r)

2. For every tuple t"

a. t,[S] : t"lS]
b. t"lR - sl :

in s, there is a tuple t, inr satisfying both of the following:

t

It may surprise you to discover that, given a division operation and the schemas of
the relations,we cart,infact, define the division operation in terms of the fundamen-
tal operations. Let r(fi) and s(^9) be given, with ,S C R:

r + s : fln-s (") - tla-s ((IIa-s (r) x s) - Iln-s,s("))

To see that this expression is true, we observe that ll6-s (r) gives us all tuples / that
satisfy the first condition of the definition of division. The expression on the right
side of the set difference operator

IIn-s ((IIn-s (r) x s) - Il;-s,s(r))

serves to eliminate those tuples that fail to satisfy the second condition of the defini-
tion of division. Let us see how it does so. Consider fln-s (r) x s. This relation is
on schema R, and pairs every tuple in lin-s (") with every tuple in s. The expression
Iln-s,s(r) merely reorders the attributes of r.

Thus, (fl6-s (r) x s) - Ila-s,s(r) gives us those pairs of tuples from IIp-s (r)
and s that do not appear in r. If a tuple t i is in

IIa-s ((IIn-s (r) x s) - Ils-s,s(r))

then there is some tuple t" in s that does not combine with tuple 17 to form a tuple in
r. Thus, li holds a value for attributes B - ^9 that does not appear in r + s. It is these
values that we eliminate from fla-s (r).
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2.3.4 The Assignment Operotion
It is convenient at times to write a relational-algebra expression by assigning parts of

it to temporary relation variables. The assignment operation, denoted by ,-, works

like assignment in a programming language. To illustrate this operation, consider the

definition of division in Section 2.3.3. We could write r + s as

t e m P T - I I a s ( r )
temp2 - IIR-s ((tempL x s) - IIn s,s("))
r e s u l t : t e m p 7 - t e m p 2

The evaluation of an assignment does not result in any relation being displayed to

the user. Rather, the result of the expression to the right of the *- is assigned to the

relation variable on the left of the *-. This relation variable may be used in subsequent

expressions.
With the assignment operation, a query can be written as a sequential program

consisting of a series of assignments followed by an expression whose value is dis-

played as the result of the query. For relational-algebra queries, assignment must

always be made to a temporary relation variable. Assignments to permanent rela-

tions constitute a database modification. We discuss this issue in Section 2.6. Note

that the assignment operation does not provide any additional power to the algebra.

It is, however, a convenient way to express complex queries.

2.4 Extended Relotionql-Algebro Operotions
The basic relational-algebra operations have been extended in several ways. A simple
extension is to allow arithmetic operations as part of projection. An important exten-
sion is to allow aggregate operntions such as computing the sum of the elements of a
set, or their average. Another important extension is the outer-join operation, which
allows relational-algebra expressions to deal with null values, which model missing
information.

2.4.1 Generqlized Proiection
The generalized-projection operation extends the projection operation by allowing

arithmetic functions to be used in the projection list. The generalized-projection op-

eration has the form

fIer ,p" , . . . ,p*(E)

where E is any relational-algebra expression, and each of Ft, Fz, . . - , Fn is an arith-

metic expression involving constants and attributes in the schemaof E. As a special

case, the arithmetic expression may be simply an attribute or a constant.

For example, suppose we have a relation credit-info, as in Figure 2.24, which lists

the credit limit and expenses so far (the credit-balance on the account). If we want to

find how much more each person can spend, we can write the following expression:

n cu"tomer-nane, Ii.ni.t - cred.i.t-balanc. kreditjnfo)
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jones
Smith
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Figure2.24 The credit-inforelation.

The attribute resulting from the expression li,mi,t - cred'it-balance does not have a
name. We can apply the rename operation to the result of generalized projection in
order to give it a name. As a notational convenience, renaming of attributes can be
combined with generalized projection as illustrated below:

n"u"to^er-nome, (Li'n'it - crer1i,t-balance) as cred,i,t-aua';1o61" (credit-int'O)

The second attribute of this generalized projection has been given the name credit
-nr:ailable. Figure 2.25 shows the result of applying this expression to the relation in
Figure2.24.

2.4.2 Aggregote Functions
Aggregate functions take a collection of values and return a single value as a result.
For example, the aggregate function sum takes a collection of values and returns the
sum of the values. Thus, the function sum applied on the collection

{ 1 . 1 . 3 , 4 . 4 , 1 r }

returns the value 24.Tl;'e aggregate function avg returns the average of the values.
When applied to the preceding collection, it returns the value 4. The aggregate func-
tion count returns the number of the elements in the collection, and returns 6 on
the preceding collection. Other common aggregate functions include min and max,
which return the minimum and maximum values in a collection; they return 1 and
11, respectively, on the preceding collection.

The collections on which aggregate functions operate can have multiple occur-
rences of a value; the order in which the values appear is not relevant. Such collec-
tions are called multisets. Sets are a special case of multisets where there is only one
copy of each element.

Curry | 250
Jones I 5300
smith I teoo

t ,

Figure2.25 The result of fIsasl6*sy,nane, (Ii.m.it , cre6.i.t_balance) as cred'it_aua1rable
(uedi,t-i.nfo)



Brown
Gopal
Johnson
Loreena
Peterson
Rao
Sato

Perryridge
Perryridge
Downtown
Downtown
Downtown
Austin
Austin

Chanter 2 Relational Model

Figure2.26 The ptuorksrelation.

To illustrate the concept of aggregation, we shall use the ptsnorks relation in Fig-
ure 2.26, for part-time employees. Suppose that we want to find out the total sum of
salaries of all the part-time employees in the bank. The relational-algebra expression
for this query is:

1tu ("olo,$(Pt-works)

The symbol 9 is the letter G in calligraphic font; read it as "calligraphic G'" The
relational-algebra operationQ signifies that aggregation is to be applied, and its sub-
script specifies the aggregate operation to be applied. The result of the expression
above is a relation with a single attribute, containing a single row with a numerical
value corresponding to the sum of all the salaries of all employees working part-time
in the bank.

There are cases where we must eliminate multiple occurrences of a value before
computing an aggregate function. If we do want to eliminate duplicates, we use the
same function names as before, with the addition of the hyphenated string "distinct"
appended to the end of the function name (for example, count-distinct). An example
arises in the query "Find the number of branches appearing in the ptsnorks relation."
In this case/ a branch name counts only once, regardless of the number of employees
working that branch. We write this query as follows:

9count -distin ct (br anclunamq (nt-w or k s)

For the relation in Figure 2.26, the result of this query is a single row containing the
value 3.

Suppose we want to find the total salary sum of all part-time employees at each
branch of the bank separately, rather than the sum for the entire bank. To do so, we
need to partition the relation ptsaorks into groups based on the branch, and to apply
the aggregate function on each group.

The following expression using the aggregation operator I achieves the desired
result:

bran.h-noneQ su ("olors)(Pt-works)
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Adams lPer ry r idge l1
Brown lPerryr idge 11300
Gopa l  lPer ry r idse  15300

Figure2.27 The ptsaorksrelation after grouping.

In the expression, the attribute branch-nsme in the left-hand subscript of g indicates
that the input relation ptsnorks must be divided into groups based on the value of
branchstame. Figure 2.27 shows the resulting groups. The expression sum(solary) in
the right-hand subscript of 9 indicates that for each group of tuples (that is, each
branch), the aggregation function sum must be applied on the collection of values of
the salary attribute. The output relation consists of tuples with the branch name, and
the sum of the salaries for the branch, as shown in Figure 2.28.

The general form of the aggregation operationQ is as follows:

G t ,G2, . . . ,G *9 & (A) ,  Fz(Az) , . . . ,  r^1a*1 (E)

where E is any relational-algebra expression; G1, G2,..., G, constitute a list of at-
tributes on which to group; each fl is an aggregate function; and each Ai is an at-
tribute name. The meaning of the operation is as follows. The tuples in the result of
expression E are partitioned into groups in such a way that

1. All tuples in a group have the same values for G1,Gz,. . . ,Gn.

2. Tuples in different groups have different values for G1,Gz,. . . ,Gn.

Thus, the groups can be identified by the values of attributes Gt, Gz, . . . , Gn. For each
group (gr, gz, . . ., gn), the result has a tuple (gr, g", . . ., gn, dr, a2, . . ., a^) where, for
each'i, n; is the result of applying the aggregate function fl on the multiset of values
for attribute,4i in the group.

Downtown
Downtown
Downtown

3100
5300
8100

Figure2.28 Result of bron.h_no-eQstm(satars)(pt-works).
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Figure2.29 Result of
branch-nameQsum(salarg) as sum-saLarg,max(salarg) ut -or-"ohry(pt-works)'

As a special case of the aggregate oPeration, the list of attributes Gr, Gz, . ' . , Gn cant

be empty, in which case there is a single group containing all tuples in the relation.

This corresponds to aggregation without grouping.
Going back to our earlier example, if we want to find the maximum salary for

part-time employees at each branch, in addition to the sum of the salaries, we write

the expression

branch-n om eQsum( salary),m ax( s alarg (pt-w orks )

As in generalized projection, the result of an aggregation operation does not have a
name. We can apply a rename operation to the result in order to give it a name. As
a notational convenience, attributes of an aggregation operation can be renamed as
illustrated below:

bran.h-name7sum(salorg) as sun-sa[arg,max(salarg) u, *or-"olorg(pt-works)

Figure 2.29 shows the result of the expression.

2.4.3 Outer Join
The outer-join operation is an extension of the join operation to deal with missing
information. Suppose that we have the relations with the following schemas, which
contain data on full-time employees:

Coyote
Rabbit
Gates
Williams

MeSa

Mesa
Redmond
Redmond

1500
1300
5300
1500

Carrotville
Death Valley
Seattle

Coyote
Rabbit
Smith
Williams

Figure 2.30 The employee and ftsaorks relations.
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Figure 2.31 The result of employee X ft-works.

employ ee (employ ee_name, street, city)
ft sn orks (employ ee_name, branch-name, snlary)

Consider the employee and ft-works relations in Figure 2.30. Suppose that we want
to generate a single relation with all the information (street, city, branch name, and
salary) about full-time employees. A possible approach would be to use the natural-
join operation as follows:

employee X ft-works

The result of this expression appears in Figure 2.31. Notice that we have lost the street
and city information about Smith, since the tuple describing Smith is absent from
the ftsaorks relation; similarly, we have lost the branch name and salary information
about Gates, since the tuple describing Gates is absent from the employee relation.

We can use the outer-join operation to avoid this loss of information. There are
actually three forms of the operation: left outer join, denoted)<; right outer join, de-
noted DC; and full outer join, denoted -)4. All three forms of outer join compute the
join, and add extra tuples to the result of the join. The results of the expressions
employee -M ft-works,, employee W ft-works, and employee -}{- ft_works appear in
Figures 2.32, 2.33, and 2.34, respectively.

The left outer join (D<) takes all tuples in the left relation that did not match with
any tuple in the right relation, pads the tuples with null values for all other attributes
from the right relation, and adds them to the result of the natural join. In Figure 2.32,
tuple (Smith, Revolveq, Death Valley, null, null) is such a tuple. All information from
the left relation is present in the result of the left outer join.

The right outer join (>c) is symmetric with the left outer join: It pads tuples from
the right relation that did not match any from the left relation with nulls and adds
them to the result of the natural join. In Figure 2.33, tuple (Gates , null, null, Redmond,
5300) is such a tuple. Thus, all information from the right relation is present in the
result of the right outer join.

Hollywood
Carrotville
Seattle

Rabbit
Williams
Smith

Toon
Tunnel
Seaview
Revolver

Carrotville
Seattle
Death Valley

Figure2.32 Result of emqtloyee)4 ft-works
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Figure 2.33 Result of employee w- ft-works.

The full outer join()C) does both of those operations, padding tuples from the

left relation that did not match any from the right relation, as well as tuples from the

right relation that did not match any from the left relation, and adding them to the

result of the join. Figure 2.34 shows the result of a full outer join.

Since outer-join operations may generate results containing null values, we need

to specify how the different relational-algebra operations deal with null values. Sec-

tion 2.5 deals with this issue.
It is interesting to note that the outer-join operations can be expressed by the basic

relational-algebra operations. For instance, the left outer join operation, r :X s, can

be written as
( r  X  s )  U  ( r  -  116 ( r  X  s ) )  x  { (nu l l , . . . , nu l l ) }

where the constant relation {(null,...,null)} is on the schema S - R.

2.5 Null Vqlues
In this section, we define how the various relational-algebra operations deal with null
values and complications that arise when a null value participates in an arithmetic
operation or in a comparison. As we shall see, there is often more than one possible
way of dealing with null values, and as a result our definitions can sometimes be
arbitrary. Operations and comparisons on null values should therefore be avoided,
where possible.

Since the special value nuII indicates "value unknown or nonexistent," any arith-
metic operations (such &s *, -, *, /) involving null values must return a null result.

Similarly, any comparisons (such ?S (,(:, ),):,1) involving a null value eval-
uate to special value unknown; we cannot say for sure whether the result of the
comparison is true or false, so we say that the result is the new truth value unknown.

Hollywood
Carrotville
Seattle
Death Valley
null

Mesa
Mesa
Redmond
null
Redmond

Coyote
Rabbit
Williams
Smith
Gates

Toon
Tunnel
Seaview
Revolver
nuII

Figure2.34 Result of employeeb{- ft-works.
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Comparisons involving nulls may occur inside Boolean expressions involving the
and, or, and not operations. We must therefore define how the three Boolean opera-
tions deal with the truth value unknown.

o and: (true and unknown) = unknown; (false and unknown) = false; (unknown and,
unknolon) = unknown.

o or: (true or unknown) = true; (false or unknown) = unknown; (unknown or un-
known) = unknoTJJn.

o not: (not unknown) = unknown.

We are now in a position to outline how the different relational operations deal
with null values.

o Select: The selection operation evaluates predicate P in o p(E) on each tuple t
in E. If the predicate returns the value true, t is added to the result. Otherwise,
if the predicate returns unknorpn or false, t is not added to the result.

o Join: Joins can be expressed as a Cartesian product followed by a selection.
Thus, the definition of how selection handles nulls also defines how join op-
erations handle nulls.

In a natural join, say r X s, we can see from the above definition that if two
tuples, t, € r and f" € s, both have a null value in a common attribute, then
the tuples do not match.

o Projection: The projection operation treats nulls just like any other value when
eliminating duplicates. Thus, if two tuples in the projection result are exactly
the same, and both have nulls in the same fields, they are treated as duplicates.

The decision is a little arbitrary since, without knowing the actual value,
we do not know if the two instances of null are dupiicates or not.

o Union, intersection, difference: These operations treat nulls just as the pro-
jection operation does; they treat tuples that have the same values on all fields
as duplicates even if some of the fields have null values in both tuples.

The behavior is rather arbitrary, especially in the case of intersection and
difference, since we do not know if the actual values (if any) represented by
the nulls are the same.

o Generalized projection: We outlined how nulls are handled in expressions
at the beginning of Section 2.5. Duplicate tuples containing null values are
handled as in the projection operation.

o Aggregate: When nulls occur in grouping attributes, the aggregate operation
treats them just as in projection: If two tuples are the same on all grouping
attributes, the operation places them in the same group, even if some of their
attribute values are null.

When nulls occur in aggregated attributes, the operation deletes null values
at the outset, before applying aggregation. If the resultant multiset is empty,
the aggregate result is null, except for the count operation, whose result is 0.
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Note that the treatment of nulls here is different from that in ordinary arith-

metic expressions; we could have defined the result of anaggregate operation

as null if even one of the aggregated values is null. However, this would mean

a single unknown value in a large gloup could make the aggregate result on

the group to be null, and we would lose a lot of useful information.

o Outer join: Outer-join operations behave just like join operations, except on

tuples that do not occur in the join result. Such tuples may be added to the

result (depending on whether the operation is }(, DC, or trC), padded with

nulls.

2.6 Modificqtion of the Dqtqbqse
We have limited our attention until now to the extraction of information from the

database. In this section, we address how to add, remove, or change information in

the database.
We express database modifications by using the assignment operation. We make

assignments to actual database relations by using the same notation as that described

in Section 2.3 for assignment.

2.6.1 Deletion
We express a delete request in much the same way as a quely. Howevet, instead of

displaying tuples to the user, we remove the selected tuples from the database. We

can delete only whole tuples; we cannot delete values on only particular attributes.

In relational algebra a deletion is expressed by

r +  r - E

where r is a relation and E is a relational-algebra expression.
F{ere are several examples of relational-algebra delete requests:

Delete all of Smith's account records.

deposi,tor <- depos'itor - o customer-name:,.smtth', (deposi,tor)

Delete all loans with amount in the range 0 to 50.

Ioan ,- Ioan - oamount4oAanount<so (Ioan)

Delete all accounts at branches located in Brooklyn.

TL + obranch-ci.ttJ :,.Brooklyn- (account X branch)

12 <- TI6ronch-name, account-number, batance \T1)

a c c o u n l  - a c c o u n l , - r 2

Note that, in the final example, we simplified our expression by using assign-
ment to temporary relations (rt and r).
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2.6.2 Insertion
To insert data into a relation, we either specify a tuple to be inserted or write a query
whose result is a set of tuples to be inserted. Obviously, the attribute values for in-
serted tuples must be members of the attribute's domain. Similarly, tuples inserted
must be of the correct arity. The relational algebra expresses an insertion by

' r < - r ' l ) E

where r is a relation and E is a relational-algebra expression. We express the insertion
of a single tuple by letting E be a constant relation containing one tuple.

Suppose that we wish to insert the fact that Smith has $1200 in account A-973 at
the Perryridge branch. We write

account <- account U {(A-97 3, "Perryridge", 7200)}
depositor - depositor U {("Smith", A-973)}

More generally, we might want to insert tuples on the basis of the result of a query.
Suppose that we want to provide as a gift for all loan customers of the Perryridge
branch a new $200 savings account. Let the loan number serve as the account number
for this savings account. We write

Tt ? (obronch_name-..perr'idge,, (borrower X loan))

T2 -  I l loor-number,  bran.h-name ( f  l )
account + accountu (r2 x {(200)})
depositor <- depositor l) f7.u"1o*.r_name, to an_nunt", (r 1)

Instead of specifying a tuple as we did earlier, we specify a set of tuples that is in-
serted into both the account and depositor relation. Each tuple in the accounf relation
has an account-number (which is the same as the loan number), abranch_name (Per-
ryridge), and the initial balance of the new account ($200). Each tuple inthe depositor
relation has as customer:name the name of the loan customer who is being given the
new account and the same account number as the corresponding nccount tuple.

2.6.3 Updoting
In certain situations, we may wish to change a value in a tuple without changing nll
values in the tuple. We can use the generalized-projection operator to do this task:

T + TIF.,Fz,...,e-(r)

where each fl is either the zth attribute of r, lf the zth attribute is not updated, o1, if
the attribute is to be updated, f is an expression, involving only constants and the
attributes of r, that gives the new value for the attribute. Note that the schema of
the expression resulting from the generalized-projection expression must match the
original schema of r.

If we want to select some tuples from r and to update only them, we can use
the following expression; here, P denotes the selection condition that chooses which
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tuples to update: 
r <- rrFr,Fz,...,F*(op(r)) u (, - op(r))

To illustrate the use of the update operation, suppose that interest payments are

being made, and that all balances are to be increased by 5 percent. We write

acco unt <- fIass6anl-number, branch-nane, b ar,nce *1.1J5 (account )

Now suppose that accounts with balances over $10,000 receive 6 percent interest,
whereas all others receive 5 percent. We write

account € no""ount-nunber,branch-name, balance *t.06 (obatance)10000 (account))

l) TI occount-number,branch-name balance * 1.o5 (o 6o1on.e ( 10000 (account))

2.7 Summory
o The relational data model is based on a collection of tables. The user of the

database system may query these tables, insert new tuples, delete tuples, and
update (modify) tuples. There are several languages for expressing these op-
erations.

o The relational algebra defines a set of algebraic operations that operate on
tables, and output tables as their results. These operations can be combined
to get expressions that express desired queries. The algebra defines the basic
operations used within relational query languages.

o The operations in relational algebra can be divided into

n Basic operations
f Additional operations that can be expressed in terms of the basic opera-

tions
n Extended operations, some of which add further expressive power to re-

lational algebra

o Databases can be modified by insertiory deletion, or update of tuples. We
used the relational algebra with the assignment operator to express these
modifications.

r The relational algebra is a terse, formal language that is inappropriate for ca-
sual users of a database system. Commercial database systems, therefore, use
languages with more "syntactic sugar." In Chapters 3 and(,we shall consider
the most influential language-SQl, which is based on relational algebra.

Review Terms
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Null value

Database schema

Database instance
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Prqctice Exercises
2.L Consider the relational database of Figure 2.35, where the primary keys are un-

derlined. Give an expression in the relational algebra to express each of the fol-
lowing queries:

a. Find the names of all employees who live in the same city and on the same
street as do their managers.

b. Find the names of all employees in this database who do not work for First
Bank Corporation.

c. Find the names of all employees who earn more than every employee of
Small Bank Cornoration.

employ ee (person-ttame, street, city)
works lpersonnaffie, companyname, salary)
company (y*pony uo*g tity)
manages (personstame, manager:tame)

Figure 2.35 Relational database for Exercise s 2.7, 2.3, 2.5, 2.7, and 2.9.
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The outer-join operations extend the natural-join operation so that tuples from
the participating relations are not lost in the result of the join. Describe how the
theta join operation can be extended so that tuples from the left, right, or both
relations are not lost from the result of a theta ioin.

Consider the relational database of Figure 2.35. Give an expression in the rela-
tional algebra for each request:

a. Modify the database so that Jones now lives in Newtown.
b. Give all managers in this database a 10 percent salary raise.

Exercises

Describe the differences in meaning between the t erms relation and relation schema.

Consider the relational database of Figure 2.35, where the primary keys are un-
derlined. Give an expression in the relational algebra to express each of the fol-
lowing queries:

a. Find the names of all employees who work for First Bank Corporation.
b. Find the names and cities of residence of all employees who work for First

Bank Corporation.
c. Find the names, street address, and cities of residence of all employees who

work for First Bank Corporation and earn more than $10,000 per annum.
d. Find the names of all employees in this database who live in the same city

as the company for which they work.
e. Assume the companies may be located in several cities. Find all companies

located in every city in which Small Bank Corporation is located.

Consider the relation of Figure 2.20, which shows the result of the query "Find
the names of all customers who have a loan at the bank." Rewrite the query
to include not only the name, but also the city of residence for each customer.
Observe that now customer ]ackson no longer appears in the result, even though
jackson does in fact have a loan from the bank.

a. Explain why Jackson does not aPpear in the result.
b. Suppose that you want Jackson to appear in the result. How would you

modify the database to achieve this effect?
c. Again, suppose that you want ]ackson to appear in the result. Write a query

using an outer join that accomplishes this desire without your having to
modify the database.

2.7 Consider the relational database of Figure 2.35. Give an expression in the rela-
tional algebra for each request:

a. Give all employees of First Bank Corporation a 10 percent salary raise.
b. Give all managers in this database a 10 percent salary raise, unless the salary

would be greater than $100,000. In such cases, give only a 3 percent raise.
c. Delete all tuples intheworks relation for employees of Small Bank Corpora-

tion.

, ,

2.3

2.4

2.5

2.6
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2.8 Using the bank example, write relational-algebra queries to find the accounts
held by more than two customers in the following ways:

a. Using an aggregate function.
b. Without using any aggregate functions.

2.9 Consider the relational database of Figure 2.35. Give a relational-algebra expres-
sion for each of the following queries:

a. Find the company with the most employees.
b. Find the company with the smallest payroll.
c. Find those companies whose employees earn a higher salary, on average,

than the average salary at First Bank Corporation.

2.10 List two reasons why null values might be introduced into the database.

2.11 Consider the following relational schema

employ ee(empno, name, office, age)
books(&lL title, authors, publisher)
loan(empno, isbn, date)

Write the following queries in relational algebra.
a. Find the names of employees who have borrowed a book published by

McGraw-Hill.
b. Find the names of employees who have borrowed all books published by

McGraw-Hill.
c. Find the names of emplovees who have borrowed more than five different

books published by lr.4cGiaw- Hill.
d. For each publisher, find the names of employees who have borrowed more

than five books of that publisher.
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Many relational database prodrects are now commercially available. These include
IBM's DB2, Oracle, Sybase, Informix, and Microsoft Sgf Server. Open source relational
database systems include MySQL and PostgreSQl. Database products designed for
personal use include Microsoft Access and FoxPro.



The relational algebra described in Chapter 2 provides a concise, formal notation for
representing queries. However, commercial database systems require a query lan-
guage that is more user friendly. In this chapter, as well as Chapter 4, we study SeL,
the most influential commercially marketed query language. SQL uses a combination
of relational-algebra (Chapter 2) and relational-calculus (Chapter 5) constructs.

Although we refer to the SQL language as a "query language," it can do much
more than just query a database. It can define the structure of the data, modify data
in the database, and specify security constraints.

It is not our intention to provide a complete users' guide for SQL. Rather, we
present SQL's fundamental constructs and concepts. Individual implementations of
SQL may differ in details, or may support only a subset of the full language.

3.1 Bockground
IBM developed the original version of SQL, originally called Sequel, as part of the
System R project in the early 7970s. The Sequel language has evolved since then,
and its name has changed to SQL (Struch-rred Query Language). Many products now
support the SQL language. SQL has clearly established itself as the standard relational
database language.

In7986, the American National Standards Institute (ANSI) and the International
Organization for Standardization (ISO) published an SQL standard, called SQL-86.
ANSI published an extended standard for SQL, SQL-89, in 1989. The next version of
the standard was SQL-92 standard, followed by SQL:1999; the most recent version is
SQL:2003. The bibliographic notes provide references to these standards.

The SQL language has several parts:

o Data-definition language (DDL). The SQL DDL provides commands for defin-
ing relation schemas, deleting relations, and modifying relation schemas.

75
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r Interactive data-manipulation language (Olvtr;. The SQL DML includes a

query language based on both the relational algebra (Chapter 2) and and the

tuple relational calculus (Chapter 5). It also includes commands to insert tu-

ples into, delete tuples from, and modify tuples in the database.

r Integrity. The SQL DDL includes commands for specifying integrity constraints
that the data stored in the database must satisfy. Updates that violate integrity

constraints are disallowed.

o View definition. The SQL DDL includes commands for defining views.

o Transaction control. SQL includes commands for specifying the beginning

and ending of transactions.

o Embedded SQL and dynamic SQL. Embedded and d1'namic SQL define how

SQL statements can be embedded within general-purpose programming lan-

guages, such as C, C++,Iava,PL/L Cobol, Pascal, and Fortran.

o Authorization. The SQL DDL includes commands for specifying access rights

to relations and views.

In this chapter, we present a survey of basic DML and the DDL features of SQL. Our

description is mainlybased on the widely implementedsQL-g2 standard, but we also

cover some extensions from the SQL:1999 and SQL:2003 standards.
In Chapter 4 we provide a more detailed coverage of the SQL type system, in-

tegrity constraints, and authorization.In that chapter, we also briefly outline embed-

ded and dynamic SQL, including the ODBC and JDBC standards for interacting with

a database from programs written in the C and java languages. In Chapter 9, we

outline object-oriented extensions to SQL that were introduced in SQL:1999.

Many database systems support most of the SQL-92 standard and some of the new

constructs in SQL:1999 and SQL:2003, although currently no database system supports

all the new constructs. You should also be aware that many database systems do

not support some features of SQL-92, and that many databases provide nonstandard

features that we do not cover here. In case you find that some language features

described here do not work on the database system that you use, consult the user

manuals for your database system to find exactly what features it supports.

The enterprise that we use in the examples in this chapter, and later chapters,

is a banking enterprise. Figure 3.1 gives the relational schema that we use in our

examples, with primary-key attributes underlined. Recall that in Chapter 2 we first

brnnch(branch:name, brnnch-city, assets)
customer (customer-name, customer-street, customerrity)
loan (loan:number, branch-name, amount)
borrower (customer-name, loanstumber)
account (account-number, branch-name, balance)
depositor (customer-name, account-number)

Figure 3.1 Schema of banking enterprise.
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defined a relation schema B by listing its attributes, and then defined a relation r
on the schema using the notation r(/?). The notation in Figure 3.1 omits the schema
name, and defines the schema of a relation by directly listing its attributes.

3.2 Dqtq Definition
The set of relations in a database must be specified to the system by means of a data-
definition language (DDL). The SQL DDL allows specification of not only a set of rela-
tions, but also information about each relation, including

r The schema for each relation

o The domain of values associated with each attribute

o The integrity constraints

o The set of indices to be maintained for each relation

o The security and authorization information for each relation

o The physical storage structure of each relation on disk

We discuss here basic schema definition and basic domain values; we defer discus-
sion of the other SQL DDL features to Chapter 4.

3.2.1 Bqsic Domqin Types
The SQL standard supports a variety of built-in domain Wpes, including:

o char(n): A fixed-length character string with user-specified length n. The full
form, character, can be used instead.

o varchar(n): A variable-length character string with user-specified maxirnum
length n. The full form, character varying, is equivalent.

o int: An integer (a finite subset of the integers that is machine dependent). The
full form, integer, is equivalent.

o smallint: A small integer (a machine-dependent subset of the integer domain
type).

o numeric(p, d): A fixed-point number with user-specified precision. The num-
ber consists of p digits (plus a sign), and d of the p digits are to the right of the
decimal point. Thus, numeric(3,l) allows 44.5 to be stored exactly, but neither
444.5 or 0.32 can be stored exactly in a field of this type.

o teal, double precision: Floating-point and double-precision floating-point num-
bers with machine-dependent precision.

o float(n): A floating-point number, with precision of at least n digits.

Additional domain values are covered in Section 4.1.



Chapter 3 SQL

3.2.2 Bqsic Schemq Definition in SQL

We define an SQL relation by using the create table command:

create table r(AyDr, AzDz, . . ., AnDn,
(integrity-constraint, ),

li.,i"grlty-.onstraint* ) )

where r is the name of the relation, each Ai is the name of an attribute in the schema of
relation r, and Di is the domain type of values in the domain of attribute Ai. There are
a number of different allowable integrity constraints. In this section we only discuss
primary key,which takes the form:

o primary key (Ai,, Ajr, . . . , Ai), The primary-key specification says that at-
tributes Aj' Aj,, . . . , Aj^ form the primary key for the relation. The primary-
key attributes are required to be non null and unique; that is, no tuple can have
a null value for a primary-key attribute, and no two tuples in the relation can
be equal on all the primary-key attributes.l Although the primary-key specifi-
cation is optional, it is generally a good idea to specify a primary key for each
relation.

Other integrity constraints that the create table command may include are covered
Iater, in Section 4.2.

Figure 3.2 presents a partial SQL DDL definition of our bank database. Note that,
as in earlier chapters, we do not attempt to model precisely the real world in the
bank database example. In the real world, multiple people may have the same name/
so customername wottld not be a primary key for the customer relation; a customer-id
would more likely be used as a primary key. We use customerttame as a primary key
to keep our database schema simple and short.

If a newly inserted or modified tuple in a relation has null values for any primary-
key attribute, or if the tuple has the same value on the primary-key attributes as does
another tuple in the relation, SQL flags an error and prevents the update.

A newly created relation is empty initially. We can use the insert command to load
data into the relation. For example, if we wish to insert the fact that there is an account
A-9732 at the Perryridge branch and that it has a balance of $1200, we write

insert into account
values ('A-9732' , 

'Perryridge' ,1200)

The values are specified in the order in which the corresponding attributes are listed
in the relation schema. The insert command has a number of useful features, and is
covered in more detail later, in Section 3.10.2.

We can use the delete command to delete tuples from a relation. The command

delete fromaccount

1. In SQL-89, primary-key attributes were not implicitly declared to be not null; an explicit not null

declaration was required.
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create table customer
(customerttame char(20),
customer-street char(30),
customer-city char(30),
primary key (customer -name))

create tablebranch
(branch-name char(15),
branchdty char(30),
assets numenc(76,2),
primary key (b r an clt-n am e))

create table account
(account:number char(7}),
branch-name char(1S),
balance numefic(72,2),
primary key (account:number))

create table depositor

";::;Tf-ffi iillll?8]
primary key (customer-name, account-number))

Figure 3.2 SeL data definition for part of the bank database.

would delete all tuples from the account relation Other forms of the delete command
allow specific tuples to be deleted; the delete command is covered in more detail
later, in Section 3.10.1.

To remove a relation from an sQL database, we use the drop table command. The
drop table command deletes all information about the dropped relation from the
database. The command

drop table r

is a more drastic action than

delete fromr

The latter retains relation r, but deletes all tuples in r. The former deletes not only all
tupies of r, but also the schema for r. After r is dropped, no tuples can be inserted
into r unless it is re-created with the create table command.

We use the alter table command to add attributes to an existing relation. All tuples
in the relation are assigned null as the value for the new attribute. The form of the
alter table command is

alter table r add A D

where r is the name of an existing relation, A is the name of the attribute to be added,



80 Chapter 3 SQL

and D is the domain of the added attribute. We can drop attributes from a relation by
the command

alter table r drop A

where r is the name of an existing relation, and A is the name of an attribute of the
relation. Many database systems do not support dropping of attributes, although
they will allow an entire table to be dropped.

3.3 Bqsic Structure of SQL Queries
A relational database consists of a collection of relations, each of which is assigned

a unique name. Each relation has a structure similar to that presented in Chapter 2.

SQL allows the use of null values to indicate that the value either is unknown or does

not exist. It allows a user to specify which attributes cannot be assigned null values,

as we noted in Section 3.2.
The basic structure of an SQL expression consists of three clauses: select, from, and

where.

o The select clause corresponds to the projection operation of the relational al-

gebra. It is used to list the attributes desired in the result of a query.

o The from clause corresponds to the Cartesian-product operation of the rela-

tional algebra. It lists the relations to be scanned in the evaluation of the ex-

pression.

o The where clause corresponds to the selection predicate of the relational alge-

bra. It consists of a predicate involving attributes of the relations that appear

in the from clause.

That the term select has different meaning in SQL than in the relational algebra is an

unfortunate historical fact. We emphasize the different interpretations here to mini-

mize potential confusion.
A typical SQL query has the form

s e l e c t A l ,  A z , . . . , A n
I t o m r y ,  T 2 , . . . , T m
where P

Each Ai represents an attribute, and each ri a relation. P is a predicate. The query is

equivalent to the relational-algebra expression

f IA r ,  A r , . . . ,A * (op ( r ,  x  12  x  " '  x  r * ) )

If the where clause is omitted, the predicate P is true. However, unlike the result of a

relational-algebra expression, the result of the SQL query may contain multiple copies

of some tuples; we shall return to this issue in Section 3.3.8.

SQL forms the Cartesian product of the relations named in the from clause,

performs a relational-algebra selection using the where clause predicate, and then
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projects the result onto the attributes of the select clause. In practice, SQL may con-
vert the expression into an equivalent form that can be processed more efficiently.
However, we shall defer concerns about efficiency to Chapters 73 and14.

3.3.1 The select Clquse
The result of an SQL query is, of course, a relation. Let us consider a simple query
using our banking example, "Find the names of all branches in the loanrelation":

select branch-nnme
fromloan

The result is a relation consisting of a single attribute with the heading branch-name.
Formal query languages are based on the mathematical notion of a relation being

a set. Thus, duplicate tuples never appear in relations. In practice, duplicate elimina-
tion is time-consuming. Therefore, sQL (like most other commercial query languages)
allows duplicates in relations as well as in the results of SQL expressions. Thus, the
preceding query will list eachbranch:tame once for every tuple in which it appears in
the lonn relation.

In those cases where we want to force the elimination of duplicates, we insert the
keyword distinct after select. We can rewrite the preceding query as

select distin ct branchttame
ftomlonn

if we want duplicates removed.
SQL allows us to use the keyword all to specify explicitly that duplicates are not

removed:

select all branch-name
fromloan

Since duplicate retention is the default, we will not use all in our examples. To ensure
the elimination of duplicates in the results of our example queries, we will use dis-
tinct whenever it is necessary. In most queries where distinct is not used, the exact
number of duplicate copies of each tuple present in the query result is not important.
However, the number is important in certain applications; we return to this issue in
Section 3.3.8.

The asterisk symbol " * " can be used to denote "all attributes." Thus, the use of
loan.* in the preceding select clause would indicate that all attributes of loan are to be
selected. A select clause of the form select " indicates that all attributes of all relations
appearing in the from clause are selected.

The select clause may also contain arithmetic expressions involving the operators
*, -, *, and / operating on constants or attributes of tuples. For example, the query

select loan-numb er, br anchname, amount * 1,00
fromloan
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will return a relation that is the same as the loan relation, except that the attribute
amount is multiplied by 100.

SQL also provides special data types, such as various forms of the date type, and
allows several arithmetic functions to operate on these tyPes.

3.3.2 The where Clquse
Let us illustrate the use of the where clause in SQL. Consider the query "Find all loan
numbers for loans made at the Perryridge branch with loan amounts greater that
$1200." This query can be r,vritten in SQL as:

select losn-number
fromloan
where brsnch-rnme: 'Perryridge' and amount > 1200

SQL uses the logical connectives and, or, and not-rather than the mathematical
symbols A, V, and - -in the where clause. The operands of the logical connectives
can be expressions involving the comparison operators (, (:, ), ):,:, zlrrd (>.

SQL allows us to use the comparison operators to compare strings and arithmetic
expressions, as well as special tyPes, such as date types.

SQL includes a between comparison operator to simplify where clauses that spec-
ify that a value be less than or equal to some value and greater than or equal to some
other value. If we wish to find the loan number of those loans with loan amounts
between $90,000 and $100,000, we can use the between comparison to write

select.loan-number
Irom nan
where amount between 90000 and 100000

instead of

selectlosn-number
fromloan
where amount <: 100000 and amount >: 90000

Similarly, we can use the not between comparison operator.

3.3.3 The from Clquse
Finally, let us discuss the use of the from clause. The from clause by itself defines a
Cartesian product of the relations in the clause. Since the natural join is defined in
terms of a Cartesian product, a selection, and a projection, it is a relatively simple
matter to write an SQL expression for the natural join.

We write the relational-algebra expression

i l"u 
"to*.roome, 

I oan-number, anount (bor r ow er X I oan)

for the query "For all customers who have a loan from the bank, find their names,
loan numbers, and loan amount." In SQL, this query can be written as
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select customer-name / borrower.loqn-flumber, amount
fromborrower,Ioan
where borrorner.loanttumber : lonn.lonn:number

Notice that SQL uses the notation relation-name.nttribute-name, as does the relational
algebra, to avoid ambiguity in cases where an attribute appears in the schema of more
than one relation. We could have written borrower.customer-name instead of customer
-name in the select clause. Flowever, since the attribute customer-name appears in only
one of the relations named in the from clause, there is no ambiguity when we write
customeTJlame.

We can extend the preceding query and consider a more complicated case in which
we require also that the loan be from the Perryridge branch: "Find the customer
names, loan numbers, and loan amounts for all loans at the Perryridge branch." To
write this query, we need to state two constraints in the where clause, connected by
the logical connective and:

select customer_name, borrower.Ioanstumber, amount
fromborrower,loan
where borrower.loanstumber : losn.Ioan_number and

br an ch-name :'Perryrid ge'

SQL includes extensions to perform natural joins and outer joins in the from clause.
We discuss these extensions in Section 3.11.

3.3.4 The Renqme Operotion
SQL provides a mechanism for renaming both relations and attributes. It uses the as
clause, taking the form:

old-nqme as nelo-natne

The as clause can appear in both the select and from clauses.
Consider again the query that we used earlier:

select customer-name, borrow er.loan:numb er, amount
fromborrorner,lom
where borrower.Ioantxumber : loan.loanstumber

The result of this query is a relation with the following attributes:

customer-ngme, Ioanstumber, amount

The names of the attributes in the result are derived from the names of the attributes
in the relations in the from clause.

We cannot, however, always derive names in this way, for several reasons: Firs!
two relations in the from clause may have attributes with the same name, in which
case an attribute name is duplicated in the result. Second, if we used an arithmetic
expression in the select clause, the resultant attribute does not have a name. Third,
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even if an attribute name can be derived from the base relations as in the preced-

ing example, we may want to change the attribute name in the result. Hence, SQL

provides a way of renaming the attributes of a result relation'

For example, if we want the attribute name loqn:number to be replaced with the

nameloan-id, we can rewrite the preceding query as

select customer-flame, borroroer.loanstumber as loan-id, amount

frorn borrower, lonn
where borrower.Ioanstumber : loan.loan-number

3.3.5 Tuple Vqriqbles

The as clause is particularly useful in defining the notion of tuple variables. A tuple
variable in SQL must be associated with a particular relation. Tup1e variables are de-
fined in the from clause by way of the as clause. To illustrate, we rewrite the query
"For all customers who have a loan from the bank, find their names, loan numbers,
and loan amount" as

select customer:name, T.loan-number, S.amount
fromborrower asT,Ioan as S
where T.lo an-numb er : S.loan-number

Note that we define a tuple variable in the from clause by placing it after the name of
the relation with which it is associated, with the keyword as in between (the ke;rword
as is optional). When we write expressions of the form relation-name.qttribute-name,
the relation name is, in effect, an implicitly defined tuple variable.

Tirple variables are most useful for comparing two tuples in the same relation.
Recall that, in such cases, we could use the rename operation in the relational algebra.
Suppose that we want the query "Find the names of all branches that have assets
greater than at least one branch located in Brooklyn." We can write the SQL expression

select distin ct T .b r anch-name
frombranch asT,branch as S
where T.qssets > S.nssets and S.branchtity :'3toop1tn'

Observe that we could not use the notation branch.nsset, since it would not be clear
which reference tobranch is intended.

SQL permits us to use the notation (rr,ur,. . . ,un) to denote a tuple of arity n con-
taining values ur,1r2, . . . ,un. The comparison operators can be used on tuples, and
the ordering is defined lexicographically. For example, (ar,az) {: (br, b2) is true if
04 1 b1, or (a1 : b1) A (a2 <: bz); similarly, the two tuples are equal if all their
attributes are equal.

3.3.6 String Operotions
SQL specifies strings by enclosing them in single quotes, for example,'Penytidge,'
as we saw earlier. A single quote character that is part of a string can be specified by



3.3 Basic Structure of SQL Queries

using two single quote characters; for example, the string "It's right" can be specified
by "It"s right".

The most commonly used operation on strings is pattern matching using the op-
erator like. We describe patterns by using two special characters:

o Percent (%):The Vo character matches any substring.

o Underscore (- ): The - character matches any character.

Patterns are case sensitive; that is, uppercase characters do not match lowercase char-
actets, or vice versa. To illustrate pattern matching, we consider the following exam-
ples:

o 'PerryVo'matches any string beginning with "Perry."

o 'VoidgeTo' matches any string containing "idge" as a substring, for example,
'Perryridge','Rock Ridge','Mianus Bridge', and'Ridgeway.'

e '- - -' matches any string of exactly three characters.

c '- - -Vo' matches any string of at least three characters.

SQL expresses patterns by using the like comparison operator. Consider the query
"Find the names of all customers whose street address includes the substrins'Main'."
This query can be written as

select customer_name
from customer
where customer -street like' VoMainVo'

For patterns to include the special pattern characters (that is, vo and-), sgr allows
the specification of an escape character. The escape character is used immediately
before a special pattern character to indicate that the special pattern character is to be
treated like a normal character. We define the escape character for a like comparison
using the escape keyword. To illustrate, consider the following patterns, which use a
backslash (\) as the escape character:

o like 'ab\VocdVo' escape '\' matches all strings beginning with"abTocd',.

o like'ab\\cd%' escape'\'matches all strings beginning with "ab\cd".

SQL allows us to search for mismatches instead of matches by using the not like
comparison operator.

SQL also permits a variety of functions on character strings, such as concatenating
(using "li"), extracting substrings, finding the length of strings, converting strings to
uppercase (using upper0) and lowercase (using lower0), and so on. sel:1999 also
offers a similar to operation, which provides more powerful pattern matching than
the like operation; the syntax for specifying patterns is similar to that used in Unix
regular expressions.
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There are variations on the exact set of string functions supported by different
database systems. Some database systems do not distinguish uPpercase from low-
ercase when matching strings. Thus, 'ABC' like 'abc' would return true, as would
'ABC' = 'abc' , on such systems. Others provide extensions to specify that a string
match should ignore the case. See your database system's manual for more details
on exactly what string functions it supports.

3.3.7 Ordering the Disploy of Tirples
SQL offers the user some control over the order in which tuples in a relation are dis-
played. The order by clause causes the tuples in the result of a quely to appear in
sorted order. To list in alphabetic order all customers who have a loan at the Per-
ryridge branch, we write

select distin ct customername
fromborrower,Ioan
where borrower.loanttumber : Ionn.Ioan-number and'

br anch-name :'Perryridge'
order by customerstame

By default, the order by clause lists items in ascending order. To specify the sort order,
we may specify desc for descending order or asc for ascending order. Furthermore/
ordering can be performed on multiple attributes. Suppose that we wish to list the
entire loan relation in descending order of amount. If several loans have the same
amount, we order them in ascending order by loan number. We express this query in
SQL as follows:

select *

ftornloan
order by amount desc,Ioan-number asc

To fulfill an order by request, SQL must perform a sort. Since sorting a large num-
ber of tuples may be costly, it should be done only when necessary.

3.3.8 Duplicotes
Using relations with duplicates offers advantages in several situations. Accordingly,
SQL formally defines not only what tuples are in the result of a query/ but also how
many copies of each of those tuples appear in the result. We can define the duplicate
semantics of an SQL query using multisef versions of the relational operators. Here,
we define the multiset versions of several of the relational-algebra operators. Given
multiset relations 11 a-rtd 12,

1. If there are c1 copies of tuple t1 in 11, and tr satisfies selection oe, then there
are cr coPies of lr in oe(rt).

2. For each copy of tuple tl inry, there is a copy of tuple tla(tr) in lla(r1), where
IIa (tr ) denotes the projection of the single tuple t1 '
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3. If there are c1 copies of tuple t1 in 11 and c2 copies of tuple t2 in 12, there are
c1 * c2 copies of the tuple ty.t2 in 11 x 12.

For example, suppose that relations 11 with schema (A, B) andr2with schema (c)
are the following multisets:

r r  :  { ( 1 ,  a ) , ( 2 ,a ) }  r z :  { ( 2 ) ,  ( 3 ) ,  ( 3 ) }

Then IIs(r1) would be {(o), (o)}, whereas IIs(r1) x 12 would be

{ (o ,2 ) ,  ( a ,2 ) ,  ( a ,3 ) ,  ( o ,  3 ) ,  ( a ,  3 ) ,  ( a ,  3 ) }

We can now define how many copies of each tuple occur in the result of an SeL
query. An SQL query of the form

s e l e c t A l ,  A z , . . . , A n
from 11,  T2, .  .  .  , r 'm
where P

is equivalent to the relational-algebra expression

f I A r , A " , . . . , A _ ( o p ( r t  X  1 2  x . . . x  r * ) )

using the multiset versions of the relational operators o,TI, and x.

3.4 Set Operqtions
The SQL operations union, intersect, and except operate on relations and correspond
to the relational-algebra operations U, o, and -. Like union, intersection, and set
difference in relational algebra, the relations participating in the operations must be
compatible; that is, they must have the same set of attributes.

Let us demonstrate how several of the example queries that we considered in
Chapter 2 canbe written in SQL. We shall now construct queries involving the union,
intersect, and except operations of two sets: the set of all customers who have an
account at the bank, which can be derived by

select customerutame
fuom depositor

and the set of customers who have a loan at the bank, which can be derived by

select customer_name
fromborrower

In our discussion that follows, we shall refer to the relations obtained as the result of
the preceding queries as d and b, respectively.

3.4.1 The Union Operotion
To find all the bank customers having a loan, an account, or both at the bank,
we write
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(select customerJlame
fuom depositor)

union
(select customer:tame
fromborrower)

The union operation automatically eliminates duplicates, unlike the select clause.

Thus, in the preceding query, if a customer-say, Jones-has several accounts or

loans (or both) at the bank, then Jones will appear only once in the result.
If we want to retain all duplicates, we must write union all in place of union:

(select customerstame
from depositor)

union all
(select customername
fromborrower)

The number of duplicate tuples in the result is equal to the total number of duplicates

that appear in bofh d and.b. Thus, if Jones has three accounts and two loans at the

bank, then there will be five tuples with the name Jones in the result.

3.4.2 The Intersect OPerotion

To find all customers who have both a loan and an account at the bank, we write

(select distinct customerJxame
fuolrl. deaositor)

intersect
(select distinct customer-nalne
fromborrower)

The intersect operation automatically eliminates duplicates. Thus, in the preceding

query, if a customer-say, jones-has several accounts and loans at the bank, then

]ones will appear only once in the result.
If we want to retain all duplicates, we must write intersect all in place of intersect:

(select customer:name
fuom depositor)

intersect all
(select customerstame
fromborrower)

The number of duplicate tuples that appear in the result is equal to the minimum

number of duplicates in both d andb. Thus, if Jones has three accounts and two loans

at the bank, then there wiII be two tuples with the name ]ones in the result.



3.5 Aggregate Functions

3.4.3 The Except Operction
To find all customers who have an account but no loan at the bank, we write

(select distinct customer_name
from depositor)

except
(select customer-name
frornborrower)

The except operation automatically eliminates duplicates. Thus, in the preceding
Ql-ery, a tuple with customer name Jones will appear (exactly once) in the result only
if |ones has an account at the bank, but has no loan at the bank.

If we want to retain all duplicates, we must write except all in place of except:

(select customerstame
from depositor)

except all
(select customer:tame
fromborrower)

The number of duplicate copies of a tuple in the result is equal to the number of
duplicate copies of the tuple in depositor minus the number of duplicate copies of
the tuple inborrower, provided that the difference is positive. Thus, if Jones hai three
accounts and one loan at the bank, then there will be two tuples with the name Jones
in the result. If, instead, this customer has two accounts and three loans at the bank.
there will be no tuple with the name Jones in the result.

3.5 Aggregqte Functions
Aggregate functions are functions that take a collection (a set or multiset) of values as
input and return a single value. sQL offers five built-in aggregate functions:

r Average: avg

o Minimum: min

o Maximum: max

o Total: sum

o Count: count

The input to sum and avg must be a collection of numbers, but the other operators
can operate on collections of nonnumeric data types, such as strings, as well.

As an illustration, consider the query "Find the average account balance at the
Perryridge branch." We write this query as follows:
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select avg (bslance)
from account
where branch-name :'Perryridge'

The result of this query is a relation with a single attribute, containing a single tu-

ple with a numerical value corresponding to the average balance at the Perryridge
Lranch. Optionally, we can give a name to the attribute of the result relation by using

the as clause.
There are circumstances where we would like to apply the aggtegate function not

only to a single set of tuples, but also to a group of sets of tuples; we specify this wish

in def- using the group by clause. The attribute or attributes given in the group by

clause are used to form groups. Tuples with the same value on all attributes in the

group by clause are placed in one group.- 
As an illustration, consider the query "Find the average account balance at each

branch." We write this querv as follows:

s ele ct b r an ch-n am e, av g (b sl an c e)
ftom qccount
group bybranch-name

Retaining duplicates is important in computing an average. Supposethat the 1c-
count balances at the (small) Brighton branch are $1000, $3000, $2000, and $1000. The

average balance is $7000/4 : $1750.00. If duplicates were eliminated, we would ob-

tain the wrong answer ($6000/3 : $2000).
There are cases where we must eliminate duplicates before computing an aggre-

gate function. If we do want to eliminate duplicates, we use the keyword distinct-in

ih" uggtugute expression. An example arises in the query "Find the number of de-

positois for eachbranch." In this case, a depositor counts only once, regardless of the

number of accounts that depositor may have. We write this quely as follows:

select branch:name, cortrrt (distinct customer-nnme)
from dep o sit or, ac c ount
where depositor.nccountnumber : sccount.accountstumber
group by branch-name

At times, it is useful to state a condition that applies to groups rather than to tu-

ples. For example, we might be interested in only those branches where the average

iccount balance is more than $1200. This condition does not apply to a single tuple;

rather, it applies to each group constructed by the group by clause. To express such a

query, *e use the having clause of SQL. SQL applies predicates in the having clause

uit"t"grorlpt have been formed, so aggregate functions may be used. We express this

query in SQL as follows:

s ele ct b r an ch-n nm e, av g (b al an c e)
from account
group by brnnch-name
having avg(balance) > 1200
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At times, we wish to treat the entire relation as a single group. In such cases, we
do not use a group by clause. Consider the query "Find the ave.age balance for all
accounts." We write this query as follows:

select avg (balnnce)
from account

tVe use the aggregate function count frequently to count the number of tuples in
a relation. The notation for this function in SQL is count (*). Thus, to find the nlmber
of fuples inthe customer relation, we write

select count (*)
from customer

SQL does not allow the use of distinct with count (*). It is legal to use distinct with
max and miry even though the result does not change. We can use the keyword all
in place of distinct to specify duplicate retention, but, since all is the defauit, there is
no need to do so.

If a where clause and a having clause appear in the same query, sel- applies the
predicate in the where clause first. Tuples satisfying the where predicate are then
placed into groups by the group by clause. sel. then applies the having clause, if it
is present, to each group; it removes the groups that do not satisfy the hiving clause
predicate. The select clause uses the remaining groups to generate tuples of ttre result
of the query.

To illustrate the use of !ot! a having clause and a where clause in the same query,
we consider the query "Find the average balance for each customer who lives in
Harrison and has at least three accounts."

select depositor.customer:nnme, avg (balance)
from depositor, account, customer
where depositor.account_number : account.account:number and.

depositor.customer:name : cLtstotner.customerstqme and,
cust omer -city :'Harrison'

group by dep osit or. cu st omer :name
having count (distinct depositor.accountstumber) s: g

3.6 Null Vqlues
SQL allows the use oI null values to indicate absence of information about the value
of an attribute.

\z\h can use the special keyword null in a predicate to test for a null value. Thus,
to find all loan numbers that appear intheloan relation with null values for amount,
we write

select loan-number
h o m l o a n
where amount is null
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The predicate is not null tests for the absence of a null value'
The use of a null value in arithmetic and comparison operations causes several

complications. In Section 2.5 we saw how null values are handled in the relational
algebra. We now outline how SQL handles null values.

the result of an arithmetic expression (involving, for example l, -, * or l) is null

if any of the input values is null. SQL treats as unknown the result of any comparison
involving anull valse (other than is null and is not null).

Since the predicate in a where clause can involve Boolean operations such as and,

or, and not on the results of comparisons, the definitions of the Boolean operations
are extended to deal with the value unknown, as outlined in Section 2.5.

o and: The result of true and unknown is unknown, false and unknown is false,
whlle unknown and unknown is unknown.

o or: The result of true or unknown is true, false or unknousn is unknown, while
unknown or unknown is unknown.

o not: The result of not unknown is unknown.

SQL defines the result of an SQL statement of the form

select. . .  f rom f i r ,  " ' ,  i i '  where P

to contain (projections of) tuples in R1 x ' ' ' x Rn for which predicate P evaluates to

true. If the predicate evaluates to either false or unknown for a tuple in R1 x ' ' ' x Rn
(the projection of) the tuple is not added to the result.

Set- also allows us to test whether the result of a comparison is unknown, rather

than true or false, by using the clauses is unknown and is not unknown.
Null values, when they exist, also complicate the processing of aggregate opela-

tors. For example, assume that some tuples intlneloan relation have a null value for

amount. Consider the following query to total all loan amounts:

select sum (amount)
frorll. Ioan

The values to be summed in the preceding query include null values, since some

tuples have a null value for nmount. Rather than say that the overall sum is itself null,

the Sef- standard says that the sum operator should ignore null values in its input.

In general, aggregate functions treat nulls according to the following rule: All ag-

gt"gui" functions except count (*) ignore null values in their input collection. As a

i"tnlt of null values being ignored, the collection of values may be empty.The count

of an empty collection is defined to be 0, and all other aggregate operations return a

value of null when applied on an empty collection. The effect of null values on some

of the more complicated SQL constructs can be subtle.
A Boolean type data, which can take values true, false, and unknown, was in-

troduced in SQL:1999. The aggregate functions some and every, which mean exactly

what you would intuitively expect, can be applied on a collection of Boolean values.
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3.7 Nested Subqueries
sQL provides a mechanism for nesting subqueries. A subquery is a select-from-
where expression that is nested within another query. A common use of subqueries
is to perform tests for set membership, make set comparisons, and determine *t.u.-
dinality. We shall study these uses in subsequent sectiorrs.

3.7.1 Set Membership
SQL allows testing tuples for membership in a relation. The in connective tests for set
membership, where the set is a collection of values produced by a select clause. The
not in connective tests for the absence of set membership.

As an illustration, reconsider the query "Find all theiustomers who have both a
loan and an account at the bank." Earlier, we wrote such a query by intersecting two
sets: the set of depositors at the bank, and the set of borroweis fiom the banl. we
can take the alternative approach of finding all account holders at the bank who are
members of the set of borrowers from the bank. Clearly, this formulation generates
the same results as the previous one did, but it leads us to write our query using
the in connective of SQL. We begin by finding all account holders, and we write th!
subouerv

(select customer_nnme
fuom depositor)

We then need to find those customers who are borrowers from the bank and who
appear in the list of account holders obtained in the subquery. we do so by nesting
the subquery in an outer select. The resulting query is

select distin ct customer-name
fromborrower
where customer:name in (select customertmme

fuom depositor)

This example shows that it is possible to write the same query several ways in
SQL' This flexibility is beneficial, since it allows a user to think atout the queiy in
the way that seems most natural. We shall see that there is a substantial amount of
redundancy in SQL.

, In the preceding example, we tested membership in a one-attribute relation. It is
also possible to test for membership in an arbitrary relation in SeL. We can thus write
the query "Find all customers who have both an account and a loan at the perryridge
branch" in yet another way:
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select distin ct customer-name
fromborrower,loan
where borrower.loannumber : losn.losn-number and

branch-name :'Perryridge' and
(b r an ch:n am e, cu st o m er -n am e) in

(select branch:name, customer :name
from deP o sit or, ac count
where depositor.nccountttumber : account'accountnumber)

We use the not in construct in a similar way. For example, to find all customers

who do have a loan at the bank, but do not have an account at the bank, we can write

select distin ct cust omer -name
from borrorner
where customerstame not in (select customer-name

fuom depositor)

The in and not in operators can also be used on enumerated sets. The following

query selects the names of customers who have a loan at the bank, and whose names

are neither Smith nor ]ones.

select distin ct customer stame
ftomborrower
where customerflame not in ('Smith',']ones')

3.7.2 Set ComPqrison
As an example of the ability of a nested subquery to compare sets, consider the query
"Find the tri*es of all branches that have assets greater than those of at least one

branch located in Brooklyn." In Section 3.3.5, we wrote this query as follows:

select distin ct T .b r anch-name
frombranch asT,branch as S
where T'assets ) s'nssets and s'branch-city :'31oop1tn'

SQL does, however, offer an alternative style for writing the preceding query. The

phrase "greater than at least one" is represented in SQL by > some. This construct

illo*r uJ to rewrite the query in a form that resembles closely our formulation of the

query in English.

selectbrsnch-name
frombranch
where assets > some (select assets

frombrsnch
where branch-citu :'BrooklYn')

The subquery
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(select assets
ftombranch
where branch-city :'Brooklyn')

generates the set of all asset values for all branches in Brooklyn. The > some
comparison in the where clause of the outer select is true if the assets value of the
tuple is greater than at least one member of the set of all asset values for branches in
Brooklyn.

SQL also allows < some, (: sorn€r ): sotn€z : som€z and <> some comparisons.
As an exercise, verify that : some is identical to in, whereas <> some is notlhe same
as- not ln. The keyword any is synonymous to some in sel-. Ear1y versions of sel-
allowed only any. Later versions added the alternative some to avoid the linguistic
ambiguity of the word any in English.

Now we modify our query slightly. Let us find the names of all branches that
have an asset value greater than that of each branch in Brooklyn. The construct > all
corresponds to the phrase "greater than a11." Using this construct, we write the query
as follows:

selectbranch_name
frombranch
where assets > all Gelect assets

fuombranch
where branch-city :'Brooklyn')

As it does for some, SQL also allows < all, <- all, 1: all, : n11, and <> all compar-
isons. As an exercise, verify that <> all is identical to not in.

- 41 alotler example of set comparisons, consider the query "Find the branch that
has the highest average balance." Aggregate functions .in.rot be composed in SeL.
Thus, we cannot use max (avg (...)). Instead, we can follow this strategy: we begin
by writing a query to find all average balances, and then nest it ur u rrr*bqrr"ry Jt u
larger query that finds those branches for which the average balance is greatei than
or equal to all average balances:

select branch_name
from account
group by branch-name
having avg(balance) >: all (select avg(balance)

from account
group by branch_name)

3.7.3 Test for Empty Relations
SQL includes a feature for testing whether a subquery has any tuples in its result. The
exists construct returns the value true if the argument subquery is nonempty. Using
the exists construct, we can write the query "Find all customers who have-both ai
account and a loan at the bank" in still another way:
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select customerJrame
fromborrower
where exists (select n

fuorr depositor
where depositor.customerttsme : borrower.customerttame)

We can test for the nonexistence of tuples in a subquery by using the not ex-

ists construct. We can use the not exists construct to simulate the set containment
(that is, superset) operation: We can write "relation ,4 contains relation B" as "not

exists (B eicept A).; (Although it is not part of the SQL-92 and SQL:1999 standards,

the contains operator was present in some early relational systems.) To illustrate the

not exists operator, consider again the query "Find all customers who have an ac-

count at a[1he branches located in Brooklyn." For each customer, we need to see

whether the set of all branches at which that customer has an account contains the

set of all branches in Brooklyn. Using the except construct, we can write the query as

follows:

select distin ct S.cust omer stame
from depositor as S
where not exists ((select branch-name

frombranch
where branch-citY :'Brooklyn')

except
(select R.branch:name
fuom depositor as T, nccount as R
where T.account-number : R.account-numb er and

S.customer-natne : T.customer-nam e))

Here, the subquery

(select branch-name
frombranch
where branchitY :'Brooklyn')

finds all the branches in Brooklyn. The subquery

(select R.branch:nnme
from depositor as T, account as R
where T.accountsrumber : R.account:rumber and,

S.customerstame : T.customerstnme)

finds all the branches at which customer S.customerstamehas an account. Thus, the

outer select takes each customer and tests whether the set of all branches at which

that customer has an account contains the set of all branches located in Brooklyn.

In queries that contain subqueries, a scoping rule applies for tuple variables. In

a subquery, according to the rule, it is legal to use only tuple variables defined in

the subquery itself or in any query that contains the subquery. If a tuple variable

is defined both locally in a subquery and globally in a containing query, the local
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definition applies. This rule is analogous to the usual scoping rules used for variables
in programming languages.

3.7.4 Test for the Absence of Duplicote Tirples
sQL includes a feature for testing whether.a subquery has any duplicate tuples in its
result. The unique construct returns the value true if ihe argument subquery contains
no duplicate, tuples. using the unique construct, we can write the q""ri ..rina au
custorners who have at most one account at the perryridge branch" u, foliorr*

s ele ct T. c u s t om er _n atn e
from depositor as T
where unique (select R.customername

trom account, depositor as R
where T.customer_name : R.customer:name and

R.account_number : account.qccount_number and
account.branch_nnme :,perryridge,)

we can test for the existence of dupricate tuples in a subquery by using the not
unique construct. To illustrate this construct, cbnsider the query'"Find all customers
who have at least two accounts at the perryridge branch," -ni"r, we write as

select distin ct T.customer_name
from depositor T
where not unique (select R.customerstame

from account, depositor as R
where T.customer_narne : R.customerstame and,

R.accountnumber : account.account:number and,
nccount.branch_name :,perryridge,)

Formally, the unique test on a relation is defined to fail if and only if the relation
contains two tuples f1 and f2 such that t1 : tz. Since the test tr : tzfait if any of the
fields of tt or tz are null, it is possible for unique to be true even if there are multiple
copies of a tuple, as long as at least one of thelttributes of the tuple is null.

3.8 Complex Queries
complex queries are often hard or impossible to write as a single sel block or a
union/intersection/difference of sQL blbcks. (An sQL block consisL of a single select-
from-where statement, possibly with group by and having clauses.) We siudy here
two ways of composing multiple sel- blocks to express a=complex query: derived
relations and the with clause.

3.8.1 Derived Relqtions
sQL allows a subquery expression to be used in the from clause. If we use such an
expression, then we must give the result relation a name/ and we can rename the
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attributes. We do this renaming by using the as clause' For example, consider the

subquery

(select br anchname, av g (b alance)
from account
group bybranchname)
as br anch-ao g (br anchttame, na g-balance)

This subquery generates a relation consisting of the names of all branches and their

"orr"rpondirrg 
irretage account balances. The subquery result is named branch-nrtg,

with the attributes branch-name and artg-balance'
To illustrate the use of a subquery expression in the from clause, consider the

query "Find the average account balance of those branches where the average ac-

-rrni bulut ce is greatei than $1200." We wrote this query in Section 3.5 by using the

having clause. VV" .ut now rewrite this query, without using the having clause, as

follows:
select br anch-name, aa 8-b nlance
from (select brsnch-name, avg (balance)

from account
group by branch-name)
as branch-na g (branchname, azt g-balance)

where aag-balance > 1200

Note that we do not need to use the having clause, since the subquery in the from

clause computes the average balance, and its result is named as btanch-nag; we can

use the attributes of branch-nag directly in the where clause'

As another example, rnpp*" we wish to find the maximum across all branches of

the total balance at each bianch. The having clause does not help us in this task, but

we can write this query easily by using a subquery in the from clause, as follows:

select max(f ot-ba I a n c e)
from (select br anchname, sam(b alance)

ftomaccount
groupbybrnnchnnme)asbranch.total(branch-name,tot-balance)

3.8.2 The with Clquse
(Note: Read this section after reading Section 3.9.) Complex queries are much eas-

ier to write and to understand if we structure them by breaking them into smaller

views that we then combine, just as we structure programs by breaking their task

into procedures. However, unlike a procedure definition, a create view clause cre-

ates i view definition in the database, and the view definition stays in the database

until a command drop view aiew-name is executed'
The with clause provides away of defining a temporary view whose definition is

avaiiable only to the query in which the with clause occurs. consider the following

query, whichselects aicounts with the maximum balance; if there ale many accounts

with-the same maximum balance, all of them are selected'
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w ith m a rb al an c e (a aI u e) as
select max(balance)
ftom account

select account_number
from a c c ount, max_b alance
where account.balance : max._balance.T)alue

The with clause, introduced in sel:1999, is currently supported only by some data-
bases.

we could have written the above query by using a nested subquery in either the
from clause or the where clause. uorrever, using" nested subqueries would have
made the query harder to read and understand. The with clause makes the query
logic clearer; it also permits a view definition to be used in multiple places witinin a
query.

. For example,-suPPose we want to find all branches where the total account deposit
is greater than the average of the total account deposits at all branches. We can write
the query using the with clause as follows.

with b r anch-t ot al (b r an chn ame, zt alue) as
s ele ct b r an ch-n am e, slun(b al an c e)
ftom account
group by branch-name

w ith b r an ch_t o t aI _ars g(a alu e) as
select avg(oalue)
frombranch-total

select brancLt-name
fr otn b r an ch_t o t al, b r anch_t o t aI _no g
where brancLrtotql.aalue > : branch_total_sag.aalue

we can, of course, create an equivalent query without the with clause, but it would
be more complicated and harder to understand. You can write the equivalent query
as an exercise.

3.9 Views
In ourexamples up to this point, we have operated at the logical-model level. That
is, we have assumed that the relations in the collection *" ui" given are the actual
relations stored in the database.

It is not desirable for all users to see the entire logical model. Security consider-
ations may require that certain data be hidden from"users. Consider a person who
needs to know a customer's loan number and branch name, but has no need to see
the loan amount. This person should see a relation described (modulo renaming of
attributes), in SQL, by

sele ct cust omer -name, b orr ow er.lo anstumb er, br anch:n ame
from borrower,loan
where borrouter.loanstumber : loan.Ioan_number



100 Chapter 3 SQL

Aside from security concerns, we may wish to create a personalized collection of

relations that is better matched to a certain user's intuition than is the logical model.

An employee in the advertising department, for example, might like to see a relation

consisting of the customers who have either an account or a loan at the bank, and

the branJhes with which they do business. The relation that we would create for that

employee is

(select branch-name, cltstomer-name
frorn dep o sit or, a c coLLnt
where depositor.accountnumber : nccount.account-number)
union
(select branchstame, customer -name
fromborrower,loan
where borrow er.loanstumber : Ioan.loanttumb er)

Any relation that is not part of the logical model, but is made visible to a user as a

virtuai relation, is called a view. It is possible to support a large number of views on

top of any given set of actual relations.

3.9.1 View Definition
We define a view in SQL by using the create view command. To define a view, we

must give the view a name and must state the quely that computes the view The

form of the create view command is

create view u as <query expression>

where <query expression> is any legal query expression. The view name is reple-

sented by z.
As anexample, consider the view consisting of branches and their customers. As-

sume that we want this view to be called all-customer. We define this view as follows:

create view all-customer as
(select branch-name, customer-name
from deP ositor, account
where depositor.accountnumber : account.accountnumber)

union
(select br anch-name, cLtstomer ttame

fromborrorner,loan
where borrower.loanttumber : Ioan.Ioan-numbet)

Once we have defined a view, we can use the view name to refer to the virtual re-

lation that the view generates. Using the view allrustomer, we can find all customers

of the Perryridge branch by writing
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select customer-name
fuom nll_customer
where branch:name :'perryridge,

view names may appear in any place where a reration name may appear,so long
as no update operations are executed on the views. we study the is;;e of updat!
operations on views in Section 3.10.4.

The attribute names of a view can be specified explicitry as follows:

create view branch_total_loan(branch_nqme, total_Ionn) as
select b r anchttame, sam(amount)
fromloan
group by branch_name

The preceding view gives for each branch the sum of the amounts of all the loans
at the branch. Since the expression sum(qmount) does not have a name, the attribute
name is specified explicitly in the view definition.

Intuitively, at any given time, the set of tuples in the view relation is the result
of evaluation of the query expression that defines the view at that time. Thus, if a
view relation is computed and stored, it may become out of date if the relations used
to define it are modified. To avoid this, views are usually implemented as follows.
When we define a view, the database system stores the definiiion of the view itself,
rather than the result of evaluation of the relational-algebra expression that defines
the view. wherever a view relation appears in a query, it is replaced by the stored
query expression. Thus, whenever we evaluate the query, the view relation gets re-
computed.

Certain database systems allow view relations to be stored, but they make sure
that, if the actual relations used in the view definition change, the vie# is kept up
to date. Such views are called materialized views. The process of keeping the^vie#
up to date is called view maintenance, covered in Section 14.5. Applicutiotrt that use
a view frequently benefit from the use of materialized views, as do applications that
demand fast response to certain view-based queries. Of course, the benefits to queries
from the materialization of a view must be weighed against the storage costs and the
added overhead for updates.

3.9.2 Views Defined by Using Other Views
In section 3.9.1 we mentioned that view relations may appear in any place that a
relation name may appea4 except for restrictions on the us-e of views-in update ex-
pressions. Thus, one view may be used in the expression defining another view. For
example, we can define the view perryridge-customer as follows:

create view perryridgerustomer as
select customer-name
from all_customer
where branch_name :'Perryridge,

where sll^customer is itself a view relation.
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View expansion is one way to define the meaning of views defined in terms of

other views. The procedure assumes that view definitions are not recursive; that is,
no view is used in its own definition, whether directly, or indirectly through other
view definitions. For example, if o1 is used in the definition of u2,'u2 is used in the

definition of o3, and r;3 is used in the definition of ul, then each of ul, u2, and T-'3

is recursive. Recursive view definitions are useful in some situations, and we revisit
them in the context of the Datalog language, in Section 5.4.

Let view ,u1 be defined by an expression e1 that may itself contain uses of view
relations. A view relation stands for the expression defining the view, and therefore
a view relation can be replaced by the expression that defines it. If we modify an ex-

pression by replacing a view relation by the latter's definition, the resultant expres-
iior, *ay still contain other view relations. Hence, view expansion of an expression
repeats the replacement step as follows:

repeat
Find any view relatiofr. ui in e1
Replace the view relation'r.ri by the expression defining oa

until no more view relations are present in e1

As long as the view definitions are not recursive, this loop will terminate. Thus, an

"rpr"rJiotr 
e containing view relations can be understood as the expression resulting

from view expansion of e, which does not contain any view relations.
As an illustration of view expansion, consider the following expression:

select *

fu om p erryr id ge -cus t omer
where customerttame -'John'

The view-expansion procedure initially generates

select *

from (select customer-name
from all-customer
where br anch,nnme :' Perryrid ge' )

where customer :name *' I ohrt'

It then generates

select *

from (select customeriame
from ((select branchnsme, customerttame

fuom dePositor, account
where depositor.account-number : account.account-number)
unl()n
(select branch:name, customer ttame
fromborrower,loan
where borrower.Iosnstumber : loan.Ionnttumber))

where brsncLt-nsme :'Perryridge')
where customer ttame :' I ohn'
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At this time, there are no more uses of view relations, and view expansion termi_
nates.

3.10 Modificotion of the Dqtqbqse
We have restricted our attention until now to the extraction of information from the
database. Now, we show how to add, remove, or change information with sel.

3.10.1 Deletion
A delete request is expressed in much the same way as a query. we can delete only
whole tuples; we cannot delete values on only particular uittiblt"r. SeL expresses a
deletion by

delete fromr
where P

yhgre P represents a predicate and r represents a relation. The delete statement first
finds all tuples t in r for which p(l) is true, and then deletes them from r. The where
clause can be omitted, in which case all tuples in r are deleted.

Note that a delete command operates bn only one relation. If we want to delete
tuples from several relations, we must use one delete command for each relation.
The predicate in the where clause may be as complex as a select command,s where
clause. At the other extreme, the where clause -uy b" empty. The request

delete fromloan

deletes all tuples from the loan relation (Well-designed systems will seek confirma-
tion from the user before executing such a devastating request.)

Here are examples of SeL delete requests:

o Delete all account tuples in the perryridge branch.

delete fromaccount
where br anch_nsme :'perryridge,

o Delete all loans with loan amounts between $1300 and $1500.

delete fromloan
where amount between 1300 and 1500

o Delete all account tuples at every branch located in Brooklyn.

delete ftomaccount
where branch_name in (select branch-name

frombranch
where branch-city :'Brooklyn')
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This delete request first finds all branches in Brooklyn, and then deletes all

nccount tuples pertaining to those branches.

Note that, although we may delete tuples from only one relation at a time, we may

reference any number of relations in a select-from-where nested in the where clause

of a delete. The delete request can contain a nested select that references the relation

from which tuples are to be deleted. For example, suppose that we want to delete the

records of all accounts with balances below the average at the bank. We could write

delete fromsccount
where balance < (select avg (balance)

frorrt account)

The delete statement first tests each tuple in the relation account to check whether the

account has a balance less than the average at the bank. Then, all tuples that fail the

test-that is, represent an account with a lower-than-average balance-are deleted.

Performing all the tests before performing any deletion is important-if some tuples

are deleted before other tuples have been tested, the average balance may change,

and the final result of the delete would depend on the order in which the tuples were

processed!

3.10.2 Insertion
To insert data into a relation, we either specify a tuple to be inserted or write a query

whose result is a set of tuples to be inserted. Obviously, the attribute values for in-

serted tuples must be members of the attribute's domain. Similarly, tuples inserted

must be of the correct arity.
The simplest insert statement is a request to insert one tuple. Suppose that we

wish to instrt the fact that there is an account A-9732 at the Perryridge branch and

that it has a balance of $1200. We write

insert into account
values (' A-9732','Perryridge', 1200)

In this example, the values are specified in the order in which the corresponding

attributes are listed in the relation schema. For the benefit of users who may not

remember the order of the attributes, SQL allows the attributes to be specified as part

of the insert statement. For example, the following SQL insert statements are identical

in function to the preceding one:

insert into account (account-number, branch-ttame, balance)
values ('A-9732' , 

'Perryridge' ,7200)

insert into account (brnnch-name, account:number, balance)
values ('Perryridge' ,' A-9732' ,7200)

More generally, we might want to insert tuples on the basis of the result of a query.

Supposelhat we want to present a new $200 savings account as a gift to all loan

SQL
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customers of the Perryridge branch, for each loan they have. Let the loan numberserve as the account number for the savings account. We write

insert into account
select loan_numb er, br anch_name, 200
fromloan
where branch_name :,perryridge,

Instead of specifying a tuple as we did earlier in this section, we use a select to specifya set of tuples' SQL evaluates the select statement first, giving a set of tuples tr.,ut i',then inserted into the sccount relation. Each tuple has al"oan-nTLmber (whiihr".r", u,the account number for the new account), abianch-name (perryridge), and an initiarbalance of the new account ($200).
we also need to add tuples to the depositor reration;we do so by writing

insert into depositor
select customer_name, Ioan_numb er
fromborrower, loan
where borroraer.loan:tumber : loan.loan_number and

br an ch_nsm e :,perryridge,

This query inserts a tuple (customer-nsme, loan-number) into the depositor relation foreach customer-name who has a loan in the Perryridge branch with loan number loan_numoer.
It is important that we evaluate the select statement fully before we carry outany insertions. If we carry out some insertions even as the seiect statement is beingevaluated, a request such as

insert into account
select *

from account

might insert an infinite number,of tuples! The request would insert the first tuple inaccount again, creating a second copy of the tuple. Since this second copy is part ofaccount now, the select statement may find it, and a third copy would be inserted intoaccount. The select statement may then find this third copy and insert a fourth copy,and so on, forever. Evaluating the select statement .o-pt"t"ty before p"rf"r;;;insertions avoids such problems.
Our discussion of the insert statement considered only examples in which a value

is given for every attribute.in inserted tupres. It is possiLle, u" .rir" ,u* in Chapter 2,for inserted tuples to be given values on only some attributes of the schema. Theremaining attributes are assigned a null value denoted by null.Consider the request

insert into account
values (' A-401', null, 7200)
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We know that account 4-401 has $1200, but the branch name is not known. Consider

the query

select account-number
from account
where branchttame :'Perryridge'

Since the branch at which account 4-401 is maintained is not known, we cannot de-

termine whether it is equal to "Perryridge'"
We can prohibit thelnsertion oinuli values on specified attributes by using the

SQL DDL, as we discuss later inSection4'2'2'
Most relational database products have special "bulk loader" utilities to insert a

large set of tuples into a relation. These utilities allow data to be read from formatted

texi files, and 
"an 

execute much faster than an equivalent sequence of insert state-

ments.

3.10.3 Updotes
ln certain situations, we may wish to change a value in a tuple without changing aII

values in the tuple. For this prtpotu, the update statement can be used' As we could

for insert and delete, we can choose the tuples to be updated by using a quely'

Suppose that annual interest payments are being made, and all balances are to be

increased by 5 percent. We write

update account
set balance : balance * 1'.05

The preceding update statement is applied once to each of the tuples in account tela-

tion.
If interest is to be paid only to accounts with a balance of $1000 or more/ we can

write

uPdate account
set balance : balance " 1,.05
where bslance ): L000

In general, the where clause of the update statement may contain any construct

legal in the where clause of the select statement (including nested selects). As with

in-se* and delete, a nested select within an update statement may reference the re-

lation that is being updated. As before, SQL first tests all tuples in the relation to see

whether they shoirtd be updated, and carries out the updates afterward' For exam-

ple, we can write the reqriest "Pay 5 percent interest on accounts whose balance is

greater than average" as follows:

update account
set balance : balance " 1.05
where balance > (select avg (balance)

from account)
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. 
Let us now suppose that all accounts with balances over $10,000 receive 6 percent

interest, whereas all others receive 5 percent. We could write two update statements:

update nccount
set balance : balance " 1,.06
where balance > 10000

update account
set balance : bslance " 1,.05
where balance <: 10000

Note that, as we saw in Chapter 2, the order of the two update statements is impor_
tant' If we changed the order of the two statements, an account with a balance'just
under $10,000 would receive 11.3 percent interest.

sQL provides a case construct, *n"n we can use to perform both the updates with
a single update statement, avoiding the problem withtrder of updates.

update account
setbalance: case

whenbalance <: 10000 thenbalance+ 7.08
else balance * 7.06

end

The general form of the case statement is as follows.

when pred, then resultl
when pred2 then result2

when prednthen resultn
else results

end

The operation returns result4, where z is the hrst of pred,r, pred,r, . . . , pred,nthat is sat_
isfied; if none of the predicates is satisfied, the opeiation retuins result(r. Case state-
ments can be used in any place where a value is expected.

3.10.4 Updote of q View
Although views are a useful tool for queries, they present serious problems if we ex-
press updates, insertions, or deletions with them. The difficulty is that a modification
to the database expressed in terms of a view must be transhtld to a modification to
the actual relations in the logical model of the database.

-To 
illustrate the problem, consider a clerk who needs to see all loan data intheloan

relation' except loan-amount. Let loan-branchbe the view given to the clerk. We define
this view as
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create view loan-branch as
select lo an-numb er, b r anch-name
fromloan

Since we allow a view name to appear wherever a relation name is allowed, the

clerk can write:

insert into I o an-b r an ch
values (' L-37','Perryridge')

This insertion must be represented by an insertion into the relation loan, since loan is

the actual relation from which the database system constructs the view loan-brnnch.

However, to insert a tuple into loan, we must have some value for amount. There are

two reasonable approaches to dealing with this insertion:

o Reject the insertion, and return an error message to the user'

o Insert a tuple (L-37 , "Perryridge", null) into the loan relation'

Another problem with modification of the database through views occurs with a

view such as

cteate view loan-info as

sele ct cus t omer -name, amount

ftom borrower, loan
where borrow er.Ioanttumber : Ioan,Io an trumber

This view lists the loan amount for each loan that any customer of the bank has.

Consider the following insertion through this view:

insert into lonn-info
values ('Johnson', 1900)

loan
borrower

Figure 3.3 Tuples inserted into loan andborrower.

Downtown
Perryridge
Perryridge
Downtown
Redwood
Mianus
null

1500
1500
1300
1000
2000
500

1900

L-11
L-1,4
L-15
L-76
L-77
L-23
L-93
null

L-93
L-15
L-74
L-17
L-11
L-23
L-77
null

Adams
Curry
Hayes
]ackson
Jones
Smith
Smith
Williams
Johnson
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The only possible method of inserting tuples into the borrower and.loanrelations is
to insert ("Johnson", null) intoborrower and(null,null,1900) into loan.Then,we obtain
the relations shown in Figure 3.3. However, this update does not have the desired
effect, since the view relation loan-info still does nbt include the tuple (.Johnson,,,
1900). Thus, there is no way to update the relations borrower andloaiby using nulls
to get the desired update onloan_info.

. Because of problems such as these, modifications are generally not permitted on
view relations,_except in limited cases. Different databasi systems rp""ify different
conditions under which they permit updates on view relations; re" tn" database
system manuals for details. The_general problem of database modification through
views has been the subject of substantial research, and the bibliographic notes pi-
vide pointers to some of this research.

In general, an SQL view is said to be updatable (that is, inserts, updates or deletes
can be applied on the view) if the following conditions are all satisfied:

o The from clause has only one database relation.

o The select clause contains only attribute names of the relation, and does not
have any expressions, aggregates, or distinct specification.

r Any attribute not listed in the select clause can be set to null.

o The query does not have a group by or having clause.

Under these constraints, the update, insert, and delete operations would be forbid-
den on the example view all_customer thatwe defined previousty.

Suppose a view downtown_sccount is defined as follows:

create view downtown_nccount as
select account_numb er, branch_name, b alance
from nccount
where branch_name :'Downtown,

The above view is updatable, since it satisfies the conditions listed earlier.
Even with the conditions on_updatability, the following problem still remains. Sup-

pose that a user tries to insert the tuple (,4-999,,'perryrid.ge,, 1000) into the downtown
-nccou.nt view. This tuple can be inserted into the account relation, but it would not ap-
pear in the downtown-sccount view since it does not satisfy the selection imposed by
the view.

By default, sQL would allow the above update to proceed. However, views can be
defined with a with check option clause af the end bf the view definition; then, if a
tuple inserted into the view does not satisfy the view's where clause condition, the
insertion is rejected by the database system. Updates are similarly rejected if the new
value does not satisfy the where clause conditions.

sQL:1999 has a more complex set of rules about when inserts, updates, and deletes
can be executed on a view, that allows updates through alarger ciass of views; how-
ever, the rules are too complex to be discussed here.
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3.10.5 Trqnsqctions
A transaction consists of a sequence of query and/or update statements. The SQL
standard specifies that a transaction begins implicitly when an SQL statement is exe-
cuted. One of the following SQL statements must end the transaction:

o Commit work commits the current transaction; that is, it makes the updates
performed by the transaction become permanent in the database. After the
iransaction is committed, a new transaction is automatically started.

r Rollback work causes the current transaction to be rolled back; that is, it un-
does all the updates performed by the SQL statements in the transaction. Thus,
the database state is restored to what it was before the first statement of the
transaction was executed.

The keyword work is optional in both the statements.
Transaction rollback is useful if some error condition is detected during execution

of a transaction. Commit is similar, in a sense, to saving changes to a document that

is being edited, while rollback is similar to quitting the edit session without saving

changei. Once a transaction has executed commit wotk, its effects can no longer be

undone by rollback work. The database system guarantees that in the event of some
failure, such as an errol in one of the SQt statements, a power outage, or a system
crash, a transaction's effects will be rolled back if it has not yet executed commit

work. In the case of power outage or other system crash, the rollback occurs when

the system restarts.
For instance, to transfer money from one account to another we need to update

two account balances. The two update statements would form a transaction. An error

while a transaction executes one of its statements would result in undoing of the

effects of the earlier statements of the transaction, so that the database is not left in a

partially updated state. We study further properties of transactions in Chapter 15.

If a program terminates without executing either of these commands, the updates
are either iommitted or rolled back. The standard does not specify which of the two

happens, and the choice is implementation dependent. In many SQL implementa-
tions, by default each SQL statement is taken to be a transaction on its own, and gets

committed as soon as it is executed. Automatic commit of individual SQL statements
must be turned off if a transaction consisting of multiple SQL statements needs to be

executed. How to turn off automatic commit depends on the specific SQL implemen-

tation.
A better alternative, which is part of the SQL:1999 standard (but supported by only

some SeL implementations currently), is to allow multiple SQL statements to be en-

closed between the keywords begin atomic ... end. All the statements between the

keywords then form a single transaction.

3.11 foined Relqtionsxx
SeL provides not only the basic Cartesian-product mechanism for joining tuples of

relations, but also provides (in SQL-92 and later SQL versions) various other mecha-
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L-230
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L-770
L-230
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borrower

Figure 3.4 Theloan andborrower relations.

nisms for joining relations, including theta joins and natural joins, as well as various
forms of outer joins. These additionil operations are typicaliy used as subquery ex-
pressions in the from clause.

3.11.1 Exomples
We illustrate the various join operations by using the relations loan and borrower in
Figure 3.4. We start with a simple example of a join; the join operation is referred to as
an inner join in SQI to distinguish it from an outer join. Figure 3.5 shows the result
of the expression

loan inner joinborrower on loan.roan-number : borrower.loan_number

The. expression computes the theta join of the loan and. the borroraer relations, with
the join condition beingloan.loan-number : borrower,loannumber. The attributes of the
result consist of the attributes of the left-hand-side relation followed by the attributes
of the right-hand-side relation.

Note that the attribute loan-number appears twice in the figure-the first occur-
rence is ftomloan, and the second is from iorrower.The SQL staridard does not requiie
attribute names in such results to be unique. An as clause should be used to assign
unique names to attributes in query and subquery results.

We rename the result relati&-oi a join and the attributes of the result relation by
using an as clause, as illustrated here:

Ioan inner join borronter on loan.loan-number : borrower.loannumber
as lb(loan_number, branch, amount, cust, cust_loan-num)

We rename the second occurrence of loan-number to cust-losn-num.The ordering of the
attributes in the result of the join is important for the renaming.

Next, we consider an example of the left outer-join operati6n:

Figure 3.5 The result of loan inner join borrower on
loan.loan-number : borrow er.loan_number.
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Figure 3.6 The result of lonn left outer ioinborrower on
loan.Ioan-number : borrower.loan-number.

Ionn left outer join borrower on loqn.Ioan:number : borrower.loanttumber

We can compute the left outer-join operation logically as follows. First, compute the

result of thelnner join as before. Then, for every tuple f in the left-hand-side relation
loan tlaatdoes not match any tuple in the right-hand-side relationborower in the inner
join, add a tuple r to the result of the join: The attributes of tuple r that are derived
irom the left-hand-side relation are filled in with the values from tuple t, and the

remaining attributes of r are filled with null values. Figure 3.6 shows the resultant

relation. The tuples (L-170, Downtown,3000) and (L-230, Redwood,4000) join with

tuples fromboriower andappear in the result of the inner join, and hence in the result

of the left outer join. On the other hand, the tuple (L-260, Perryridge, 1700) did not

match any tuple fromborrower in the inner join, and hence a tuple (L-260, Perryridge,
1700, null, null) is present in the result of the left outer join'

Finalty, we consider an example of the natural-join operation:

Ioan natatal inner join borrower

This expression computes the natural join of the two relations. The only attribute

11ame co*monto loan andborrower is losn-number.Figure 3.7 shows the result of the

expression. The result is similar to the result of the inner join with the on condition in

Figure 3.5, since they have, in effect, the same join condition. However, the attribute
Ioan_number appears only once in the result of the natural join, whereas it appears

twice in the result of the join with the on condition.

3.11.2 Join Types qnd Conditions

In Section 3.L7.7, we saw examples of the join operations permitted in SQL. Join op-

erations take two relations and return another relation as the result. Although outer-
join expressions are typically used in the from clause, they can be used anywhere

that a relation can be used.

Figure 3.7 The result of loan natural inner join borror"oer,
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Figure 3.8 Join types and join conditions.

Each of the variants of the join operations in SQL consists of a join type and a join
condition. The join condition defines which tuples in the two relations match and what
attributes are present in the result of the join. The join type defines how tuples in each
relation that do not match any tuple in the other relation (based on the join condition)
are treated. Figure 3.8 shows some of the allowed join types and join conditions. The
first join type is the inner join, and the other three are the outer joins. Of the three ioin
conditions, we have seen the natural join and the on condition before, and we sirall
discuss the using condition, later in this section.

The use of a join condition is mandatory for outer joins, but is optional for inner
joins (if it is omitted, a Cartesian product results). Syntactically, the keyword natural
appears before the join type, as illustrated earlier, whereas the on and using con-
ditions apPear at the end of the join expression. The keywords inner and outer are
optional, since the rest of the join type enables us to deduce whether the join is an
inner join or an outer join.

,The meaning of the join condition natural, in terms of which tuples from the two
relations match, is straightforward. The ordering of the attributes in the result of a
natural join is as follows. The join attributes (that is, the attributes common to both
relations) appear first, in the order in which they appear in the left-hand-side relation.
Next come all nonjoin attributes of the left-hand-side relation, and finally all nonioin
attributes of the right-hand-side relation.

The right outer join is symmetric to the left outer join. Tuples from the right-hand-
side relation that do not match any tuple in the left-hand-side relation are padded
with nulls and are added to the result of the right outer join.

. Here is an example of combining the natural-join condition with the right outer
join type:

Ioan natanal right outer joinborrozner

Figure 3.9 shows the result of this expression. The attributes of the result are defined
by the join type, which is a natural join; hence, losn-number appears onry once. The

Figure 3.9 The result of loan natural right outer joinborrower.
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first two tuples in the result are from the inner natural join of loan and borrower. Tllle

tuple (Hayes, L-155) from the right-hand-side relation does not match any tuple from
the left-hand-side relationloaninthe natural inner join. Hence, the tuple (L-155, null,
null, Hayes) appears in the join result.

The join condition using(. r, Az, . . . , An) is similar to the natural-join condition,
except ihut th" join attributes are the attributes ,4.1, A2,...,An, rather than all at-
tributes that are common to both relations. The attributes ,41, Az, . . ., ,4, must consist

of only attributes that are common to both relations, and they aPpear only once in the

result of the join.
The full outer join is a combination of the left and right outer-join types. After

the operation computes the result of the inner join, it extends with nulls tuples from

the left-hand-side relation that did not match with any from the right-hand-side, and

adds them to the result. Similarly, it extends with nulls tuples from the right-hand-
side relation that did not match with any tuples from the left-hand-side relation and

adds them to the result.
For example, Figure 3.10 shows the result of the expression

Ioan full outer join borrower using (loan-number)

As another example of the use of the outer-join operation, we can write the query
"Find all customers who have an account but no loan at the bank" as

select d-CN
from (depositor teft outer join borrower

on depositor.customer-name : borr ower.customer stsm e)
as dbl' @-CN, account-number, b -CN, loannumber)

where b-CN isnull

Similarly, we can write the query "Find all customers who have either an account
or a loan (but not both) at the bank " with natural full outer joins as:

select customer-name
from (depositor natstal full outer joinborrower)
where account-number is null otloan-number is null

SeL-92 also provides two other join types, called cross join and union join. The

first is equivalent to an inner join without a join condition; the second is equivalent

to a full outer ioin on the "false" condition-that is, where the inner join is emPty.

]ones
Smith
null

Figure 3.10 The result of loan full outer ioinborrower using (loan-number).
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3.12 Summory
o Commercial database systems do not use the terse, formal relational algebra

covered in Chapter 2. The widety used sel- language which we studied in
this chapter, is based on the relational algebra, but includes much ,.syntactic
sugar."

o The SQL data-definition language is used to create relations with specified
schemas. The sQL DDL supports a number of types including date and time
types. Further details on the sel- DDL, in particular its support for integrity
constraints, appear in Section 3.2.

o SQL includes a variety of language constructs for queries on the database. All
the relational-algebra operations, including the extended relational-algebra
operations, can be expressed by sel-. SeL also allows ordering of queiy re-
sults by sorting on specified attributes.

. sQl handles queries on relations containing null values by adding the truth
value "unknown" to the usual truth values of true and false.

o sQL allows nested subqueries in the where clause. The outer query can per-
form a variety of operations on the subquery result such as checking for 

"*pti-ness or containment of a value in the subquery result. subqueries in the from
clause are called derived relations.

o view relations can be defined as relations containing the result of queries.
views are useful for hiding unneeded information, and for collecting together
information from more than one relation into a single view.

o TemPorary views defined by using the with clause are also useful for breaking
up complex queries into smaller and easier-to-understand parts.

. sQL provides constructs for updating, inserting, and deleting information.
updates through views are allowed only when some fairly restrictive con-
ditions are satisfied.

o tansactions are a sequelce of queries and updates that together carry out
a task. Transactions can be committed, or rolled back; when a transaction is
rolled back, the effects of all updates performed by the transaction are undone.

o sQL supports several types of outer join with several types of join conditions.

Review Terms
o DDL: data-definition language

o DML: data-manipulation
language

r select clause

o from clause

o where clause

o as clause

o Tupie variable

o orderby clause

o Duplicates
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person (driaer-id, name, address)
car (Iicense, model, year)
accident (reportnumber, date, location)
owns (d r iue rjd, I icense)
participated (drizterid, license, report-number, dnmage-amount)

Figure 3.11 Insurance database.

o Set operations r with clause

! uniory intersect, excePt o Views

o Aggregate functions n View definition

n avg, min, mar; sum, count ! view expansion

r Database modification. group by

o NulI values n delete, insert, update

n rruth value "unknown" n view update

o Nested subqueries 
o Transaction

n commit

r Set operations n rolback

n {<, (:, }, >:} { some, all } o }oin tYPes

n exists I Inner and outer join

n unique n left, right and full outer join

o Derived relations (in from clause) I natural' using' and on

Prqctice Exercises
3.1 Consider the insurance database of Figure 3.11, where the primary keys are un-

derlined. Construct the following SQL queries for this relational database.

a. Find the total number of people who owned cars that were involved in ac-

cidents in1989.
b. Add a new accident to the database; assume any values for required at-

tributes.
c. Delete the Mazda belonging to "john Smith."

3.2 Consider the employee database of Figure 3.12, where the primary keys are un-

derlined. Give an expression in SQL for each of the following queries.

employ ee (employ ee-name, street, city)
works (employ eename, compnny Jlame, salary)

company (compa n Y -na me, c i tY)

manages (employ eennme, mnnager -name)

Figure 3.12 Employee database.
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a. Find the names and cities of residence of all employees who work for First
Bank Corporation.

b. Find the names, street addresses, and cities of residence of all emplovees
who work for First Bank Corporation and earn more than $10,000.

c. Find all employees in the database who do not work for First Bank Corpo-
ration.

d. 
fina_{ employees in the database who earn more than each employee of
Small Bank Corporation.

e. Assume that the companies may be located in several cities. Find all com-
panies located in every city in which Small Bank Corporation is located.

f. Find the company that has the most employees.
g. Find those companies whose employees earn a higher salary, on average,

than the average salary at First Bank Corporation.

3.3 Consider the relational database of Figure 3.12. Give an expression in SeL for
each of the following queries.

a. Modify the database so that Jones now lives in Newtown.
b. Give all managers of First Bank Corporation a 10 percent raise unless the

salary becomes greater than $100,000; in such casei, give only a 3 percent
raise.

3.4 SQL-g2provides ann-ary operation called coalesce, which is defined as follows:
coalesce( ,  1 ,A2, . . . ,An)  returns the f i rs t  nonnul l  ,41 in  the l is t ,41 ,  A2, . . . ,An,
and refurns null if all of 41, Az, . . ., ,4. are null.

Let a and b be relations with the schemas A(name, address, title) and B(nnme,
address, salary), respectively. show how to express a natural full outer join b
using the full outer-join operation with an on condition and the coalesce op-
eration. Make sure that the result relation does not contain two copies of the
attributes name and address, and that the solution is correct even if some tunles
in o and b have null values for attributes name ot address.

3.5 Suppose that we have a relation msrks(student-id, score) and we wish to assign
grades to students based on the score as follows: grade F if score < 40, grade c
if 40 < score < 60,gradeBif 60 l score < 80,and gradeAif g0 < scoie.write
SQL queries to do the following:

a. Display the grade for each student, based on the marks rclation.
b. Find the number of students with each grade.

3.6 Consider the SQL query

select p.a1
ftomp, r1,, 12
where p.a7 : r\.a7 or p.a7 : r2.a1

Under what conditions does the preceding query select values of 7t.al that are
either in 11 or in 12? Examine carefully the cases where one of r7 or 12 may be
empty.



Chapter 3 SQL

3.7 Certain systems allow marked nulls. A marked null Ii is equal to itself, but i{

i + j ,then Iz I Li. One application of marked nulls is to allow certain updates

through views. Consider the view loan info (Section 3.9). Show how you can use

mark;d nulls to allow the insertion of the tuple ("Johnson", 1900) throughloan
-info.

Exercises

3.8 Consider the insurance database of Figure 3.11, where the primary keys are un-

derlined. Construct the following SQL queries for this relational database.

a. Find the number of accidents in which the cars belonging to "John smith"

were involved.
b. Update the damage amount for the car with license number "AABB2000" in

the accident with report number "AR2197" to $3000.

3.9 Consider the employee database of Figure 3.12, where the primary keys are un-

derlined. Give an expression in sQL for each of the following queries.

a. Find the names of all employees who work for First Bank Corporation.

b. Find all employees in the database who live in the same cities as the com-

panies for which theY work'
.. Fitrd all employees in the database who live in the same cities and on the

same streets as do their managers.
d. Find all employees who earn more than the average salary of all employees

of their comPany.
e. Find the company that has the smallest payroll.

3.10 Consider the relational database of Figure 3.12. Give an expression in SQL for

each of the following queries.

a. Give all employees of First Bank Corporation a 10 percent raise.

b. Give all managers of First Bank Corporation a 10 percent raise.

c. Delete all tuples intheworks relation for employees of Small Bank Corpora-

tion.

3.1L Let the following relation schemas be given:

R :  ( A , B , C )
s  :  ( D , E . F )

Let relations r(R) and s(S) be given. Give an expression in SQL that is equivalent

to each of the following queries.

a. TIa(r)
b .  o s : v  ( r )
c . r x 5
d. I Ia,r  (os-,p(r  x s))

3.12 Let R : (A,B,C), and let 11 and 12 both be relations on schema R' Give an

expression in sQL that is equivalent to each of the following queries.
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X.. Ty U T2

b . 1 1  o 1 2

C . T 1 - T 2

d. [Ias(r1) x T|7,sO2)

3.13 Show that, in SQL, <> all is identical to not in.

3.14 Consider the relational database of Figure 3.12. using SeL, define a view con-
sisting of mannger-name and the average salary of all employees who work for
that manager. Explain why the database system should not allow updates to be
expressed in terms of this view.

3.15 write an sQL query, without using a with clause, to find all branches where
the total account deposit is less than the average total account deposit at all
branches,

a. Using a nested query in the from clause.
b. Using a nested query in a having clause.

3.16 List two reasons why null values might be introduced into the database.

3.17 Show how to exPress the coalesce operation from Exercise 3.4 using the case
operation.

3.1,8 Give an SQL schema definition for the employee database of Figure 3.12. Choose
an appropriate domain for each attribute and an appropriate primary key for
each relation schema.

3.19 Using the relations of our sample bank database, write SQL expressions to define
the following views:

a. A view containing the account numbers and customer names (but not the
balances) for all accounts at the Deer Park branch.

b. A view containing the names and addresses of all customers who have an
account with the bank, but do not have a loan.

c. A view containing the name and average account balance of every customer
of the Rock Ridge branch.

3.20 For each of the views that you defined in Exercise 3.19, explain how updates
would be performed (if they should be allowed at all).

3.21 Consider the following relational schema

employ ee(empno / naTne, office, age)
books(&tq, title, authors, publisher)
loan(empno, isbn, dat e)

Write the following queries in SeL.
a. Print the names of employees who have borrowed any book published by

McGraw-Hill.
b. Print the names of employees who have borrowed all books published by

McGraw-Hil-.
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c. For each publisher, print the names of employees who have borrowed more
than five books of that publisher.

3.22 Consider the relational schema

s t u d e nt (s t u d ent -i d, s t u d ent -n am e)
re gist ered(student-id, courseid)

Write an SQL query to list the student-id and name of each student along with
the total number of courses that the student is registered for. Students who are
not registered for any course must also be listed, with the number of registered
courses shown as 0.

3.23 Suppose that we have a relation marks(student-id, score). Wrtte an SQL query to
find the dense rank of each student. That is, all students with the top mark get a
rank of 1, those with the next highest mark get a rank of 2, and so on. Hint: Split
the task into parts, using the with clause.
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In Chapter 3 we provided a detailed coverage of the basic structure of SQL. The SeL
language has grown since the late7970s from a simple language with a few features
to a rather complex language with features to satisfy many different types of users.
In this chapter we cover some of the advanced features of SQL. We continue to use
the bank schema, reproduced in Figure 4.7 for your convenience, in our examples.

4.1 SQL Dqtq Types qnd Schemqs
We have seen that atype, that is, a domain of possible values, must be associated with
every attribute. In Chapter 3, we covered a number of built-in data types supported
in sQL, such as integer types, real types, and character types. There are additional
built-in data types supported by sQL, which we describe below. we also describe
how to create basic user-defined types in SQL.

4.1.1 Built-in DqtCI Types in SQL
In addition to the basic data types we introduced in Section 3.2,the sel- standard
supports other built-in data types, including:

o date: A calendar date containing a (four-digit) yeaa month, and day of the
month.

o time: The time of day, in hours, minutes, and seconds. A variant, time(p), can
be used to specify the number of fractional digits for seconds (the default be-
ing 0). It is also possible to store time zone information along with the time by
specifying time with timezone.

o timestamp: A combination of date and time. A variant, timestamp(?), can be
used to specify the number of fractional digits for seconds (the default here
being 6). Time zone information is also stored if with timezone is specified.
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brsnch (brsnch-name, brnnch-city, assets)
custlmer (gUlSUgI=nWg, customer-street, customertity)
loan (lonn-number, branch-name, amount)
borrower (customer-name, Ioan-number)
account (accountnumber, branch-nnme, bslance)
depositor (customer:name, account-number)

Figure 4.1 Schema of banking enterprise.

Date and time values can be specified like this:

date'2007-04-25'
time'09:30:00'
timestamp' 2007-04-25 70:29:07.45'

Dates must be specified in the format year followed by month followed by day, as
shown. The seconds field of time or timestamp can have a fractional part, as in the
timestamp above.

We can use an expression of the form cast e as f to convert a character string (or

string valued expression) e to the type t, where f is one of date, time, or timestamp.
The string must be in the appropriate format as illustrated at the beginning of this
paragraph. When required, time zone information is inferred from the system set-
tings.

To extract individual fields of a date or time value d, we can use extract (field tronr
d), where field can be one of yeary month, day, hour, minute, or second. Time zone
information can be extracted using timezonehour and timezone-minute.

SQL also defines several useful functions to get the current date and time. For
example, current-date returns the current date, current-time returns the current time
(with time zone), and localtime returns the current local time (without time zone).
Timestamps (date plus time) are returned by current-timestamp (with time zone)
and localtimestamp (local date and time without time zone).

SQL allows comparison operations on all the types listed here, and it allows both
arithmetic and comparison operations on the various numeric types. SQL also pro-
vides a data type called interval, and it allows computations based on dates and
times and on intervals. For example, if x and y are of type date, then r - y is an in-
terval whose value is the number of days from date r to date y. Similarly, adding or
subtracting an interval to a date or time gives back a date or time, respectively.

It is often useful to compare values from different compatible types. As an illus-
tration, suppose that the type of customer:name is a character string of length 20, and
the type of branchstame is a character string of length 15. Although the string lengths
might differ, standard SQL will consider the two types compatible. As another exam-
ple, since every small integer is also an integer, a comparison, I y, where r is a small
integer and y is an integer (or vice versa), makes sense. We make such a comparison
by casting small integer x as an integer. A transformation of this sort is called a qpe
coercion. Type coercion is used routinely in common programming languages, as
well as in database systems.
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4.1.2 User-Defined Types
SQL supports two forms of user-defined data types. The first form, which we cover
here, is called distinct types. The other form, called structured data types, allows the
creation of complex data types with nested record structures, arrays, and multisets.
we do not cover structured data types in this chaptel, but describe them later, in
Chapter 9.

It is possible for several attributes to have the same data type. For example, the at-
tributes customer-name and employee-name might have the same domain: the set of all
person names. However, the domains of balance andbranch-nsme certainly ought to be
distinct. It is perhaps less clear whether customerJxame andbranch-name should.have
the same domain. At the implementation level, both customer names and branch
names are character strings. However, we would normally not consider the query
"Find all customers who have the same name as a branch" to be a meaningful query.
Thus, if we view the database at the conceptual, rather than the physical ,lever, cus-
tomer-name andbranch-name should have distinct domains.

More importantly, at a practical level, assigning a customer's name to a branch is
probably a programming error; similarly, comparing a monetary value expressed in
dollars directly with a monetary value expressed in pounds is also almost surely a
programming error. A good type system should be able to detect such assignments
or comparisons. To support such checks, SQL provides the notion of distinct types.

The create type clause can be used to define new types. For example, the state-
ments:

:;:ffi :{i:?:':ffiilffi ffi i:11?,?,#,
define the user-defined types Dollars and Pounds to be decimal numbers with a total
of 72 digits, two of which are placed after the decimal point. (The keyword final isn't
really meaningful in this context but is required by the SQL:1,999 standard for reasons
we won't get into here; some implementations allow the final keyword to be omit-
ted.) The newly created types can then be used, for example, as types of attributes of
relations. For example, we could declare the account table as:

create table account
(ac c o unt -numb e r char(7}),
branch-name char(l5),
bslance DoIIars)

An attempt to assign a value of type Dollqrs to a variable of type Pounds would result
in a compile time error, although both are of the same numeric type. such an assign-
ment is likely to be due to a programmer error, where the programmer forgot about
the differences in currency. Declaring different types for different currencies helps
catch such errors.

As a result of strong type checking, the expression (account.balance+20) would not
be accepted since the attribute and the integer constant 20 have different types. Values
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of one type can be cast (that is, converted) to another domain, as illustrated below:

cast (account.balsnce to numeric(72,2))

We could do addition on the numeric type, but to save the result back to an attribute
of type DoIIars we would have to use another cast expression to convert the type back
to Dollars.

SQL also provides drop type and alter type clauses to drop or modify types that
have been created earlier.

Even before user-defined types were added to SQL (in SQL:1999), SQL had a similar
but subtly different notion of domain type (introduced in SQL-92). We could define a
domain type DDollars as follows.

create domain DDollqrs as numeric(12,2)

The domain type DDollars can be used as attribute types, just as we used the type
Dollnrs. However, there are two significant differences between types and domains:

1. Domains can have constraints, such as not null, specified on them, and can
have default values defined for variables of the domain type, whereas user-
defined types cannot have constraints or default values specified on them.
User-defined types are designed to be used not just for specifying attribute
types, but also in procedural extensions to SQL where it may not be possible
to enforce constraints. We return to the issue of constraints on domains later,
in Section 4.2.4.

2. Domains are not strongly Wped. As a result, values of one domain type can
be assigned to values of another domain type as long as the underlying types
are compatible.

4.1.3 Lorge-Object Types
Many current-generation database applications need to store attributes that can be
large (of the order of many kilobytes), such as a photograph of a person/ or very
large (of the order of many megabytes oI even gigabytes), such as a high-resolution
medical image or video clip. SQL therefore provides new large-object data types for
character data (clob) and binary data (blob). The letters "lob" in these data types
stand for "Large OBject." For example, we may declare attributes

book-r eaiew clob(1 OKB)
imageblob(1.0M8)
moaieblob(2GB)

Executing an SQL query would typically retrieve one or more rows of the result into
memory. Large objects are typically used in external applications, and for very large
objects (multiple megabytes to gigabytes), it is inefficient or impractical to retrieve
an entire large object into memory. Instead, an application would usually use an SQL



4.1. SQL Data Types and Schemas

query to retrieve a "locator" for a large object and then use the locator to manipu-
late the object from the host language. For instance, the JDBC application ptogrl*
interface (described in Section 4.5.2) permits a locator to be fetched instead of the en-
tire large object; the locator can then be used to fetch the large object in small pieces,
rather than all at once, much like reading data from an operating system file using a
read function call.

4.1.4 Schemqs, Cotologs, qnd Environments
To understand the motivation for schemas and catalogs, consider how files are named
in a file system. Early file systems were fla! that is, all files were stored in a single
directory. Current-generation file systems, of course, have a directory strucfure, with
files stored within subdirectories. To name a file uniquely, we must specify the full
path name of the file, for example, /users/avildb-book/chapter4.tex.

Like early file systems, early database systems also had a single name space for all
relations. Users had to coordinate to make sure they did not try to use the same name
for different relations. Contemporary database systems provide a three-level hierar-
chy for naming relations. The top level of the hierarchy consists of catalogs, each of
which can contain schemas. SQL objects such as relations and views are contained
within a schema. (Some database implementations use the term "database" in place
of the term catalog.)

In order to perform any actions on a database, a user (or a program) must first
connect to the database. The user must provide the user name and usually, a se-
cret password for verifying the identity of the user. Each user has a default catalog
and schema, and the combination is unique to the user. When a user connects to a
database system, the default catalog and schema are set up for the connection; this
corresponds to the current directory being set to the user's home directory when the
user logs into an operating system.

To identify a relation uniquely, a three-part name must be used, for example,

catalog5.bank_schema.account

we may omit the catalog component, in which case the catalog part of the name is
considered to be the default catalog for the connection. Thus if catalogS is the default
catalog, we can use bank-schema.account to identify the same relation uniquely. Fur-
the1, we may also omit the schema name, and the schema part of the name is again
considered to be the default schema for the connection. Thus we can use just account
if the default catalog is catalogS and the default schema is bank_schema.

With muitiple catalogs and schemas available, different applications and differ-
ent users can work independently without worrying about name clashes. Moreove4
multiple versions of an application-one a production version, other test versions-
can run on the same database system.

The default catalog and schema are part of an sel environment that is set up
for each connection. The environment additionally contains the user identifier (also
referred to as the authorization identifier). All the usual SQL statements, including the
DDL and DML statements, operate in the context of a schema. we can create and
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drop schemas by means of create schema and drop schema statements. Creation and
dropping of catalogs is implementation dependent and not part of the SQL standard.

4.2 lntegrity Constrqints
Integrity constraints ensure that changes made to the database by authorized users
do not result in a loss of data consistency. Thus, integrity constraints guard against
accidental damage to the database.

Examples of integrity constraints are:

o An account balance cannot be nuII.

o No two accounts can have the same account number.

o Every account number inthe deposifor relation must have a matching account
number inthe accounf relation.

o The hourly salary of a bank employee must be at least $6.00 an hour.

In general, an integrity constraint can be an arbitrary predicate pertaining to the
database. However, arbitrary predicates may be costly to test. Thus, most database
systems allow one to specify integrity constraints that can be tested with minimal
overhead. We study some such forms of integrity constraints in this section. In Chap-
ter 7 we study another form of integrity constraint, called functional dependencies,
that is used primarily in the process of schema design.

4.2.1 Constrqints on o Single Relqtion
We described in Section 3.2 how to define tables using the create table command. The
create table command may also include integrity-constraint statements. In addition
to the "primary-key" constraint, there are a number of other ones that can be included
in the create table command. The allowed integrity constraints include

o not null

o unique

o check((predicate>)

We cover each of these types of constraints in the following sections.

4.2.2 Not Null Constrqint
As we discussed in Chapter 2, the null value is a member of all domains, and as a
result is a legal value for every attribute in SQL by default. For certain attributes,
however, null values may be inappropriate. Consider a tuple in the accounf relation
where accountnumber is null. Such a tuple gives account information for an unknown
account; thus, it does not contain useful information. Similarly, we would not want
the account balance to be null. In cases such as this, we wish to forbid null values,
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and we can do so by restricting the domain of attributes account-number and bakmce
to exclude null values, by declaring them as follows.

account-number char1,0\ not null
balance numeric(12,2) not null

The not null specification prohibits the insertion of a null value for this attribute.
Any database modification that would cause a null to be inserted in an attribute
declared to be not null generates an error diagnostic.

There are many situations where we want to avoid null values. In particula4 SeL
prohibits null values in the primary key of a relation schema. Thus, in our bank exam-
ple, in the qccount relation, if the attribute account-number is declared as the primary
key for account, it cannot take a null value. As a result it would not need to be explic-
itly declared to be not null.

The not null specification can also be apptied to a user-defined domain declara-
tion; as a result attributes of that domain type would not be allowed to take a null
value. For example, if we wishe dowr Dollaridomain to not take null values, we could
declare it as follows.

create domain Dollars numeric(12,2) not null

4.2.3 Unique Constrqint
SQL also supports an integrity constraint

unique (Aj,  Aj" , .  .  . ,  Ai^)

The unique specification says that attributes Ai' Ai", . . . , Aj^ form a candidate key;
that is, no two tuples in the relation can be equal on all the primary-key attributes.
However, candidate key attributes are permitted to be null unless they have explicitly
been declared to be not null. Recall that a null value does not equal any other value.
(The treatment of nulls here is the same as that of the unique construct defined in
Section 3.7.4.)

4.2.4 The check Clquse
The check clause in SQL can be applied to relation declarations as well as to domain
declarations. When applied to a relation declaration, the clause check(P) specifies a
predicate P that must be satisfied by every tuple in a relation.

A common use of the check clause is to ensure that attribute values satisfu spec-
ified conditions, in effect creating a powerful type system. For instance, a- cliuse
check(assets>:0) in the create table command for relation branch would ensure that
the value of assets is nonnegative.

As another example, consider the following:
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create table student
(name char(15) not null,
student-id char(10),
degree-leuel char(1S),
primary key (stu d ent -id),
check (degree-leael in ('Bachelors','Masters','Doctorate')))

Here, we use the check clause to simulate an enumerated type, by specifying that
degree-leael must be one of 'Bachelors', 'Masters', or'Doctorate'.

When applied to a domain, the check clause permits the schema designer to spec-
ify a predicate that must be satisfied by any value assigned to a variable whose type
is the domain.

For instance, a check clause can ensure that an hourly wage domain allows only
values greater than a specified value (such as the minimum wage):

create domain HourlyWnge numeric(S,2)
constraint w agen alue-t esf check(value > : 6. 00 )

The domain HourlyWage has a constraint that ensures that the hourly wage is greater
than or equal to 6.00. The clause constraint wagenalue-tesf is optional, and is used
to give the name wagenalue-tesf to the constraint. The name is used by the system to
indicate the constraint that an update violated.

As another example, a domain can be restricted to contain only a specified set of
values by using the in clause:

create domain AccountT'rlpe char(10)
constraini account-typ e-test

check (value in ('Checking' ,'Saving'))

Thus, the check clause permits attributes and domains to be restricted in powerful
ways that most programming-language type systems do not permit.

The preceding check conditions can be tested quite easily, when a tuple is inserted
or modified. However, in general, the check conditions can be more complex (and

harder to check), since subqueries that refer to other relations are permitted in the
check condition. For example, this constraint could be specified on the rcIation de-
posit:

check (brnnch,name in (select brnnchname fuombranch))

The check condition verifies that the branch-name in each tuple in the deposit relation
is actually the name of a branch in the brnnch relation. Thus, the condition has to be
checked not only when a tuple is inserted or modified in deposit, but also when the
relation branch changes (in this case, when a tuple is deleted or modified in relation
branch).

The preceding constraint is actually an example of a class of constraints called
referentinl-integrity constraints. We discuss such constraints, along with a simpler way
of specifying them in SQL, in Section 4.2.5.



/ l a Integrity Constraints 129

create table customer
(customer-name char(20),
customer_street char(3O),
customer-city char(30),
primary key (cust omer _name))

create tablebranch
(branch-nnme char(lS),
brnnch-city char(3O),
assets nametic(76,2),
primary key (br anch_name),
check (assets >: 0))

create table account
(account-number cha{70),
branch-name char(15),
balance numeric(1.2,2),
primary key (ac count _numb er),
foreign key (branch_name) tefetences branch,
check (balance >: 0))

create table depositor
(customer:name char(2}),
sccount_number char(10),
primary key (customer_name, account_number),
foreign key (customer_name) references cl,tstomer,
foreign key (account_number) references account)

Figure4.2 SeL data definition for part of the bank database.

Complex check conditions can be useful when we want to ensure integrity of data,
but we should use them with care, since they may be costly to test.

4.2.5 Referentiol Integrity
Often, we wish to ensure that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another relation. This condition
is called referential integrity.

Foreign keys can be specified as part of the SQL create table statement by using
the foreign key clause. We illustrate foreign-key declarations by using the sel DDi
definition of part of our bank database, shown in Figure 4.2. The definition of the
account table has a declaration "foreign key (branch-nnme) references branch". This
foreign-key declaration specifies that for each account tuple, the branch name speci-
fied in the tuple must exist inthebranch relation. Without this constraint, it is poriibl"
for an account to specify a nonexistent branch name.
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More generalty,let 
"t(i?r) 

andr2(R2) be relations with primary keys Kl and K2,

respectively (recall that Rr and R2 denote the set of attributes of 11 and 12, tespaC-

tively). We say that a subset a of R2 is a foreign key referencing K1 in relation 11 if it is

requiredthat,foreverytuple t2inr2,theremustbeatuple tl inrv suchthat tLIKL] :

12fa]. Requirements of this form are called referential-integrity constraints, or sub-

set dependencies. The latter term arises because the preceding referential-integrity

constraint can be written as IIo (r2) C llr, (r1). Note that, for a referential-integrity

constraint to make sense, a and Kl must be compatible sets of attributes; that is, ei-

ther a must be equal to K1, or they must contain the same number of attributes, and

the types of corresponding attributes must be compatible (we assume here that a and

K1 are ordered).
By default, in SQL a foreign key references the primary-key attributes of the ref-

erenced table. SQL also supports a version of the references clause where a list of

attributes of the referenced relation can be specified explicitly. The specified list of

attributes must, however, be declared as a candidate key of the referenced relation.

We can use the following short form as part of an attribute definition to declare

that the attribute forms a foreign key:

branchttame char(15) references br anch

When a referential-integrity constraint is violated, the normal procedure is to re-
ject the action that caused the violation (that is, the transaction performing the up-
date action is rolled back). However, a foreign key clause can specify that if a delete
or update action on the referenced relation violates the constraint, then, instead of
rejecting the action, the system must take steps to change the tuple in the referencing
relation to restore the constraint. Consider this definition of an integrity constraint on
the relation account:

create table nccount
( . . .
f oreign key (br anch-name) rcferences br anch

on delete cascade
on update cascade,

. , )

Because of the clause on delete cascade associated with the foreign-key declaration,
if a delete of a tuple inbranch results in this referential-integrity constraint being vi-
olated, the system does not reject the delete. Instead, the delete "cascades" to the
account relation, deleting the tuple that refers to the branch that was deleted. Simi-
larly, the system does not reject an update to a field referenced by the constraint if it
violates the constraint; instead, the system updates the field brancltname in the ref-
erencing tuples in account to the new value as well. SQL also allows the foreign key
clause to specify actions other than cascade, if the constraint is violated: The referenc-
ing field (here,brnnch-name) canbe set to null (by using set null in place of cascade),
or to the default value for the domain (by using set default).
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If there is a chain of foreign-key dependencies across multiple relations, a deletion
or update at one end of the chain can propagate across the entire chain. An interest-
ing case where the foreign key constraint on a relation references the same relation
appears in Practice Exercises 4.4.If a cascading update or delete causes a constraint
violation that cannot be handled by a further cascading operation, the system aborts
the transaction. As a result, all the changes caused by the transaction and its cascad-
ing actions are undone.

Null values complicate the semantics of referential-integrity constraints in SeL.
Attributes of foreign keys are allowed to be null, provided that they have not other-
wise been declared to be nonnull. If all the columns of a foreign key are nonnull in
a given tuple, the usual definition of foreign-key constraints is used for that tuple. If

1ny of the foreign-key columns is null, the tuple is defined automatically to satisfy
the constraint.

This definition may not always be the right choice, so SQL also provides constructs
that allow you to change the behavior with null values; we do not discuss the con-
structs here.

Integrity constraints can be added to an existing relation by using the command
alter table table-nqme ad.d constraint, where constrnint can be any of the constraints
we have seen. When such a command is executed, the system first ensures that the
relation satisfies the specified constraint. If it does, the constraint is added to the
relation; if not, the command is reiected.

Tr4nsactions may consist of several steps, and integrity constraints may be vio-
lated itemporarily after one step, but a later step may remove the violation. For in-
stance, suppose we have a relation person with primary key name, and an attribute
spouse, and suppose that spouse is a foreign key on person. That is, the constraint says
that the spouse attribute must contain a name that is present in the person table. Sup-
pose we wish to note the fact that John and Mary are married to each other by insert-
ing two tuples, one for ]ohn and one for Mary, in the above relation. The insertion of
the first tuple would violate the foreign-key constraint, regardless of which of the two
tuples is inserted first. After the second tuple is inserted the foreign-key constraint
would hold again.

To handle such situations, the SQL standard allows a clause initially deferred to
be added to a constraint specification; the constraint would then be checked at the
end of a transaction, and not at intermediate steps.l A constraint can alternatively be
specified as deferrable, which means it is checked immediately by default, but can be
deferred when desired. For constraints declared as deferrable, executing a statement
set constraints constraint-Iist def.erred as part of a transaction causes the checking of
the specified constraints to be deferred to the end of that transaction.

However, you should be aware that the default behavior is to check constraints im-
mediately, and many database implementations do not support deferred constraint
checking.

1. We can work around the problem in the above example in another way, if the spouse attribtte canbe
set to null: We set the spouse attributes to null when inserting the tuples for John and Mary, and we update
them later. However, this technique is rather messy, and does not work if the attributes cannot be iet to
null.
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create assertion sum-constrailzf check
(not exists (select * from brnnch

where (select surll(amount) fuom loan
where loan.branchstame : branch.branch:name)

>: (select surn(balance) from account
where account.brsnchttame : branch.branchname)))

create assertion bnlance-constraint check
(not exists (select * fromlosn

where not exists (select *

from borrower, dePositor, account
where losn.lo qn-numb er : b orrow er.loan-numb er

and borrower.customerttnme : depositor.customerttame
and. depositor.accounttrumber : account.accountttumber
and account.balance >: 1000)))

Figure 4.3 TWo assertion examples.

4.2.6 Assertions
An assertion is a predicate expressing a condition that we wish the database always
to satisfy. Domain constraints and referential-integrity constraints are special forms
of assertions. We have paid substantial attention to these forms of assertions because
they are easily tested and apply to a wide range of database applications. However,
there are many constraints that we cannot express by using only these special forms.
TWo examples of such constraints are:

o The sum of all loan amounts for each branch must be less than the sum of all
account balances at the branch.

o Every loan has at least one customer who maintains an account with a mini-
murn balance of $1000.00.

An assertion in SQL takes the form

create assertion <assertion-name> check <predicate>

In Figure 4.3 we show how the two examples of constraints can be written in SQL.
Since SQL does not provide a"for aLl X, P(X)" construct (where P is a predicate), we
are forced to implement the constraint by an equivalent construct, "not exists X such
that not P(X)", that can be expressed in SQL.

When an assertion is created, the system tests it for validity. If the assertion is valid,
then any future modification to the database is allowed only if it does not cause that
assertion to be violated. This testing may introduce a significant amount of overhead
if complex assertions have been made. Hence, assertions should be used with great
care. The high overhead of testing and maintaining assertions has led some system
developers to omit support for general assertions, or to provide specialized forms of
assertion that are easier to test.
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4.3 Authorizqtion
We may assign a user several forms of authorizations on parts of the database. For
example,

r Authorization to read data

o Authorization to insert new data

o Authorization to update data

o Authorization to delete data

Each of these types of authorizations is called a privilege. We may authorize the
user all, none, or a combination of these types of privileges on specified parts of a
database, such as a relation or a view.

The sQL standard includes the privileges select, insert, update, and delete. The
select privilege authorizes a user to read data. In addition to these forms of privi-
leges for access to data, SQL supports several other privileges, such as the privilege
to create, delete, or modify relations, and the privilege to execute procedures. We dis-
cuss these privileges later, in Section 8.7. The privilege all privileges can be used as a
short form for all the allowable privileges. A user who creates a new relation is given
all privileges on that relation automatically.

A user who has some form of authorization may be allowed to pass on (grant)
this authorizatton to other users, or to withdraw (revoke) an authorization that was
granted earlier.

The SQL data-definition language includes commands to grant and revoke priv-
ileges. The grant statement is used to confer authorization. The basic form of this
statement is:

grant <privilege list> on <relation name or view name> to <user/role list>

Thepriailege /lsf allows the granting of several privileges in one command. The notion
of roles is covered later, in Section 8.7.

The following grant statement grants database users ]ohn and Mary select autho-
rization on the account relation:

grant select on account to John, Mary

The update authorization may be given either on all attributes of the relation or
on only some. If update authorization is included in a grant statement, the list of at-
tributes on which update authorization is to be granted optionally appears in paren-
theses immediately after the update keyword. If the list of attributes is omitted, the
update privilege will be granted on all attributes of the relation.

This grant statement gives users John and Mary update authorizatio n onthe amount
attribute of the loan relation:

grant update (qmount) onloan to lohn, Manl
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The insert privilege may also specify a list of attributes; any inserts to the relation
must specify only these attributes, and the system either gives each of the remaining
attributes default values (if a default is defined for the attribute) or sets them to null.

The user name public refers to all current and future users of the system. Thus,
privileges granted to public are implicitly granted to all current and future users.

By default, a user/role that is granted a privilege is not authorized to grant that
privilege to another user/role. SQL allows a privilege grant to specify that the recipi-
ent may further grant the privilege to another user. We describe this feature in more
detail in Section 8.7.

To revoke an authorization, we use the revoke statement. It takes a form almost
identical to that of grant:

revoke <privilege list> on <relation name or view name>
from <user/role list>

Thus, to revoke the privileges that we granted previously, we write

revoke select on branch fuomlohn, Mary
revoke update (amount) onloan fromlohn, Mary

Revocation of privileges is more complex if the user from whom the privilege is re-
voked has granted the privilege to another user. We return to this issue in Section 8'7.

4.4 Embedded SQL
SQL provides a powerful declarative query language. Writing queries in SQL is usu-
ally much easier than coding the same queries in a general-purpose programming
language. However, a programmer must have access to a database from a general-
purpose programming language for at least two reasons:

1. Not all queries can be expressed in SQL, since SQL does not provide the full
expressive power of a general-purpose language. That is, there exist queries
that can be expressed in a language such as C,lava, or Cobol that cannot be
expressed in SQL. To write such queries, we can embed SQL within a more
powerful language.

SQL is designed so that queries written in it canbe optimized automatically
and executed efficiently-and providing the full power of a programming
language makes automatic optimization exceedingly difficult.

2. Nondeclarative actions-such as printing a report, interacting with a user/ or
sending the results of a query to a graphical user interface-cannot be done
from within SQL. Applications usually have several components, and query-
ing or updating data is only one component; other components are written in
general-purpose programming languages. For an integrated application, the
programs written in the programming language must be able to access the
database.
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The SQL standard defines embeddings of SQL in a variety of programming lan-
guages, such as C, Cobol, Pascal, Iava, PL/|, and Fortran. A language in which SQL
queries are embedded is referred to as a host language, and the SQL structures per-
mitted in the host language constitute embeddedSQL.

Programs written in the host language can use the embedded SQL syntax to ac-
cess and update data stored in a database. This embedded form of SQL extends the
programmer's ability to manipulate the database even further. In embedded SQL, all
query processing is performed by the database system, which then makes the result
of the query available to the program one tuple (record) at a time.

An embedded SQL program must be processed by a special preprocessor prior to
compilation. The preprocessor replaces embedded SQL requests with host-language
declarations and procedure calls that allow run-time execution of the database ac-
cesses. Then, the resulting program is compiled by the host-language compiler. To
identify embedded SQL requests to the preprocessor, we use the EXEC SQL statement;
it has the form

EXEC SQL <embedded SQL statement > END-EXEC

The exact syntax for embedded SqI- requests depends on the language in which
SQL is embedded. For instance, a semicolon is used instead of END-EXEC when SeL
is embedded in C. The Java embedding of SQL (called SQLI) uses the syntax

# SQL { <embedded SQL statement > };

We place the statement SQL INCLUDE in the program to identify the place where
the preprocessor should insert the special variables used for communication between
the program and the database system. Variables of the host language can be used
within embedded SQL statements, but they must be preceded by a colon (:) to distin-
guish them from SQL variables.

Before executing any SQL statements, the program must first connect to the database.
This is done using

EXEC SQL connect to serrser tuser user-narze END-EXEC

Here, seraer identifies the server to which a connection is to be established. Database
implementations may require a password to be provided in addition to a user name.

Embedded SQL statements are similar in form to the SQL statements that we de-
scribed in this chapter. There are, howeve{, several important differences, as we note
here.

To write a relational query, we use the declare cursor statement. The result of the
query is not yet computed. Rather, the program must use the open and fetch com-
mands (discussed later in this section) to obtain the result tuples.

Consider the banking schema that we have used in this chapter. Assume that we
have a host-language variable nmount, and that we wish to find the names and cities
of residence of customers who have more than amount dollars in any account. We can
write this query as follows:
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EXEC SQL
declare c cursor fol
select customer-name, custoffier-city
fron depositor, cltstomer, account
where depositor.customer-name : customer.customerJlaffie arrd.

nccount.account-number : depositor.accountJxumber and
account.balance > :amount

END-EXEC

The variable c in the preceding expression is called a cursor for the query. We use
this variable to identify the query in the open statement, which causes the query to
be evaluated, and in the fetch statement, which causes the values of one tuple to be
placed in host-language variables.

The open statement for our sample query is as follows:

EXEC SQL open c END-EXEC

This statement causes the database system to execute the query and to save the results
within a temporary relation. The query has a host-language variable (:smount); the
query uses the value of the variable at the time the open statement is executed.

If the SQL query results in an erroq, the database system stores an error diagnostic
in the SQL communication-area (SQLCA) variables, whose declarations are inserted
by the SQL INCLUDE statement.

An embedded SQL program executes a series of fetch statements to retrieve tuples
of the result. The fetch statement requires one host-langtage variable for each at-
tribute of the result relation. For our example query, we need one variable to hold the
customer-nnme value and another to hold the customer-city value. Suppose that those
variables are cn andcc, respectively. Then the statement:

EXEC SQL fetch c irrto :cn,;cc END-EXEC

produces a tuple of the result relation. The program can then manipulate the vari-
ables cn and cc by using the features of the host programming language.

A single fetch request returns only one tuple. To obtain all tuples of the result,
the program must contain a loop to iterate over all tuples. Embedded SQL assists the
programmer in managing this iteration. Although a relation is conceptually a set, the
tuples of the result of a query are in some fixed physical order. When the program
executes an open statement on a cursor, the cursor is set to point to the first tuple
of the result. Each time it executes a fetch statement, the cursor is updated to point
to the next tuple of the result. When no further tuples remain to be processed, the
variable SQLSTATE in the SQLCA is set to '02000' (meaning "no data"). Thus, we can
use a while loop (or equivalent loop) to process each tuple of the result.

We must use the close statement to tell the database system to delete the tempo-
rary relation that held the result of the query. For our example, this statement takes
the form

EXEC SQL close c END-EXEC
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sQLJ, the java embedding of sQL, provides a variation of the above scheme, where
Java iterators are used in place of cursors. SQL] associates the results of a query with
an iterator, and the nextQ method of the Java iterator interface can be used to step
through the result tuples, just as the preceding examples use fetch on the cursor.

Embedded SQL expressions for database modification (update, inserf and delete)
do not return a result. Thus, they are somewhat simpler to express. A database-
modification request takes the form

EXEC SQL < any valid update, insert, or delete> END-EXEC

Host-language variables, preceded by a colon, may appear in the sel- database-
modification expression. If an error condition arises in the execution of the statement,
a diagnostic is set in the SQLCA.

Database relations can also be updated through cursors. For example, if we want
to add 100 to the bqlance attribute of every account where the branch name is "Per-
ryridge," we could declare a cursor as follows.

declare c cursor for
select *

from sccount
where branchstame ='Perryridge'
for update

We then iterate through the tuples by performing fetch operations on the cursor (as
illustrated earlier), and after fetching each tuple we execute the following code

update account
set bqlance = balsnce + 700
where current of c

Embedded SQL allows a host-language program to access the d.atabase, but it pro-
vides no assistance in presenting results to the user or in generating reports. Most
commercial database products include tools to assist application programmers in
creating user interfaces and formatted reports. Chapter 8 describes how to build
database applications with user interfaces, concentrating on Web-based user inter-
faces.

4.5 Dynomic SQL
The dynamic sQL component of sel- allows programs to construct and submit sel-
queries at run time. In contrast, embedded SQL statements must be completely present
at compile time; they are compiled by the embedded sel preprocessor. using dy-
namic sQL, programs can create sQL queries as strings at run time (perhaps based on
input from the user) and can either have them executed immediately or have them
prepared for subsequent use. Preparing a dynamic sQL statement compiles it, and
subsequent uses of the prepared statement use the compiled version.
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SQL defines standards for embedding dynamic SQL calls in a host language, such
as C, as in the following example.

char * sqlprog : "update account setbslsnce: balance *I.05
where accountJtumber : ?" )

EXEC SQL prepare dynprog fron:sqlprog;
chat accounttl0l : " A-701" ;
EXEC SQL execute dynprog using:account;

The dynamic SQL program contains a ?, which is a placeholder for a value that is
provided when the SQL program is executed.

However, the syntax above requires extensions to the language or a preprocessor
for the extended language. A popular alternative is to use an application program
interface to send SQL queries or updates to a database system, and not make any
changes in the programming language itself.

In the rest of this section, we look at two standards for connecting to an SQL
database and performing queries and updates. One, ODBC, is an application pro-
gram interface originally developed for the C language, and subsequently extended
to other languages such as C++, C#, and Visual Basic. The other, JDBC, is an applica-
tion program interface for the Java language.

To understand these standards, we need to understand the concept of SQL ses-
sions. The user or application connects to an SQL server, establishing a session; exe-
cutes a series of statements; and finally disconnects the session. Thus, all activities of
the user or application are in the context of an SQL session. In addition to the normal
SQL commands, a session can also contain commands to commit the work carried out
in the session, or to rollback the work carried out in the session.

4.5.1 oDBC
The Open Database Connectivity (ODBC) standard defines away for an application
program to communicate with a database server. ODBC defines an application pro-
gram interface (ApI) that applications can use to open a connection with a database,
send queries and updates, and get back results. Applications such as graphical user
interfaces, statistics packages, and spreadsheets can make use of the same ODBC API
to connect to any database server that supports ODBC.

Each database system supporting ODBC provides a library that must be linked
with the client program. When the client Program makes an ODBC API call, the code
in the library communicates with the server to carry out the requested action, and
fetch results.

Figure 4.4 shows an example of C code using the ODBC API. The first step in using
ODBC to communicate with a server is to set up a connection with the server. To do
so, the program first allocates an SQL environment, then a database connection han-
dle. ODBC defines the types HENV, HDBC, and RETCODE. The program then opens
the database connection by using SQlConnect. This call takes several parameters,
including the connection handle, the server to which to connect, the user identifier,
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void ODBOexample0
t

RETCODE error;
HENV env;/* environment */

HDBC conn;/* database connection */

SQLAllocEnv(&env);
SQLAllocConnect(env, &conn) ;
SQLConnect(conn, "db.yale.edu", SQL_NTS, "avi",SQL_NTS,

, 
"avipasswd", SeL_NTS);

char branchname[BO];
float balance;
int lenOutl,  lenOut2;
HSTMT stmt;

char * sqlquery = "Select branch-name, sum (balance)
from account
group by branch-name";

SQLAllocStmt(conn, &stmt) ;
erof = SQLExecDirect(stmt, sqlquery, SQL_NTS);
if (error == SQL_SUCCESS) {

SQLBindCol(stmt, 1, SQL_C_CHAR, branchname , 80, &lenOutl);
SQLB|ndCol(stmt, 2, SQL_C_FLOAT, &balance, 0, &lenOut2);
while (SQLFetch(stmt) :: SQL-SUCCESS) {

printf (" 7os 7og\n", branchname, balance);

. ]

. 
SQtfreestmr(stmt, SeL-DROp);

SQLDisconnect(conn);
SQLFreeConnect(conn) ;
SQLFreeEnv(env);

i

Figure4.4 ODBC code example.

and the password for the database. The constant SQL-NTS denotes that the previous
argument is a null-terminated string.

Once the connection is set up, the program can send SQL commands to the database
by using SQlExecDirect. C language variables can be bound to attributes of the
query result, so that when a result fuple is fetched using SQLFetch, its attribute val-
ues are stored in corresponding C variables. The SQLBindCol function does this task;
the second argument identifies the position of the attribute in the query result, and
the third argument indicates the type conversion required from sel- to C. The next
argument gives the address of the variable. For variable-length types like character
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arrays, the last two arguments give the maximum length of the variable and a loca-

tion where the actual length is to be stored when a tuple is fetched. A negative value

returned for the length field indicates that the value is null. For fixed-length types

such as integer or float, the maximum length field is ignored, while a negative value

returned for the length field indicates a null value.
The SQLFetch statement is in a while loop that gets executed until SQLFetch re-

turns a value other than SQL-SUCCESS. On each fetch, the program stores the val-

ues in C variables as specified by the calls on SQLBindCol and prints out these values.
At the end of the session, the program frees the statement handle, disconnects

from the database, and frees up the connection and SQL environment handles. Good

programming style requires that the result of every function call must be checked to

make sure there are no errors; we have omitted most of these checks for brevity.

It is possible to create an SQL statement with parameters; for example, consider

the statement insert into account values(?,?,?). The question marks are placeholders

for values which will be supplied later. The above statement can be "prepared," that

is, compiled at the database, and repeatedly executed by providing actual values for

the placeholders-in this case, by providing an account number, branch name, and

balance for the relation account.
ODBC defines functions for a variety of tasks, such as finding all the relations in the

database and finding the names and types of columns of a query result or a relation

in the database.
By default, each SQL statement is treated as a separate transaction that is commit-

ted automatically. The SQlSetOonnectoption(conn, SQL-AUTocoMMlr, 0) turns
off automatic commit on connection conn, and transactions must then be committed
explicitly by SQlTransact(conn, SQL-COMMIT) or rolled back by SQlTransact(conn,
SQL-ROLLBACK).

The ODBC standard defines conformance leaels, which specify subsets of the func-
tionality defined by the standard. An ODBC implementation may provide only core
level features, or it may provide more advanced (level 1 or level 2) features. Level
1 requires support for fetching information about the catalog, such as information
about what relations are present and the types of their attributes. Level 2 requires
further features, such as ability to send and retrieve affays of parameter values and
to retrieve more detailed catalog information.

The SQL standard defines a call level interface (CLI) that is similar to the ODBC
interface. The ADO and ADO.NET APIs are alternatives to ODBC, designed for the
Visual Basic and C# languages; see the bibliographic notes for more information.

4.5.2 JDBC
The JDBC standard defines an API that Java programs can use to connect to database
servers. (The word JDBC was originally an abbreviation for Java Database Connec-
tivity, but the full form is no longer used.)

4.5.2.1 Opening q Connection qnd Executing Queries
Figure 4.5 shows an example java program that uses the JDBC interface. The program
must first open a connection to a database, and can then execute SQL statements,
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public static void JDBOexample(String dbid, String userid, String passwd)
1

Class.forName ("oracle.jdbc.driver.OracleDrived') ;
Connection cofl t'l = DriverManager. getOonnection(

"jdbc:oracle:thin : @ db.yale.edu :2000: bankdb",
userid, passwd);

Statement stmt = conn.createStatement0;
try {

stmt.executeUpdate(
"i nsert i nto accou nt val ues('A-9732',' P erry ridge', 1 200)") ;

catch (SQlException sqle)

System.out.println("Could not insert tuple. " + sqle);

ResultSet rset = stmt.executeQuery(
"select branch-name, avg (balance)
from account
group by branch_name");

while (rset.nextQ) {
System.out.println(rset.getString("branch_name")

rset.getFloat(2));
)
stmt.close0;
conn.close0;

i
catch (SQlException sqle)
t

.  
Svstem.out.print ln("SQlException:"+sqle);

Figure 4.5 An example of JDBC code.

but before opening a connection, it loads the appropriate drivers for the database
by using Class.forName. The first parameter to the getOonnection call specifies the
machine name where the server runs (in our example, db.yale.edu), the port number
it uses for communication (in our example,2000). The parameter also specifies which
schema on the server is to be used (in our example, bankdb), since a database server
may support multiple schemas. The first parameter also specifies the protocol to be
used to communicate with the database (in our example, jdbc:oracle:thin:). Note that
|DBC specifies only the API, not the communication protocol. A IDBC driver may
support multiple protocols, and we must specify one supported by both the database
and the driver. The other two arguments to getOonnection are a user identifier and a
password.

try
t
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PreparedStatement pstmt = conn.PreFarestatement(
"insert into account values(?,?,?)");

pstmt.setstring(1, " A-9732");
pStmt.setString(2, "Perryridge") ;
pstmt.setlnt(3, 1 200);
pStmt.executeU pdate0 ;
pStmt.setString(1, "4-9733") ;
pStmt.executeU pdate0 ;

Figure 4.6 Prepared statements in JDBC code.

The program then creates a statement handle on the connection and uses it to
execute an SQL statement and get back results. In our example, stmt.executeUpdate
executes an update statement. The try { } catch { ... } construct permits us to
catch any exceptionS (error conditions) that arise when ]DBC calls are made, and print
an appropriate message to the user.

The program can execute a query by using stmt.executeQuery. It can retrieve the
set of rows in the result into a ResultSet and fetch them one tuple at a time using the
nextQ function on the result set. Figure 4.5 shows two ways of retrieving the values
of attributes in a tuple: using the name of the attribute (branch-name) and using the
position of the attribute (2, to denote the second attribute).

The connection is closed at the end of the procedure. Note that it is important to
close the connection because there is a limit imposed on the number of connections
to the database; unclosed connections may cause that limit to be exceeded. If this
happens, the application cannot open any more connections to the database.

4.5.2.2 Prepored Stqtements
We can create a prepared statement in which some values are replaced bY "?", thereby
specifying that actual values will be provided later. Some database systems compile
the query when it is prepared; each time the query is executed (with new values), the
database can reuse the previously compiled form of the query. The code fragment in
Figure 4.6 shows how prepared statements can be used. The setstring function (and
other similar functions for other basic SQL types) allows us to specify the values for
the parameters.

Prepared statements are the preferred method of executing SQL queries, when the
query uses values entered by a user. Suppose that the values for the variables ac-
count-number, branch-name, and balance have been entered by a use1, and a cor-
responding row is to be inserted into the nccount relation. Suppose that, instead of
using a prepared statement, a query is constructed by concatenating the strings as
follows:

" insert  into accountvalues( '"  + account-number *" ' , " '  + branch-name +" ' ,  "
+ balance + ")"

and the query is executed directly. Now if the user typed a single quote in the ac-
count number or branch name fields, the query string would have a syntax error. It is
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quite possible that a bank branch may have a quotation mark in its name (especially
if it is an Irish name such as O'Henry). Worse still, malicious hackers can "injeci'
SQL queries of their own by typing in appropriate characters in the string. Such SeL
injection can result in serious security lapses.

Adding escaPe characters to deal with single quote characters in strings is one
way to solve this problem. Using prepared statements is a simpler way to solve this
problem, since the setstring method adds escape characters implicitly. In addition
when the same statement has to be executed multiple times with different values,
prepared statements usually execute much faster than separate sel statements.

IDBC also provides a CallableStatement interface that allows invocation of SeL
stored procedures and functions (described later, in Section 4.6). These play the same
role for functions and procedures as preparestatement does for queries.

callablestatement cstmtl = conn.preparecall("{? = call some-function(?)}");
CallableStatement cStmt2 = conn.prepareCall("{call some*procedure(?,?)}");

The data types of function return values and out parameters of procedures must be
registered using the method registerOutParameterQ, and can be retrieved using get
methods similar to those for result sets. see a JDBC manual for more details.

4.5.2.3 Metqdqtq Feotures

IDBC also provides mechanisms to examine database schemas and to find the types
of attributes of a result set. The interface ResultSet has a method getMetaData(l to
get a ResultSetMetaData object providing metadata about the result set. The inter-
face ResultSetMetaData, in turn, has methods to find metadata information, such as
the number of columns in the result, the name of a specified column, or the type of a
specified column. The JDBC program below illustrates the use of the ResultSetMeta-
Data interface to print out the names and types of all columns of a result set. The
variable rs in the code below is assumed to be a result set obtained by executing a
query.

ResultSetMetaData fsrTld = rs.getMetaData0;
fo(int i = 1; i <= rsmd.getQolumnQount$; i++) {

System.out.println(rsmd. getOolumnName(i));
System.out.println(rsmd. getColumnTypeName(i)) ;

)

The DatabaseMetaData interface provides a way to find metadata about the data-
base. The interface Connection has a method getMetaData that returns a Database-
MetaData object. The DatabaseMetaData interface in turn has a large number of
methods to get metadata about the database. The code in Figure 4.7 illustrates how
to find information about columns (attributes) of relations in a database. The variable
conn is assumed to store an already opened database connection. The method get-
Columns takes four arguments: a catalog name (null signifies that the catalog name is
to be ignored), a schema name pattern, a table name pattern, and a column name pat-
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DatabaseMetaData dbmd = conn.getMetaDataO;
Resu ltSet rs = dbmd. getCol u m ns(nu l l, "bankdb", " accounl", " o/o" );

// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern, and
ll Column-Pattern
/i Returns: One row for each column; row has a number of attributes such as
II  COLUMN_NAME, TYPE.NAME

while( rs.next0) {

, 
System.out. println (rs. getStrin g("COLUMN-NAM E'), rs. getString("TYPE-NAM E") ;

Figure4.7 Finding column information in jDBC using DatabaseMetaData.

tern. The schema name/ table name, and column name patterns can be used to specify
a name or a pattern. Patterns can use the SQL string matching special characterc"Va"
and"-"; for instance the pattern "7o" matches all names.

Only columns of tables of schemas satisfying the specified name or pattern are
retrieved. Each row in the result set contains information about one column. The
rows have a number of columns such as the name of the catalog, schema, table and
column, the type of the column, and so on.

Other methods provided by DatabaseMetaData allow retrieval of metadata about
relations (getTables0), foreign-key references (getCrossReferenceQ), authorizations,
database limits such as maximum number of connections, and so on.

The metadata interfaces can be used for a variety of tasks. For example, they can
be used to write a database browser that allows a user to find the tables in a database,
examine their schema, examine rows in a table, apply selections to see desired rows,
and so on. The metadata information can be used to make code used for these tasks
generic; for example, code to display the rows in a relation can be written in such a
way that it would work on all possible relations regardless of their schema. Similarly,
it is possible to write code that takes a query string, executes the query, and prints
out the results as a formatted table; the code can work regardless of the actual query
submitted.

4.5.2.4 Other Feqtures

JDBC provides a number of other features, such as updatable result sets. It can create
an updatable result set from a query that performs a selection and/ or a projection on
a database relation. An update to a tuple in the result set then results in an update to
the corresponding tuple of the database relation.

By default, each SQL statement is treated as a separate transaction that is com-
mitted automatically. The method setAutoOommit0 in the JDBC Connection interface
allows this behavior to be turned on or off. Thus, if conn is a variable storing an open
connection, conn.setAutoOommit(false) will turn off automatic commit. Transactions
must then be committed explicitly by conn.commitQ or rolled backby conn.rollbackQ.
Automatic commit can be turned on by conn.setAutoOommit(true).

JDBC provides interfaces to deal with large objects without requiring an entire
large object to be created in memory. To fetch large objects, the ResultSet class pro-
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create function account-count(customer_nnme varchar(2}))
returns integer
begin
declare axount integer;

select count(*) into a_count
fuom depositor
where depositor.customerttame = customer_txame

return n_count;
end

Figure 4.8 Function defined in SeL.

vides methods getBlobQ and getOlobfl that are similar to the getStringQ method, but
return objects of type Blob and Clob, respectively. These objects do not store the entire
large object, but instead store locators for the large objects. The Blob and Clob classes
provide methods to retrieve large object in small pieces. They also allow large objects
to be stored in the database; they can be associated with Java data streams, *hich
are fetched transparently and sent to the database in small pieces, so that the whole
object need not be created in memory.

IDBC also provides a RowSet class, which provides the features of ResultSet plus a
number of extra features. For more information about JDBC, refer to the bibliographic
information at the end of the chapter.

4.6 Functions qnd Procedurql Constructsxx
Starting from the SQL:1999 version, SQL allows the definition of functions, procedures,
and methods. These can be defined either by the procedural component of SeL:1,999,
or by an external programming language such as Java, C, or C++. we look at defini-
tions in sQL first, and then see how to use definitions in external languages.

Several database systems support their own procedural extensions to SeL, such as
PLISQL in Oracle and TiansactSQl in Microsoft SQL Server. These resemble the pro-
cedural part of SQL, but there may be significant differences in syntax and semantics;
see the respective system manuals for further details.

4.6.1 SQL Functions qnd Procedures
Suppose that we want a function that, given the name of a customer returns the
count of the number of accounts owned by the customer. We can define the function
as shown in Figure 4.8.

This function can be used in a query that returns names and addresses of all cus-
tomers with more than one account:

seleet customer-name / customer-street, customer_citq
from customer
where accounttount(customer :name) > 1



146 Chapter 4 Advanced SQL

create function accounts-of (customer-name cha{20))
returns table (

ac c ount -numb er cha{70),
branch-nsme char(15),
b alnn c e numeric(1 2,2) )

return table
(select accountttumber, branchttsme, balance
from account
where exists (

select "
fuom depositor
where depositor.customerstame - accounts-of .customerttame and

depositor.account:numb er = account.accountttumber)
)

Figure 4.9 Table function in SQL.

Functions are particularly useful with specialized data types such as images and
geometric objects. For instance, a line-segment data type used in a map database may
have an associated function that checks whether two line-segments overlap, and an
image data type may have associated functions to compare two images for similarity.
Functions may be written in an external language such as C, as we see in Section4.6.3.

Since the SQL:2003 version, SQL supports functions that can return tables as results;
such functions are called table functions. Consider the function defined in Figure 4.9.
The function returns a table containing all the accounts that a particular person owns.
Note that the functions parameter is referenced by prefixing it with the name of the
function (accounts-of .customer -name).

The function can be used in a query as follows:

select *

from table(a ccounts-of ('Smith'))

This query returns all accounts belonging to customer'Smith'. In the above simple
case it is straightforward to write this query without using table valued functions. In
general, however, table valued functions can be thought of as parameterized views
that generalize the regular notion of views by allowing parameters.

SQL:1999 also supports procedures. The account-counf function could instead be
written as a procedure:

create procedure account-count4roc(in customer:nsme v archat(2O),
out atount integer)

begin
select count(*) into a-count
from depositor
where depositor.customername = account-countgroc.custotnerttarne

end
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Procedures can be invoked either from an sel procedure or from embedded sel
by the call statement:

declare a-count integer;
c all a c c o unt -c o unt -p r o c (' Smith', a t o un t) ;

Procedures and functions can be invoked from d;mamic sel-, as illustrated by the
}DBC slmtax in Section 4.5.2.2.

sQL:1999 permits more than one procedure of the same name, so long as the
number of arguments of the procedures with the same name is different. The name,
along with the number of arguments, is used to identify the procedure. sel- also
permits more than one function with the same name, so long as the different func-
tions with the same name either have different numbers of arguments, or for func-
tions with the same number of arguments, they differ in the type of at least one argu-
ment.

4.6.2 Procedurql Constructs
Since the sQL:1999 version, sQL supports a variety of procedural constructs, which
gives it almost all the power of a general-purpose programming language. The part
of the SQL standard that deals with these constructs is called the Periistent Stoiage
Module (PSM).

The goal of the sqt PSM is not to replace conventional programming languages.
Rather, the procedural constructs allow "business logic" to be recorded ai stored pro-
cedures in the database, and executed within the database. For example, banks usu-
ally have many rules about how and when a payment can be made to a customer,
such as maximum cash withdrawal limits, minimum balance requirements, over-
draft facilities that allow a customer to withdraw more than the available balance
by automatically creating a loan, and so on.

while such business logic can be encoded as programming-language procedures
stored entirely outside the database, defining them as stored procedures in the data-
base has several advantages. For example, it allows multiple applications to access
the procedures, and it allows a single point of change in case the business rules
change, without changing the application. Application code can then call the stored
procedures, instead of directly updating database relations.

Procedural constructs are required to allow complex business rules to be coded
as stored procedures, and were hence added to sel- from the sel:1999 version (they
were supported by some database products even earlier).

A compound statement is of the form begin ... end, and it may contain multi-
ple SQL statements between the begin and the end. Local variables can be declared
within a compound statement, as we have seen in Section 4.6.1.

SQL:1999 supports the while statements and the repeat statements by the following
syntax:
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declare n integer default 0;
w h i l e n ( 1 0 d o

setn :  n  *  1 :
end while
repeat

s e t n : n - l :
until n : 0
end repeat

This code does not do anything useful; it is simply meant to show the syntax of while
and repeat loops. We will see more meaningful uses later.

There is also a for loop that permits iteration over all results of a query:

declare n integer default 0;
for r as

sele ct b nl ance from nc co unt
where brnnch-name ='Perryridge'

do
setn: n* r .balance

end for

The program implicitly opens a cursor when the for loop begins execution and uses
it to fetch the values one row at a time into the for loop variable (r, in the above exam-
ple). It is possible to give a name to the cursor, by inserting the text cn cursor for just

after the keyword as, where ciz is the name we wish to give to the cursor. The cursor
name can be used to perform update/delete operations on the tuple being pointed to
by the cursor. The statement leave can be used to exit the loop, while iterate starts on
the next tuple, from the beginning of the loop, skipping the remaining statements.

The conditional statements supported by SQL include if-then-else statements by
using this syntax:

if r,bslance < 1000
then set I : l-l r.balance

elseif r.balance < 5000
then set m: ml r.balance

else set h: ht r.balance
end if

This code assumes that l, m, and h are integer variables and r is a row variable. If
we replace the line "set n : n* r.bnlance" in the for loop of the preceding paragraph
by the if-then-else code (and provide appropriate declarations and initial values for
l, m and h), the loop would compute the total balances of accounts that fall under the
low, medium, and high balance categories, respectively.

SQL also supports a case statement similar to the C/C++ language case statement
(in addition to case expressions; which we saw in Chapter 3).

Finally, SQL includes the concept of signaling exception conditions, and declaring
handlers that can handle the exception, as in this code:
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declare out_ofsto ck condition
declare exit handler lor out_of_stock
begin

""a

The statements between the begin and the end can raise an exception by executing
signal out-of-stock. The handler says that if the condition arises, the actionto be takei
isto exit the enclosing begin end statement. Alternative actions would be continue,
which continues execution from the next statement following the one that raised the
exception. In addition to explicitly defined conditions, there ire also predefined con-
ditions such as sqlexception, sqlwarning, and not found.

_, Figure 4.10 provides a larger example of the use of procedural constructs in SeL.
The function withdraw defined in the figure withdraws money from an account, and
if the balance becomes negative it initiates overdraft handling; code for handling
overdraft is not shown. The function returns an error code, with a value greater thai
or equal to 0 signifying success, and a negative value signifying an error condition.

Another example that illustrates while loops is presented latet, in Section 4.2.

create procedure withdraw(
in a c c o un t _numb e r v archar (1 0)
in amount numeric(12,2))

- - withdraw money from an account
returns integer
begin

de clare newb alnn c e nametic(72,2) ;
s ele ct b alance into n ewb alance
from account
where account.account_number = utithdraw.account_number;
newbalance = neTDbalfrnce - amount;
if (newbqlance < 0)

begin
... code to handle overdraft here
... if amount too large to be handled by overdraft return error code -1

end
else begin
update account

set balance = balnnce - newbalance
where account.account_number = withdrara.account_number

end
return(0);

end

Figure 4.10 Procedure for withdrawal from account.
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4.6.3 Externql Longuoge Routines
SQL allows us to define functions in a programming language such asJava, C#, C or

C++. Functions defined in this fashion can be more efficient than functions defined

in SeL, and computations that cannot be carried out in SQL can be executed by these

functions. An example of the use of such functions would be to perform a complex

arithmetic computation on the data in a tuple.
External procedures and functions can be specified in this way:

create procedure accounlcounlproc( in customer -name v archat(2l),
out count integer)

language C
external name' / usr / avi/bin/ accounlcounlproc'

create function accounlcou nt (customer-name v archa{2}))
returns integer
language C
external naratre' / usr f avi /bin / accounlcount'

The external language procedures need to deal with null values and exceptions.
They must therefore have several extra parameters: an sqlstate value to indicate fail-
ure/success status, a parameter to store the return value of the function, and indi-
cator variables for each parameter/function result to indicate if the value is null. An
extra line parameter style general added to the declaration above indicates that the
external procedures/functions take only the arguments shown and do not deal with
null values or exceptions.

Functions defined in a programming language and compiled outside the database
system may be loaded and executed with the database-system code. However, do-
ing so .ut.i"r the risk that a bug in the program can corrupt the database internal
structures, and can bypass the access-control functionality of the database system.
Database systems that are concerned more about efficient performance than about
security may execute procedures in such a fashion. Database systems that are con-
cerned about security may execute such code as part of a separate plocess/ commu-
nicate the parameter values to it, and fetch results back, via interprocess communi-
cation. However, the time overhead of interprocess communication is quite high; on
typical CPU architectures, tens to hundreds of thousands of instructions can execute
in the time taken for one interprocess communication.

If the code is written in a "safe" Ianguage such as Java or C#, there is another
possibility: executing the code in a sandbox within the database query execution
process itself. The sandbox allows the Java or C# code to access its own memory area/
but prevents the code from reading or updating the memory of the query execution
process, or accessing files in the file system. (Creating a sandbox is not possible for a
ianguage such as C, which allows unrestricted access to memory through pointers.)
Avoiding interprocess communication reduces function call overhead greatly.

Several database systems today support external language routines running in a
sandbox within the query execution process. For example, Oracle and IBM DB2 allow
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Java functions to run as part of the database process. Microsoft SqL server 2005 allows
procedures compiled into the Common Language Runtime (CLR) to execute within
the database process; such procedures could-hurr! b""n written, for example, in C# or
Visual Basic.

4.7 Recursive Queriesxx
Consider a database containing information about employees in an organization.
Suppose we have a relation 

.manager(employee_name, manager_name), specifiing *hi.h
employee is directly supervised by which manager. Figure 4.11 shows an instance of
the manager relation.

_ suppose now that we want to find out which employees are supervised, whether
directly or indirectly, by a given manager-say, Jonts.-That is, we wish to find em-
ployees who are supervised directly by Jones, or who are supervised by someone
who is supervised byJones, or who are iupervised by someone'who is supervised by
someone who is supervised by Jones, and so on.

Thus, if the manager of AIon is Barinsky, and the manager of Barinsky is Esto-
va4 and the manager of Estovar is Jones, tiren Alon, Barinsiy, and Estovar are the
employees supervised by Jones.

4.7.1 Ti,qnsitive Closure Using lterqtion
One way to write the above query is to use iteration: First find those who work di-
rectly under Jones, then those who work under the first set, and so on. Figure 4.72
shows a functiony'ndEmpl(mgr) to carry out this task; the function takes the-name of
the manager as a Parameter (mgr), computes the set of all direct and indirect employ-
ees of that manager, and returns the set.

_ The procedure uses three temporary tables: empl, which is used to store the set
of tuples to be returned; newemp, whicir stores the employees found in the previous
iteration; and temp, which is used as temporary storage while sets of employees are
manipulated. The procedure inserts all employe"r rr:ho directly work for mgr into
newemp before the repeat loop. The repeat loop-first adds all 

"*ploy"", 
inneiemp to

empl. NexL, -it computes employees who work for those in newemp, except those who
have already been found to be employees of mgr, and, stores them in tlie temporary

Alon
Barinsky
Corbin
Duarte
Estovar
Jones
Rensal

Estovar
Duarte
Jones
Jones
Klinger

Figure 4.11 The manaper relation.
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create fanction findEmpl(mgr char(L0))
- - Finds all employees who work directly or indirectly fot mgr

returns table (nsme char(10))
- - The relation manager(employee-name, Tnanager-name) specifies who directly
- - works for whom.

begin
create temporary table empl (name cha(10));

- - table empl slores the set of employees to be returned
create temporary table newemp (name char(L0));

- - table neweffip contains employees found in the previous iteration
create temporary table temp (name char(lO));

- - table temp is a temporary table used to store intermediate results

insert into newemP
select emPloYee-name
frommanager
where manngerJlam€ = rtxqT

repeat
insert into emPI

selectnsme
fromnewemP;

insert into temP
(select mana Setem7loY e e-name

fromnewemp, manager
where newemp.employ eename = manager.manager flame;

)
except (

select employee-name
fromempl

) ;
delete frortnewemP;
insert into newemP

select *

fuomtemP;
delete fromtemp;

until not exists (select * from newemp)
end repeat;
return table empl

end

Figure4.12 Finding all employees of a manager.
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Figure 4.13 Employees of ]ones in iterations of function f ndEmpl.

table temp. Finally, it replaces the contents of newemp by the contents of temp. The
repeat loop terminates when it finds no new (indirect) emplovees.

Figure 4.13 shows the employees that would be found in eich iteration, if the pro-
cedure were called for the manager named Jones.

We note that the use of the except clause in the function ensures that the func-
tion works even in the (abnormal) case where there is a cycle of management. For
example, if a works for b, b works for c, and c works for a, there is a cycle.

While cycles may be unrealistic in management control, cycles are possible in other
applications. For instance, suppose we have arelationflights(to, froml that says which
cities can be reached from which other cities by a direct flight. We can write code sim-
ilar to that in the findEmpl function, to find all cities that are reachable bv a sequence
9{ 9"" or more flights-from a given city. All we have to do is to replace manigerby
flight and replace attribute names correspondingly. In this situatiot-t th"re.ut L" 

"f-cles of reachability, but the function would work correctly since it would eliminaie
cities that have already been seen.

4.7.2 Recursion in SQL
The transitive closure of,the relatio n manager is a relation that contain s allpairs (emp,
m{r) such that emp is a direct or indirect employee of mgr. There are numerous ap-
plications that require computation of similar transitive closures on hierarchies. For
instance, organizations typically consist of several levels of organizational units. Ma-
chines consist of parts that in turn have subparts, and so onffor example, a bicycle
may have subparts such as wheels and pedals, which in turn have subparts sucir as
tires, rims, and spokes. Tiansitive closure can be used on such hierarchies to find, for
example, all parts in a bicycle.

It is rather inconvenient to specify transitive closure using iteration. There is an
alternative approach, using recursive view definitions, that is easier to use.

We can use recursion to define the set of employees controlled by a particular
manager/ sayJones, as follows. The people supervised (directly or indirectly) byJones
are

1. People whose manager is Jones

2. People whose manager is supervised (directly or indirectly) by Jones

Note that case 2 is recursive, since it defines the set of people supervised by Jones in
terms of the set of people supervised by ]ones. Other examples of transitive closure,

0
1
2

+

(Duarte), (Estovar)
(Duarte), (Estovar), (Barinsky), (Corbin)
(Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
(Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
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with recursive empl(employee-name, manager-name) as (
sele ct empl oy ee:Itame, manager :name
from manager

union
select man a ger. employ ee,name, empl.mana 4er fiaTne
frommannger, empl

, 
*nut" tnanager.manager-name : empl.elnployee-name

select x
fromempl

Figure4.14 Recursive query in SQL.

such as finding all subparts (direct or indirect) of a given part can also be defined in
a similar manner/ recursively.

Since the SQL:1999 version, the SQL standard supports a limited form of recursiorL
using the with recursive clause, where a view (or temporary view) is expressed in
terms of itself. Recursive queries can be used, for example, to express transitive clo-
sure concisely. Recall that the with clause is used to define a temporary view whose
definition is available only to the query in which it is defined. The additional key-
word recursive specifies that the view is recursive.

For example, we can find every pair (emp,mgr) such that emp is directly or indi-
rectly managed by mgr,usingthe recursive SQL view shown in Figure 4.14.

Any recursive view must be defined as the union of two subqueries: a base query
that is nonrecursive and a recursive query that uses the recursive view. In the exam-
ple in Figure 4.14, the base query is the select on manager while the recursive query
computes the join of mannger and empl.

The meaning of a recursive view is best understood as follows. First compute the
base query and add all the resultant tuples to the view relation (which is initially
empty). Next compute the recursive query using the current contents of the view
relation, and add all the resulting tuples back to the view relation. Keep repeating
the above step until no new tuples are added to the view relation. The resultant view
relation instance is called a fixed point of the recursive view definition. (The term
"fixed" refers to the fact that there is no further change.) The view relation is thus
defined to contain exactly the tuples in the fixed-point instance.

Applpng the above logic to our example, we would first find all direct employees
of each manager by executing the base query. The recursive query would add one
more level of employees in each iteration, until the maximum depth of the manager-
employee relationship is reached. At this point no new tuples would be added to the
view, and the iteration would have reached a fixed point.

Note that the database system is not required to use the above iterative technique
to compute the result of the recursive query; it may get the same result using other
techniques that may be more efficient.

There are some restrictions on the recursive query in a recursive view; specifi-
cally, the query should be monotonic, that is, its result on a view relation instance

% should be a superset of its result on a view relation instance Vz if Vt is a superset
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of 72. Intuitively, if more tuples are added to the view relation, the recursive query
should return at least the same set of tuples as before, and possibly return additional
tuples.

In particulat, recursive queries should not use any of the following constructs,
since they would make the query nonmonotonic:

r Aggregation on the recursive view

o not exists on a subquery that uses the recursive view

o set difference (except) whose right-hand side uses the recursive view

For instance, if the recursive query was of the form r - r., where o is the recursive
view,_if we add a tuple to ,u the result of the query can become smaller; the query is
therefore not monotonic.

The meaning of recursive views can be defined by the iterative procedure as long
as the recursive query is monotonic; if the recursi.re query is nonmonotonic, the
meaning of the view is hard to define. SQL therefore requlres-the queries to be mono-
tonic. Recursive queries are discussed in more detail in the coniext of the Datalog
query language, in Section 5.4.6.

SQL also allows creation of recursively defined permanent views by using create
recursive view in place of with recursive. Some implementations support recursive
queries using a different syntax; see the respective system manuals foffurther details.

4.8 Advqnced SQL Feqturesxx
The sQr hnguage has grown over the past two decades from a simple language with
a few features to a rather complex language with features to satisfy manly different
types of users. In this section we introduce the reader to some new features added
to SQL as part of SQL:2003. The features described in this section do not add to the
expressivity of the SQL language, but they do simplify the specification of some tasks.
You should be aware that not all database systems currentfy support these features.

4.8.1 Creqte Tqble Extensions
Applications often require creation of tables that have the same schema as an existing
table. sQL provides a create table like extension to support this task

create table temp_nccount like account

The above statement creates a new table temp-account which has the same schema as
account.

when writing a complexquery, it is often useful to store the result of a query as a
new table; the table is usually temporary. TWo statements are required, ot 

" 
to create

the-table (with appropriate columns) and the second to insert the query result into the
table. SQL:2003 provides a simpler technique to create a table contiining the results of
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a query. For example the following statement creates a table /1 containing the results

of a query.

create tabletl as
(select *

frorrt. account
where branch-name = 'Perryridge')

with data

By default, the names and data types of the columns are inferred from the query

result. Names can be explicitly given to the columns by listing the column names

after the relation name. If the with data clause is omitted, the table is created but not

populated with data.
The above create table ... as statement closely resembles the create view statement

and both are defined by using queries. The main difference is that the contents of the

table are set when the table is created, whereas the contents of a view always reflect

the current query result.
Note that several implementations support the functionality of create table ... like

and create table ... as using different syntax; see the respective system manuals for

further details.

4.8.2 More on Subqueries
SQL:2003 allows subqueries to occur wherever a value is required, provided the sub-
query returns only one value; such subqueries are called scalar subqueries. For ex-
ample, a subquery can be used in the select clause as illustrated in the following
example that lists all customers along with the number of accounts they own:

select customer-name,
(select count(*)
from account
where account.customer-name = customer.customer stame) as num-accou nt s

frorn customer

The subquery in the above example is guaranteed to return only a single value since
it has a count(*) aggregate without a group by. Subqueries without aggregates are
also permitted. Such queries may potentially return more than one answer; if they
do, a run-time error occurs.

Subqueries in the select clause of the outer query can access attributes of relations
in the from clause of the outer query, such as customer.customerttame in the above
example.

Subqueries in the from clause (discussed earlier in Section 3.8.1), however, cannot
normally access attributes of other relations in the from clause; SQL:2003 supports a

lateral clause that allows a subquery in the from clause to access attributes of pre-

ceding subqueries in the from clause. Thus the above query could be written alterna-

tively as follows.
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select customer_name, numJtccounts
from customer,

lateral(select count(*)
from account
where account.customerJlame = customer.customerstame)

as this_cust omer (numtccounts\

4.8.3 Advqnced Constructs for Dqtobqse Updote
Suppose we have a relation funds-receiaed(nccountnumber, amounf) that stores funds
received (say,by electronic funds transfer) for each of a set of accounts. Suppose now
that we want to add the amounts to the balances of the corresponding accounts. In
order to use the sQL update statement to carry out this task, wi have L look up the
funds-receiaed table for each tuple in the accou.nt table. We can use subqueries in the
update clause to carry out this task, as follows. We assume for simplicity that the
rclation t'unds-receiaed contains at most one tuple for each account.

update account setbalsnce = balance +
(select amount

from funds_receiued
where funds-receia ed.account -numb er = acclunt.sccountnumber)

where exists(
select *

from funds-receiaed
where fundsteceiaed.qccountnumber = nccoLLnt.account -number)

Note that the condition in the where clause of the update ensures that only accounts
with corresponding tuples in funds-receiaed are updlted, while the subquery within
the set clause computes the amount to be added to each such account.

There are many applications that require updates such as that illustrated above.
Typically, there is a table, which we shall call the master table, and updates to the
master table are received as a batch. Now the master table has to be coriespondingly
updated. SQL:2003 provides a special construct, called the merge construct, to sim-
plify the task of performing such merging of information. Foiexample, the above
update can be expressed using merge as follows.

merge into account as A
using (select n

fuomfundsteceiaed) as F
on (A.accountnumber = F.account_number)

when matched then
update set balance = balance+F.amount

When a record from the subquery in the using clause matches a record inthe sccount
relation, the when matched clause is executed, which can execute an update on the
relation; in this case, the matching record inthe accounf relation is updated as shown.
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The merge statement can also have a when not matched then clause, which per-

mits insertion of new records into the relation. In the above example, when there is

no matching account for afunds-receiaedtuple, the insertion action could create a new

account record (with a nwllbranchstarne) using the following clause.

when not matched then
insert values (F.accountnumber, null, F.amount)

Atthough not very meaningful in this example,2 the when not matched clause can

be quite useful in other cases. For example, suppose the local relation is a copy of a

masler relation, and we receive updated as well as newly inserted records from the

master relation. The merge statement can update matched records (these would be

updated old records) and insert records that are not matched (these would be new

records).
Not all SQL implementations support the merge statement currently; see the re-

spective system manuals for further details.

4.9 Summory
o The SQL data-definition ianguage provides support for defining built-in do-

main types such as date and time, as well as user-defined domain types.

o Domain constraints specify the set of possible values that may be associated
with an attribute. Such constraints may also prohibit the use of null values for
particular attributes.

o Referential-integrity constraints ensure that a value that appears in one rela-
tion for a given set of attributes also appears for a certain set of attributes in
another relation.

o Assertions are declarative expressions that state predicates that we require
always to be true.

o A user may have several forms of authorization on parts of the database. Au-
thorization is a means by which the database system can be protected against
malicious or unauthorized access.

o SQL queries can be invoked from host languages, via embedded and dynamic
SeL. The ODBC and ]DBC standards define application program interfaces to
access SQL databases from C and ]ava language proglams. Increasingly, pro-
grammers use these APIs to access databases.

r Functions and procedures can be defined using SQL. We have also outlined
procedural extensions provided by SQL:1999, which allow iteration and con-
ditional (if-then-else) statements.

2. A better action here would have been to insert these records into an error relation, but that cannot be

done with the merge statement.



Practice Exercises

Some queries, such as transitive closure, can be expressed either using iter-
ation, or by using recursive sel- queries. Recursion can be expressed"using
either recursive views, or recursive with clause definitions.

we also saw a brief overview of some advanced features of sel-, which sim-
plify certain tasks related to data definition, and querying and updating data.

Review Terms

o User-defined types

o Domains

o Large objects

o Catalogs

o Schemas

o Integrity constraints

o Domain constraints

o Unique constraint

o Check clause

o Referential integrity

o Primary-key constraint

o Foreign-key constraint

o Cascading deletes

o Cascading updates

o Assertion

r Authorization

o Privileges

n Select
! Insert
n Update

tr Delete
n All privileges

o Granting of privileges

o Revoking of privileges

o Embedded SQL

o Cursors

o Updatable cursors

r Dynamic SQL

o ODBC

o ]DBC
o Prepared statements

o Accessing metadata

o SQL functions

o Stored procedures

o Procedural constructs

o External language routines

o Recursive queries

o Monotonic queries

o Merge statement

Prqctice Exercises
4.1 Complete the SQL DDL definition of the bank database of Figure 4.2 to include

the relations losn andborrozaer.

4.2 Consider the following relational database:

employ ee (employ ee-name, street, city)
wo rks 1e m p loy ee,n ame, co m pa ny-n fr me, sa I a r y)
comp any (company _name, city)
manages (employee_name, managertnme)
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Give an SeL DDL definition of this database. Identify referential-integrity con-

straints that should hold, and include them in the DDL definition.

4.3 Write check conditions for the schema you defined in Exercise 4.2 to ensure that:

a. Every employee works for a company located in the same city as the city in

which the emPloYee lives.
b. No employee earns a salary higher than that of his manager.

4.4 SQL allows a foreign-key dependency to refer to the same relation, as in the

following example:

create table mqnaqer
(employeenami char(2O) not null
manageruame char(2}) not null,
primary key employ ee-nnme,
foreign key (manager:name) references manager

on delete cascade )

Here, employeettame is a key to the table mana4er, meaning that each employee

has at most one manager. The foreign-key clause requires that every managel

also be an employee. Explain exactly what happens when a tuple in the relation

manager is deleted.

4.5 Write an assertion for the bank database to ensure that the assets value for the

Perryridge branch is equal to the sum of all the amounts lent by the Perryridge
branch.

4.6 Describe the circumstances in which you would choose to use embedded SQL

rather than SQL alone or only a general-purPose Programming language'

Exercises

4.7 Referential-integrity constraints as defined in this chapter involve exactly two

relations. Consider a database that includes the following relations:

salariedstsorker (nnme, office, phone, snlnry)
h o urly :a o rker (n am e, hour IY -w a g e)
address (name, street, cittl)

Suppose that we wish to require that every name that appeals in address appeals

in either salariedsuorker or hourlysaorker,but not necessarily in both.

a. Propose a syntax for expressing such constraints.
b. Disiuss the actions that the system must take to enforce a constraint of this

form.



Exercises

4.8 Write a Java function using JDBC metadata features that takes a ResultSet as
an input parametel, and prints out the result in tabular form, with appropriate
names as column headings.

4.9 Write aJava function usingIDBC metadata features thatprints a list of all re-
lations in the database, displaying for each relation the nimes and types of its
attributes.

4.10 Consider an employee database with two relations

employ ee (employ ee_name, street, city)
works (employ ee_name, compnny _natne, salary)

where the primary keys are underlined. Write a query to find companies whose
employees earn a higher salary, on average, than the irr"rug" salary at First Bank
Corporation.

a. Using SQL functions as appropriate.
b. Without using SeL functions.

4.11 Rewrite the query in Section 4.6.7 that returns the name, street and city of all
customers with more than one account, using the with clause instead of Lsing a
function call.

4-12 Compare the use of embedded SQL with the use in SeL of functions defined in
a general-purpose programming language. Under what circumstances would
you use each of these features?

4.13 Modify the recursive query in Figure 4.14 to define a relation

empllepth(employ ee_nnme, manager_name, depth)

where the attribute depth indicates how many levels of intermediate managers
are there between the employee and the manager. Employees who are dlre"ctty
under a manager would have a depth of 0.

4.14 Consider the relational schema

p ar t (p ar t-id, nnme, co st)
subpart(2tar tjd, subpart-id, count)

A tuple (pt, pz,3) in the subpnrt relation denotes that the part with part_id, p2 is a
direct subpart of the part with part-id p1, dnd.p1 has 3 copies of p2 Note ilt o,may itself have further subparts. Write a recursive SQL query that outputs tire
names of all subparts of the part with part-id ,.p-100',.

4.15 Consider again the relational schema from Exercise 4.74. Write a JDBC function
using non-recursive sel to find the total cost of part ,,p-700,,, including the costs
of all its subparts. Be sure to take into accouni the fact that a part may have
multiple occurrences of a subpart. you may use recursion in java lf yo,, -irh.
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In Chapter 2 we presented the relational algebra, which forms the basis of the widely
used sQL query language. SeL was covered in great detail in Chapters 3 and 4. Iir
this chapter, we first study two more formal hnluages, the tuple relational calculus
and the domain relational calculus, which are de=claiative query languages based on
mathematical logic. These two formal languages form the basis toitwo more user-
fri:ld_lr languages, eBE and Datalog, that we it.rdy lut", in this chapter.

Unlike sQL, QBE is a graphicar language, where queries lookriki tables. eBE and
its variants are widely used in database systems on personal computers. Datalog
has a syntax modeled after the-prolog ranguage. Although not used commercially ai
present, Datalog has been used in severar research databise systems.

For QBE and Datalog, we present fundamental constructs and concepts rather than
a complete users' guide for these languages. Keep in mind that individual implemen-
tations of a language may differ in details, or may support only a subset of the full
Ianguage.

5.1 The Tuple Relqtionql Cqlculus
When we write a relational-algebra expression, we provide a sequence of procedures
that generates the answer to our q.t"ty. The tuple relational calculus, by cintrast, is a
nonpro-cedural query language. It describes the desired information without giving
a specific procedure for obtaining that information.

A query in the tuple relationalcalculus is expressed as

{ r  lP ( r ) }
that is, it is the set of all tuples f such that predicate P is true for /. Following our
earlier notation, we use t[A] to denote the vaiue of tupre / on attribut e A, and.lr"" .rr"
t € r to denote that tuple / is in relation r.
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Before we give a formal definition of the tuple relational calculus, we return to

some of the queries for which we wrote relational-algebra expressions in Section 2.2.

Recall that the queries are on the following schema:

br anch(brsnchname, br anch,city, asset s)
customer (customer name, customer-street, customer-city)
loan (loan-number, branchstame, smount)
borrower (customer -name, loan:numb er)
account (account-number, brnnchstnme, balance)
depositor (customer-nnme, account-number)

5.1.1 Exomple Queries
Find the bronch-name,loan-number, andamounf for loans of over $1200:

{t l t  € loan A t lamountl  > 1200}

Suppose that we want only the loan-number attribute, rather than all attributes of the

loin relation To write this query in the tuple relational calculus, we need to write

an expression for a relation on the schema (Ioan-number). We need those tuples on
(Ioan-iumber) such that there is a tuple in losn with the amount attribute > 1200' To

express this request, we need the construct "there exists" from mathematical logic.

The notation
1 t  e  r  ( Q ( t ) )

means "there exists a tuple f in relation r such that predicate Q(f) is true."

Using this notation, oue cat-t write the query "Find the loan number for each loan

of an amount greater than $1200" as

{f I I s € loan (tlloan^numberl : t\1oor-number)
A slamount) > 1200))

In English, we read the preceding expression as "The set of all tuples f ,t".-h that there

existsla tuple s in relation loan for which the values of f and s for the loan-number

attribute aie equal, and the value of s for the amount attribute is greater than $1200."
Tuple variable f is defined on only the loan-number attrlbute., since that is the only

attribute having a condition specified for f. Thus, the result is a relation on (loan

-number).
Consider the query "Find the names of all customers who have a loan from the

Perryridge branch." This query is slightly more complex than the previous queries,

since it involves two relations:borrower andlonn. As we shall see, however, all it

requires is that we have two "there exists" clauses in our tuple-relational-calculus
expression, connected by and (n). We write the query as follows:

{l | = s € borrower (tlcustomer-namel : slcustomer-name]
A lu € loan (ulloan-numberl : slloan-numberl

A ulbranch-name] : "Perryridge")) ]
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r e t c l n w i + . . - n * )

Adams
Hayes

Figure 5.1 Names of all customers who have a loan at the perryridge branch.

In English, this expression is ..The set of all (customer name) tuplesfor which the cus_
tomer has a loan that is at the Perryridge branch." Tuple variable u ensures that the
customer is a borrower at the Perryridge branch. Tuple variable s is restricted to per-
tain to the same loan number as s. Figure 5.1 shows ihe result of this query.

To find all customers who have a loan, an account, or both at the tant, we used
the union operation in the relational algebra. In the tuple relational calculus, we shall
need two "there exists" clauses, connected by or (v):

{t | = s € borrower (tlcustomer_name] : slcustomer_name])
V I z € d,epos,itor (tlcustomer_namel : ulcustomer_naiel)j

This- expression gives us the set of all customer-name tuples for which at least one of
the following holds:

o The customer-name apPears in some tuple of the borrower relation as a borrower
from the bank.

o The customer-name appears in some tuple of the depositor relation as a depositor
of the bank.

If some customer has both a loan and an account at the bank, that customer appears
only once in the result, because the mathematical definition of a set does ,-roi ulto."
duplicate members. The result of this query appeared earlier in Figure 2.11.

If we now want only those customeis who haveboth an account and a loan at the
bank, all we need to do is to change the or (v) to qnd (n) in the preceding expression.

{l I I s e borcower (tlcusto,mer_name] : slcustomer_name])
A I z € deposi,tor (tfcustomer_name] : ulcustomer_naie])j

The result of this query appeared in Figure 2.19.
Now consider the query "Find all customers who have an account at the bank but

do not have a loan from the bank." The tuple-relational-calculus expression for this
query is similar to the expressions that we have just seen, except for the use of the not
(-) symbol:

{t 13 u e deposi,tor (t lcustomer-namel : ufcustomer_name]')
A - I s € borrower (tlcustomer_name] : slcustomer namel)j

This tuple-relational-calculus expression uses the I z € clepos,itor (. . .) clause
to require that the customer have an account at the bank, and it uses the - I s €
borrower (...) clause to eliminate those customers who appear in some tuple of the
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borrower relation as having a loan from the bank. The result of this query appeared in

Figwe2.12.
The query that we shall consider next uses implication, denoted by +. The formula

p + Q means "P implies Q"; that is, "lf P is true, then Q must be true'" Note that

P + Qis logically equivalent to -P V Q. The use of implication rather thannot and

or often suggests a more intuitive interpretation of a query in English.

Consider the query that we used in Section 2.3.3 to illustrate the division oPera-

tion: "Find all customers who have an account at all branches located in Brooklyn." To

write this query in the tuple relational calculus, we introduce the "for all" construct,

denoted by V. The notation

Yt  e  r  (A( r ) )

means "Q is true for all tuples f in relation r."
We write the expression for our query as follows:

{t l= r € customer (rlcustomer-namel : tlcustomer-name]) I'
(Va € branch(ulbranch-ci'tal: " Brookllrn" +

1s € deposi,tor (tlcustomer-namel : slcustomer-name]
n I tu e account (wfaccount-number] - slaccount-numberl
A wlbranch-name] : ulbranch-nar?€] ) ))) )

In English, we interpret this expression as "The set of all customers (that is, (customer

-nnme) tuples f) such that, for all tuples z in the brnnch relation, if the value of u onat-

tribute branch-city is Brooklyn, then the customer has an account at the branch whose

name appears in the brnnchname attribute of 2."
Note that there is a subtlety in the above query: If there is no branch in Brooklyn,

all customer names satisfy the condition. The first line of the query expression is crit-
ical in this case-without the condition

1r € customer (rlcust'omer-namel : Llcustomer-name))
if there is no branch in Brooklyn, any value of t (including values that are not cus-
tomer names inthe customer relation) would qualify.

5.1.2 Formql Definition
We are now ready for a formal definition. A tuple-relational-calculus expression is of

the form

{ , l P 0 ) }

where P is a formula. Several tuple variables may appear in a formula. A tuple vari-

able is said to be a free oariable unless it is quantified by a I or V; Thus, in

t € loan A ls e customer(tlbranch-namel: slbranch-name])

/ is a free variable. Tuple variable s is said to be a bound vatiable.
A tuple-relational-calculus formula is built up out of atoms. An atom has one of

the following forms:
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' s e r, where s is a tuple variable and / is a relation (we do not allow use of the
f operator)

r slxl O ufyf, where s and u are tuple variables, r is an attribute on which s is
defined, y is an attribute on which z is defined, and o is a comparison operator
((, (, :, *, ), )); we reguire that attributes x and y have domains whose
members can be compared by O

t s[r] O c, where s is a tuple variable, r is an attribute on which s is defined, O is
a comparison operator, and c is a constant in the domain of attribute r

We build up formulae from atoms by using the following rules:

o An atom is a formula.

o If Pr is a formula, then so are -pt and (&).

o If P1 and P2 are formulae, then so are p1 y p2, p1 A p2,and p1 ) pz.

o If P1(s) is a formula containing a free tuple variable s, and. r is a relation, then
l s  €  r ( & ( " ) )  a n d  V  s  e  r ( & ( s ) )

are also formulae.

As we could for the relational algebra, we can write equivalent expressions that
]re. n?t identical in appearance. In the tuple relational cafculus, these equivalences
include the following three rules:

l. P1 A P2 is equivalent to - (-(&) V -(p2)).

2. V t € r (P1(t))is equivalentto - I t € r (-pr(t)).

3. Pr + P2 is equivalent to -(p) v p2.

5.1.3 Scfety of Expressions
There is one final issue to be addressed. A tuple-relational-calculus expression may
generate an infinite relation. suppose that we write the expression

i, l- (, e toan)\

There are infinitely many tuples that are not in loan. Most of these tuples contain
values that do not even appear in the databasel Clearly, we do not wish to allow such
expressions.

To help us define a restriction of the tuple relational calculus, we introduce the
concept of the domain of a tuple relationil formula, p. Intuitively, the domain of
P, denoted dom(P), is the set of all values referenced by p. They include values
mentioned in P itself, as well as values that appear in i tuple of a relation men_
tioned in P. Thus, the domain of p is the set oi ill values that appear explicitly in
P or.that appear in one or more rerations whose names appear ii p. For^"* aipre,
dom(t e loan A tlamount] > 1200) is the set containing tz^oo as well as the set of all
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values appearing inloan. Also, dom(- (t e loan)) is the set of all values appearing

inloan, since the relation loanis mentioned in the expression'

We say that an expression {t I P(f)} is safe if all values that appear in the result

are values from dnm(P). The expression {l l- (t € loan)} is not safe. Note that

d,om(- (t e toan)) is the set of all values appearing inloan. However, it is possible

to have a tuple I not in loan that contains values that do not appear inlonn.-The other

examples oituple-relational-calculus expressions that we have written in this section

are safe.

5.1.4 Expressive Power of Longuqges

The tuple relational calculus restricted to safe expressions is equivalent in expressive

po-"t to the basic relational algebra (with the opelators U, -, X , o , and p, but without

ihe extended relational operators such as generalized projection 9 and the outer-join

operations). Thus, for every relational-algebra expression using only the basic oPera-

titns, there is an equivalent expression in the tuple relational calculus, and for every

tuple-relational-caiculus expression, there is an equivalent relational-algebra expres-

sion. We will not prove this assertion here; the bibliographic notes contain references

to the proof. Sorne parts of the proof are included in the exercises. We note that the

tuple relational calculus does not have any equivalent of the aggtegate operation, but

it ian be extended to support aggregation. Extending the tuple relational calculus to

handle arithmetic expressions is straightforward.

5.2 The Domqin Relqtionol Cqlculus
A second form of relational calculus, calied domain relational calculus, uses domain

variables that take on values from an attributes domain, rather than values for an

entire tuple. The domain relational calculus, however, is closely related to the tuple

relational calculus.
Domain relational calculus serves as the theoretical basis of the widely used QBE

language, just as relational algebra serves as the basis for the SQL language.

5.2.1 Formsl Definition

An expression in the domain relational calculus is of the form

{ <  r r ,  f i 2 , . . . , r n  )  |  P ( r y ,  1 2 , . . . , r " ) }

where frr, fr2t.. . ,frn represent domain variables. P represents a formula composed

of atoms, as was the case in the tuple relational calculus. An atom in the domain

relational calculus has one of the following forms:

o 1 frI t fr2, . . ., rn ) e r, where r is a relatiol:t on n attributes artd 11, fr2, . . ., frn

are domain variables or domain constants.

o x @ !,where x andy are domain variables and O is a comparison operator (<,

1, :, l,>, >). We require that attributes r and y have domains that can be

compared by O.
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' x o c, where r is a domain variable, o is a comparison operatol, and c is a
constant in the domain of the attribute for which r is a domain variable.

We build up formulae from atoms by using the following rules:

o An atom is a formula.

o If Pr is a formula, then so are -pr and (&).

c If Pt and P2 are formulae, then so are p1 V p2, p1 A p2, and p1 + p2.

o rf P1(r) is a formula in r, where r is a free domain variable, then

1r (P1(r))  and V r (h@))

are also formulae.

As a notational shorthand, we write 1 a,b, c (p(a,b,c)) for 1 a (1b (1 c (p(a,b, 
")))).

5.2.2 Exomple Queries
We now give domain-relational-calculus queries for the examples that we consid-
ered earlier' Note the similarity of these expressions and the corresponding tuple-
relational-calculus expressions.

o Find the loan numbel, branch name, and amount for loans of over $1200:

{ < I , b , a >  |  < l , b , a } e  l o a n  A  o  >  1 2 0 0 }
o Find all loan numbers for roans with an amount greater than $1200:

{ < l >  l 1 b , a ( < l , b , a } €  l o a n  A  a  )  1 2 0 0 ) }

Although the second query appears similar to the one that we wrote for the tuple
relational calculus, there is an important difference. In the tuple calculus, when'we
write I s_for some tuple variable s, we bind it immediately to a relation ty writinj
I s € r. However, when we write r b in the domain calcui'us, b refers not tt a tupte]
but rather to a domain value. Thus, the domain of variable b is unconstrained untilthe subformula < l,b,a ) e roan constrains b to branch names that appear i'tn"
loan relation.

we now give several examples of queries in the domain relationar calculus.

r Find the names of all customers who have a loan from the perryridge branch
and find the loan amount:

{ < " , o >  l l  I  ( < c , I > e  b o r r o w e r
A :  b (< I ,b,a > € loan A b : . ,perryr idge")))

o Find the names of all customers who have a loan, an account, or both at the
Perryridge branch:
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{<  c>  I  l l  (<  c , l  >  €  bor rower
n 1b, a (< l,b,a ) e loan A b : "Perryridge"))

V 1o (< c,a ) € dePos'itor
A)b ,n(1  o ,b ,n> €  account  A  b :  "Per ry r idge" ) ) i

o Find the names of all customers who have an account at all the branches Io-

cated in Brooklyn:

{ <  c >  |  ! s ,  t ( <  c , s , t }  €  c u s t o m e r )  A
V r,A,z (1 fi,a,z ) € branch A a : "Brooklyn" +

1 a,b (< a,r ,b > € accountA ( c,  a )  e deposi ' tor)) j

In English, we interpret this expression as "The set of all (customer-name) tuples

" 
,rr.i that, for all (branch*naie, branch-city, assets) tuples n,a, z, if the branch

city is Brooklyn, then the following is true:

! There exists a tuple in the relation account with account number a and

branch name r.
n There exists a tuple in the relation depositor with customer c and account

number 2."

5.2.3 Scfety of ExPressions

We noted that, in the tuple relational calculus (Section 5.1), it is possible to write ex-

pressions that may generate an infinite relation. That led us to define safety fiot tuple-

relational-calcului expressions. A similar situation arises for the domain relational

calculus. An expression such as

{ < t , b , a  >  l - ( <  l , b , a >  e  l o a n ) }

is unsafe, because it allows values in the result that are not in the domain of the

exnression.
ior the domain relational calculus, we must be concerned also about the form of

formulae within "there exists" and "for all" clauses. Consider the expression

{ < r >  l l y ( <  r , a } e  r )  n  t  , ( - ( < r ,  z } €  r )  n  P ( r , z ) ) }

where p is some formula involving r and z.We can test the first part of the formula,

= a G r, a ) e r),by considering only the values in r. However, to test the second

part of the formula ,1 z (- (< *, i > € r) A P(r, z)), we must consider values for

2 that do not appear in r. Since all relations are finite, an infinite number of values

do not appear in r. Thus, it is not possible, in general, to test the second part of the

formula without considering an infinite number of potential values for z. Instead, we

add restrictions to prohibit expressions such as the preceding 91"'
In the tuple relaiional calculus, we restricted any existentially quantified variable

to range orr^"t u specific relation. Since we did not do so in the domain calculus, we

add niles to the definition of safety to deal with cases like our example. We say that

an expression



{ <  r t ,  f r 2 , . . .  t r ,  }  |  P  ( r 1 ,  1 2 , . . . , r - ) }

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values

2. For every "there exists" subformula of the form
true if and only if there is a value x in d,om(Py)

3. For every "for all" subformula of the form Yr (fi(r)), the su
if and only if P1(r) is true for all values r from d,om(P1).

The purpose of the additional rules is to ensure that we can test
exists" subformulae without having to test infinitely many possibiliti
second rule in the definition of safety. For I r (Pr(")) to be true, we
one r for which P1 (z) is true. In general, there would be infinitely
test. Howeve4 if the expression is safe, we know that we can restrict
values fuorn dom(Py). This restriction reduces to a finite number the
consider.

The situation for subformulae of the form Vr (Pr@D is similar
Yr (P1(r)) is true, we must, in general, test all possible values, so
ine infinitely many values. As before, if we know that the expressi
sufficient for us to test P1(r) for those values taken from dom(P).

All the domain-relational-calculus expressions that we have writ
ple queries of this section are safe.

5.2.4 Expressive Power of Longuqges
When the domain relational calculus is restricted to safe expressions,
in expressive power to the tuple relational calculus restricted to
Since we noted earlier that the restricted tuple relational calculus is
relational algebra, all three of the following are equivalent:

o The basic relational algebra (without the extended relational
tions)

o The tuple relational calculus restricted to safe expressions

o The domain relational calculus restricted to safe expressions

We note that the domain relational calculus also does not have any
aggregate operation, but it can be extended to support aggregation,
to handle arithmetic expressions is straightforward.

5.3 Query-by-Exomple
Query-by-Example (Qnn) is the name of both a data-manipulation
early database system that included this language.

The QBE data-manipulation language has two distinctive features:

and an
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L. Unlike most query languages and programming languages, QBE has a two-

dimensional syntax. Queries look llke tables. A query in a one-dimensional

language (for example,SQL) can be written in one (possibly long) line. A two-

dimensional language requires two dimensions for its expression. (There is a

one-dimensional version of QBE, but we shall not consider it in our discus-

sion.)

2. QBE queries are expressed "by example." Instead of giving a procedure for

obtaining the desired answer, the user gives an example of what is desired.

The system generalizes this example to compute the answer to the query.

Despite these unusual features, there is a close correspondence between QBE and the

domain relational calculus.
There are two flavors of QBE: the original text-based version and a graphical ver-

sion developed later that is supported by the Microsoft Access database system. In

this section we provide a brief overview of the data-manipulation features of both

versions of eBE. We first cover features of the text-based QBE that correspond to the

SQL select-from-where clause without aggregation or updates. See the bibliographic

notes for references where you can obtain more information about how the text-

based version of qnn handles sorting of output, aggregation, and update. Later, in

Section 5.3.6 we briefly cover features of the graphical version of QBE.

5.3.1 Skeleton Tqbles
We express queries in QBE by skeleton tables. These tables show the relation schema,
as in Figure 5.2. Rather than clutter the display with all skeletons, the user selects
those skeletons needed for a given query and fills in the skeletons with example
rows. An example row consists of constants and exnmple elements, which are domain
variables. To avoid confusion between the two, QBE uses an underscore character (-)

before domain variables, as in -r, and lets constants appear without any qualification.
This convention is in contrast to those in most other languages, in which constants
are quoted and variables appear without any qualification.

5.3.2 Queries on One Relqtion
Returning to our ongoing bank example, to find all loan numbers at the Perryridge
branch, we bring up the skeleton for the loan relation, and fill it in as follows:

This query tells the system to look for tuples inlonn that have "Perryridge" as the
value foi thebranch-nnme attribute. For each such tuple, the system assigns the value

of the losn-number attribute to the variable r. It "prints" (actually, displays) the value
of the variable r, because the command P. appears intheloan-number colurnn next to
the variable r. Observe that this result is similar to what would be done to answer
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Figure 5.2 eBE skeleton tables for the bank example.

the domain-relational-calculus query

{(" )  i  :  b ,a(( r ,b,a)  e loan A b :  "Perryr idge")}

QBE assumes that a blank position in a row contains a unique variable. As a result,
if a variable does not appear more than once in a query, it may be omitted. our
previous query could thus be rewritten as

QBE (unlike SQL) performs duplicate elimination automatically. To suppress du-
plicate elimination, we insert the command ALL. after the P. command:
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To display the entire loan relation, we can create a single row consisting of P.

every field. Alternatively, we can use a shorthand notation by placing a single P.

the column headed by the relation name:

eBE allows queries that involve arithmetic comparisons (for example, )), rather

than equality comparisons, as in "Find the loan numbers of all loans with a loan

amount of more than $700":

Comparisons can involve only one arithmetic expression on the right-hand side of
the comparison operation (for example, > (-x +,y - 20)). The expression can include
both variables and constants. The space on the left-hand side of the comparison oP-
eration must be blank. The arithmetic operations that QBE supports a.tl:r </ <' >,
), and -.

Note that requiring the left-hand side to be blank implies that we cannot comPare
two distinct named variables. We shall deal with this difficulty shortly.

As yet another example, consider the query "Find the names of all branches that
are not located in Brooklyn." This query can be written as follows:

The primary purpose of variables in QBE is to force values of certain tuples to have
the same value on certain attributes. Consider the query "Find the loan numbers of
all loans made jointly to Smith and Jones":

To execute this query, the system finds all pairs of tuples inborrower that agree on the
Ioan-number attribute, where the value for the customerstame attribute is "Smith" for
one tuple and "Jones" for the other. The system then displays the value of the loan
-number attribute.

In the domain relational calculus, the query would be written as

{(l) | I r (\r,l) e borrower A r : "Smith")

A1r ( ( r , l )  e  bor rower  A  r :  "Jones" ) )

As another example, consider the query "Find all customets who live in the same
citv as lones":

1n

in

Smit
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5.3.3 Queries on Severql Relqtions
QBE allows queries that span several different relations (analogous to Cartesian prod-
uct or natural join in the relational algebra). The connections among the various rela-
tions are achieved through variables that force certain tuples to have the same value
on certain attributes. As an illustration, suppose that we want to find the names of all
customers who have a loan from the Perryridge branch. This query can be written as

To evaluate the preceding query, the system finds tuples inloan with "perryridge"
as the value for the branch-name attribute. For each such tuple, the svstem finds tu-
ples in borrower with the same value for the loan-number attribute as the loan tuple. lt
displays the values for the customer_name attribute.

We can use a technique similar to the preceding one to write the query "Find the
names of all customers who have both an account and a loan at the bank":

Now consider the query "Find the names of all customers who have an account
at the bank, but who do not have a loan from the bank." we express queries that
involve negation in QBE by placing a not sign (-) under the relation name and next
to an example row:

Compare the preceding query with our earlier query "Find the names of all cus-
tomers who have both an account and a loan at the bank." The only difference is the -
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appearing next to the example row in theborrower skeleton. This difference, however,

has a major effect on the processing of the query. QBE finds all r values for which

1. There is a tuple in the depositor relation whose custorner-name is the domain

variable r.

2. There is no tuple in the borrower relation whose customer-name is the same as

in the domain variable r.

The - can be read as "there does not exist."
The fact that we placed the - under the relation name, rather than under an at-

tribute name, is important. A - under an attribute name is shorthand for f. Thus, to

find all customers who have at least two accounts, we write

In English, the preceding query lsnds '.'Display all customer-ntame values that ap-
pear in at least two tuples, with the second tuple having an account:number different
from the first."

5.3.4 The Condition Box

At times, it is either inconvenient or impossible to express all the constraints on the
domain variables within the skeleton tables. To overcome this difficulty, QBE includes
a condition box feature that allows the expression of general constraints over any of
the domain variables. QBE allows logical expressions to appear in a condition box.
The logical operators are the words and and or, or the symbols "&" and "1"'

For example, the query "Find the loan numbers of all loans made to Smith, to Jones
(or to both jointly)" can be written as

-/7 = >mltn ot -n=

It is possible to express the above quely without using a condition box, by using
P. in multiple rows. However, queries with P. in multiple rows are sometimes hard to
understand, and are best avoided.

As yet another example, suppose that we modify the final query in Section 5.3.3
to be "Find all customers who are not named ']ones' and who have at least two ac-
counts." We want to include an "x f Jones" constraint in this quely. We do that by

bringing up the condition box and entering the constrailll"x -: Jones":
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-r - - ]ones

Turning to another example, to find all account numbers with a balance between
$1300 and $1500, we write

-x ) 1300
-r < 1500

_ 
As another example, consider the query "Find all branches that have assets greater

than those of at least one branch located in Brooklyn." This query can be written as

QBE allows complex arithmetic expressions to appear in a condition box. We can
write the query "Find all branches that have assets that are at least twice as large as
the assets of one of the branches located in Brooklyn" much as we did in the preced-
ing query, by modifying the condition box to

J > 2 " - z

To find the account number of accounts with a balance between $1300 and $2000,
but not exactly $1500, we write

QBE uses the or construct in an unconventional way to allow comparison with a set
of constant values. To find all branches that are located in either Brobklyn or Queens,
we write

w&{&wi
a  q > - z  I

-x = (  > 1300 and <2000 and - 1
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5.3.5 The Result Relqtion
The queries that we have written thus far have one characteristic in common: The
results to be displayed appear in a single relation schema. If the result of a query
includes attributes from several relation schemas, we need a mechanism to display
the desired result in a single table. For this purpose, we can declare atemporary result
relation that includes all the attributes of the result of the query. We print the desired
result by including the command P. in only the result skeleton table.

As an illustration, consider the query "Find the customerttame, accox.lnt-number , and
balance for all accounts at the Perryridge branch." In relational algebra, we would
construct this query as follows:

1. Join depositor andaccount.

2. Project customer-name, account-number., and balsnce.

To construct the same query in QBE, we proceed as follows:

L. Create a skeleton table, called result, with attributes customer-name, acclunt
ttumber, andbalnnce. The name of the newly created skeleton table (that is,

result) must be different from any of the previously existing database relation
names.

2. Write the query.

The resulting query is

5.3.5 QBE in Microsoft Access
In this section, we survey the QBE version supported by Microsoft Access. While
the original QBE was designed for a text-based display environment, Access QBE is
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Figure 5.3 An example query in Microsoft Access eBE.

designed for a graphical display environment, and accordingly is called graphical
query-by-example (GQBE).

Figure 5.3 shows a sample GeBE query. The query can be described in English as
"Find the customerJtame, account-number, andbalance for all accounts at the Periyridge
branch." Section 5.3.5 showed how it is expressed in eBE.

A minor difference in the GQBE version is that the attributes of a table are writ-
ten one below the othe1, instead of horizontally. A more significant difference is that
the graphical version of QBE uses a line linking attributes of two tables, instead of a
shared variable, to specify a join condition.

An interesting feature of QBE in Access is that links between tables are created
automatically, on the basis of the attribute name. In the example in Figure 5.3, the two
tables account and depositor were added to the query. The atiribut e account-number is
shared between the two selected tables, and the system automatically inserts a link
between the two tables. In other words, a natural-join condition is imposed by default
between the tables; the link can be deleted if it is not desired. Thelink can also be
specified to denote a natural outer join, instead of a natural join.

Another minor difference in Access QBE is that it specifies attributes to be printed
in a separate box, called the design grid, instead of using a p. in the table. It also
specifies selections on attribute values in the design grid.

Queries involving group by and aggregation can be created in Access as shown in
Figure 5.4. The query in the figure finds the name, street, and city of all customers
who have more than one account at the bank. The "group by" attributes as well as
the aggregate functions are noted in the design grid.

Note that when a condition appears in a column of the design grid with the ..To-

tal" row set to an aggregate, the condition is applied on the aggiegated value; for
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Figure 5.4 An aggregation query in Microsoft Access QBE.

example, in Figure 5.4, the selection "> 1" on the column acclunt-number is applied

on tha result of the aggregate "Count." Such selections correspond to selections in an

SQL having clause.
Selection conditions can be applied on columns of the design grid that are nei-

ther grouped by or aggregated; such attributes must be marked as "where" in the

to*'totul." Suih "Where" selections are applied before aggregation, and correspond
to selections in an SQL where clause. However, such columns cannot be printed
(marked as "Show"). Only columns where the "Total" row specifies either "group

by," or an aggregate function can be printed.

Queries ire created through a graphical user interface, by first selecting tables.

Attributes can then be added to the design grid by dragging and dropping them from

the tables. Selection conditions, grouping, and aggregation can then be specified on

the attributes in the design grid. Access QBE supports a number of other features too,

including queries to modify the database through insertion, deletion, or update.

5.4 Dotclog
Datalog is a nonprocedural quely language based on the logic-programming lan-

guage Frolog. AJm the relational calculus, a user describes the information desired
without giving a specific procedure for obtaining that information. The syntax of Dat-

alog resembles that of Prolog. However, the meaning of Datalog Programs is defined

in a purely declarative manner, unlike the more procedural semantics of Prolog, so

Datalog simplifies writing simple queries and makes quely optimization easier.



5.4 Datalog 181

5.4.1 Bqsic Structure
A Datalog program consists of a set of rules. Before presenting a formal definition of
Datalog rules and their formal meaning, we consider examples. Consider a
Datalog rule to define a view relation z1 containing account num6ers and balances
for accounts at the Perryridge branch with a balance of over gZ00:

a1(A, B) :-account(A, "Perryridge,,, B), B > 700

Datalog rules define views; the preceding rule uses the relation account, and de-
fines the view relation 21. The symbol :- is read as "if," and the comma separating
the"account(A,"Petyridge", B)" from"B > 200" is read as..and.',Intuitivetv th6
rule is understood as follows:

for all A, B
if (A, "Perryridge", B) € account and B > 700
then (A, B) e a1

Suppose that the relation account is as shown in Figure 5.5. Then, the view relation
z1 contains the tuples in Figure 5.6.

To retrieve the balance of account number A-277 in the view relation r:1, we can
write the following query:

? o1("A-277", B)

The answer to the query is

(A_217,750)

To get the account number and balance of all accounts in relation a1, where the bal-
ance is greater than 800, we can write

The answer to this query is

? ztl(A, B), B > 800

(A-207,900)

A-1
A-275
A-702
A-305
A 207

222
A-277

Downtown
Mianus
Perryridge
Round Hill
Perryridge
Redwood
Perryridge

500
700
400
350
900
700
750

Figure 5.5 The account relation.
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Figure 5.5 The a1 relation.

In general, we need more than one rule to define a view relation. Each rule defines
a set of tuples that the view relation must contain. The set of tuples in the view re-

lation is tlien defined as the union of all these sets of tuples. The following Datalog

program specifies the interest rates for accounts:

interesttate(A,5) :- account(A, N, B), B < 10000
interesttate(A, 6) :- account(A, N , B), B >: 10000

The program has two rules defining a view relation interesttate, whose attributes are

the aicolnt number and the interest rate. The rules say that, if the balance is less than

$10,000, then the interest rate is 5 percent, and if the balance is greater than or equal

to $10,000, the interest rate is 6 percent.
Datalog rules can also use negation. The following rules define a view relation c

that contains the names of all customers who have a deposit, but have no loan, at the

bank:

c(l/) :- depositor(N ,A), not is-borrower(N)
is-borrower(N) :- borrower(N , L)

Prolog and most Datalog implementations recognize attributes of a relation by po-

sition and omit attribute names. Thus, Datalog rules are compact, compared to SQL

queries. However, when relations have a large number of attributes, or the order or

number of attributes of relations may change, the positional notation can be cum-
bersome and error prone. It is not hard to create a variant of Datalog syntax using

named attributes, rather than positional attributes. In such a system, the Datalog rule

defining a1 canbe written as

a'| (account-number A, balance B) :-
account(account-number A, branch-name "P ertytidge", bnlnnce B),
B > 7 0 0

Tlanslation between the two forms can be done without significant effort, given the

relation schema.

5.4.2 Syntox of Dqtqlog Rules

Now that we have informally explained rules and queries, we can formally define

their syntax; we discuss their meaning in Section 5.4.3. We use the same conventions

as in the relational algebra for denoting relation names, attribute names, and con-

stants (such as numbers or quoted strings). We use uppercase (capital) letters and

A-
A-277

207 900
750



5.4 Datalog 183

words starting with uppercase letters to denote variable names, and lowercase let-
ters and words starting with lowercase letters to denote relation names and attribute
names. Examples of constants are 4, which is a number, and "John," which is a string;
X and Name are variables. A positive literal has the form

p ( h , t z , .  .  .  , t n )

where p is the name of a relation with n attributes, and tr, t2, . .. ,1. are either con-
stants or variables. A negative literal has the form

n o t p ( t 1 , t 2 , . . . , t n )

where relation p has n attributes. Here is an example of a literal:

account (A, "Perryridge", B)

Literals involving arithmetic operations are treated specially. For example, the lit-
eral B > 700, although not in the syntax just described, can be conceptually un-
derstood to stand for > (8,700), which ls in the required syntax, and where > is a
relation.

But what does this notation mean for arithmetic operations such as ">"? The re-
lation > (conceptually) contains tuples of the form (r, gr) for every possible pair of
values r,y such that n > y. Thus, (2, 1) and (5, -33) are both tuples in >. Clearly,
the (conceptual) relation > is infinite. other arithmetic operations (such as ),:, *,
and -) are also treated conceptually as relations. For example, A : B * C stands con-
ceptually for +(B, C, A), where the relation * contains every tuple (2, y, z) such that
z : r l U .

A fact is written in the form

P ( u t , a z , ' ' '  , a n )

and denotes that the tuple (u1, 'u2,. . .t,.r,) is in relation p. A set of facts for a relation
can also be written in the usual tabular notation. A set of facts for the relations in a
database schema is equivalent to an instance of the database schema. Rules are built
out of literals and have the form

p ( h , t 2 , . .  . , t n )  : -  L 1 ,  L 2 , .  .  . ,  L n

where each Li is a (positive or negative) literal. The literal p(tr,tz,...,tn) is referred
to as the head of the rule, and the rest of the literals in the rule constitute the bodv of
the ruIe.

A Datalog Program consists of a set of rules; the order in which the rules are writ-
ten has no significance. As mentioned earlier, there may be several rules defining a
relation.

Figure 5.7 shows a Datalog program that defines the interest on each account in
the Perryridge branch. The first rule of the program defines a view relation interest,
whose attributes are the account number ut a tne interest earned on the account. It
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int erest(A, I) :- account(A, "P erryridge", B),
interesttate(A, R), I : B * RlI00

interest-rate(A, 5) :- account(4, N , B), B < 10000
interest-rate(A, 6) :- account(A, N , B), B >: 10000

Figure 5.7 Datalog program that defines interest on Perryridge accounts.

uses the relation account and the view relation interesttate. The last two rules of the

program are rules that we saw earlier.
A view relation or is said to depend directly on a view relation uz if uz is used

in the expression defining o1. In the above program, view relation interest depends

directly on relations interesttate and account Relation interesttate in turn depends

directly onaccount.
A view relation or is said to depend indirectly on view relation r.r2 if there is a

sequence of intermediate relations'i1,'i2, . . . ,in, for some n, such that trr depends di-

rectly on e1, ri1 depends directly onxz, ar.d so on until z'-1 depends on in.

In the example in Figure 5.7, since we have a chain of dependencies from interest

Io interest-rate to account, relation interest also depends indirectly on nccount.

Finally, a view relation u1 is said to depend on view relation uz if o1 depends either

directly or indirectly on u2.
A view relation u is said to be recursive if it depends on itself. A view relation that

is not recursive is said to be nonrecursive.
Consider the program in Figure 5.8. Here, the view relation empl depends on itself

(because of the second rule), and is therefore recursive. In contrast, the program in

Figure 5.7 is nonrecursive.

5.4.3 Semqntics of Nonrecursive Dctolog

We consider the formal semantics of Datalog proglams. For now, we consider only
programs that are nonrecursive. The semantics of recursive programs is somewhat
more complicated; it is discussed in Section5.4.6. We define the semantics of a pro-
gram by starting with the semantics of a single rule.

5.4.3.1 Semqntics of q Rule

A ground instantiation of a rule is the result of replacing each variable in the rule
by some constant. If a variable occurs multiple times in a rule, all occurrences of
the variable must be replaced by the same constant. Ground instantiations are often
simply called instantiations.

empl(X, Y) :- mnnager(X, Y)
empl(X,Y) :- manager(X, Z), empl(Z,Y)

Figure 5.8 Recursive Datalog program.
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Our example rule definingol, and an instantiation of the rule, are:

a1(A, B) :- account(A, "Perryridge", B), B > 700
a1 (" A-217", 750) :- account(" A-217", "P erryridge", 750), 250 > 700

Here, variable A was replaced by "A-217" and variable B by 7b0.
A rule usually has many possible instantiations. These instantiations correspond

to the various ways of assigning values to each variable in the rule.
Suppose that we are given a rule R,

p ( h , t z , .  .  . , t n )  : -  L 1 ,  L 2 , .  . . ,  L n

and a set of facts 1 for the relations used in the rule (1 can also be thought of as a
database instance). Consider any instantiation .R/ of rule .R:

p ( u t , u z , .  .  .  , u n )  : - 1 1 , 1 2 ,  .  .  .  , l n

where each literal l1 is either of the form qt(ut,t,,uL,2t . . . ,D.i,nr) or of the form not qi(ui.1,
Di.,z, . . . ,D.i,nu), and where each ,r.r; and each ua,i is a constant.

We say that the body of rule instantiation -Rl is satisfied in 1 if

1. For each positive literal Qt(ui,r, . . . ,ur.,nu) in the body of Rt, the set of facts 1
contains the fact q(u;.,t,. . . ,a,i.,nu).

2.  For  eachnegat ive l i tera lnotq i (u i , r , . . . ,a j ,no)  in thebodyof  Rt , thesetof  facts
1 does not contain the fact qi(ui,t, . . . ,ui,n.).

We define the set of facts that can be inferred from a given set of facts l using rule
l? as

infer(R,I) : {p(t1, . . . ,tnn) | there is an instantiation /?/ of R,
where p(11, . . . ,tnn) is the head of Rt , and
the body of ,R'is satisfied in 1].

Civen a set of rules R : {fir, Rz, . . ., Rn}, we define

infer(R, I) : infer(Rt, 1) U i.nfer(R2,I) U . . . O infer(R*, I)

Suppose that we are given a set of facts 1 containing the tuples for relation a ccount
in Figure 5.5. One possible instantiation of our running-example rule -R is

a1 (" A-217", 750) :- account (" A-217", "P erryridge", 750), 750 > 200

The fact account("A-217","Perryridge",750) is in the set of facts 1. Further, 750 is
greater than 700, and hence conceptually (750,700) is in the relation ">". Hence, the
body of the rule instantiation is satisfied in 1. There are other possible instantiations
of R, and using them we find that infer(R,1) has exactly the set of facts for a1 that
appears in Figure 5.9.
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A-20L
A-277

900
750

Figure 5.9 Result of infer(R,I).

5.4.3.2 Semontics of o Progrom
When a view relation is defined in terms of another view relation, the set of facts in
the first view depends on the set of facts in the second one. We have assumed, in this
section, that the definition is nonrecursive; that is, no view relation depends (directly
or indirectly) on itself. Hence, we can layer the view relations in the following way,
and can use the layering to define the semantics of the program:

e A relation is in layer 1 if all relations used in the bodies of rules defining it are
stored in the database.

o A relation is in layer 2 if alI relations used in the bodies of rules defining it
either are stored in the database or are in layer 1.

o In general, a relation p is in layer i, + 1 if (1) it is not in layers I,2, . . .,'l and
(2) all relations used in the bodies of rules defining p either are stored in the
database or are in layers L,2,. . . , ' i.

Consider the program in Figure 5.7 with the additional rule:

perryridge-nccount(X, Y) :- account(X, "Perryridge" , Y)

The layering of view relations in the program appears in Figure 5.10. The relation ac-
count is in the database. Relation interesttate is in layer 1, since all the relations used in
the two rules defining it are in the database. Relation perryridge-nccount
is similarly in layer 1. Finally, relation interest is in layer 2, since it is not in layer 1
and all the relations used in the rule defining it are in the database or in layers lower
than 2.

layer 2

Iayer 1

database

Figure 5.10 Layering of view relations.
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We can now define the semantics of a Datalog program in terms of the layering of
view relations. Let the layers in a given program be 7,2, . . . ,n.Let 7?i denote the set
of all rules defining view relations in layer i.

o We define 16 to be the set of facts stored in the database, and define 11 as

I r :  I oU i ,n fe r (R1 , Io )

o We proceed in a similar fashion, defining 12 in terms of ft and Rz, arrd so on,
using the following definition:

I t+r  -  I iU in fer(Rt+t , I t )

o FinaIIy, the set of facts in the view relations defined by the program (also called
the semantics of the program) is given by the set of facts I, corresponding to
the highest layer n.

For the program in Figure 5.7, Is is the set of facts in the database, and I is the set
of facts in the database along with all facts that we can infer from Is using the rules for
relations interest-rate andperryridge-nccount. Finally, 12 contains the facts in I along
with the facts for relation interest that we can infer from the facts in 11 by the rule
defining interest. The semantics of the program-that is, the set of those facts that are
in each of the view relations-is defined as the set of facts 12.

Recall that, in Section 3.9.2, we saw how to define the meaning of nonrecursive
relational-algebra views by a technique known as view expansion. View expansion
can be used with nonrecursive Datalog views as well; conversely, the layering tech-
nique described here can also be used with relational-algebra views.

5.4.4 Sofety
It is possible to write rules that generate an infinite number of answers. Consider the
rule

g t ( X , Y ) : - X > Y

Since the relation defining > is infinite, this rule would generate an infinite number
of facts for the relation gf, which calculation would, correspondingly, take an infinite
amount of time and space.

The use of negation can also cause similar problems. Consider the rule:

not-in-Ioan(L, B, A) :-notloan(L, B, A)

The idea is that a tuple (loan-number, branch-name, amount) is in view relation not-in
-loan if tlne tuple is not present inthe loan relation. Howevel if the set of possible loan
-numbets, branchnames, and balances is infinite, the relation not-in-Ioan would be
infinite as well.

Finally, if we have a variable in the head that does not appear in the body, we may
get an infinite number of facts where the variable is instantiated to different values.
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So that these possibilities are avoided, Datalog rules are required to satisfy the

following safety conditions:

1. Every variable that appears in the head of the rule also appears in a nonarith-

metic positive literal in the body of the rule.

2. Every variable appearing in a negative literal in the body of the rule also ap-

pears in some positive literal in the body of the rule.

If all the rules in a nonrecursive Datalog program satisfy the preceding safety con-

ditions, then all the view relations defined in the program can be shown to be finite,

as long as all the database relations are finite. The conditions can be weakened some-

what to allow variables in the head to appear only in an arithmetic literal in the body

in some cases. For example, in the rule

p(A) : -  q(B) ,  A:  B *  I

we can see that if relation 4 is finite, then so is p, according to the properties of addi-

tion, even though variable A appears in only an arithmetic literal.

5.4.5 Relqtionol Operotions in Dotolog
Nonrecursive Datalog expressions without arithmetic operations are equivalent in
expressive power to expressions using the basic operations in relational algebra (U, -,

x,6,fI, and p). We shall not formally prove this assertion here. Rather, we shall show
through examples how the various relational-algebra operations can be expressed in
Datalog. In all cases, we define a view relation called query to illustrate the operations.

We have already seen how to do selection by using Datalog rules. We perform
projections simply by using only the required attributes in the head of the rule. To
project attribute account-name from account, we use

query(,A) :- account(4, N, B)

We can obtain the Cartesian product of two relations h and 12 in Datalog as fol-
lows:

query  (X1,  Xz ,  .  .  . ,  X , ,YL,Y2,  .  .  . ,Y^)  =  r  r (Xr ,  Xz ,  .  .  . ,  Xn) ,  r2 (Y1,Yz ,  .  .  . ,Y^)

where rr is of afity n, and 12 is of arity m, and the X1 , Xz, . . . , Xn,Yt,Y2, . ... ,Y* are
all distinct variable names.

We form the union of two relations 11 and 12 (both of arity n) in this way:

q ' u e r y ( X 1 ,  X 2 , . . . ,  X n ) , -  r t ( X r ,  X 2 , . . . ,  X n )
query(X1,  Xz , .  .  . ,  Xn)  ; -  rz (X t ,  Xz , . . . ,  Xn)

We form the set difference of two relations 11 and 12 in this way:

q u e r y ( X y ,  X 2 , . . . ,  X n ) , -  r r ( X r ,  X 2 , .  .  . ,  X n ) ,  n o t  r z ( X t ,  X 2 , . . . ,  X n )
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Finally, we note that with the positional notation used in Datalog, the renaming oper-
ator p is not needed. A relation can occur more than once in the rule body, but instead
of renaming to give distinct names to the relation occuffences, we can use different
variable names in the different occurrences.

It is possible to show that we can express any nonrecursive Datalog query without
arithmetic by using the relational-algebra operations. We leave this demonstration
as an exercise for you to carry out. You can thus establish the equivalence of the
basic operations of relational algebra and nonrecursive Datalog without arithmetic
operations.

Certain extensions to Datalog support the relational update operations (insertiory
deletion, and update). The syntax for such operations varies from implementation
to implementation. Some systems allow the use of + or - in rule heads to denote
relational insertion and deletion. For example, we can move all accounts at the Per-
ryridge branch to the johnstown branch by executing

+ account(A, "Johnstown", B) :- account(A, "Perryridge", B)
- nccount(A, "Perryridge", B) :- account(A, "Perryridge", B)

some implementations of Datalog also support the aggregation operation of ex-
tended relational algebra. Again, there is no standard syntax for this operation.

5.4.5 Recursion in Dqtolog
Several database applications deal with structures that are similar to tree data struc-
tures. For example, consider employees in an organization. Some of the employees
are managers. Each manager manages a set of people who report to him or her. But
each of these people may in turn be managers, and they in turn may have other peo-
ple who report to them. Thus employees may be organized in a structure similar to a
tree.

Suppose that we have a relation schema

M an a g er - s ch em a, : ( ernpl o y ee_n arn e ) rn an a g er _n am e)

Let manager be a relation on the preceding schema.
Suppose now that we want to find out which employees are supervised, directly

or indirectly by a given manager-say, Jones. Thus, if the manager of Alon is Barin-
sky, and the manager of Barinsky is Estovar, and the manager of Estovar is Jones,
then Alon, Barinsky, and Estovar are the employees controlled by Jones. People of-
ten write programs to manipulate tree data structures by recursion. Using the idea
of recursion, we can define the set of employees controlled by Jones as follows. The
people supervised by Jones are (1) people whose manager is Jones and (2) people
whose manager is supervised by Jones. Note that case (2) is recursive.

We can encode the preceding recursive definition as a recursive Datalog view,
called empljones:

empljones(X) :- manager(X, "]ones" )
emplj ones(X) ;- manager(X, Y), emplj ones(Y)
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procedure Datalog-Fixpoint
1 : set of facts in the database
repeat

old-I : I
I : I U i n f e r ( R , I )

until1 : Old,-I

Figure 5.11 Datalog-Fixpoint procedure.

The first rule corresponds to case (1); the second rule corresponds to case (2). The
view empljones depends on itself because of the second rule; hence, the preceding
Datalog program is recursive. We assume that recursive Datalog programs contain no
rules with negative literals. The reason will become clear later. The bibliographical
notes refer to papers that describe where negation can be used in recursive Datalog
programs.

The view relations of a recursive program that contains a set of rules R are defined
to contain exactly the set of facts I computed by the iterative procedure Datalog-
Fixpoint in Figure 5.11. The recursion in the Datalog program has been turned into
an iteration in the procedure. At the end of the procedure, infer(R, I) Q D : 1, where
D is the set of facts in the database, and 1 is called a fixed point of the program.

Consider the program defining empljones, with the relation managerl as in Fig-
ure 5.12. The set of facts computed for the view relation empljones in each iteration
appears in Figure 5.13. In each iteration, the program computes one more level of
employees under Jones and adds it to the set empljones. The procedure terminates
when there is no change to the set empljones, which the system detects by finding
I : OId-L Such a termination point must be reached, since the set of managers and
employees is finite. On the given manager relation, the procedure Datalog-Fixpoint
terminates after iteration 4, when it detects that no new facts have been inferred.

You should verify that, at the end of the iteration, the view relationempljones con-
tains exactly those employees who work under Jones. To print out the names of the
employees supervised by Jones defined by the view, you can use the query

? empljones(N)

Alon
Barinsky
Corbin
Duarte
Estovar
]ones
Rensal

Barinsky
Estovar
Duarte
Jones
]ones
Klinger

Figure 5.12 The manager relation.
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Figure 5.13 Employees of Jones in iterations of procedure Datalog-Fixpoint.

To understand procedure Datalog-Fixpoint, we recall that a rule infers new facts
from a given set of facts. Iteration starts with a set of facts 1 set to the facts in the
database. These facts are all known to be true, but there may be other facts that are
true as well.l Next, the set of rules R in the given Datalog program is used to infer
what facts are true, given that facts in 1 are true. The inferred facts are added to 1,
and the rules are used again to make further inferences. This process is repeated until
no new facts can be inferred.

For safe Datalog programs, we can show that there will be some point where no
more new facts can be derived; that is, for some k, In+t : In. At this point, then, we
have the final set of true facts. Further, given a Datalog program and i database, the
fixed-point procedure infers all the facts that can be inferred to be true.

If a recursive program contains a rule with a negative literal, the following prob-
Iem can arise. Recall that when we make an inference by using a ground instantiation
of a rule, for each negative literal not q in the rule body we check that q is not present
in the set of facts 1. This test assumes that q cannot be inferred later. However, in
the fixed-point iteration, the set of facts 1 grows in each iteration, and even if q is
not present in l at one iteration, it may appear in l later. Thus, we may have made
an inference in one iteration that can no longer be made at an earlier iteration, and
the inference was incorrect. We require that a recursive program should not contain
negative literals, in order to avoid such problems.

Instead of creating a view for the employees supervised by a specific manager
]ones, we can create a more general view relation empl that contains every tuple
(X,Y) such that X is directly or indirectly managed by Y, using the following pro-
gram (also shown in Figure 5.8):

i2lllX',i),',-Ti1',!{,;lX',i)),empt(Z,y)
To find the direct and indirect subordinates of jones, we simply use the query

? empl(X,' Jones")

1. The word "fact" is used in a technical sense to note membership of a tuple in a relation. Thus, in the
Datalog sense of "lact," a fact may be true (the tuple is indeed in the relation) or false (the tupie is not in
the relation).

0
7
2
a.)
A

(Duarte), (Estovar)
(Duarte), (Estovar), (Barinsky), (Corbin)
(Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
(Duarte), (Estovar), (Barinsky), (Corbin), (Alon)
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which gives the same set of values for X as the view empljones. Most Datalog imple-

mentations have sophisticated query optimizers and evaluation engines that can run

the preceding query at about the same speed they could evaluate the view empljones.

The view empl dehned previously is called the transitive closure of the relation

ffianager.If the relationmnnager were replaced by any other binary relation -R, the

preceding program would define the transitive closure of fi.

5.4.7 The Power of Recursion
Datalog with recursion has more expressive power than Datalog without recursion.
In other words, there are queries on the database that we can answer by using recur-
sion, but cannot answer without using it. For example, we cannot express transitive
closure in Datalog without using recursion (or for that matter, in SQL or QBE without
recursion). Consider the transitive closure of the relationmannger.Intuitively, a fixed
number of joins can find only those employees that are some (other) fixed number of
levels down from any manager (we will not attempt to prove this result here). Since
any given nonrecursive query has a fixed number of joins, there is a limit on how
many levels of employees the query can find. If the number of levels of employees
inthe manager relation is more than the limit of the query, the query will miss some
Ievels of employees. Thus, a nonrecursive Datalog program cannot express transitive
closure.

An alternative to recursion is to use an external mechanism, such as embedded
SQL, to iterate on a nonrecursive query. The iteration in effect implements the fixed-
point loop of Figure 5.11. In fact, that is how such queries are implemented on data-
base systems that do not support recursion. However, writing such queries by iter-
ation is more complicated than using recursion, and evaluation by recursion can be
optimized to run faster than evaluation by iteration.

The expressive power provided by recursion must be used with care. It is relatively
easy to write recursive programs that will generate an infinite number of facts, as this
program illustrates:

number(0\
number(A) :-number(B), A: B + 1'

The program generates number(n) for all positive integers n, which is clearly infinite,
and will not terminate. The second rule of the program does not satisfy the safety
condition in Section 5.4.4.Programs that satisfy the safety condition will terminate,
even if they are recursive, provided that all database relations are finite. For such
programs, tuples in view relations can contain only constants from the database, and
hence the view relations must be finite. The converse is not true; that is, there are
programs that do not satisfy the safety conditions, but that do terminate.

The procedure Datalog-Fixpoint iteratively uses the function infer(R,I) to com-
pute what facts are true, given a recursive Datalog program. Although we consid-
ered only the case of Datalog programs without negative literals, the procedure can
also be used on views defined in other languages, such as SQL or relational alge-
bra, provided that the views satisfy the conditions described next. Regardless of the
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language used to define a view v, the view can be thought of as being defined by an
expression Ey that, given a set of facts 1, returns a set of facts Ev(I) for the view rela-
tion V. Given a set of view definitions R (in any language), we can define a function
infer(R,I) that returns I uUvenEvQ). The preceding function has the same form
as the infer function for Datalog.

A view 7 is said to be monotonic if, given any two sets of facts 11 and 12 such
that 1r C 12, then EvQ) c Ev(12), where ty is the expression used to define v.
Similarly, the function infer is said to be monotonic if

I1 C 12 =+ int'er(R,I1) C int'erlR.12)

Thus, if int'er is monotonic, given a set of facts 1s that is a subset of the true facts, we
can be sure that all facts in infer(R,/s) are also true. Using the same reasoning as in
Section 5.4.6,we can then show that procedure Datalog-Fixpoint is sound (that is, it
computes only true facts), provided that the function infer is monotonic.

Relational-algebra expressions that use only the operators TI, o, x , X) U, a) or p are
monotonic. Recursive views can be defined by using such expressions.

However, relational expressions that use the operator - are not monotonic. For ex-
ample, let manager, and manager2be relations with the same schema as the manaRer
relation. Let

I r : { manag er r(".Llon", "Barin sky" ), manag er r("Barinsky",',Estovar"),
manag er r(" Alon", "Barinsky") )

and let

I z : { man ag er r(" Alon", "Barin sky"), mana g er r("Barinsky", "Estovar,,),
manag er r(" AIon", "Barinsky"), manag er r("Bafinsky", "Estovar") )

Consider the expression rnanagerr - rrla,nager2. Now the result of the preceding ex-
pression on 1r is ("Barinsky", "Estovar"), whereas the result of the expression on 12 is
the empty relation. But 11 C 12; hence, the expression is not monotonic. Expressions
using the grouping operation of extended relational algebra are also nonmonotonic.

The fixed-point technique does not work on recursive views defined with non-
monotonic expressions. However, there are instances where such views are useful,
particularly for defining aggregates on "part-subpart" relationships. Such relation-
ships define what subparts make up each part. Subparts themselves may have further
subparts, and so on; hence, the relationships, like the manager relationship, have a
natural recursive structure. An example of an aggregate query on such a structure
would be to compute the total number of subparts of each part. Writing this query in
Datalog or in SQL (without procedural extensions) would require the use of a recur-
sive view on a nonmonotonic expression. The bibliographic notes provide references
to research on defining such views.

It is possible to define some kinds of recursive queries without using views. For
example, extended relational operations have been proposed to define transitive clo-
sure, and extensions to the SQL syntax to specify (generalized) transitive closure have
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been proposed. Howevel recursive view definitions provide more expressive power

than do the other forms of recursive queries.

5.5 Summory
o The tuple relational calculus and the domain relational calculus are non-

procedural languages that represent the basic power required in a relational
query language. The basic relational algebra is a procedural language that is
equivalent in power to both forms of the relational calculus when they are
restricted to safe expressions.

o The relational calculi are terse, formal languages that are inappropriate for
casual users of a database system. Commercial database systems, therefore,
use languages with more "syntactic sugar." We have considered two query
Ianguages: QBE and Datalog.

o QBE is based on a visual paradigm: The queries look much like tables.

r QBE and its variants have become popular with nonexpert database users be-
cause of the intuitive simplicity of the visual paradigm. The widely used Mi-
crosoft Access database system supports a graphical version of QBE, called
GQBE.

r Datalog is derived from Prolog, but unlike Prolog, it has a declarative seman-
tics, making simple queries easier to write and query evaluation easier to op-
timize.

o Defining views is particularly easy in Datalog, and the recursive views that
Datalog supports make it possible to write queries, such as transitive-closure
queries, that cannot be written without recursion or iteration. Howevel no
accepted standards exist for important features, such as grouping and aggre-
gation, in Datalog. Datalog remains mainly a research language.

Review Terms
o Tuple relational calculus

o Domain relational calculus

r Safety of expressions

o Expressive power of languages

o Query-by-Example (QBE)

r Two-dimensional syntax

o Skeleton tables

o Example rows

o Condition box

o Result relation

o Microsoft Access

. Graphical Query-By-Example
(GQBE)

r Design grid

o Datalog

o Rules

o Uses

o Defines

o Positive literal

o Negative literal
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Prqctice Exercises
5.1 Let the following relation schemas be given:

R  :  ( A , B , C )

,s  :  (D ,E,F)

Let relations r(R) and s(S) be given. Give an expression in the tuple relational
calculus that is equivalent to each of the following:
a. fIa?)
b .  o B : y  f t )
c . r  x  s
d. I Ia,r  (os: D(r x s))

5.2 Let R (4, B, C), and let 11 and r2both be relations on schema R. Give
an expression in the domain relational calculus that is equivalent to each of the
following:

a. lInQl)
b .  o " : tz  ( r r )
c .  ry  L )  12

d . 1 1 | r 1 2

e . r L - 1 2

f. t lsp(r1) x [B.c(r2)

5.3 Let A: (A, B) and S : (A,C), and let r(R) and s(,9) be relations. Write expres-
sions in QBE and Datalog for each of the following queries:
a .  { < a >  l : b  ( < o , b >  €  r  A  b  :  7 ) }
b .  i <  a , b , c )  |  < o , b > €  r  A  { o , c > €  s }
c .  { < a >  l l " ( 1  o , . ) €  s A  1 b 1 , b 2 ( < o , b r . } €  r A  { c ,  b 2 } €  r  A b y  t

bz))j

5.4 Consider the relational database of Figure 5.14 where the primary keys are un-
derlined. Give an expression in Datalog for each of the following queries:

a

o

a

a

a

a

a
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employ ee (person-name, street, city)
w orks (person-name, company name, salary)
company (y!tp-! o!.", rity)
manages (person-name, manager:name)

Figure 5.14 Employee database.

a. Find all employees who work (directly or indirectly) under the manager
'Jones."

b. Find all cities of residence of all employees who work (directly or indirectly)

under the manager "Jones."

c. Find all pairs of employees who have a (direct or indirect) manager in com-

mon.
d. Find all pairs of employees who have a (direct or indirect) manager in com-

mon, and are at the same number of levels of supervision below the com-

mon manager.

5.5 Describe how an arbitrary Datalog rule can be expressed as an extended relatio-

nal-algebra view.

Exercises

Consider the employee database of Figure 5.14. Give expressions in tuple rela-
tional calculus and domain relational calculus for each of the following queries:

a. Find the names of all employees who work for First Bank Corporation.
b. Find the names and cities of residence of all employees who work for First

Bank Corporation.
c. Find the names, street addresses, and cities of residence of all employees

who work for First Bank Corporation and earn more than $10,000 per an-
num.

d. Find all empioyees who live in the same city as that in which the company
for which they work is located.

e. Find all employees who live in the same city and on the same street as their
managers.

f. Find all employees in the database who do not work for First Bank Corpo-
ration.

g. Find all employees who earn more than every employee of Small Bank Cor-
poration.

h. Assume that the companies may be located in several cities. Find all com-
panies located in every city in which Small Bank Corporation is located.

Let .B : (A, B) and S : (A, C), and let r(R) and s(S) be relations. Write
relational-algebra expressions equivalent to the following domain-relational-
calculus expressions:

a .  { < a >  |  l b  ( < o , b }  €  r  A  b  :  I 7 ) }

5 . /



b .  { < o , b , c >  |  < a , b > e  r A
c . { < a >  l : b ( < o , b > e  r )  v
d . { < o >  l = " ( < & , c > e

€ r A b t > b r ) ) j

5.8 Repeat Exercise 5.7, writing SQL
sions.

Exercises 197

1 a , c )  €  s \
Y c ( - d ( < d , r > e  s )  ) 1 a . , c > e  s ) ]
s  A  l h , b z ( 4  a , b y )  €  r n  { c , b 2 ) >

queries instead of relational-algebra expres-

5.9 Let /i : (4, B) and S : (A, C), and let r(R) and s(S) be relations. Using
the special constant nuII, write tuple-relational-calculus expressions equivalent
to each of the following:

a .  r D C s
b .  r l C s
c .  r ] ( s

5.10 Consider the insurance database of Figure 5.15, where the primary keys are un-
derlined. Construct the following GQBE queries for this relational database.

a. Find the total number of people who owned cars that were involved in ac-
cidents in 1989.

b. Find the number of accidents in which the cars belonging to'John Smith"
were involved.

5.11 Give a tuple-relational-calculus expression to find the maximum value in rela-
tion r(A).

5.12 Repeat Exercise 5.6 using QBE and Datalog.

5.13 Let R : (A, B , C) , and let 11 and 12 both be relations on schema ,R. Give expres-
sions in QBE and Datalog equivalent to each of the following queries:

O.. 11 U T2

b . 1 1  ) 1 2

C . T 1 * T 2

d. Ilnp(r) >< ll6s(r2)

5.14 write an extended relational-algebra view equivalent to the Datalog rule

p ( A , C , D ) : -  q 1 ( A , B ) ,  q Z ( B , C ) ,  q 3 ( 4 , 8 ) ,  D :  B  * I

person (driaer-id, nqme, nddress)
car (ljggnpg mo del, y ear)
accident (report-number, date, location)
ow n s (d r iuerjd, Ii ce nse)
participated (driaer-id, license, report-number, d ama ge_amount)

Figure 5.15 Insurance database.
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Bibliogrophicol Notes
The original definition of tuple relational calculus is in Codd 119721. A formal proof of
the equivalence of tuple relational calculus and relational algebra is in Codd 119721.
Several extensions to the relational calculus have been proposed. Klug [1982] and
Escobar-Molano et al. 119931describe extensions to scalar aggregate functions.

The QBE database system was developed at IBM's T, J. Watson Research Center in
the early L970s. The QBE data-manipulation language was later used in IBM's Query
Management Facitity (aMF). The original version of Query-by-Example is described
in ZIoof 179771. Other QBE implementations include Microsoft Access, and Borland
Paradox (which is no longer supported).

Ullman [1988] and UIIman [19891 provide extensive textbook discussions of logic
query languages and implementation techniques. Ramakrishnan and Ullman 179951
provide a more recent survey on deductive databases'

Datalog programs that have both recursion and negation can be assigned a simple
semantics if the negation is "stratified"-that is, if there is no recursion through nega-
tion. Chandra and Harel [19821 and Apt and Pugin [1987] discuss stratified negation.
An important extension, called the modular-stratificntion semantics, which handles a
class of recursive programs with negative literals, is discussed in Ross lt990l; an eval-
uation technique for such proglams is described by Ramakrishnan et al.11.9921.

Tools
The Microsoft Access QBE is currently the most widely available implementation of

QBE. The QMF and Ever)'where editions of Inira DB2 also support QBE.
The Coral system from the University of Wisconsin-Madison (www.cs.wisc.edu/-

coral) is an implementation of Datalog. The XSB system from the State University of
New York (SUNY) Stony Brook (xsb.sourceforge.net) is a widely used Prolog imple-
mentation that supports database querying; recall that Datalog is a nonprocedural
subset of Prolog.
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Up to this point in the text, we have assumed a given database schema and studied
how queries and updates are expressed. We now consider how to design a database
schema in the first place. In this chaptel, we focus on the entity-relationship data
model (g-R), which provides a means of identifying entities to be representedin the
database and how those entities are related. Ultimately, the database design will be
expressed in terms of a relational database design and an associated set of constraints.
We show in this chapter how an E-R design can be transformed into a set of relation
schemas and how some of the constraints can be captured in that design. Then, in
Chapter 7, we consider in detail whether a set of relation schemas represent a good or
bad database design and study the process of creating good designs using a broader
set of constraints. These two chapters cover the fundamental concepts of database
design.

6.1 Overview of the Design Process
The task of creating a database application is a complex one, involving several tasks
such as design of the database schema, design of the programs that access and update
the data, and design of a security scheme to control access to data. The needs of the
users play a central role in the design process. In this chapter, we focus on the design
of the database schema, although we briefly outline some of the other design tasks
later in the chapter.

The design of a complete database application environment that meets the needs
of the enterprise being modeled requires attention to a broad set of issues. These
additional aspects of the expected use of the database influence a variety of design
choices at the physical, logical, and view levels.

201
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6.1.1 Design Phoses
For small applications, it may be feasible for a database designer who understands

the application requirements to decide directly on the relations to be created, their

attributes, and constraints on the relations. However, such a direct design Process
is difficult for real-world applications, since they are often highly complex. Often
no one person understands the complete data needs of an application. The database
designer must interact with users of the application to understand the needs of the

application, represent them in a high-Ievel fashion that can be understood by the

users, and then translate the requirements into lower levels of the design. A high-

level data model serves the database designer by providing a conceptual framework
in which to specify, in a systematic fashion, the data requirements of the database

users, and a database structure that fulfills these requirements.

r The initial phase of database design is to characterize fully the data needs of
the prospective database users. The database designer needs to interact exten-
sively with domain experts and users to carry out this task. The outcome of
this phase is a specification of user requirements. While there are techniques
for diagrammatically representing user requirements, in this chapter we re-
strict ourselves to textual descriptions of user requirements, which we illus-
trate later in Section 6.8.2.

r Next, the designer chooses a data model and, by applying the concepts of the
chosen data model, translates these requirements into a conceptual schema
of the database. The schema developed at this conceptual-design phase pro-
vides a detailed overview of the enterprise. The entity-relationship model,
which we study in the rest of this chapter, is typically used to represent the
conceptual design. Stated in terms of the entity-relationship model, the con-
ceptual schema specifies the entities that are represented in the database, the
attributes of the entities, the relationships between the entities, and constraints
on the entities and relationships. Typically, the conceptual-design phase re-
sults in the creation of an entity-relationship diagram that provides a graphic
representation of the schema.

The designer reviews the schema to confirm that all data requirements are
indeed satisfied and are not in conflict with one another. She can also exam-
ine the design to remove any redundant features. Her focus at this point is
describing the data and their relationships, rather than on specifying physical
storage details.

o A fully developed conceptual schema also indicates the functional require-
ments of the enterprise. In a specification of functional requirements, users
describe the kinds of operations (or transactions) that will be performed on
the data. Example operations include modifying or updating data, searching
for and retrieving specific data, and deleting data. At this stage of concep-
tual design, the designer can review the schema to ensure it meets functional
requirements.
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o The Process of moving from an abstract data model to the implementation of
the database proceeds in two final design phases.
r In the logical-design phase, the designer maps the high{evel concep-

tual schema onto the implementation data model of the database system
that will be used. The implementation data model is typically the rela-
tional data model, and this step typically consists of mapping the concep-
tual schema defined using the entity-relationship model into a relation
schema.

n Finally, the designer uses the resulting system-specific database schema in
the subsequent physical-design phase, in which the physical features of
the database are specified. These features include the form of file organiza-
tion and the internal storage structures; they are discussed in Chapter 11.

The physical schema of a database can be changed relatively easily after an appli-
cation has been built. Howeveq, changes to the logical schema are usually hardei to
carry out, since they may affect a number of queries and updates scattered across ap-
plication code. It is therefore important to carry out the database design phase wiih
care, before building the rest of the database application.

6.1.2 Design Alternqtives
A major part of the database design process is deciding how to represent in the design
the various types of "things" such as people, places, products, and the like. we uie
the term entity to refer to any such distinctly identifiable item. These various entities
have certain commonalities as well as differences. We wish to exploit commonalities
to have a succinct, easily understood design, yet need to retain the flexibility to rep-
resent distinctions among entities that exist at design time or that may materialize in
the future. The various entities are related to each other in a variety of ways, all of
which need to be captured in the database design.

In designing a database schema, we must ensure that we avoid two major pitfalls:

1. Redundancy: A bad design may repeat information. In the bank example we
have used so fat, we have a relation with customer information and a separate
relation with account information. Suppose that instead we repeated all of
the customer information (name, address, etc.) once for each account or loan
that the customer has. Clearly, that would be redundant. Ideally, information
should appear in exactly one place.

2. Incompleteness: A bad design may make certain aspects of the enterprise dif-
ficult or impossible to model. For example, suppose we used a database de-
sign for our bank scenario that stores customer name and address information
with each account and loary but does not have a separate customer relation. It
would then be impossible to enter a new customer's name and address unless
that customer has already opened an account or taken out a loan. we might
try to make do witn- the problematic design by storing null values for account
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or loan information, such as account number or amount. Such a work-around

is not only unattractive, but may be prevented by primary-key constraints.

Avoiding bad designs is not enough. There may be a large number of good designs

from which we must choose. As a simple example, consider a customer who buys

a product. Is the sale of this product a relationship between the customer and the

product? Alternatively, is the sale itself an entity that is related both to the customer

and to the product? This choice, though simple, may make an important difference

in what aspects of the enterprise can be modeled well. Considering the need to make

choices such as this for the large number of entities and relationships in a real-world

enterprise, it is not hard to see that database design can be a challenging problem.

Indeed we shall see that it requires a combination of both science and "good taste."

6.2 The Entity-Relotionship Model
The entity-relationship (n-n) data model was developed to facilitate database design
by allowing specification ol an enterprise schema that represents the overall logical
structure of a database. The E-R data model is one of several semantic data models;
the semantic aspect of the model lies in its representation of the meaning of the data.
The E-R model is very useful in mapping the meanings and interactions of real-world
enterprises onto a conceptual schema. Because of this usefulness, many database-
design tools draw on concepts from the E-R model. The E-R data model employs
three basic notions: entity sets, relationship sets, and attributes.

6.2.1 Entity Sets
An entity is a "thing" or "object" in the real world that is distinguishable from all
other objects. For example, each person in an enterprise is an entity. An entity has
a set of properties, and the values for some set of properties may uniquely identify
an entity. For instance, a person may have aperson-id property whose value uniquely
identifies that person. Thus, the vahse 677-89-90L1 for personjd would uniquely iden-
tify one particular person in the enterprise. Similarly, loans can be thought of as enti-
ties, and loan number L-15 at the Perryridge branch uniquely identifies a loan entity.
An entity may be concrete, such as a pelson or a book, or it may be abstract, such as
a loan, a holiday, or a concept.

An entity set is a set of entities of the same type that share the same properties, or
attributes. The set of all persons who are customers at a given bank, for example, can
be defined as the entity set customer. Similarly, the entity setloan might represent the
set of all loans awarded by a particular bank. The individual entities that constitute a
set are said to be the extension of the entity set. Thus, all the individual bank customers
are the extension of the entity set customer.

Entity sets do not need to be disjoint. For example, it is possible to define the entity
setof allemployeesof abank (employee) andtheentitysetof allcustomersof thebank
(customer). Aperson entity may b e an employee entity, a customer entity, both, or neither.
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customer loan

Figure 6.1 Entity sets custolner andlonn.

An entity is represented by a set of attributes. Attributes are descriptive properties
possessed by each member of an entity set. The designation of an attribute for an en-
tity set expresses that the database stores similar information concerning each entity
in the entity set; however, each entity may have its own value for each attribute. Pos-
sible attributes of the customer entity set are customer-id, customer-name, customer-street,
and customer-city.In real life, there would be further attributes, such as street num-
ber, apartment number, state, postal code, and country, but we omit them to keep our
examples simple. Possible attributes of ttre loan entity set are loan-number and smount.

Each entity has a value for each of its attributes. For instance, a particular customer
entity may have the value 321-72-31,23 for customer-id, the value Jones for customer
-natne, the value Main for customer-street, and the value Harrison for customer-city.

The customer-id attribute is used to identify customers uniquely, since there may
be more than one customer with the same name, street, and city. In the United Statei,
many enterprises find it convenient to use the social-security nurnber of a personl
as an attribute whose value uniquely identifies the person. In general the enterprise
would have to create and assign a unique identifier for each customer.

A database thus includes a collection of entity sets, each of which contains any
number of entities of the same type. Figure 6.1 shows part of a bank database that
consists of two entity sets: customer andloan.

A database for a banking enterprise may include a number of other entity sets.
For example, in addition to keeping track of customers and loans, the bank also pro-
vides accounts, which are represented by the entity set account with attributes account

1. In the United States, the government assigns to each person in the country a unique numbel, called a
sociai-security number, to identify that person uniquely. Each person is supposed to have only one social-
secudty number, and no two people are supposed to have the same social-security number.
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Figure6.2 Relationship setborrower.

-number and balsnce. Aiso, if the bank has a number of different branches, then we
may keep information about all the branches of the bank. Each branch entity set may
be described by the attributes brqnch:name, branch-city , and sssets '

6.2.2 Relqtionship Sets
A relationship is an association among several entities. For example, we can define
a relationship that associates customer Hayes with loan L-15. This relationship spec-
ifies that Hayes is a customer with loan number L-15.

A relationship set is a set of relationships of the same type. Formally, it is a math-
ematicalrelat ionon?? > 2(possiblynondist inct)ent i tysets.  I f  E1, E2,. . . ,Enare
entity sets, then a relationship set R is a subset of

{ ( " r , " r , . . . , e n ) l e 1  e  E y , e 2 e  E 2 , . . . , € n  €  E . }

where (er,e2,. . . ,€n) is a relat ionship.
Consider the two entity sets customer andloan in Figure 6.1. We define the rela-

tionshin setborrower to denote the association between customers and the bank loans
that the customers have. Figure 6.2 depicts this association.

As another example, consider the two entity sets loan and brsnch. We can define
the relationship set loan-brsnch to denote the association between a bank loan and the
branch in which that loan is maintained.

The association between entity sets is referred to as participation; that is, the entity
sets -81, Ez, . . . , En participate in relationship set R. A relationship instance in an
E-R schema represents an association between the named entities in the real-world
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enterPdse that is being modeled. As an illustratiorg the individual customer entity
Hayes, who has customer identifier 677-89-901,7, and the loan entily L-15 participatl
in a relationship instance of borrower. This relationship instance represents that, itt the
real-world enterprise, the person called Hayes who holds customer-id 677-89-9017has
taken the loan that is numbered L-15.

The function that an entity plays in a relationship is called that entity's role. Since
entity sets participating in a relationship set are generally distinct, roles are implicit
and are not usually specified. However, they are useful when the meaning of a re-
lationship needs clarification. Such is the case when the entity sets of a relitionship
set are not distinct; that is, the same entity set participates in a relationship set more
than once, in different roles. In this type of relationship set, sometimes .illed u .u-
cursive relationship set, explicit role names are necessary to specify how an entity
participates in a relationship instance. For example, consider an entity set employie
that records information about all the employees of the bank. we may have u ,"iu-
tionship set rnorks-for that is modeled by ordered pairs of employee entities. The first
employee of a pair takes the role of worker, whereas the second takes the role of man-
ager.In this way, all relationships of works-for are characterized by (worker, manager)
pairs; (manager, worker) pairs are excluded.

A relationship may also have attributes called descriptive attributes. Consider a
relationship set depositor with entity sets customer and accounf. We could associate the
attribute access-date to that relationship to specify the most recent date on which a cus-
tomer accessed an account. The depositor relationship among the entities correspond-
ing to customer Jones and account A-277 has the value "23 May 2001" for attribute
access-date, which means that the most recent date that Jones accessed account A-217
was23 May 2001.

Figure 6.3 shows the relationship set depositor with a descriptive attribute access
date; to keep the figure simple, only some of the attributes of the two entity sets
are snown.

As another example of descriptive attributes for relationships, suppose we have
entity sets student and course which participate in a relationship set registeredJor. We
may wish to store a descriptive attribute for-credit with the relationship, to record
whether a student has taken the course for credit, or is auditing (or sitting in on) the
course.

, A relationship instance in a given relationship set must be uniquely identifiable
from its participating entities, without using the descriptive attributes. To understand
this point, suppose we want to model all the dates when a customer accessed an
account. The single-valued attribute access-date can store a single access date only. We
cannot represent multiple access dates by multiple relationship instances between the
same customer and account, since the relationship instances would not be uniquely
identifiable using only the participating entities. The right way to handle this case is
to create a multivalued attribute access-dates, which can store all the access dates.

Howevet, there can be more than one relationship set involving the same entity
sets. In our example, the customer and loan entity sets participate in the relationship
setborrozoer. Additionally, suppose each loan muit have anothlr customer who servJs
as a guarantor for the loan. Then the customer andloan entity sets may participate in
another relationship set, guarantor.
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Figure 5.3 AccessLlate as attribute of tlire deposifor relationship set'

The relationship sets borrower andloan-branchprovide an example of a binary rela-
tionship set-that is, one that involves two entity sets. Most of the relationship sets in
a database system are binary. Occasionally, however, relationship sets involve more
than two entity sets.

As an example, consider the entity sets employee,branch, and job. Examples of iob
entities could include manager, teller, auditor, and so on. job entities may have the
attributes title and leoel. The relationship set works-on among employee, branch, and
job is an example of a ternary relationship. A ternary relationship among Jones, Per-
ryridge, and manager indicates that Jones acts as a manager at the Perryridge branch.
jones could also act as auditor at the Downtown branch, which would be represented
by another relationship. Yet another relationship could be among Smith, Downtown,
and teller, indicating Smith acts as a teller at the Downtown branch.

The number of entity sets that participate in a relationship set is also the degree of
the relationship set. A binary relationship set is of degree 2; aternary relationship set
is of degree 3.

6.2.3 Attributes
For each attribute, there is a set of permitted values, called the domain, or value set,
of that attribute. The domain of attribute customer-name might be the set of all text
strings of a certain length. Similarly, the domain of attribute lonn-number might be the
set of all strings of the form "L-n" where n is a positive integer.

Formally, an attribute of an entity set is a function that maps from the entity set
into a domain. Since an entity set may have several attributes, each entity can be de-

dep o sit or ( a c c es s -d at e )

a c c o unt ( a c c ount -numb er )
custom e r( cust o mer -na m e )
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Figure 6.4 Composite attributes customer-name and. customer-nddress.

scribed by a set of (attribute, data value) pairs, one pair for each attribute of the entity
set. For example, a particular customer entity may be described by the set {(customir
-id,677-89-901'1'), (customer-name, Hayes), (customer-street,Main), (customer-city,Har-
rison)), meaning that the entity describes a person named Hayes whose ..ttto^",
identifier is 677-89-9011 and who resides at Main Street in Harrison. We can see, at
this point, an integration of the abstract schema with the actual enterprise being mod-
eled. The attribute values describing an entity will constitute a significant portion of
the data stored in the database.

An attribute, as used in the E-R model, can be characterized by the following at-
tribute types.

o Simple and composite attributes. In our examples thus faq, the attributes have
been simple; that is, they have not been divided into subparts. Composite
attributes, on the other hand, can be divided into subparts (that is, other at-
tributes). For example, an attribute name could be structured as a composite
attribute consisting of first:name, middle-initial, andlast-name.IJsingcomposite
attributes in a design schema is a good choice if a user will wish to refeito an
entire attribute on some occasions, and to only a component of the attribute
on other occasions. Suppose we were to substitute for the customer entity-set
attributes customer-street and customer-city the composite attribute address wlth
the attributes street, city, state, and zip*code.2 Composite attributes help us to
group together related attributes, making the modeling cleaner.

Note also that a composite attribute may appear as a hierarchy. In the com-
posite attribute nddress, its component attribute street can be further divided
into street-number, street-name, and apartment:number.Figure 6.4 depicts these
examples of composite attributes for the customer entity set.

o Single-valued and multivalued attributes. The attributes in our examples all
have a single value for a particular entity. For instance, the loan-number at-
tribute for a specific loan entity refers to only one loan number. Such attributes
are said to be single valued. There may be instances where an attribute has

2. we assume the address format used in the United states, which includes a numeric postal code called
a zip code.
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a set of values for a specific entity. Consider an employee entity set with the
attribute phone-number. An employee may have zero, one, or sevelal phone
numbers, and different employees may have different numbers of phones.
This type of attribute is said to be multivalued. As another example, an at-
tribute dependent-name of the employee entity set would be multivalued, since
any particular employee may have zero, olte, or more dePendent(s)'

Where appropriate, upper and lower bounds may be placed on the number
of values in a multivalued attribute. For example, a bank may limit the num-
ber of phone numbers recorded for a single customer to two. Placing bounds
in this case expresses that the phone:rrumber attribute of the customer entity set
may have between zero and two values.

r Derived attribute. The value for this type of attribute can be derived from
the values of other related attributes or entities. For instance, Iet us say that
tlte customer entity set has an attribute loansheld, which represents how many
loans a customer has from the bank. We can derive the value for this attribute
by counting the number of loan entities associated with that customer.

As another example, suppose thatthe customer entity set has an attribute age
that indicates the customer's age. If thle customer entlty set also has an attribute
date-of-birth, we can calculate age from date-of-birth and the current date. Thus,
age is a derived attribute. In this case, date-of-birth nray be referred to as a base
attribute, or a stored attribute. The value of a derived attribute is not stored but
is computed when required.

An attribute takes a null value when an entity does not have a value for it. The
nuII value may indicate "not applicable"-that is, that the value does not exist for the
entity. For example, one may have no middle name. NuIl can also designate that an
attribute value is unknown. An unknown value may be either missing (the value does
exist, but we do not have that information) or notknown (we do not know whether or
not the value actually exists).

For instance, if the namevalue for a particular customer isnull, we assume that the
value is missing, since every customer must have a name. A nuII value for the apart-
ment:number attribute could mean that the address does not include an apartment
number (not applicable), that an apartment number exists but we do not know what
it is (missing), or that we do not know whether or not an apartment number is part
of the customer's address (unknown).

5.3 Constrqints
An E-R enterprise schema may define certain constraints to which the contents of
a database must conform. In this section, we examine mapping cardinalities, key
constraints, and participation constraints.

6.3.1 Mopping Cqrdinqlities
Mapping cardinalities, or cardinality ratios, express the number of entities to which
another entity can be associated via a relationship set.
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Figure 6.5 Mapping cardinalities. (a) One-to-one. (b) One-to-many.

, Mapping cardinalities are most useful in describing binary relationship sets, al-
though they can contribute to the description of relationship sets that involve more
than two entity sets. In this section, we shall concentrate on only binary relationship
SEIS.

For a binary relationship set R between entity sets A andB,the mapping cardinal-
ity must be one of the following:

o One-to-one. An entity in A is associated with at most one entity in B, and an
entity in B is associated with nt tnost one entity in A. (See Figure 6.5a.)

o one-to-many. An entity in A is associated with any number (zero or more) of
entities in B. An entity in B, however, can be associated with at most one entity
in A. (See Figure 6.5b.)

o Many-to-one. An entity in A is associated with at most one entity in B. An
entity in B, however, can be associated with any number (zero or more) of
entities in A. (See Figure 6.6a.)

r Many-to-many. An entity in A is associated with any number (zero or more)
of entities in B, and an entity in B is associated with any number (zero or more)
of entities in A. (See Figure 6.6b.)

The appropriate mapping cardinality for a particular relationship set obviously de-
pends on the real-world situation that the relationship set is modeling.

As an illustration, consider the borrower relationship set. If, in a particular bank, a
loan can belong to only one customel and a customer can have seveial loans, then the
relationship set from customer to loan is one-to-many. If a loan can belong to several
customers (as can loans taken jointly by several business partners), the relationship
set is many-to-many. Figure 6.2 depicts this type of relationship.
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Figure 6.6 Mapping cardinalities. (a) Many-to-one. (b) Many-to-many.

5.3.2 Keys
We must have a way to specify how entities within a given entity set are distin-
guished. Conceptually, individual entities are distinct; from a database perspective,
however, the difference among them must be expressed in terms of their attributes.

Therefore, the values of the attribute values of an entity must be such that they can
uniquely identify the entity. In other words, no two entities in an entity set are allowed
to have exactly the same value for all attributes.

A key allows us to identify a set of attributes that suffice to distinguish entities
from each other. Keys also help uniquely identify relationships, and thus distinguish
relationships from each other. Recall the definition of keys for relations, from Sec-
tion 2.1.3; we now define corresponding notions of keys for entities and relationships.

6.3.2.1 Entity Sets
A superkey is a set of one or more attributes that, taken collectively, allow us to iden-
tify uniquely an entity in the entity set. For example, tlre customerjd attribute of the

entity set customer is sufficient to distinguish one customer entity from another. Thus,
customer-id is a superkey. Similarly, the combination of customer-nume and customer.id
is a superkey for the entity set customer.The customer-nflme attribute of customer is not
a superkey, because several people might have the same name.

The concept of a superkey is not sufficient for our purposes/ since, as we saw a
superkey may contain extraneous attributes. If K is a superkey, then so is any superset
of K. We are often interested in superkeys for which no propel subset is a superkey.
Such minimal superkeys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate key.
Suppose that a combination of customer-ttame and customer-streef is sufficient to dis-
tinguish among members of the customer entity set. Then, both {customer-id} and

{customer-nnme, customerstreet} are candidate keys. Although the attributes customer
-id and customer-name together can distinguish customer entities, their combination
does not form a candidate key, since the attribute customerjd alone is a candidate key.
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We shall use the term primary key to denote a candidate key that is chosen bv
the database designer as the principal means of identifying entities within an entity
set. A key (primary, candidate, and super) is a property of the entity set, rather than
of the individual entities. Any two individual entities in the set are prohibited from
having the same value on the key attributes at the same time. The designation of a
key represents a constraint in the real-world enterprise being modered.

Candidate keys must be chosen with care. As we noted, the name of a person is
obviously not sufficien! because there may be many people with the same ,,a*e.
In the United States, the social-security number attiibutJof a person would be a
candidate key. Since non-U.S. residents usually do not have social-security numbers,
international enterprises must generate their own unique identifiers. An alternative
is to use some unique combination of other attributes as a key.

_ The primary key should be chosen such that its attributes are never, or very rare1y,
changed. For instance, the address field of a person should not be part of the primary
key, since it is likely to change. social-security numbers, on the other hand, ut" gnut-
anteed to never change. Unique identifiers generated by enterprises generally do not
change, except if two enterprises mergei in such a case the same identifier rnay have
been issued by both enterprises, and a reallocation of identifiers may be required to
make sure they are unique.

6.3.2.2 Relqtionship Sets
The primary key of an entity set allows us to distinguish among the various entities of
the set. We need a similar mechanism to distinguish among the various relationships
of a relationship set.

LetRbearelationshipsetinvolvingentitysets.El , Ez,...,En.Letprimnry-key(E)
denote the set of attributes that forms the primary key for entity set Ez. Asiume
for now that the attribute names of all primary keys are unique, and each entity set
participates only once in the relationship. The composition of the primary key lor a
relationship set depends on the set of attributes associated with the relationsirip set
t\..

If the relationship set R has no attributes associated with it, then the set of at-
tributes

primary -key (E ) u primary -key (E ) U . . . U primary -key (E _)

describes an individual relationship in set R.
If the relationship set R has attributes a1 , (12, . . . ,n- associated with it, then the set

of attributes

primary-key(E) J primary-key(Ez) U . . . U primary-key(E) t-t {or, or,. . ., e^}

describes an individual relationship in set,R.
In both of the above cases, the s"t of atttibrrtes

primary -key (E ) u primary -key (E) U . . . U primary -key (8,)
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forms a superkey for the relationship set.
In case the attribute names of primary keys are not unique across entity sets, the

attributes are renamed to distinguish them; the name of the entity set combined with
the name of the attribute would form a unique name. In case an entity set participates
more than once in a relationship set (as inthe worksJor relationship in Section 6.2.2),
the role name is used instead of the name of the entity set, to form a unique attribute
name.

The structure of the primary key for the relationship set depends on the map-
ping cardinality of the relationship set. As an illustratiorL consider the entity sets
customer and nccount, and the relationship set depositor, with attribute access-date, in
Section 6.2.2. Suppose that the relationship set is many-to-many. Then the primary
key of depositor consists of the union of the primary keys of customer and account.
However, if a customer can have only one account-that is, if the depositor relation-
ship is many-to-one from customer to account-then the primary key of depositor is
simply the primary key of customer. Similarly, if the relationship is many-to-one from
account to customer-that is, each account is owned by at most one customer-then
the primary key of depositor is simply the primary key of account. For one-to-one re-
lationships either primary key can be used.

For nonbinary relationships, if no cardinality constraints are present then the su-
perkey formed as described earlier in this section is the only candidate key, and it
is chosen as the primary key. The choice of the primary key is more complicated if

cardinality constraints are present. Since we have not discussed how to specify cardi-
nality constraints on nonbinary relations, we do not discuss this issue further in this
chapter. We consider the issue in more detail in Section 7.4.

6.3.3 Porticipotion Constrqints
The participation of an entity set E in a relationship set R is said to be total if every
entity in E participates in at least one relationship in R. If only some entities in .E
participate in relationships in E, the participation of entity set E in relationship R is
said to be partial. For example, we expect every loan entity to be related to at least
one customer through theborcower relationship. Therefore the participation of loan in
the relationship set borrower is total. In contrast, an individual can be a bank customer
whether or not she has a loan with the bank. Hence, it is possible that only some of
t}re customer entities are related to theloan entity set through theborrower relationship,
and the participation of customer in the borrower relationship set is therefore partial.

6.4 Entity-Relqtionship Diogrqms
As we saw briefly in Section 1.3.3, an E-R diagram can express the overall logical
structure of a database graphically. E-R diagrams are simple and clear-qualities
that may well account in large part for the widespread use of the E-R model. Such
a diagram consists of the following major components:

o Rectangles, which represent entity sets

o Ellipses, which represent attributes
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o Diamonds, which represent relationship sets

o Lines, which link attributes to entity sets and entity sets to relationship sets

o Double ellipses, which represent multivalued attributes

o Dashed ellipses, which denote derived attributes

o Double lines, which indicate total participation of an entity in a relation-
ship set

o Double rectangles, which represent weak entity sets (described later, in Sec-
tion 6.6)

Consider the entity-relationship diagram in Figure 6.7, which consists of two en-
tity sets, customer and loan, related through a binary relationship set borrozner. The
attributes associated with customer are customer-id, customer-name, customer-street, and
customer-city. The attributes associated with loan are loan-number and amount.In Fig-
tte 6.7, attributes of an entity set that are members of the primary key are underlinel.

The relationship set borrower may be many-to-many, one-to-many, many-to-one,
or one-to-one. To distinguish among these types, we draw either a directed line (---+)
or an undirected line (-) between the relationship set and the entity set in question.

o A directed line from the relationship set borrozner to the entity setloan speci-
fies that borrower is either a one-to-one or many-to-one relationship set, irom
customer to loan; borrower cannot be a many-to-many or a one-to-manv rela-
tionship set from customer to loan.

o An undirected line from the relationship setborrower to the entity s etloan spec-
ifies that borrower is either a many-to-many or one-to-many relationship set
from customer to loan.

Returning to the E-R diagram of Figure 6.7 , we see that the relationship set borrower
is many-to-many. If the relationship set borrower were one-to-many, from customer to
loan, then the line frornborrower to customer would be directed, wiih an arrow point-
ing to the customer entity set (Figure 6.8a). Similarly, if the relationship set boirorner
were many-to-one from customer to loan, then the line from borrower to loan would

Figure 6.7 E-R diagram corresponding to customers and loans.
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have an arrow pointing to the loan entity set (Figure 6.Bb). Finally, if the relationship

setborrower were one-to-one, then both lines fromborrower would have arrows: one

pointing to the loan entity set and one pointing to tlne customer entity set (Figure 6.8c).

If a relationship set has also some attributes associated with it, then we link these

attributes to that relationship set. For example, in Figure 6.9, we have the accessiate

descriptive attribute attached to the relationship set depositor to specify the most re-

cent date on which a customer accessed that account.

Figure 5.10 shows how composite attributes can be represented in the E-R notation.

Flere, a composite attribute nnme,wTthcomponent attributesfrstJtame,middle-initinl,

andlqst,name replaces the simple attribute customer-name of customer. Also, a compos-

(c)

Figure 5.8 Relationships. (a) One-to-many. (b) Many-to-one' (c) One-to-one'
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Figure 6.9 E-R diagram with an attribute attached to a relationship set.

ite attribute address, whose component attributes are street, city, stnte, and zip-code re-
places the attributes customer-street and customer-city of customer. The attribut e street is
itself a composite attribute whose component attributes are street-number, street-name,
and apartment.number.

Figure 6.10 also illustrates a multivalued attribute phone-number, depicted by a
double ellipse, and a derived attribute age, depictedby a dashed ellipse.

We indicate roles in E-R diagrams by labeling the lines that connect diamonds
to rectangles. Figure 6.11 shows the role indicators mannger and worker between the
employee entity set and the works_t'or relationship set.

Nonbinary relationship sets can be specified easily in an E-R diagram. Figure 6.12
consists of the three entity sets employee, job, andbranch, related through the relation-
ship set works-on.

_We can specify some types of many-to-one relationships in the case of nonbinary
relationship sets. Suppose an employee can have at most one job in each branch (for

Figure 6.10 E-R diagram with composite, multivalued, and derived attributes.
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Figure 5.11 E-R diagram with role indicators.

example, Jones cannot be a manager and an auditor at the same branch). This con-

straint can be specified by an arrow pointing to iob on the edge fromworks-on.

We permit at most one arrow out of a relationship set, since an E-R diagram with

two or more arrows out of a nonbinary relationship set can be interpreted in two

ways. Suppose there is a relationship set R between entity sets ,41, Az, . . . , An, andthe

only arrows are on the edges to entity sets Ai11, Ai12t . . . , An. Theru the two possible

interpretations are:

1. A particular combination of entities from 41, Az, . . . , Ai canbe associated with

at most one combination of entit ies from Aia1,A.r+2,...,An. Thus, the pri-

mary key for the relationship R can be constructed by the union of the primary

keys  o f  A t ,  Az , .  .  . ,  A t .

2. For each entity set Ap, i < k < n, each combination of the entities from the

other entity sets can be associated with at most one entity from Ap. Each set

{Ar, Ar, . . ., Ak-I, An+t, . . ., An}, fot i '  < k I n, then forms a candidate key.

Each of these interpretations has been used in different books and systems. To avoid

confusion, we permit only one affow out of a relationship set, in which case the two

Figure 6.12 E-R diagram with a ternary relationship.
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Figure 6.13 Total participation of an entity set in a relationship set.

interpretations are equivalent. In Chapter Z (Section 7.4) we study the notion of func_
tional dependencies, which allow either of these interpretations to be specified in an
unambiguous manner.

Double lines are used in an E-R diagram to indicate that the participation of an
entity set in a relationship set is total; that is, each entity in the entity seioccurs in at
least one relationship in that relationship set. For instance, considei the relationship
borrower between customers and loans. A double line from loan to borrower, as ii
Figure 6.13, indicates that each loan must have at least one associated customer.

E-R diagrams also provide a way to indicate more complex constraints on the num-
ber of times each entity participates in relationships in a relationship set. An edge
between an entity set and a binary relationship set can have an associited minimqm
and maximum cardinality, shown in the forrn L.h, where I is the minimum and, h
the maximum cardinality. A minimum value of 1 indicates total participation of the
entity set in the relationship set. A maximum value of 1 indicates that tlie entity par-
ticipates in at most one relationship, while a maximum value * indicates no-limit.
Note that a label 1..x on an edge is equivalent to a double line.

For example, consider Figure 6.14. The edge betweenloan and.borrower has a car-
dinality constraint of 1..1, meaning the minimum and the maximum cardinality are
both 1. That is, each loan must have exactly one associated customer. The limii 0..x
on the edge from customer to borrower indicates that a customer can have zero or
more loans. Thus, the relationship borrower is one-to-many from customer to loan, and.
further the participation of loan inborrower is total.

Figure 6.14 Cardinality limits on relationship sets.
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It is easy to misinterpret the 0..* on the edge between customer andborrower, anrd
think that the relationship borrower is many-to-one from customer to loan-this is ex-
actly the reverse of the correct interpretation.

If both edges from a binary relationship have a maximum value of 1, the relation-
ship is one-to-one. If we had specified a cardinality limit of 1..'r on the edge between
customer andborrower, we would be saying that each customer must have at least one
loan.

5.5 Entity-Relqtionship Design lssues
The notions of an entity set and a relationship set are not precise, and it is possible

to define a set of entities and the relationships among them in a number of differ-

ent ways. In this section, we examine basic issues in the design of an E-R database

schema. Section 6.7.4 covers the design process in further detail.

6.5.1 Use of Entity Sets versus Attributes
Consider the entity set employee with attributes employeejd, employee-name, and tele-
phone-number.It can easily be argued that a telephone is an entity in its own right
with attributes telephonenumber and locatiou the location may be the office or home
where the telephone is located, with mobile (cell) phones perhaps represented by the
value "mobile." If we take this point of view, we must redefinethe employee entity set

o The employee entity set with attributes employee-id and employeettame

o The telephone entity set with attributes telephonenumber andlocation

o The relationship set emp-telephone, denoting the association between employ-
ees and the telephones that they have

These alternatives are shown in Figure 6.15.
What, then, is the main difference between these two definitions of an employee?

Treating a telephone as an attribute telephone-number implies that employees have
precisely one telephone number each. Treating a telephone as an entity telephlne Per-
mits employees to have several telephone numbers (including zero) associated with
them. However, we could instead easily define telephonetumber as a multivalued at-
tribute to allow multiple telephones per employee.

The main difference then is that treating a telephone as an entity better models a
situation where one may want to keep extra information about a telephone, such as
its location, or its type (mobile, video phone, or plain old telephone), or all who share
the telephone. Thus, treating telephone as an entity is more general than treating it
as an attribute and is appropriate when the generality may be useful.

In contrast, it would not be appropriate to treat the attribute employee-nnme as an
entity; it is difficult to argue Ihat employee-name is an entity in its own right (in contrast
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(b)

Figure 6.15 Alternatives for employee and telephone.

to the telephone). Thus, it is appropriate to have employee-name as an attribute of the
employee entity set.

TWo natural questions thus arise: What constitutes an attribute, and what con-
stitutes an entity set? Unfortunately, there are no simple answers. The distinctions
mainly depend on the structure of the real-world enterprise being modeled, and on
the semantics associated with the attribute in question.

A common mistake is to use the primary key of an entity set as an attribute of an-
other entity set, instead of using a relationship. For example, it is incorrect to model
customer-id as an attribute of loan even if each loan had only one customer. The rela-
tionship borrower is the correct way to represent the connection between loans and
customets, since it makes their connection explicit, rather than implicit via an at-
tribute.

Another related mistake that people sometimes make is to designate the primary-
key attributes of the related entity sets as attributes of the relationship set. Fbr exam-
pl-e,Ioan-number (the primary-key attributes of loan) and. customer_id (ihe primary key
of customer) should not appear as attributes of the relationship borrower.This shouli

(a)



Chapter 6 Database Design and the E-R Model

Figure 6.16 loan as a relationship set.

not be done since the primary-key attributes are already implicit in the relationship
set.3

6.5.2 Use of Entity Sets versus Relqtionship Sets

It is not always clear whether an object is best expressed by an entity set or a rela-
tionship set. In Section 6.2.7, we assumed that a bank loan is modeled as an entity.
An alternative is to model a loan not as an entity, but rather as a relationship between
customers and branches, with lonn-number and amount as descriptive attributes, as
shown in Figure 6.1,6.Each loan is represented by a relationship between a customer
and a branch.

If every loan is held by exactly one customer and is associated with exactly one
branch, we may find satisfactory the design where a loan is represented as a rela-
tionship. However, with this design, we cannot represent conveniently a situation in
which several customers hold a loan jointly. To handle such a situation, we must de-
fine a separate relationship for each holder of the joint loan. Then, we must replicate
the values for the descriptive attributes lonn-number and amount in each such relation-
ship. Each such relationship must, of course, have the same value for the descriptive
attributes loan-number and amount.

TWo problems arise as a result of the replication: (1) the data are stored multiple
times, wasting storage space, and (2) updates potentially leave the data in an incon-
sistent state, where the values differ in two relationships for attributes that are sup-
posed to have the same value. The issue of how to avoid such replication is treated
formally by normalization theory, discussed in Chapter 7.

The problem of replication of the attributes loan-number and amount is absent in
the original design of Section 6.4, because there loan is an entity set.

3. When we create a relation schema from the E-R schema, the attributes may appear in a table created

from the borrower relationship set, as we shali see later; however, they should not aPPear in the borrower

relationship set.



- .One possible guideline in determining whether to use an entity set or a relation-
ship set is to designate a relationship set to describe an action that occurs between
entities. This approach can also be useful in deciding whether certain attributes may
be more appropriately expressed as relationships.

6.5.3 Binory versus n-sry Relqtionship Sets
Relationships in databases are often binary. Some relationships that appear to be
nonbinary could actually be better represented by several biniry relationships. For
instance, one could create a ternary relationship parent, relating a child to his/her
mother and father. However, such a relationship could also be represented by two
binary relationships, mother and father, relating a child to his/her mother and iather
separately. Using the two relationships mother and father provides us a record of a
child's mother, even if we are not aware of the father's identity; a null value would
be required if the ternary relationship parent is used. Using binjry relationship sets is
preferable in this case.

In fact, it is always possible to replace a nonbinary (n-ar!, for n > 2) relationship
set by a number of distinct binary relationship sets. For simplicity, consider the ab-
stract ternary (n : 3) relationship set R, relating entity sets A, B, and, c. we replace
the relationship set R by an entity set E, and create three relationship sets u, 

"lio*.,in Figure 6.17:

o RA, relating E and A

o RB, relating E and B

o Rc, reiating E andC

If the relationship set /? had any attributes, these are assigned to entity set.E; further,
a s-pecial identifying attribute is created for E (since it must be possibll to distinguish
different entities in an entity set on the basis of their attribute values). For each-rela-
tionship (or,bt, ci) in the relationship set .R, we create a new entity e2 in the entity set
-8. Then, in each of the three new relationship sets, we insert a relationship as follows:

o (e.;, a) in Ra

6.5 Entity-Relationship Design Issues

(a) 16)

Figure6-17 Ternary relationship versus three binary relationships.
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o  (e i ,b )  in  R6

o (ei,c) in Rc

We can generalize this process in a straightforward manner to n-ary relationship
sets. Thus, conceptually, we can restrict the E-R model to include only binary rela-
tionship sets. However, this restriction is not always desirable.

r An identifying attribute may have to be created for the entity set created to
represent the relationship set. This attribute, along with the extra relationship
sets required, increases the complexity of the design and (as we shall see in
Section 6.9) overall storage requirements'

c An-ary relationship set shows more clearly that several entities participate in
a single relationshiP.

o There may not be a way to translate constraints on the ternary relationship
into constraints on the binary relationships. For example, consider a constraint
that says that -R is many-to-one from A, B to C; that is, each pair of entities
from A and B is associated with at most one C entity. This constraint cannot
be expressed by using cardinality constraints on the relationship sets Rt, Rs,

and Rc.

Consider the relationship set works-on in Section 6.2.2, relating employee, branch,
and job. We cannot directly spllt raorkstn into binary relationships between employee
andbranch and between employee and job.If we did so, we would be able to record
thatlones is a manager and an auditor and thatJones works at Perryridge and Dor,rm-
town; however, we would not be able to record that Jones is a manager at Perryridge
and an auditor at Downtown, but is not an auditor at Perryridge or a manager at
Downtown.

The relationship set rnorks-on can be split into binary relationships by creating a
new entity set as described above. However, doing so would not be very natural.

6.5.4 Plqcement of Relqtionship Attributes

The cardinality ratio of a relationship can affect the placement of relationship at-
tributes. Thus, attributes of one-to-one or one-to-many relationship sets can be as-

sociated with one of the participating entity sets, rather than with the relationship
set. For instance, let us specify that depositor is a one-to-many relationship set such
that one customer may have several accounts, but each account is held by only one

customer. In this case, the attribute sccess-date, which specifies when the customer last
accessed that account, could be associated with lhe account entity set, as Figure 6.18
depicts; to keep the figure simple, only some of the attributes of the two entity sets
are shown. Since each account entity participates in a relationship with at most one

instance of customer, making this attribute designation would have the same meaning

as would placing accessiate with the depositor relationship set. Attributes of a one-to-

many relationship set can be repositioned to only the entity set on the "many" side of
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account (account _number, access_dste)
cus t orner ( cus t omer _name)

depositor

Figure 5.18 Accessiste as attribute of the accounf entity set.

the relationship. For 
9ne-to-on9 relationship sets, on the other hand, the relationship

attribute can be associated with either one of the participating entities
The design decision of where to place descriptive attribuies in such cases-as a

relationship or entity attribute-should reflect the characteristics of the enterprise
being modeled. The designer may choose to retain accessiate as an attribute of ieaos-
itor to express explicitly that an access occurs at the point of interaction between the
customer and nccount entity sets.

The choice of attribute placement is more clear-cut for many-to-many relationship
sets. Returning to our example, let us specify the perhaps more realistic case that
depositor is a many-to-many_relationship set expresiing that a customer may have
one or more accounts, and that an account can be held by one or more customers.
If we are to express the date on which a specific customer last accessed a specific
account, nccess-date must be an attribute of the deposifor relationship set, rather than
either one of the participating entities. If accessiate were an attribute of account, for
instance, we could not determine which customer made the most recent access to a
joint account. When an attribute is determined by the combination of participating
entity sets, rather than by either entity separately, that attribute must 6" utroiiateJ
with the many-to-many relationship set. Figure 6.3 depicts the placement of access
-dqte-as a relationship attribute; again, to keep the figure simple, only some of the
attributes of the two entity sets are shown.

6.6 Weqk Entity Sets
Anentity set may not have sufficient attributes to form a primary key. Such an entity
set is termed a weak entity set. An entity set that has a primary key is termed a stron!
entity set.

As an illustration, consider the entity set payment, which has the three attributes:
payment-number, payment-date, and payment-amount. payment numbers are typically
sequential numbers, starting from 1, generated separately for each loatr. Th.rs, ui-
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though each paymenl entity is distinct, payments for different loans may share the
same payment number. Thus, this entity set does not have a primary key; it is a weak
entity set.

For a weak entity set to be meaningful, it must be associated with another entity
set, called the identifying or owner entity set. Every weak entity must be associated
with an identifying entity; that is, the weak entity set is said to be existence depen-
dent on the identifying entity set. The identifying entity set is said to own the weak
entity set that it identifies. The relationship associating the weak entity set with the
identifying entity set is called the identifying relationship. The identifying relation-
ship is many-to-one from the weak entity set to the identifying entity set, and the
participation of the weak entity set in the relationship is total.- 

In our example, the identifying entity set for payment is loan, and a relationship
loanqaymenf that associates paymenf entities with their correspondingloan entities is
the identifying relationshiP.

Although a weak entity set does not have a primary key, we nevertheless need a
means of distinguishing among all those entities in the weak entity set that depend
on one particular strong entity. The discriminator of a weak entity set is a set of at-
tributeJthat allows this distinction to be made. For example, the discriminator of the
weak entity setpayment is the attributepayment-nLLmber, since, for each loan, apay-
ment number uniquely identifies one single payment for that loan. The discriminator
of a weak entity set is also called the partial key of the entity set.

The primary key of a weak entity set is formed by the primary key of the iden-
tifying entity set, plus the weak entity set's discriminator. In the case of the entity
set pnyment, its primary key is {loan-number, payment-number}, where loanttumber is
the primary key of the identifying entity set, namely loan, andpaymentstumber distin-
guishes payment entities within the same loan.

The identifying relationship set should have no descriptive attributes, since any
required attributes can be associated with the weak entity set (see the discussion of
moving relationship set attributes to participating entity sets in Section 6.3.1).

A weak entity set can participate in relationships other than the identifying re-
lationship. For instance, the paymenf entity could participate in a relationship with

the account entity set, identifying the account from which the payment was made. A

weak entity set may participate as owner in an identifying relationship with another
weak entity set. It is also possible to have a weak entity set with more than one iden-
tifying entity set. A particular weak entity would then be identified by a combination
of entities, one from each identifying entity set. The primary key of the weak entity
set would consist of the union of the primary keys of the identifying entity sets, plus
the discriminator of the weak entity set.

In E-R diagrams, a doubly outlined box indicates a weak entity set, and a dou-
bly outlined diamond indicates the corresponding identifying relationship. In F18-
uie 6.79, the weak entity set payment depends on the strong entity set lonn via the

relationship set lo anp ayment.
The figure also illustrates the use of double lines to indicate total participation-the

participalion of the (weak) entity setpayment in the relationship loanqayment is total,

meaning that every payment must be related vialoanpayment to some loan. Finally,
the arrow fromloanqayment to loan indicates that each payment is for a single loan'
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Figure 6.19 E-R diagram with a weak entity set.

The discriminator of a weak entity set also is underlined, but with a dashed, rather
than a solid, line.

In some cases, the database designer may choose to express a weak entity set as
a multivalued composite attribute of the owner entity set. ln our example, this alter-
native would require,that the entity setlosn have a multivalued, compisite attribute
payment, consisting of payment:number, paymentlate, andpayment_nmount.A weak en-
tity set may be more aPPropriately modeled as an attribute if it participates in only
the identifying relationship, and if it has few attributes. Converseiy, a weak entity set
representation will more aptly model a situation where the set participates in rela-
tionships other than the identifying relationship, and where the weak intity set has
several attributes.

As -another example of an entity set that can be modeled as a weak entity set,
consider offerings of a course at a university. The same course may be offerld in
different semesters, and within a semester there may be several sections for the same
course. Thus we can create_a_weak entity set course-affering, existence dependent on
course; different offerings of the same course are identifiedly a semester and, a section
-number, which form a discriminator but not a primary key.

5.7 Extended E-R Feqtures
Although the basic E-R concepts can model most database features, some aspects of a
database may be more aptly expressed by certain extensions to the basic n-R model.
In this section, we discuss the extended E-R features of specialization, generalization,
higher- and lower-level entity sets, attribute inheritancel and aggregation.

6.7.1 Speciolizqtion
An entity set may include subgroupings of entities that are distinct in some way
from other entities in the set. For instance, a subset of entities within an entity set
may have attributes that are not shared by all the entities in the entity set. The e-n
model provides a means for representing these distinctive entity groupings.
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As an example, consider an entity set person, with attributes person-iL name, street,
and city. A person may be further classified as one of the following:

o customer

t employee

Each of these person types is described by a set of attributes that includes all the
attributes of entity set person plus possibly additional attributes. For example/ c't'ts-
tomer entrties may be described further by an attribute credittating, whereas employee
entities may be described further by the attribute salary. The process of designating
subgroupings within an entity set is called specialization. The specialization of per-
son allows us to distinguish among persons according to whether they are employees
or customers: in general, a person could be an employee, a customer, both, or neither.

As another example, suppose the bank wishes to divide accounts into two cat-
egories, checking account and savings account. Savings accounts need a minimum
bilance, but the bank may set interest rates differently for different customers, offer-
ing better rates to favored customers. Checking accounts have a fixed interest rate,

but offer an overdraft facility; the overdraft amount on a checking account must be
recorded. Each of these account types is described by a set of attributes that includes
all the attributes of the entity set account plus additional attributes'

The bank could create two specializations of account, namely saaings-nccount and
checking-nccount. Aswe saw earlier, account entities are described by the attrlbutes ac-

count:number and. balance. The entity set saaings-nccount would have all the attributes
of sccount and an additional attribute interest-rate. The entity set checking-nccount would
have all the attributes of nccount, and an additional attribute oaerdraft-nmount.

We can apply specialization repeatedly to refine a design scheme. For instance,
bank employees may be further classified as one of the following:

c officer

t teller

o secretaty

Each of these employee types is described by a set of attributes that includes all the
attributes of entity set employee plus additional attributes. For example, officer entities
may be described further by the attribute office-number, teller entlties by the attributes
staiion-number and.hoursqer-week, and secretary entities by the attribute hoursqer:week.
Further, secretary entities may participate in a relationship secretaryJor, which identi-
fies which employees are assisted by a secretary.

An entity set may be specialized by more than one distinguishing feature. In our

example, the distinguishing feature among employee entities is the job the employee
perfoims. Another, coexistent, specialization could be based on whether the person
is a temporary (limited-term) employee or a permanent employee, resulting in the

entity sels temporary-employee and permanenttmployee. When more than one special-
ization is formed on an entity set, a particular entity may belong to multiple spe-
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Figure 6.20 Specialization and generalization.

cializations. For instance, a given employee may be a temporary employee who is a
secretary.

In terms of an E-R dlagrgm, speciarization is depicte d by a trinngre component
labeled ISA, as Figure 6.20 shows. The label ISA stands for ..is a" andieprer"i-rtr, fo1"
example, that a customer "is a" person. The ISA relationship may also be rieferred to as
a superclass-subclass relationship. Higher- and lower-levet entity sets are depicted
as regular entity sets-that is, as rectangles containing the name of the entity set.

6.7.2 Generolizqtion
The refinement from an-initial entity set into successive levels of entity subgroupings
represents a top-down design process in which distinctions are made explicit. The d"e-
sign process may also proceed in a bottom-up manner, in which multiple entity sets
are synthesized into a higher{evel entity set on the basis of common features. The
database designer may have first identiii ed a customer entity set with the attributes
customer-id, customer-name, a$tomer-street, customer-city, and.-credit_rating, and an em-
ployee entity set with the attribute s employee-id, employee_name, employee_sireet, employee
-city, and employ ee_salary.
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There are similarities between the customer entity set and the employee entity set
in the sense that they have several attributes that are conceptually the same across
the two entity sets: namely, the identifier, name, street, and city attributes. This com-
monality can be expressed by generalization, which is a containment relationship
that exiits between a higher-leael entity set and one or more lower-leael entity sets. In

our example , person is the higher-level entity set and customer and employee are lower-

level entity sets. In this case, attributes that are conceptually the same had different
names in the two lower-level entity sets. To create a generalization, the attributes
must be given a common name and represented with the higher-Ievel entity person.
We can uie the attribute names person-id, nnme, street, and citv, as we saw in the ex-
ample in Section 6.7.1.

Higher- and lower-level entity sets also may be designated by the terms superclass
and subclass, respectively. The person entity set is the superclass of the customer and

employee subclasses.
For all practical purposes, generalization is a simple inversion of specialization.

We will apply both processes, in combination, in the course of designing the E-R

schema foi in enterprise. In terms of the E-R diagram itself, we do not distinguish be-

tween specialization and generalization. New levels of entity representation wili be

distinguished (specialization) or synthesized (generalization) as the design schema

comes to express fully the database application and the user requirements of the

database. Differences in the two approaches may be characterizedby their starting

point and overall goal.
Specialization stems from a single entity set; it emphasizes differences among enti-

ties within the set by creating distinct lower-Ievel entity sets. These lower-level entity

sets may have attributes, or may participate in relationships, that do not apply to all

the entiiies in the higher-level entity set. Indeed, the reason a designer applies special-

ization is to represent such distinctive features. lf customer and employee neither have

attributes thal person entities do not have nor participate in different relationships

than those in which person entities participate, there would be no need to specialize

the person entity set.
Generalization proceeds from the recognition that a number of entity sets share

some common features (namely, they are described by the same attributes and par-

ticipate in the same relationship sets). On the basis of their commonalities, generaliza-

tion synthesizes these entity sets into a single, higher-level entity set. Generalization

is used to emphasize the similarities among lower-level entity sets and to,hide the

differences; itilso permits an economy of representation in that shared attributes are

not repeated.

6.7.3 Attribute lnheritqnce

A crucial property of the higher- and lower-level entities created by specialjzation

and generiliiation is attribute inheritance. The attributes of the higher-level entity

sets ire said to be inherited by the lower-level entity sets. For example, customer and

employee inherit the attributes of person.Thus, customer is described by its nnme, street,

u-1a itty attributes, and additionally a customerid attribute; employee is described by

its nsme, street, and citV attributes, and additiona\ employee-id and salary attributes.
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A lower-levei entity set (or subclass) also inherits participation in the relationship
sets in which its higher-level entity (or superclass) participates. The officer, teller, and
secretary entity sets can participate in the woilcs-for relationship set, since the super-
class employee participates in the worksJor relationship. Attribute inheritance appties
through all tiers of lower-level entity sets. The above entity sets can participate in any
relationships in which the person entity set participates.

Whether a given portion of an E-R model was arrived at by specialization or gen-
eralization, the outcome is basically the same:

o A higher-level entity set with attributes and relationships that apply to all of
its lower-level entity sets

o Lower-level entity sets with distinctive features that apply only within a par-
ticular lower-level entity set

In what follows, although we often refer to only generalizatron, the properties that
we discuss belong fully to both processes.

Figure 6.20 depicts a hierarchy of entity sets. In the figure, employee is a lower-level
entity set of person and a higher-level entity set of the officer, teller, and seuetary entity
sets. In a hierarchy, a given entity set may be involved as a lower-level entity set in
only one ISA relationship; that is, entity sets in this diagram have only single inher-
itance- If an entity set is a lower-level entity set in more than one ISA relationship,
then the entity set has multiple inheritance, and the resulting structure is said to be
a Isttice.

6.7.4 Constrqints on Generqlizqtions
To model an enterprise more accurately, the database designer may choose to place
certain constraints on a particular generalization. One type of constraint involves
determining which entities can be members of a given lower-level entity set. Such
membership may be one of the following:

o Condition-defined. In condition-defined lower-level entity sets, membership
is evaluated on the basis of whether or not an entity satisfies an explicit condi-
tion or predicate. For example, assume that the higher-level entity set account
has the attribute account-type. AII account entities are evaluated on the defin-
ing account-type attribute. Only those entities that satisfy the condition account
-type = "savings account" are allowed to belong to the lower-level entity set
saaings-account. All entities that satisfy the condition account-ty1te = "checking
account" are included in checking-account. Since all the lower-level entities are
evaluated on the basis of the same attribute (in this case, on account-type), this
type of generalization is said to be attribute-defined.

r User-defined. User-defined lower-level entity sets are not constrained by a
membership condition; rather, the database user assigns entities to a given
entity set. For instance, let us assume that, after three months of employment,
bank employees are assigned to one of four work teams. We therefore repre-
sent the teams as four lower-level entity sets of the higher-Ievelemployee eitity
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set. A given employee is not assigned to a specific team entity automatically
on the basis of an explicit defining condition. Instead, the user in charge of this
decision makes the team assignment on an individual basis. The assignment
is implemented by an operation that adds an entity to an entity set.

A second type of constraint relates to whether or not entities may belong to more
than one lower-level entity set within a single generalization. The lower-level entity
sets may be one of the following:

o Disjoint. A disjointness constraint requires that an entity belong to no more
than one lower-level entity set. In our example, an account entity can satisfy
only one condition for the account-type attribute; an entity can be either a sav-
ings account or a checking account, but cannot be both.

o Overlapping. In oaerlapping generalizations, the same entity may belong to
more than one lower-level entity set within a single generalization. For an
illustration, consider the employee work team example, and assume that cer-
tain managers participate in more than one work team. A given employee may
therefore appear in more than one of the team entity sets that are lower-level
entity sets of employee. Thus, the generalization is overlapping.

As another example, suppose generalization applied to entity sets customer
and employee leads to a higher-level entity set person. The generalization is
overlapping if an employee can also be a customer.

Lower-level entity overlap is the default case; a disjointness constraint must be placed
explicitly on a generalization (or specialization). We can note a disjointedness con-
straint in an E-R diagram by adding the word disjoint next to the triangle symbol.

A final constraint, the completeness constraint on a generalization or specializa-
tion, specifies whether or not an entity in the higher-level entity set must belong to at
least one of the lower-level entity sets within the generalizatic:n/specialization. This
constraint may be one of the following:

o Total generalization or specialization. Each higher-level entity must belong
to a lower-Ievel entitY set.

o Partial generalization or specialization. Some higher-level entities may not
belong to any lower-level entity set.

Partial generalization is the default. We can specify total generalization in an E-R dia-
gram by using a double line to connect the box representing the higher-level entity set
to the triangle symbol. (This notation is similar to the notation for total participation
in a relationship.)

Tine account generalization is total: All account entities must be either a savings
account or a checking account. Because the higher-level entity set arrived at through
generalization is generally composed of only those entities in the lower-Ievel entity
sets, the completeness constraint for a generalized higher-level entity set is usually
total. When the generalization is partial, a higher-level entity is not constrained to
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apPear in a lower-level entity set. The work team entity sets illustrate a partial spe-
cialization. Since employees are assigned to a team only after three monthr on ihe
job, some employee entities may not be members of any of the lower-level team entity
sets.

we may characterize the team entity sets more fully as a partial, overlapping spe-
cialization of employee. The generalization of checking-nccount and saaings-nccount into
account is a total, disjoint generalization. The completeness and disjointness con-
straints, however, do not depend on each other. Constraint patterns may also be
partial-disjoint and total-overlapping.

We can see that certain insertion and deletion requirements follow from the con-
straints that apply to a given generalization or specialization. For instance, when a
total completeness constraint is in place, an entity inserted into a higher-level en-
tity set must also be inserted into at least one of the lower-level entity sets. With a
condition-defined constraint, all higher-level entities that satisfy the condition must
be inserted into that lower-level entity set. Finally, an entity that is deleted from a
higher-level entity set also is deleted from all the associated lower-level entity sets to
which it belongs.

5.7.5 Aggregotion
One limitation of the E-R model is that it cannot express relationships among rela-
tionships. To illustrate the need for such a construct, consider the ternary relationship
rnorks-on, which we saw earliel, between a employee, branch, and job (see Figure 6.12).
Now, suppose we want to record managers for tasks performed by an employee at a
branch; that is, we want to record managers for (employee, branch,iob) combinations.
Let us assume that there is an entity set manager.

Figure 5.21 E-R diagram with redundant relationships.
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One alternative for representing this relationship is to create a quaternary relation-

shrip managesbetweenemployee,branch, job, andmnnager. (A quaternary relationship is
required-a binary relationship between manager and employee would not permit us
to represent which (branch, job) combinations of an employee are managed by which
manager.) Using the basic E-R modeling constructs, we obtain the E-R diagram of
Figure 6.21.. (We have omitted the attributes of the entity sets, for simplicity.)

It appears that the relationship sets works-on and manages can be combined into

one single relationship set. Nevertheless, we should not combine them into a single
relationship, since some employee,branch, job combinations may not have a manager.

There is redundant information in the resultant figure, however, since every em-
ployee, brnnch, job combination in manages is also in works-on. If the manager were a

value rather than a manager entity, we could instead make manager a multivalued at-
tribute of the relationship works-on.But doing so makes it more difficult (logically as

well as in execution cost) to find, for example, employee-branch-job triples for which

a manager is responsible. Since the manager is a manager entity, this alternative is

ruled out in any case.
The best way to model a situation such as the one just described is to use aggrega-

tion. Aggregation is an abstraction through which relationships are treated as higher-

level entities. Thus, for our example, we regard the relationship set workstn (relating

the entity sets employee, brnnch, and job) as a higher-level entity set called works-on.

Such an entity set is treated in the same manner as is any other entity set. We can

then create a binary relationship mfinages between works-an and manager to represent

who manages what tasks. Figure 6.22 shows a notation for aggregation commonly

used to represent this situation.

Figure6.22 E-R diagram with aggregation.
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6.7.6 Alternqtive E-R Notqtions
Figure 6.23 summarizes the set of symbols we have used in E-R diagrams. There is
no universal standard for E-R diagram notation, and different books and E-R diagram
software use different notations.

Figure 6.24 indicates some of the alternative notations that are widely used. An
entity set may be represented as a box with the name outside, and the attributes
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Figure 6.23 Symbols used in the E-R notation.
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entity set E with
attributes 1.I,42, A3
and primary keyAl

one-to-one
relationship

many-to-one
relationship

-'@'mm * ffi

ffi+ffi
Figure6.24 Alternative E-Rnotations.

listed one below the other within the box. The primary key attributes are indicated
by listing them at the top, with a line separating them from the other attributes.

Cardinality constraints can be indicated in several different ways, as Frgure 6.24
shows. The labels x and 1 on the edges out of the relationship are sometimes used for
depicting many-to-many, one-to-one, and many-to-one relationships, as the figure
shows. The case of one-to-many is symmetric to many-to-one, and is not shown. In
another alternative notation in the figure, relationship sets are represented by lines
between entity sets, without diamonds; only binary relationships can be modeled
thus. Cardinality constraints in such a notation are shown by "crow's-foot" notation,
as in the figure.

Unfortunately, there is no one standard E-R notation. The notation we use in this
book, with boxes, diamonds, and ellipses is called Chen's notation, and was used
by Chen in his paper that introduced the notion of E-R modeling. The U.S. National
Institute for Standards and Technology defined a standard called IDEF1X in1.993,that
uses the crow's-foot notation. IDEF1X also includes a variety of other notations that
we have not shown, including vertical bars on the relationship edge to denote total
participation and hollow circles to denote partial participation. There are a variety of
tools for constructing E-R diagrams, each of which has its own notational variants.
See the references in the bibliographic notes for more information.

5.8 Dqtqbqse Design for Bonking Enterprise
We now look at the database-design requirements of a banking enterprise in more
detail, and develop a mole realistic, but also more complicated, design than what

we have seen in our earlier examples. However, we do not attempt to model every
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aspect of the database design for a bank; we consider only a few aspects, in order to
illustrate the process of database design.

We apply the two initial database-design phases, namely the gathering of data re-
quirements and the design of the conceptual schema, to our banking enterprise exam-
ple. We employ the E-R data model to translate user requirements into a ionceptual-
design schema that is depicted as an E-R diagram.

Ultimately, the result of the r-n design process is a relational database schema. In
Section 6.9, we consider the process of generating the relational design given an E-R
design.

Before we start on the banking enterprise database design, we briefly outline the
E-R design alternatives that a database designer may choose from.

5.8.1 E-R Design Alternqtives
The E-R data model gives us much flexibility in designing a database schema to
model a given enterprise. we suggest below how a database designer may select
from the wide range of alternatives. Among the designer's decisions are:

o Whether to use an attribute or an entity set to represent an obiect (discussed
earlier in Section 6.5.1)

o Whether a real-world concept is expressed more accurately by an entity set or
by a relationship set (Section 6.5.2)

o Whether to use a ternary relationship or a pair of binary relationships (Sec-
tion 6.5.3)

o whether to use a strong or a weak entity set (section 6.6); a strong entity set
and its dependent weak entity sets may be regarded as a single "object" in the
database, since weak entities are existence dependent on a strong entity

o Whether using generalization (Section 6.7.2) is appropriate; generalization, or
a hierarchy of ISA relationships, contributes to modularlty by allowing com-
mon attributes of similar entity sets to be represented in one place in an E-R
diagram

o whether using aggregation (section 6.7.s) is appropriate; aggregation groups
a part of an E-R diagram into a single entity set, allowing us to treat the ag-
gregate entity set as a single unit without concern for the details of its internal
structure.

We shall see that the database designer needs a good understanding of the enter-
prise being modeled to make the various design decisions required.

6.8.2 Dqto Requirements for the Bqnk Dqtqbqse
The initial specification of user requirements may be based on interviews with the
database users and on the designer's own analysis of the enterprise. The description



Chapter 6 Database Design and the E-R Model

that arises from this design phase serves as the basis for specifying the conceptual

structure of the database. Here are the major characteristics of the banking enterprise.

o The bank is organized into branches. Each branch is located in a particular

city and is identified by a unique name. The bank monitors the assets of each

branch.

r Bank customers are identifie dby their customer-id values. The bank stores each

customer's name and the street and city where the customer lives. Customers

may have accounts and can take out loans. A customer may be associated with

a particular banker, who may act as a loan officer or personal banker for that

customer.

o Bank employees are identified by their employee-id values. The bank adminis-

tration stores the name and telephone number of each employee, the names

of the employee's dependents, and the employee-id number of the employee's

manager. The bank also keeps track of the employee's start date and, thus,

length of employment.

o The bank offers two types of accounts-savings and checking accounts. Ac-

counts can be held by more than one customel, and a customer can have more

than one account. Each account is assigned a unique account number. The

bank maintains a record of each account's balance and the most recent date

on which the account was accessed by each customer holding the account. In

addition, each savings account has an interest rate and overdrafts are recorded

for each checking account.

o A loan originates at a particular branch and can be held by one or more cus-

tomers. A loan is identified by a unique loan number. For each loan, the bank

keeps track of the loan amount and the loan payments. Although a loan pay-

ment number does not uniquely identify a particular payment among those

for all the bank's loans, a payment number does identify a particular payment

for a specific loan. The date and amount are recorded for each payment.

In a real banking enterprise, the bank would keep track of deposits and with-

drawals from savings and checking accounts, just as it keeps track of payments to

Ioan accounts. Since the modeling requirements for that tracking are similar, and we

would like to keep our example application small, we do not keep track of such de-

posits and withdrawals in our model.

6.8.3 Entity Sets for the Bqnk Dqtqbqse

Our specification of data requirements serves as the starting point for constructing a

conceptual schema for the database. From the characteristics listed in Section 6.8.2,
we begin to identify entity sets and their attributes:

o The branch entity set, with attributesbranch-name,brnnch-city, and assets.
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o The customer entity set, with attributes customer-id, customerstame, c'ystotner
-street, and customer-city. A possible additional attribute is banker-name.

o The employee entity set, with attributes employee,id, employee_name, telephone
-number, salary, and manager. Additional descriptive features are the multi-
valued attribute dependent-name, the base attribute startiate, and the derived
attribute empl oy ment -len gth.

o TWo account entity sets-saaings_nccount and checking_nccount-withthe com-
mon attributes of account-number andbalance; in addition, saaings-nccounthas
the attribute interest:rate and checkingnccount hasthe attribute ooerdraft-nmount.

o The loan entity set, with the attributes loan-number, amount, and originating
-branch.

o The weak entity set loa nqayment, with attribute s payment-number , payment-date,
and payment-amount.

6.8.4 Relqtionship Sets for the Bqnk Dqtqbqse
We now return to the rudimentary design scheme of Section 6.8.3 and specify the
following relationship sets and mapping cardinalities. In the process, we ilso iefine
some of the decisions we made earlier regarding attributes of entity sets.

o borrorper, a many-to-many relationship set between customer andlosn.

o loan-branch, a many-to-one relationship set that indicates in which branch a
loan originated. Note that this relationship set replaces the attribute originating
-branch of the entity setloan.

o loanqayment, a one-to-many relationship from loan to payment, which docu-
ments that a payment is made on a loan.

o depositor, with relationship attribute sccessiate, a many-to-many relationship
set between customer and nccount, indicating that a customer owns an account.

o cust-banker,with relationship attribute type, amany-to-one relationship set ex-
pressing that a customer can be advised by a bank employee, and that a bank
employee can advise one or more customers. Note that this relationship set
has replaced the attribute banker-name of the entity s,et customer

o works-for, a relationship set between employee entities with role indicators man-
nger and worker; the mapping cardinalities express that an employee works
for only one manager and that a manager supervises one or more employees.
Note that this relationship set has replaced tine manager attribute of employee.

6.8.5 E-R Diogrqm for the Bqnk Dotqbqse
Drawing on the discussions in section 6.8.4, we now present the completed E-R dia-
gram for our example banking enterprise. Figure 6.25 depicts the full representation
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Figure 6.25 E-R diagram for a banking enterprise.

of a conceptual model of a bank, expressed in terms of E-R concepts. The diagram in-

cludes the entity sets, attributes, relationship sets, and mapping cardinalities arrived

at through the design processes of Sections 6.8.2 and 6.8.3, and refined in Section

6.8.4.
The E-R diagram for our simplified view of a banking enterprise is already quite

complex. E-R diagrams for realistic enterprises cannot be drawn on a single page, and

must be split up into multiple parts. Entities may need to appear multiple times, in

different parts of the diagram. The attributes of the entity are shown in one occur-

rence of the entity (preferably the first occurrence), and all other occurrences of the

entity are shown without any attributes'
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5.9 Reduction to Relqtionql Schemqs
We can represent a database that conforms to an E-R database schema by a collection
of relation schemas. For each entity set and for each relationship set in ihe database,
there is a unique relation schema to which we assign the name of the corresponding
entity set or relationship set.

Both the E-R model and the relational database model are abstract, logical repre-
sentations of real-world enterprises. Because the two models employ similar deiign
principles, we can convert an E-R design into a relational design.

In this section, we describe how an E-R schema can be represented by relation
schemas and how constraints arising from the E-R design can be -upp"a to con-
straints on a relation schemas.

6.9.1 Representqtion of Strong Entity Sets
Let E be a strong entity set with descriptive attribut es a1, &2, . . . t &n. we represent
this entity by a schema called E with n distinct attributes. Each tuple in a relaiion on
this schema corresponds to one entity of the entity set E. (We desciibe how to handle
composite and multivalued attributes later, in Section 6.9.4.)

For schemas derived from strong entity sets, the primary key of the entity set
serves as the primary key of the resulting schema. This follows directly from the
fact that each tuple corresponds to a specific entity in the entity set.

As an illustration, consider the entity setloan of the E-R diagram in Figure 6.2. This
entity set has two attributes: loan-number and amount. We represent this entitv set bv
a schema called loan, with two attributes:

Io an : (loqn_numb er, amount)

Note that stnce loan-number is the primary key of the entity set, it is also the primary
key of the relation schema.

A relation on this schema is shown in Figure 6.26. The tuple

(L-17,7000)

L-11 | 900
L-74 | 1500
L-15 i 1SOO
L-76 |  1300
L-17 I 1000
L-23 | ZOOO
L-93 I 500

Figure 6.25 The loan table.
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means that loan number L-17 has a loan amount of $1000. We can add a new entity to
the database by inserting a tuple into the corresponding relation. We can also delete
or modify entities by modifying the corresponding tuple.

6.9.2 Representqtion of Weqk Entity Sets

Let A be a weak entity set with attributes o1, a2, . . . ,a*.Let B be the strong entity set
on which A depends. Let the primary key of B consist of attributes br, bz,. . . , b.. We
represent the entity set Aby a relation schema called A with one attribute for each
member of the set:

{ o r , o r , .  .  . , a - }  U  { b 1 , b 2 , . .  . , b n }

For schemas derived from a weak entity set the combination of the primary key
of the strong entity set and the discriminator of the weak entity set serves as the
primary key of the schema. In addition to creating a primary key, we also create a
foreign-key constraint on the relation A, specifying that the attributes b1, b2, . . . ,bn
reference the primary key of the relation B. The foreign-key constraint ensures that
for each tuple representing a weak entity, there is a corresponding tuple representing
the corresponding strong entity.

As an illustration, consider the entity setpayment in the E-R diagram of Figure 6.19.
Thisentitysethasthreeattributes: pnymentnumber,payment-date,andpayment-nmount.
The primary key of the loan entity set, on which payment depends, is lonn-number.
Thus, we represent payment by a schema with four attributes:

payment : (Ioan-number, paymentnumber, payment-date, payment-nmount)

The primary key consists of the primary key of loan, along with the discriminator
of payment, which is payment-number. We also create a foreign-key constraint on the
payment schema, with the attribute loannumber referencing the primary key of the
Ioan schema.

6.9.3 Representqtion of Relqtionship Sets

Let R be a relationship set, let 41, a2,...ta*be the set of attributes formed by the
union of the primary keys of each of the entity sets participating in R, and let the
descriptive attributes (if any) of R be br,bz, .. . , b,. We represent this relationship set
by a relation schema called R with one attribute for each member of the set:

{ o r , o z , .  .  . ,  e - }  U  { b 1 , b 2 , .  . . , b n }

We described earlier, in Section 6.3.2.2, how to choose a primary key for a binary
relationship set. As we saw in that section, taking all the primary-key attributes from

all the related entity sets serves to identify a particular tuple, but for one-to-one,
many-to-one, and one-to-many relationship sets, this turns out to be a larger set of
attributes than we need in the primary key. The primary key is instead chosen as

follows:
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o For a binary many-to-many relationship, the union of the primary-key at-
tributes from the participating entity sets becomes the primary key.

o For a binary one-to-one relationship set, the primary key of either entity set
can be chosen as the primary key for the relationship. The choice of entity set
from those related by the relationship set can be made arbitrarily.

o For a binary many-to-one or one-to-many relationship set, the primary key of
the entity set on the "many" side of the relationship set serves as the primary
k"y.

o For an n-ary relationship set without any arrows on its edges, the union of the
primary key-attributes from the participating entity sets becomes the primary
kuy.

o For an n-ary relationship set with an arrow on one of its edges, the primary
keys of the entity sets not on the "arrow" side of the relationship set i"trre uL
the primary key for the schema. Recall that we allowed only one arrow out of
a relationship set.

We also create foreign-key constraints on the relation /? as follows. For each entity
set Ea related to relationship set fi, we create a foreign-key constraint from relation 1i,
with the attributes of R that were primary-key attributes of E referencing the primary
key of the relation representing Ez.

As an illustration, consider the relationship set borrower in the E-R diagram of Fig-
ure 6.7. This relationship set involves the following two entity sets:

o ctlstomer, with the primary key customer_id

o loan, with the primary key loan-number

Since the relationship set has no attributes, the borrower schema has two attributes:

b or rotue r : (cus t o m er-i d loannumber)

The primary key for theborrower relation is the union of the primary-key attributes of
cusf omer and loan. We also create two foreign-key constrainti on the boriower relation,
with attribute customer-id referencing the primary key of customer and attribute loan
-number referencing the primary key otloan.

6.9.3.1 Redundqncy of Schemqs
A relationship set linking a weak entity set to the corresponding strong entity set
is treated specially. As we noted in Section 6.6, these relationships are many-to-one
and have no descriptive attributes. Furthermore, the primary kev of a wejk entitv
set includes the primary key of the strong entity sei. In the E-it diagram of Fig-
ure 6.79, the weak entity set payment is dependent on the strong entity set loan va
the relationship set loan4ayment rhe primary key of payment ii {loan_number, pay-
mentttumber) and the primary key of loan is {Ioan_number}. Since loanqayment'hLs
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no descriptive attributes, the loan4ayment schema has two attributes, Ioan-number

and payment-number. The schema for the entity set payment has four attrlbutes, loan

-number, payment-number, payment-dste, and payment-nmount. Every (lonn-number, pay-

ment-nunlber) combinationin aloanpayment rclation would also be present in the rela-

tion on schema payment, and vice versa. Thus, the loanqnyment schema is redundant.

In general, the schema for the relationship set linking a weak entity set to its corre-

sponding strong entity set is redundant and does not need to be present in a relational

database design based upon an E-R diagram.

6.9.3.2 Combinqtion of Schemqs

Consider a many-to-one relationship set AB from entity set A to entity set B. Using
our relational-schema construction scheme outlined previously, we get three schemas:
A, B, and AB. Suppose further that the participation of A in the relationship is total;
that is, every entity a in the entity set A must participate in the relationship AB. Then
we can combine the schemas A and AB to form a single schema consisting of the
union of columns of both schemas.

As an illustration, consider the E-R diagram of Figure 6.27.The double line in the
E-R diagram indicates that ihe participation of sccount in the account-branch is total.
Hence, an account cannot exist without being associated with a particular branch.
Further, the relationship set account-branch is many-to-one from sccount to branch.
Therefore, we can combine the schema for sccount-branchwith the schema for account
and require only the following two schemas:

o account = (account-numb er, b alance, br snch:name)

o brnnch = (branch-name,branch-city, assets)

In the case of one-to-one relationships, the relation schema for the relationship set
can be combined with the schemas for either of the entity sets.

We can combine schemas even if the participation is partial, by using null values;
in the above example we would store null values for the branch-name attribute for
accounts that have no associated branch.

Figure6.27 E-Rdiagram.
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The primary key of the combined schema is the primary key of the entity set into
whose schema the relationship set schema was merged. In the above example, the
primary key is account_number.

The schema representing the relationship set would have had foreign-key con-
straints referencing each of the entity sets participating in the relationship s!t. We
drop the constraint referencing the entity set into whose schema the relitionship
set schema is merged, and add the other foreign-key constraints to the combined
schema. In our example above, the foreign-key constraint referencing accountis drop-
ped, but the foreign-key constraint with brqnch-nome referencing branchis retained as
a constraint on the combined account schema.

5.9.4 Composite qnd Multivqlued Attributes
We handle composite attributes by creating a separate attribute for each of the com-
ponent attributes; we do not create a separate attribute for the composite attribute
itself. Suppose address is a composite attribute of entity set customei, and the com-
ponents of address are street and city. The schema generated fuorr. customer contains
attributes address-street and address-city; there is no separate attribute or schema for
qddress. We revisit this matter in Section 2.2.

We have seen that attributes in an E-R diagram generally map directly into columns
for the appropriate relation schemas. Multivalued attributes, hol""rr"t, are an excep-
tion; new relation schemas are created for these attributes.

For a multivalued attribute M, we create a relation schema R with an attribute A
that corresponds to M and attributes corresponding to the primary key of the entity
set or relationship set of which M is an attribute.

As an illustration, consider the E-R diagram in Figure 6.25. The diagram includes
the entity set employee with a multivalued attribute dependent-name.Theprimary key
of employee is employee-id. For this multivalued attribute, we create a relaiion schemi

dependent-name (employee_id, d_nome)

Each dependent of an employee is represented as a unique tuple in the relation on
this schema. Thus, if we had an employee with employee_id 72-134, and dependents
John and Mary, the relation d-name would have two tuples (72-2g4,John) and (1.2-224,
Mary).

,We create a primary key of the relation schema consisting of all attributes of the
schema. In the above example, the primary key consists of both the attributes of the
relation dependent_name.

In addition we create a foreign key on the relation schema, with the attribute gen-
erated from the primary key of the entity set referencing the relation generated fiom
the entity set. In the above example, the constraint would be that attribute emplottee
-ld references the emplotlee relation.

6.9.5 Representqtion of Generolizqtion
There are two different methods of designing relation schemas for an E-R diagram
that includes generalization. Although we refer to the generalizationin Figure"6.20
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in this discussion, we simplify it by including only the first tier of lower-level entity
sets-that is, employee and customer. We assume that personjd is the primary key of
person.

1. Create a schema for the higherJevel entity set. For each lower-level entity set,
create a schema that includes an attribute for each of the attributes of that
entity set plus one for each attribute of the primary key of the higher-level
entity set. Thus, for the E-R diagram of Figure 6.20,we have three schemas:

person: (personid, name, street, city)
employee : (person-id, salary)
customer : (p erson-id, creditt ating)

The primary-key attributes of the higher-level entity set become primary-key
attributes of the higher-level entity set as well as all lower-Ievel entity sets.
These can be seen underlined in the above example.

In addition, we create foreign-key constraints on the lower-level entity sets,
with their primary-key attributes referencing the primary key of the relation
created from the higher-level entity set. In the above example, the person-id
attribute of employee would reference the primary key of person, and similarly
for customer.

2. An alternative representation is possible, if the generalization is disjoint and
complete-that is, if no entity is a member of two lower-level entity sets di-
rectly below a higher-level entity set, and if every entity in the higher-level
entity set is also a member of one of the lower-level entity sets. Here, do not

create a schema for the higher-level entity set. Instead, for each lower-level
entity set, create a schema that includes an attribute for each of the attributes
of that entity set plus one for each attribute of the higher-level entity set. Then,
for the E-R diagram of Figure 6.20,we have two schemas:

employee : (person-id., name, street, city, salnry)
customer : (personjd, name, street, city, credit-rating)

Both these schemas have person-id, wlnich is the primary-key attribute of the
higher-level entity set person, as their primary key.

One drawback of the second method lies in defining foreign-key constraints. To il-

lustrate the problem, suppose we had a relationship set .R involving entity set person.

With the first method, when we create a relation schema R from the relationship set,

we would also define a foreign-key constraint on R, referencing the schema person.
Unfortunately, with the second method, we do not have a single relation to which

a foreign-key constraint on R can refer. To avoid this problem, we need to create a

relation schema person containing at least the primary-key attributes of the person
entity.
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If the second method were used for an overlapping generalization, some values
would be stored multiple times, unnecessarily. For instance if a person is both an
employee and a customer, values for street and city would be stored twice. If the
generalization were not complete-that is, if some person is neither an employee nor
a customer-then an extra table person would be required to represent such persons.

6.9.6 Representqtion of Aggregotion
Designing schemas for an E-R diagram containing aggregation is straightforward.
Consider the diagram of Figure 6.22. The schema for the relationship set manages
between the aggregation of works-on and the entity set mnnnger includes an attribute
for each attribute in the primary keys of the entity set manager and the relationship
setzaorks-on.It also includes an attribute for any descriptive attributes, if they exist, o1
the relationship set manages. We then transform the relationship sets and entity sets
within the aggregated entity following the rules we have already defined.

The rules we saw earlier for creating primary-key and foreign-key constrains on
relationship sets can be applied to relationship sets involving aggregations as well,
with the aggregation treated like any other entity. The primary key of the aggregation
is the primary key of its defining relationship set. No separate relation is requiied to
represent the aggregation; the relation created from the defining relationship is used
instead.

6.9.7 Relqtionql Schemqs for Bonking Enterprise
In Figure 6.25,we showed an E-R diagram for a banking enterprise. The correspond-
ing set of relation schemas, generated using the techniques described earlier in this
section, is shown below. we denote the primary key for each relation schema by an
underscore.

r Schemas derived from a strong entity:

branch : (btSllch4Sryg branch_city, assets)
customer : (customer_id, customer:name, customer_street, customer_citv)
loan : (Ioqn_numb er, nmount)
account : (a cc o u nt -n umb er, balance)
employ ee : (ry]!!ee!d' employ ee-name, telephone-number, start-dste)

o Schemas derived from a multivalued attribute: (We do not represent derived
attributes.) They are defined in a view or speciallv defined function.

dependent-na7ns : (employ ee_id, d-name)

o schemas derived from a relationship set involving strong entity sets:
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account-branch : (account-number, brsnch-name)
loan-br anch : (loan-number, br snchstame)
borrower : (customer-id, Ioan-number)
depositor - (customerjd, qccount-number, nccessiate)
cust_b anker - (eUstpUelJd, employ ee-id, typ e)
works-for : (workertmployee-id, manager-employ eejd)

o Schemas derived from a weak entity set (recall that the table for loan4ayment
was shown in Section 6.9.3.1to be redundant):

payment : (loan-number, payment-number, pnymentlate, payment-nmount)

o Schemas derived from an ISA relationship: (We have chosen the first of the
two alternatives presented in Section 6.9.5 so as to allow for accounts that are
neither savings accounts nor checking accounts.)

saaings-nccount : (qccount-number, interest-rate)
checking-account : (account-number, ooerdrat't-amount)

We leave it as an exercise to you to create appropriate foreign-key constraints for
the above relations.

6.10 Other Aspects of Dqtqbqse Design
Our extensive discussion of schema design in this chapter may create the false im-
pression that schema design is the only component of a database design. There are
indeed several other considerations that we address more fully in subsequent chap-
ters, and survey briefly here.

6.10.1 Dqtq Constrqintsqnd Relqtionql Dqtqbqse Design

We have seen a variety of data constraints that can be expressed using SQL, including
primary-key constraints, foreign-key constraints, check constraints, assertions, and
triggers. Constraints serve several purposes. The most obvious one is the automation
of consistency preservation. By expressing constraints in the SQL data-definition lan-
guage, the designer is able to ensure that the database system itself enforces the con-
straints. This is more reliable than relying on each application program individually
to enforce constraints. It also provides a central location for the update of constraints
and the addition of new ones.

A further advantage of stating constraints explicitly is that certain constraints are
particularly useful in designing relational database schema. If we know, for exam-
ple, that a social-security number uniquely identifies a pelson, then we can use a
person's social-security number to link data related to that person even if these data
appear in multiple relations. Contrast that with, for example, eye color, which is not
a unique identifier. Eye color could not be used to link data pertaining to a specific
person across relations because that person's data could not be distinguished from
data pertaining to other people with the same eye color.



6.1.0 Other Aspects of Database Design

, In Section 6.9,we generated a set of relation schemas for a given E-R design using
the constraints specified in the design. In Chapter 7, we formalize this idea and re-
lated ones, and show how it can assist in the design of relational database schema.
The formal approach to relational database design allows us to state in a precise man-
ner when a given design is a good one and to transform poor designs into better ones.
We shall see that the process of starting with an entity-relationship design and gener-
ating relation schemas algorithmically from that design provides a good start to the
design process.

Data constraints are useful as well in determining the physical structure of data. It
may be useful to store data that are closely related to each other in physical proximity
on disk so as to gain efficiencies in disk access. Certain index structures work better
when the index is on a primary key.

Constraint enforcement comes at a potentially high price in performance each time
the database is updated. For each update, the system must check all of the constraints
and either reject updates that fail the constraints or execute appropriate triggers. The
significance of the performance penalty depends not only on the frequency of update
but also on how the database is designed. Indeed efficiency of the testing of certain
types of constraints is an important aspect of the discussion of relational database
schema design in Chapter 7.

6.10.2 Usoge Requirements: Queries, Performqnce
Database system performance is a critical aspect of most enterprise information sys-
tems. Performance pertains not only to the efficient use of the computing and storage
hardware being used, but also to the efficiency of people who interact with the syi-
tem and of processes that depend upon database data.

There are two main metrics for performance.

o Throughput-the number of queries or updates (often referred to as transac-
tions) that can be processed on average per unit of time.

o Response time-the amount of time a single transaction takes from start to
finish in either the average case or the worst case.

flslems that process large numbers of transactions in a batch style focus on having
high throughput. Systems that interact with people or time-critical systems often fo-
cus on response time. These two metrics are not equivalent. High throughput arises
from obtaining high utilization of system components. Doing so may result in cer-
tain transactions being delayed until such time that they can be run more efficiently.
Those delayed transactions suffer poor response time.

Most commercial database systems historically have focused on throughput, how-
ever/ a variety of applications including Web-based applications and telecommuni-
cation information systems require good response time on average and a reasonable
bound on worst-case response time.

An understanding of types of queries that are expected to be the most frequent
helps in the design process. Queries that involve joins require more resources to eval-
uate than those that do not. In cases where a join is required, the database adminis-
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trator may choose to create an index that facilitates evaluation of that join. For queries
-whether a join is involved or not-indices can be created to speed evaluation of

selection predicates (SQt where clause) that are likely to appear. Another aspect of
queries that affects the choice of indices is the relative mix of update and read oper-
ations. While an index may speed queries, it also slows updates, which are forced to
do extra work to maintain the accuracy of the index.

6.10.3 Authorizotion Requirements
Authorization constraints affect design of the database as well because SQL allows
access to be granted to users on the basis of components of the logical design of the
database. A relation schema may need to be decomposed into two or more schema to

facilitate the granting of access rights in SQL. For example, an employee record may
include data relating to payroll, job functions, and medical benefits. Because different

administrative units of the enterprise may manage each of these types of data, some

users will need access to payroll data while being denied access to the job data, med-

ical data, etc. If these data are all in one table, the desired division of access, though

still feasible through the use of views, is more cumbersome. Division of data in this

manner becomes even more critical when the data are distributed across systems in

a computer network, an issue we consider in Chapter 22.

5.10.4 Dqtq Flow, Workflow
Database applications are often part of a larger enterprise application that interacts
not only with the database system but also with various specialized applications.
For example, in a manufacturing company, a computer-aided design (CAD) system
may assist in the design of new products. The CAD system may extract data from the
database via an SQL statement, process the data internally, perhaps interacting with
a product designer, and then update the database. During this process, control of the
data may pass among several product designers as well as other people. As another
example, consider a travel expense report. It is created by an employee returning
from a business trip (possibly by means of a special software package) and is sub-
sequently routed to the employee's manager, perhaps other higher-level managers/
and eventually to the accounting department for payment (at which point it interacts
with the enterprise's accounting information systems).

The term workflow refers to the combination of data and tasks involved in pro-
cesses like those of the preceding examples. Workflows interact with the database
system as they move among users and users perform their tasks on the workflow. In
addition to the data on which workflows operate, the database may store data about
the workflow itself, including the tasks making up a workflow and how they are to
be routed among users. Workflows thus specify a series of queries and updates to
the database that may be taken into account as part of the database-design process.
Put in other terms, modeling the enterprise requires us not only to understand the
semantics of the data but also the business processes that use those data.
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6.10.5 Other lssues in Dqtqbqse Design
Database design is usually not a one-time activity. The needs of an organization
evolve continually, and the data that it needs to store also evolve correspondingly.
During the initial database-design phases, or during the development of an appliia-
tion, the database designer may realize that changes are required at the conceptoal"
logical, or physical schema levels. Changes in the schema can affect all aspects bf tne
database application. A good database design anticipates future needs of an organi-
zatron, and to design the schema in such away that minimal changes are required as
the needs evolve.

It is important to distinguish between fundamental constraints and constraints
that are anticipated to change. For example, the constraint that a customer-id identify
a unique customer is fundamental. On the other hand, a bank may have a policy that
a customer can have only one account, which may change at a later date. A database
desi8n that only allows one account per customer would require major changes if
the bank changes its policy. Such changes should not require a major change in the
database design.

Furthermore, the enterprise that the database is serving likely interacts with other
enterprises and, therefore, multiple databases may need to interact. Conversion of
data between different schemas is an important problem in real-world applications.
Various solutions have been proposed for this problem. The XML data model, which
we study in Chapter 10, is widely used for representing data when it is exchanged
between different applications.

Finally, it is worth noting that database design is a human-oriented activity in two
senses: the end users of the system are people (even if an application sits between the
database and the end users); and the database designer needs to interact extensively
with experts in the application domain to understand the data requirements of the
application. AII of the people involved with the data have needs and preferences
that should be taken into account in order for a database design and deployment to
succeed within the entercrise.

6.11 The Unified Modeling Longuqge UMLxx
Entity-relationship diagrams help model the data representation component of a soft-
ware sysfem. Data representation, however, forms only one part of an overall system
design. Other components include models of user interactions with the system, spec-
ification of functional modules of the system and their interaction, etc. The Unffied
Modeling Language (UML), is a standard developed under the auspices of the Ob-
ject Management Group (OMG) for creating specifications of various components of
a software system. Some of the parts of UML are:

o Class diagram. A class diagram is similar to an E-R diagram. Later in this
section we illustrate a few features of class diagrams and how they relate to
E-R diagrams.

r LJse case diagram. Use case diagrams show the interaction between users and
the system, in particular the steps of tasks that users perform (such as with-
drawing money or registeringfor a course).
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Activity diagram. Activity diagrams depict the flow of tasks between various

components of a system.

Implementation diagram. Implementation diagrams show the system com-

ponents and their interconnections, both at the software component level and

the hardware component level.

We do not attempt to provide detailed coverage of the different parts of UML here.
See the bibliographic notes for references on UML. Instead we illustrate some features
of that part of UML that relates to data modeling through examples.

Figure 6.28 shows several E-R diagram constructs and their equivalent UML class
diagram constructs. We describe these constructs below. UML shows entity sets as
boxes and, unlike E-& shows attributes within the box rather than as separate el-
lipses. UML actually models objects, whereas E-R models entities. Objects are like
entities, and have attributes, but additionally provide a set of functions (called meth-
ods) that can be invoked to compute values on the basis of attributes of the objects,
or to update the object itself. Class diagrams can depict methods in addition to at-
tributes. We cover objects in Chapter 9.

We represent binary relationship sets in UML by just drawing a line connecting
the entity sets. We write the relationship set name adjacent to the line. We may also
specify the role played by an entity set in a relationship set by writing the role name
on the line, adjacent to the entity set. Alternatively, we may write the relationship set
name in a box, along with attributes of the relationship set, and connect the box by a
dotted line to the line depicting the relationship set. This box can then be treated as
an entity set, in the same way as an ag9regation in E-R diagrams, and can participate
in relationships with other entity sets.

Since UML version 1.3, UML supports nonbinary relationships, using the same di-
amond notation used in E-R diagrams. Nonbinary relationships could not be directly
represented in earlier versions of UML-they had to be converted to binary relation-
ships by the technique we have seen earlier in Section 6.5.3.

Cardinality constraints are specified in UML in the same way as in E-R diagrams, in
the form L.h,where I denotes the minimum and h the maximum number of relation-
ships an entity can participate in. However, you should be aware that the positioning
of the constraints is exactly the reverse of the positioning of constraints in E-R dia-
grams, as shown in Figure 6.28. The constraint 0..* on the E2 side and 0..1 on the E1
side means that each E2 entity can participate in at most one relationship, whereas
each E1 entity can participate in many relationships; in other words, the relationship
is many-to-one from E2 to EI.

Single values such as 1 or x may be written on edges; the single value 1 on an edge
is treated as equivalent to 1..1, while x is equivalent to 0..,r.

We represent generalization and specialization in UML by connecting entity sets
by a line with a triangle at the end corresponding to the more general entity set.
For instance, the entity set person is a generalization of customer and employee. UML
diagrams can also represent explicitly the constraints of disjoint/overlapping on gen-
eralizations. Figure 6.28 shows disjoint and overlapping generalizations of customer
and employee to person. Recall that if the customer / employee to person generalization is



1. Entity sets
and attributes

2. Relationships

3. Cardinality
constraints

4. Generalization and
- - ^ ^ :  ^ l :  - ^  ! :  ^ -
DyrLr4nz4t ru l  t

6.'17 The Unified Modeling Language UML** 253

--".l0..1 R !-l j-;;- l
I E I I -

ril
f"Tl
l a 2  l

:

ffi

(overlapping
generalization)

I  l o v p r l a n n i n s- - 1 - - - - - - - - f  -  " ' . - " . " r r "  b

/ ) : ^ : ^ : - L

\qr>JUlrrr

generalization)

E-R diagram class diagram in UML

Figure 5.28 Symbols used in the UML class diagram notation.

disjoint, it means that no one can be both a customer and an employee. An overlapping
generalization allows a person to be both a customer and an employee.

UML ciass diagrams include several other notations that do not correspond to the
E-R notations we have seen. For example, a line between two entity sets with a di-
amond at one end specifies that the entity on the diamond side contains the other

disjoint
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entity (containment is called "aggregation" in UML terminology). For example, a ve-
hicle entity may contain an engine entity. UML class diagrams also provide notations
to represent object-oriented language features such as public or private annotations
of class members, and interfaces (these should be familiar to anyone who knows the

Java or C# languages). See the references in the bibliographic notes for more infor-

mation on UML class diagrams.

6.12 Summory
o Database design mainly involves the design of the database schema. The entity-

relationship (E-R) data model is a widely used data model for database de-

sign. It provides a convenient graphical representation to view data, relation-

ships, and constraints.

o The model is intended primarily for the database-design process. It was de-

veloped to facilitate database design by allowing the specification of an en-

terprise schema. Such a schema represents the overall logical structure of the

database. This overall structure can be expressed graphically by an E-R dia-

gram.

o An entity is an object that exists in the real world and is distinguishable from
other objects. We express the distinction by associating with each entity a set
of attributes that describes the object.

o A relationship is an association among several entities. A relationship set is
a collection of relationships of the same type, and an entity set is a collection
of entities of the same type.

o A superkey of an entity set is a set of one or more attributes that, taken collec-
tively, allows us to identify uniquely an entity in the entity set. We choose a
minimal superkey for each entity set from among its superkeys; the minimal
superkey is termed the entity set's primary key. Similarly, a relationship set
is a set of one or more attributes that, taken collectively, allows us to identify
uniquely a relationship in the relationship set. Likewise, we choose a mini-
mal superkey for each relationship set from among its superkeys; this is the
relationship set's primary key.

o Mapping cardinalities express the number of entities to which another entity
can be associated via a relationship set.

o An entity set that does not
is termed a weak entity set.
strong entity set.

o Specialization and generalization define a containment relationship between

a higher-Ievel entity set and one or more lower-level entity sets. Specialization

is the result of taking a subset of a higher-level entity set to form a lower-

level entity set. Generalization is the result of taking the union of two oI more

have sufficient attributes to form a primary key
An entity set that has a primary key is termed a
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disjoint (1ower-level) entity sets to produce a higher-level entity set. The at-
tributes of higher-level entity sets are inherited by lower-level entity sets.

r Aggregation is an abstraction in which relationship sets (along with their as-
sociated entity sets) are treated as higher-level entity sets, and can participate
in relationships.

r The various features of the E-R model offer the database designer numerous
choices in how to best represent the enterprise being modeled. Concepts and
objects may, in certain cases, be represented by entities, relationships, or at-
tributes. Aspects of the overall structure of the enterprise may be best de-
scribed by using weak entity sets, generalization, specialization, or aggrega-
tion. Oftery the designer must weigh the merits of a simple, compact model
versus those of a more precise, but more complex, one.

o A database design specified by an E,R diagram can be represented by a col-
lection of relation schemas. For each entity set and for each relationship set in
the database, there is a unique relation schema that is assigned the name of the
corresponding entity set or relationship set. This forms the basis for deriving
a relational database design from an E-R diagram.

r The Unified Modeling Language (UML) provides a graphical means of mod-
eling various components of a software system. The class diagram compo-
nent of UML is based on E-R diagrams. However, there are some differences
between the two that one must beware of.

Review Terms
o Entity-relationship data model

o Entity

o Entity set

o Relationship and relationship set

o Role

o Recursive relationship set

o Descriptive attributes

o Binary relationship set

o Degree of relationship set

o Attributes

o Domain

o Simple and composite attributes

o Single-valued and multivalued at-
tributes

o NuII value

o Derived attribute

. Superkey, candidate key, and pri-
mary key

o Mapping cardinality:

n One-to-one relationship
n One-to-many relationship
tr Many-to-one relationship
n Many-to-many relationship

o Participation

tr Total participation
n Partialparticipation

o Weak entity sets and strong entity
SCtS

n Discriminator attributes
tr Identifying relationship

r Specialization and generalization

n Superclass and subclass
n Attribute inheritance
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Single and multiple inheri-
tance
Condition-defined and user-
defined membership
Disjoint and overlapping gen-
eralization

Completeness constraint

n Total and partial generaliza-
tion

Aggregation

E-R diagram

Unified Modeling Language (UML)

n

tr

T

Prqctice Exercises
6.1 Construct an E-R diagram for a car insurance comPany whose customers own

one or more cars each. Each car has associated with it zero to any number of
recorded accidents.

6.2 A university registrar's office maintains data about the following entities; (a)
courses, including number, title, credits, syllabus, and prerequisites; (b) course
offerings, including course number, year, semester, section number, instructor(s),
timings, and classroom; (c) students, including student-id, name, and program;
and (d) instructors, including identification number, name, department, and ti-
tle. Further, the enrollment of students in courses and grades awarded to stu-
dents in each course they are enrolled for must be appropriately modeled.

Construct an E-R diagram for the registrar's office. Document all assumptions
that you make about the mapping constraints.

6.3 Consider a database used to record the marks that students get in different ex-
ams of different course offerings.

a. Construct an E-R diagram that models exams as entities, and uses a ternary
relationship, for the database.

b. Construct an alternative E-R diagram that uses only a binary relationship
between students and course-offerings. Make sure that only one relationship
exists between a particular student and course-offering pair, yet you can
represent the marks that a student gets in different exams of a course offer-
ing.

6.4 Design an E-R diagram for keeping track of the exploits of your favorite sports
team. You should store the matches played, the scores in each match, the players
in each match, and individual player statistics for each match. Summary statis-
tics should be modeled as derived attributes

5.5 Consider an E-R diagram in which the same entity set appears several times.
Why is allowing this redundancy abad practice that one should avoid whenever
possible?

6.5 Consider a university database for the scheduling of classrooms for final exams.
This database could be modeled as the single entity set exam, with attributes
courseJlalne, section-number/ room-n1,Lmber, and time. Alternatively, one or more
additional entity sets could be defined, along with relationship sets to replace
some of the attributes of the exam entlty set, as

o

o

a



6.7

6.8

6.9

Practice Exercises 257

. col,rrse with attribu tes name, depnrtment , and c_number
o section with attributes s-number and enrollment, and dependent as a weak

entity set on col,ffse
. room with attributes r_number, capacity, andbuilding

a. Show an E-R diagram illustrating the use of all three additional entity sets
listed.

b. Explain what application characteristics would influence a decision to in-
clude or not to include each of the additional entity sets.

when designing an E-R diagram for a particular enterprise, you have several
alternatives from which to choose.

a. What criteria should you consider in making the appropriate choice?
b. Design three alternative E-R diagrams to represent the university registrar's

office of Practice Exercise 6.2.List the merits of each. Argue in favor of one
of the alternatives.

An E-R diagram can be viewed as a graph. What do the following mean in terms
of the structure of an enterprise schema?

a. The graphis disconnected.
b. The graph is acyclic.

Consider the representation of a ternary relationship using binary relationships
as described in Section 6.5.3 and illustrated in Figure 6.29 (attributes not shown).

tc,,

Figure 6.29 E-R diagram for Practice Exercise 6.9 and Exercise 6.22.

trl
I
I
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a. Show a simple instance of E,A,B,C, Rn,Rp, and Rc that cannot corre-
spond to any instance of A, B,C, and R.

b. Modify the E-R diagram of Figure 6.29b to introduce constraints that will
guarantee that any instance of E, A, B,C, Rn, RB, and Rc that satisfies the

constraints will correspond to an instance of A, B,C, and R.
c. Modify the translation above to handle total participation constraints on the

ternary relationship
d. The above representation requires that we create a primary-key attribute for

E. Show how to treat E as a weak entity set so that a primary-key attribute
is not required.

6.10 A weak entity set can always be made into a strong entity set by adding to its

attributes the primary-key attributes of its identifying entity set. Outline what
sort of redundancy will result if we do so.

5.11 Figure 6.30 shows a lattice structure of generalization and specialization (at-

tributes not shown). For entity sets ,4, B, and C, explain how attributes are in-

herited from the higher-level entity sets X and Y. Discuss how to handle a case

where an attribute of X has the same name as some attribute of Y.

6.12 Consider two separate banks that decide to merge. Assume that both banks

use exactly the same E-R database schema-the one in Figure 6.25. (This as-

sumption is, of course, highly unrealistic; we consider the more realistic case in

Section 22.8.) If the merged bank is to have a single database, there are several

potential problems:

o The possibility that the two original banks have branches with the same

name
o The possibility that some customers are customers of both original banks
o The possibility that some loan or account numbers were used at both origi-

nal banks (for different loans or accounts, of course)

For each of these potential problems, describe why there is indeed a potential

for difficulties. Propose a solution to the problem. For your solution, explain any

changes that would have to be made and describe what their effect would be on

the schema and the data.

Figure 6.30 E-R diagram for Practice Exercise 6.11.
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6.13 Reconsider the situation described for Practice Exercise 6.12 under the assump-
tion that one bank is in the United States and the other is in Canada. As befoie,
the banks use the schema of Figure 6.25, except that the Canadian bank uses
the social-insurance number assigned by the Canadian government, whereas the
U.S. bank uses the social-security number to identify customers. What problems
(beyond those identified in Practice Exercise 6.11) might occur in this multina-
tional case? How would you resolve them? Be sure to consider both the schema
and the actual data values in constructing your answer.

Exercises

6.14 Explain the distinctions among the terms primary key, candidate key, and su-
perkey.

6.15 Construct an E-R diagram for a hospital with a set of patients and a set of medi-
cal doctors. Associate with each patient a log of the various tests and examina-
tions conducted.

6.16 Construct appropriate tables for each of the E-R diagrams in Practice Exercises 6.1
to 6.2.

6.17 Extend the E-R diagram of Practice Exercise 6.4 to track the same information
for all teams in a league.

6.18 Explain the difference between a weak and a strong entity set.

6.19 we can convert any weak entity set to a strong entity set by simply adding ap-
propriate attributes. Why, then, do we have weak entity sets?

6'20 Define the concept of aggregation. Give two examples of where this concept is
useful.

6.21 Consider the E-R diagram in Figure 6.31, which models an online bookstore.
a. List the entity sets and their primarv kevs.
b. Suppose the bookstore adds music cassettes and compact disks to its col-

lection. The same music item may be present in cassette or compact disk
format, with differing prices. Extend the E-R diagram to model this addi-
tion, ignoring the effect on shopping baskets.

c. Now extend the E-R diagram, using generalization, to model the case where
a shopping basket may contain any combination of books, music cassettes,
or compact disks.

6.22 In Section 6.5.3,we represented a ternary relationship (repeated in Figure 6.29a)
using binary relationships, as shown in Figure 6.29b. Consider the ilternative
shown in Figure 6.29c. Discuss the relative merits of these two alternative rep-
resentations of a ternary relationship by binary relationships.
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Figure 6.31 E-R diagram for Exercise 6.21.

6.23 Consider the relation schemas shown in Section 6.9.7, which were generated
from the E-R diagram in Figure 6.25.For each schema, specify what foreign-key
constraints, if any, should be created.

6.24 Design a generalization-specialization hierarchy for a motor vehicle sales com-
pany. The company sells motorcycles, passenger cars, vans, and buses. ]ustify
your placement of attributes at each level of the hierarchy. Explain why they
should not be placed at a higher or lower level.

6.25 Explain the distinction between condition-defined and user-defined constraints.
Which of these constraints can the system check automatically? Explain your
answer.

6.25 Explainthe distinction between disjoint and overlapping constraints'

6.27 Explainthe distinction between total and partial constraints'

6.28 Draw the UML equivalents of the E-R diagrams of Figures 6.8c,6.9,6.17,6.72,
and6.20.
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In this chapter, we consider the problem of designing a schema for a relational database.
Many of the issues in doing so are similar to design issues we considered in Chapter 6
using the E-R model.

In general, the goal of a relational database design is to generate a set of rela-
tion schemas that allows us to store information without unnecessary redundancy,
yet also allows us to retrieve information easily. This is accomplished by design-
ing schemas that are in an appropriate normal form. To determine whether a relation
schema is in one of the desirable normal forms, we need information about the real-
world enterprise that we are modeling with the database. Some of this information
exists in a well-designed E-R diagram, but additional information about the enter-
prise may be needed as well.

In this chapter, we introduce a formal approach to relational database design based
on the notion of functional dependencies. We then define normal forms in terms of
functional dependencies and other types of data dependencies. First, however, we
view the problem of relational design from the standpoint of the schemas derived
from a given entity-relationship design.

7.1 Feqtures of Good Relqtionql Designs
Our study of entity-relationship design in Chapter 6 provides an excellent starting
point for creating a relational database design. We saw in Section 6.9 thatit is possible
to generate a set of relation schemas directly from the E-R design. Obviously, the
goodness (or badness) of the resulting set of schemas depends on how good the E-R
design was in the first place. Later in this chapte4 we shall study precise ways of
assessing the desirability of a collection of relation schemas. However, we can go a
long way toward a good design using concepts we have already studied.

For ease of reference, we repeat the schemas from Section 6.9.7 inFigure7.l.
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brsnch - (branch-name, branch-city, assets)
custolner : (customer-id./ customer-name, customer-street, customer-city)
loan : (Ioan^number, amount)
account : (account-number, bnlance)
employee : t:rp]:y@, employ eettame, telephone:number, start-date)
dep endent-name : (employ ee-id, dname)
account-branch : (account-number, branch-name)
loan-br anch : (loqn-numb er, br snch-name)
borrorner : (*tto*u ia, n*o"*Uu)
deposit or : (customer-id, account-numb er)
cust-banker - (customer-id, employ ee-id, type)
w orks-for : (worker t*ptoy e e-id- *ono ge r tmploy ee-id)
payment : (Ioanstumber, payment-number, payment-date, payment-nmount)
saaings-nccount : (account-number, interesttqte)
checkin g-n ccount : (account-number, ouerdraft-amount)

Figure 7.1 The banking schemas from Section 6.9.7.

7.1.1 Design Alternqtive: Lorger Schemqs
Now let us explore features of this relational database design as well as some alter-
natives. Suppose that instead of the schemasborrower andlonn we had the schema:

bor -Ioan : (customer -id, Ioan-numb er, amount)

This represents the result of a natural join on the relations corresponding to borrower
and loan. This seems like a good idea because some queries can be expressed using
fewer joins, until we think carefully about the facts about our bank enterprise that
led to our E-R design. Notice that the borrower relationship set is many-to-many. This
allows a customer to have several loans and also allows a loan to be made to several
customers. We made that choice so that we could represent loans made jointly to
a married couple or to a consortium of people (who might be in a joint business
venture). That is why the primary key of theborrower schema consists of customer-id
andlonn:number rather than just lonn:number.

Let us consider a loan that is made to such a consortium and consider the tuples
that must be in the relation on schema bor-loan. Suppose loan number L-100 is made
to a consortium consisting of the following customers: James (with customer-id23-
652), Anthony (with customer-id 75-202), and jordan (with customer-id 23-521) in the
amount of 10,000 dollars.

Figure 7.2 shows how this would be represented using loan andborrower, and how
it would be represented in the alternative design using bor-loan. The tuple (L-100,
10000) in the relation on schema loan joins with three tuples in the relation on schema
borrorner, generating three tuples in the relation on schema bor-Ioan. Notice thatinbor
-loan, we had to repeat the loan amount once for each customer in the consortium
of people who took out the loan. It is important that all these tuples agree as to the
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Figure7.2 Partial list of tuples in relations loan,borrower, andbor-loan.

amount of loan L-100 since otherwise our database would be inconsistent. In our
original design using loan and borrotaer, we stored the amount of each loan exactly
once. This suggests that using bor-losn is a bad idea since it stores loan amounts re-
dundantly and runs the risk that some user might update the loan amount in one
tuple but not all, and thus create inconsistency.

Now, let us consider another alternative. Let loan-nmt*br : (Ioan_number, nmount,
brnnch-nsme) be created from losn-branch and loan (via a join of the corresponding
relations). This appears similar to the example we just considered, but with one major
difference. Here, loan-number is the primary key of both schemas loan-brnnch and loan
and so it is also the primary key of lonn-nmt-br. This arose from the fact that the loan
-brnnch relationship set is many-to-one, unlike the borrower relationship set in our
earlier example. For a given loan, there is only one associated branch. Therefore, a
particular loan number appears in losn-branch only once. Let us suppose that loan
L-100 is associated with the Springfield branch. Figure 7.3 shows how this would be
represented usingloan-amt-br.The tuple (L-100, 10000) in the relation on schema /oan
joins with just one tuple in the relation on schema loan-branch, generating only one
tuple in the relation on schema loan-nmt-br. There is no repetition of information in
Ioan-nmt-br and so it avoids the problems we found in our earlier example.

Before we finally agree to use loan-nmt-br inplace of loan and loon-branch, there is
one more issue for us to consider. Might we want to record a loan and its associated
branch in the database before its amount has been determined? In the old design,
the schema loan-branch can handle this, but under the revised design using loan-nmt
-br,we would have to create a tuple with a null value for qmount.In some cases null

:

23-652
1,5-202
23-527

:
L-100
L-100
L-100

:
10000
10000
10000

:
23-652
15-202
23-521

:
L-100
L-100
L-100

bor-Ioan
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Figure 7.3 Partial list of tuples in relations loan, loan-branch, and loan-nmt-br.

values are troublesome, as we saw in our study of SQL. However, if we decide that
this is not a problem to us in this case, then we can proceed to use the revised design.

The two examples we have just considered show the importance of the nature of
primary keys in determining whether combining schemas makes sense. Problems
arose-specifically repetition of information-when the join attribute (loan-number)
was not the primary key for both schemas being combined.

7.1.2 Design Alternqtive: Smqller Schemqs
Suppose again that, somehow, we had started out with the schema bor-Ioan. How
would we recognize that it requires repetition of information and should be split into
the two schemas borrower and loan? Since we would not have the schemas borrower
and loan, we would lack the primary-key information that we used to describe the
problem withbor-loan.

By observing the contents of actual relations on schema bor-loan, we could note the
repetition of information resulting from having to list the loan amount once for each
borrower associated with a loan. However, this is an unreliable process. A real-world
database has a large number of schemas and even larger number of attributes. The
number of tuples can be in the millions or higher. Discovering repetition would be
costly. There is an even more fundamental problem with this approach. It does not
allow us to determine whether the lack of repetition is just a "Iucky" special case or
whether it is a manifestation of a general rule. In our example, how would we know
that in our bank enterprise each loan (identified by its loan number) must have onLy
one amount? Is the fact that loan number L-100 appears three times with the same
amount just a coincidence? We cannot answer these questions without going back
to the enterprise itself and understanding its rules. In particular, we would need to

Ioan-amt-br
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discover that the bank requires that every loan (identified by its loan number) must
have only one amount.

In the case of bor-loan, our process of creating an E-R design successfully avoided
the creation of this schema. However, this fortuitous situation does not always occur.
Therefore, we need to allow the database designer to specify rules such as "each
specific value for loan:number corresponds to at most one amount" even in cases where
loan-number is not the primary key for the schema in question. In other words, we
need to write a rule that says "if there were a schema (loan-number, amount), thenlonn
-number is able to serve as the primary key." This rule is specified as a functional
dependency

loan-number ---+ amount

Given such a rule, we now have sufficient information to recognize the problem of the
bor-loan schema. Because loan-number cannot be the primary key for bor-loqn (because
a loan may need several tuples in the relation on schema bor-loan), the amount of a
loan may have to be repeated.

Observations such as these and the rules (functional dependencies in particular)
that result from them allow the database designer to recognize situations where a
schema ought to be split, or decomposed, into two or more schema. It is not hard
to see that the right way to decompose bor-loan is into schemas borrower and loan as
in the original design. Finding the right decomposition is much harder for schemas
with a large number of attributes and several functional dependencies. To deal with
this, we shall rely on a formal methodology that we develop later in this chapter.

Not all decompositions of schemas are helpful. Consider an extreme case where
all we had were schemas consisting of one attribute. No interesting relationships of
any kind could be expressed. Now consider a less extreme case where we chooie to
decompose the employee schema into

employ ee1 : (employee-id, employ ee:name)
employ ee2 : (employee_name, telephone_number, startlate)

The flaw in this decomposition arises from the possibility that the enterprise has two
employees with the same name. This is not unlikely in practice, as many cultures
have certain highly popular names and, also, children may be named after parents.
of course each person would have a unique employee-id, which is why emptoyee_id
can serve as a primary key. As an example, let us assume two employees, both named
Kim, work for the bank and have the following tuples in the relation on schema
employee in the original design:

(1,23-45-6789, Kim, 882-0000, 1984-03-29)
(987 -65-4321,, Kim, 869 -9999, 7981-01-76)

Figure 7.4 shows these tuples, the resulting tuples using the schemas resulting from
the decomposition, and the result if we attempted to regenerate the original tuples
using a natural join. As we see in the hgtne, the two original tuples appear in the
result along with two new tuples that incorrectly mix date values pertaining to the
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Figure7.4 Loss of information via a bad decomposition.

two employees named Kim. Although we have more tuples, we actually have less
information in the following sense. We can indicate that a certain telephone number
and start date pertain to someone named Kim, but we are unable to distinguish which
one. Thus, our decomposition is unable to represent certain important facts about the
bank enterprise. Clearly, we would like to avoid such decompositions. We shall refer
to such decompositions as being lossy decompositions, and, conversely, to those that
are not as lossless decompositions.

7.2 Atomic Domqins qnd First Normql Form
The E-R model allows entity sets and relationship sets to have attributes that have
some degree of substructure. Specifically, it allows multivalued attributes such as

123-45-6789
987-65-4321

882,0000
869-9999

Kim

Kim

882-0000
869-9999

1984-03-29

L981-01-16
1.23-45-6789

987-65-4321
:

:

1,23-45-6789

123-45-6789

987-65-4321

987-65-432'l

Kim

Kim

Kim

Kim

882-0000
869-9999
882-0000
869-9999

1.984-03-29

1981-01-1.6

1984-03-29

198t-01.-1.6
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dependent-name inFigure 6.25 and composite attributes (such as an attribute address
with component attributes street and city). When we create tables from E-R designs
that_contain these types of attributes, we eliminate this substructure. For compoJite
attributes, we let each component be an attribute in its own right. For multivilued
attributes, we create one tuple for each item in a multivalued set.

In the relational model, we formalize this idea that attributes do not have any
substructure. A domain is atomic if elements of the domain are considered to bb
indivisible units. we say that a relation schema R is in first normal form (1NF) if the
domains of all attributes of R are atomic.

A set of names is an example of a nonatomic value. For example, if the schema of
a relation employee included an attribute children whose domain elements are sets of
names, the schema would not be in first normal form.

Composite attributes, such as an attribute address with component attributes street
and city, also have nonatomic domains.

Integers are assumed to be atomic, so the set of integers is an atomic domain; the
set of all sets of integers is a nonatomic domain. The distinction is that we do not
normally consider integers to have subparts, but we consider sets of integers to have
subparts-namely, the integers making up the set. But the important issue is not
what the domain itself is, but rather how we use domain elements in our database.
The domain of all integers would be nonatomic if we considered each integer to be
an ordered list of digits.

As a practical illustration of the above point, consider an organization that as-
signs employees identification numbers of the following form: The first two letters
specify the department and the remaining four digits are a unique number within
the department for the employee. Examples of such numbers wonla be CS0012 and
EE\127. Such identification numbers can be divided into smaller units, and are there-
fore nonatomic. If a relation schema had an attribute whose domain consists of iden-
tification numbers encoded as above, the schema would not be in first normal form.

when such identification numbers are used, the department of an employee can
be found by writing code that breaks up the structure of an identification number.
Doing so requires extra programming, and information gets encoded in the applica-
tion program rather than in the database. Further problems arise if such identifiCation
numbers are used as primary keys: when an employee changes department, the em-
ployee's identification number must be changed everywhere it occurs, which can be
a difficult task, or the code that interprets the number would give a wrong result.

The use of set valued attributes can lead to designs with redundant storige of d.ata,
which in turn can result in inconsistencies. For instance, instead of the relationship
between accounts and customers being represented as a separate relation depositoi,
a database designer may be tempted to store a set of owners with each account, and
a set of accounts with each customer. Whenever an account is created, or the set of
owners of an account is updated, the update has to be performed at two places; fail-
ure to perform both updates can leave the database in an inconsistent staie. Keeping
only one of these sets would avoid repeated information, but would complicate sbm6
queries.

Some types of nonatomic values can be useful, although they should be used with
care. For example, composite-valued attributes are often useful, and set-valued at-
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tributes are also useful in many cases, which is why both are supported in the E-R
model. In many domains where entities have a complex structure, forcing a first nor-
mal form representation represents an unnecessary burden on the application pro-
grammer, who has to write code to convert data into atomic form. There is also a
run-time overhead of convertingdata back and forth from the atomic form. Sup-
port for nonatomic values can thus be very useful in such domains. In fact, modern
database systems do support many types of nonatomic values, as we shall see in
Chapter 9. However, in this chapter we restrict ourselves to relations in first normal
form and, thus, all domains are atomic.

7.3 Decomposition Using Functionol Dependencies
In Section 7.7,we noted that there is a formal methodology for evaluating whether a

relational schema should be decomposed. This methodology is based upon the con-

cents of kevs and functional dependencies.

7.3.1 Keys qnd Functionql Dependencies

Keys and, more generally, functional dependencies, are constraints on the database
that require relations to satisfy certain properties. Relations that satisfy all such con-
straints are legal relations.

In Chapter 6, we defined the notion of a superkey as follows. Let R be a relation
schema. A subset K of R is a superkey of R if, in any legal relation r(R), for all pairs
t1 and 12 of tuples in r such that t1 f t2, thenttlKl I t2lKl.That is, no two tuples
in any legal relation r(R) may have the same value on attribute set K.

Whereas a key is a set of attributes that uniquely identifies an entire tuple, a func-
tional dependency allows us to express constraints that uniquely identify the values
of certain attributes. Consider a relation schema R, and let a C R and P C R. The func-
tional dependency a - 13 holds on schema R if, in any legal relation r(-R), for all pairs
of tuples t1 and t2 in r such that tl lc"] : t2lal, it is also the case that t17p1 : tzlfl.

Using the functional-dependency notation, we say that K is a superkey of R if K
--+ R. That is, K is a superkey if, whenever tllKl : t2lKl, it is also the case that
t1[B] : t2lRl (thatis, fi : 7r).

Functional dependencies allow us to express constraints that we cannot express
with superkeys. In Section 7.1.2,we considered the schema

bor-loan : (customer jd, Ioan-numb er, amount)

in which the functional dependency loan-number -- amounf holds because for each
loan (identifiedby loan-number) there is a unique amount. We denote the fact that the
pair of attributes (customer-id,Iosn-number) forms a superkey for bor-Ioan by writing:

customer-id, Ioan-number ---+ custlmer -id, Ioan:number, nmount

or, equivalently,

customerjd, loan:number -- bor-Ioan



We shall use functional dependencies in two ways:

1. To test relations to see whether they are legal under a given set of functional
dependencies. If a relation r is legal under a set F of functional dependencies,
we say that r satisfies F.

2. To specify constraints on the set of legal relations. We shall thus concern our-
selves with only those relations that satisfy a given set of functional dependen-
cies. If we wish to constrain ourselves to relations on schema R that iatisfy a
set F of functional dependencies, we say that F holds on j?.

Let us consider the relation r of Figure 7.5, to see which functional dependencies
are satisfied. Observe that A -' C is satisfied. There are two tuples that have an A
value of a1. These tuples have the same c value-namely, c1. similarly, the two tu-
ples with an A value of a2have the same c value, c2. There are no other pairs of
distinct tuples that have the same A value. The functional dependency C -- A is not
satisfied, however. To see that it is not, consider the tuples tl : (az,b3,c2,d4) and.
t.z : (as,b3,c2,da). These two tuples have the same C values, c2,but they have dif-
ferent 4 values, a2 d\d-as, respectively. Thus, we have found a pair of tuples t1 and
12 such thattllC) : tzlCl,buttlfAl I tz[A].

Some functional dependencies are said to be trivial because they are satisfied bv
all relations. For example, A -, A is satisfied by all relations involving attribute l.
Reading the definition of functional dependency literally, we see that, fo.-r all tuples f i
andt2 such that tr[A] : t2[A],itis the case thattylAl : tzlA]. Similarly, AB- _- A
is satisfied by all relations involving attribute,4,. In general, a functional dependency
of the form a -' 13 is trivial if p C a.

It is important to realize that a particular relation rl:ray, atany point in time, satisfy
some functional dependencies that are not required to hold orrthe relation's schema.
In the customer relation of Figure 2.4, we see that customerstreet ---+ gys1sttter_city is
satisfied. Howevel, we believe that, in the real world, two cities can have streets with
the same name. Thus, it is possible, at some time, to have an instance of the customer
relation in which customer-street ---+ customertity is not satisfied. So, we would not
include customer-street -,-+ sysssll.tsrdty inthe set of functional dependencies that hold
on the schema for the customer relation.

Given that a set of functional dependencies -F holds on a relation r, it mav
be possible to infer that certain other functional dependencies must also hold on
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the relation. For example, given a schema , : (A, B , C), if functional dependencies
A ---> B and B -- C, hold on r, we can infer the functional dependency A ---+ C must

also hold on r. For, given any value of ,4 there can be only one corresponding value
for B, and for that value of B, there can only be one corresponding value for C. We

study lateq, in Section 7.4.7,how to make such inferences.
We will use the notation F+ to denote the closure of the set tr', that is, the set of all

functional dependencies that canbe inferred given the set F. Clearly F+ is a superset

of F.

7.3.2 Boyce-Codd Normql Form
One of the more desirable normal forms that we can obtain is Boyce-Codd normal
form (nCNr). It eliminates all redundancy that can be discovered based on functional
dependencies, though, as we shall see in Section 7.6, there may be other types of
redundancy remaining. A relation schema R is in BCNF with respect to a set F of
functional dependencies if, for all functional dependencies in F+ of the form o + 13,
where a C R and P c R, at least one of the following holds:

. ct ----> p is a trivial functional dependency (that is, B c a).

o a is a superkey for schema R.

A database design is in BCNF if each member of the set of relation schemas that con-
stitutes the design is in BCNF.

We have already seen an example of a schema that is not in BCNF, bor-Ioan :
(customer-id,loan-number, amount). The functional dependency loan-number ---+ amount
holds on bor-loan, but loan-number is not a superkey (because, as we recall, a loan
may be made to a consortium of many customers). In Section 7.L.2,we saw that the
decomposition of bor-loan into borrower and loan was a better design. The borrower
schema is in BCNF because no nontrivial functional dependencies hold onit.Theloan
schema has one nontrivial functional dependency that holds, loan-number ---+ arnoltntl
butloan-number is a superkey (actually, in this case, the primary key) for loan.Thus,
loan is in BCNF.

We now state a general rule for decomposing schema that are not in BCNF. Let
R be a schema that is not in BCNF. Then there is at least one nontrivial functional
dependency a - 0 such that a is not a superkey for i?. We replace fi in our design
with two schemas:

c (ctU 0)

.  ( l ? -  ( 0 - a ) )

In the case of bor-loan above, a: loannumber, B : amount, andbor-Ioan is replaced by

o (o U p) = (Ioan-number, amount)

. (R - (A - d) = (customerjd,Iosn-number)
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In this example, it turns out that 0 * a : p. We need to state the rule as we did so as to
deal correctly with functional dependencies that have attributes that appear on both
sides of the arrow. The technical reasons for this are covered later in Section 7.5.1.

When we decompose a schema that is not in BCNF, it may be that one or more
of the resulting schemas are not in BCNF. In such cases, further decomposition is
required, the eventual result of which is a set of BCNF schemas.

7.3.3 BCNF ond Dependency Preservqtion
We have seen several ways of expressing database consistency constraints: primary-
key constraints, functional dependencies, check constraints, assertions, and triggers.
Testing these constraints each time the database is updated can be costly and, there-
fore, it is useful to design the database in a way that constraints can be tested effi-
ciently. In particular, if testing a functional dependency can be done by considering
just one relation, then the cost of testing this constraint is low. We shall see that de-
composition into BCNF can prevent efficient testing of certain functional dependen-
cies.

To illustrate this, suppose that we make an apparently small change in the way
our bank enterprise operates. In the design of Figure 6.25, a customer may have only
one employee as "petsonal banker." This follows from the relationship set cust-bsnker
being many-to-one from customer to employee. The "small" change we shall make is
that a customer may have more than one personal banker, but at most one at a given
branch.

We may implement this in the E-R design by making the cust-banker relationship set
many-to-many (since a customer may now have more than one personal banker), and
by adding a new relationship set, works-in, between employee and branch indicating
employee-branch pairs where the employee works in the branch. We make worksin
many-to-one from employee to branch since a branch may have many employees but
an employee may work in only one branch. Figure 7.6 shows a subset of Figure 6.25,
with these additions.

There is, however, one flaw in this design. It allows a customer to have two (or
more) personal bankers working for the same branch, something the bank does not
allow. It would be ideal if there were a single relationship set that we could reference
to enforce this constraint. This requires us to consider a different way to change our
E-R design. Instead of adding the ztsorks-in relationship set, we replace the cust-banker
relationship set with a ternary relationship cust-banker-branch involving entity sets
customer, employee, and branch that is many-to-one from the pair customer, employee
to brnnch as shown in Figure 7.7.Because this design allows a single relationship set
to represent the constraint, it has a significant advantage over the first approach we
considered.

The comparison between these two approaches is not that clear, however. The
schema derived from cust-banker_branch is

cust-banker_branch = fr"tt"**ia, r*ptwtria, branch_name, type)

Because an employee can work in only one branch, we know that in the relation on
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Figure 7.6 The cust-banker andworks-in relationship sets.

schema cust-banker-branch therc can be only one brnnch-name value associated with
each employee,id value; that is:

empl oy e e -id -- br an ch-name

However, we are forced to repeat the branch name once for each time an employee
participates in a cust-bsnker^branch relationship. We see that cust-bnnker-brnnch rs not
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Figure7.7 The cust_banker_branchrelationship set.

in BCNF because employee-id is not a superkey. Following our rule for BCNF decom-
position, we get:

(cust omer _id, employ ee_id, ty p e)
(empl oy e e -i d, b r an ch-n am e)

This design, which is exactly the same as our first approach using the raorks-in rela-
tionship set, makes it difficult to enforce the constraint that a customer may have at
most one personal banker at a given branch. We can express that constraint by the
functional dependency

cust omer-id, branch-name -+ employ ee_id

and note that in our BCNF desigo there is no schema that includes all the attributes
appearing in this functional dependency. Because our design makes it computation-
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ally hard to enforce this functional dependency,we say our design is not dependency
preserving.l Because dependency preservation is usually considered desirable, we
consider another normal form, weaker than BCNF, that will allow us to preserve de-
pendencies. That normal form is called third normal form.2

7.3.4 Third Normql Form
BCNF requires that all nontrivial dependencies be of the form a - {3, where o is a
superkey. Third normal form (3NF) relaxes this constraint slightly by allowing non-
trivial functional dependencies whose left side is not a superkey. Before we define
3NF, we recall that a candidate key is a minimal superkey-that is, a superkey no
proper subset of which is also a superkey.

A relation schema R is in third normal form with respect to a set F of functional
dependencies if, for all functional dependencies in F+ of the form a - 0, where
a C R and B c fi, at least one of the following holds:

. o --+ p is a trivial functional dependency.

o a is a superkey for R.

o Each attribute Ain B - a is contained in a candidate key for R.

Note that the third condition above does not say that a single candidate key should
contain all the attributes in 0 - a; each attribute A in 0 - a rnay be contained in a

diff er ent candidate key.
The first two alternatives are the same as the two alternatives in the definition of

BCNF. The third alternative of the gNf'definition seems rather unintuitive, and it is

not obvious why it is useful. It represents, in some sense, a minimal relaxation of the

BCNF conditions that helps ensure that every schema has a dependency-preserving
decomposition into 3NF. Its purpose will become more clear later, when we study

decomposition into 3NF.
Observe that any schema that satisfies BCNF also satisfies 3NF, since each of its

functional dependencies would satisfy one of the first two alternatives. BCNF is there-

fore a more restrictive normal form than is 3NF.
The definition of 3NF allows certain functional dependencies that are not allowed

in BCNF. A dependency d ---+ 13 that satisfies only the third alternative of the 3NF

definition is not allowed in BCNF, but is allowed in 3NF.3
Now let us again consider cust-bsnkerhranch and the functional dependency

employ eejd --. br anch-name

1. Technically, it is possible that a dependency whose attributes do not al1 appear in any one schema is

still implicitly enforced, because of the presence of other dependencies that imply it logicaliy. We address

that case later, in Section 7.4.5.
2. You may have noted that we skipped second normal form. It is of historical significance only and is

not used in practice.
3. These dependencies are examples of transitive dependencies (see Practice Exercise 7.14). The original

definition of 3NF was in terms of transitive dependencies. The definition we use is equivalent but easier

to understand.
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that caused the schema not to be in BCNF. Note that here a : employee_id, 0 : brnnch
-name, and B - (t : branch-name. It turns out that branch-name is contained in a can-
didate key and that therefore, cust-banker-brsnch is in 3NF. To show this, however,
requires a bit of effort.

We know that in addition to the functional dependencies

empl oy e e -id - - br an ch-name
customer-id, br anch-nnme --+ emploll eejd

holding, the functional dependency

customer-id, employ ee_id -- cust_b anker _br anch

holds as a result of (customer-id, employee-id) being the primary key. This makes (czs-
tomer-id, employee-id) a candidate key. Of course, it does not contain branch-name, so
we need to see if there are other candidate keys. As it turns out, the set of attributes
(customer-id, branch-name) is a candidate key. Let us see why this is the case.

Given a particular customer-id value and brsnchttame value, we know there is only
one associat ed employ ee-id v alue because

cust omer-id, branch-name ---+ employ e e_id

But then, for that particular customer-id value and employee-id value, there can be only
one associat ed cust_b snker _br anch tuple because

customerjd, employ ee_id -, cust_bnnker_branch

Thus, we have argued that (customer-id, branch-nnme) is a superkey. Because neither
customer-id nor branch-name aLone is a superkey, (customer-id, branch-name) is a candi-
date key. Since this candidate key containsbranch-name, the functional dependency

employ e e -i d -, br an ch-n am e

does not violate the rules of 3NF.
Our argument that cust-banker-branch is in 3NF took some effort. For this reason

(and others), it is useful to take a structured, formal approach to reasoning about
functional dependencies, normal forms, and decomposition of schemas, wfiich we
do in Section 7.4.

We have seen the trade-off that must be made between BCNF and 3NF when there
is no dependency-preserving BCNF design. These trade-offs are described in more
detail in Section 7.5.3;in that section we also outline an approach to dependency
checking using materialized views that allows us to get the benefits of eCNf and
3NF.

7.3.5 Higher Normql Forms
Using functional dependencies to decompose schemas may not be sufficient to avoid
unnecessary repetition of information in certain cases. Consider a slight variation



274 Chapter 7 Relational Database Design

in the employee entity set definition in which we allow employees to have several
phone numbers, some of which may be shared by multiple employees. Then tele-
phone-number would be a multivalued attribute and, following our rules for generat-
ing schemas from an E-R design, we would have two schemas, one for each of the
multivalued attributes, telephone-number and dname:

(employee-id, dname)
(employ ee-id, t el ephon e-numb er)

If we were to combine these schemas to get

(employ ee-id, dname, telephone-number)

we would find the result to be in BCNF because only nontrivial functional depen-
dencies hold. As a result we might think that such a combination is a good idea.
However, such a combination is a bad idea, as we can see by considering the exam-
ple of an employee with two dependents and two phone numbers. For example, let
the employee with employee-id999-99-9999 have two dependents named "David" and
"William" and two phone numbers, 51,2-555-7234 and 512-555-4327.In the combined
schema, we must repeat the phone numbers once for each dependent:

(999 -99 -9999, David, 512-555-L234)
999 -99 -9999, David. 512-555-4327)
(999 -99 -9999, William, 51.2-555-7234)
(999 -99 -9999, William, 572-555-4327)

If we did not repeat the phone numbers, and stored only the first and last tuple,
we would have recorded the dependent names and the phone numbers, but the re-
sultant tuples would imply that David corresponded to 512-555-1234,while William
corresponded to 512-555-4327. As we know, this would be incorrect.

Because normal forms based on functional dependencies are not sufficient to deal
with situations like this, other dependencies and normal forms have been defined.
We cover these in Sections 7.6 and7.7.

7.4 Functionol-Dependency Theory
We have seen in our examples that it is useful to be able to reason systematically

about functional dependencies as part of a process of testing schemas for BCNF or

3NF.

7.4.1 Closure of q Set of Functionql Dependencies
It is not sufficient to consider the given set of functional dependencies. Rathel we
need to consider a/l functional dependencies that hold. We shall see that, given a set F
of functional dependencies, we can prove that certain other functional dependencies
hold. We say that such functional dependencies are "logically implied" by F.
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lv,Iore formally, given a relational schema R, a functional dependency / on.R is log-
ically implied by a set of functional dependencies F on fi if every relation instanie
r(R) that satisfies .F also satisfies /.

Suppose we are given a relation schema R: (A, B, C, G, H,I) and the set of
functional dependencies

A - -  B
A - - C
CG --+H

CG --+ I
B - - H

The functional dependency

A---+ H

is logically implied. That is, we can show that, whenever our given set of functional
dependencies holds on a relation, A - H must also hold on the relation. Suppose that
t1 and t2 are tuples such that

trlAl : t2lAl
Since we are given th at A ---+ B, it follows from the definition of functional dependencv
that

tLIB) :  t2[B]
Then, since we are given that B ---+ H, it follows from the definition of functional
dependency that

trlH) : t2lHl
Therefore, we have shown that, whenever 11 andt2 are tuples such that f 1 [ A] : tzlA],
it must be that h[Hl : t2lH]. But that is exactly the definition of A --+ H.

Let F be a set of functional dependencies. The closure of F, denoted by -F +, is the
set of all functional dependencies logically implied by F. Given F, we cin compute
.F+ directly from the formal definition of functi,onal dependency. If F were large, this
process would be lengthy and difficult. Such a computation of .F + requireJ argu-
ments of the type just used to show that A ---+ H is in the closure of our example-set
of dependencies.

Axioms, or rules of inference, provide a simpler technique for reasoning about
functional dependencies. In the rules that follow, we use Greek letters (*, gl.y, . . . )
for sets of attributes, and uppercase Roman letters from the beginning of the alphabet
for individual attributes. We use oB to denote a U p.

We can use the following three rules to find logically implied functional dependen-
cies. By applying these rules repeatedly, we can find all of F+, given F. This collection
of rules is called Armstrong's axioms in honor of the person -ho first proposed it.

o Reflexivity rule. If a is a set of attributes and g C *, then o -- p holds.

o Augmentationrule.rf a - pholdsandTisasetof attributes,then,ya ---+ 10
holds.
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o Transitivity rule. If a'- B holds and lj - 7 holds, then a + 7 holds.

Armstrong's axioms are sound/ because they do not generate any incorrect func-
tional dependencies. They are complete, because, for a given set F of functional de-
pendencies, they allow us to generate all tr'+. The bibliographical notes provide ref-
erences for proofs of soundness and completeness.

Although Armstrong's axioms are complete, it is tiresome to use them directly
for the computation of F+. To simplify matters further, we list additional rules. It is
possible to use Armstrong's axioms to prove that these rules are correct (see Practice
Exercises 7.4and 7.5 and Exercise7.21).

o Union rule. If a ---+ P holds and a'-+'y holds, then a ---+ p7 holds.

o Decomposition rule. If o --+ {3^l holds, then o ---+ B holds and a -- 7 holds.

o Pseudotransitivity rule' If a ---+ B holds and l0 ' 5 holds' then a7 -- d holds'

Let us apply our rules to the example of schema R : (A, B, C , G,11, 1) and the
set F of functional dependencies {A --- B, A --+ C, CG --+ H, CG ---+ I, B --+ 11}' We
list several members of ,F' here:

c A -11. Since A --- Band B + Il hold, we apply the transitivity rule. Observe
that it was much easier to use Armstrong's axioms to show that ,4 --+ fI holds
than it was to argue directly from the definitions, as we did earlier in this
section.

o CG - 111. Since CG -- H and CG -- 1, the union rule implies that CG ---+ HI .

o AG - 1. Since A ---+ C and CG --+ 1, the pseudotransitivity rule implies that
AG -- 1holds.

Another way of finding that AG --+ t holds is as follows. We use the aug-
mentation rule on A --, C to infer AG --+ CG. Applying the transitivity rule to
this dependency and CG --. 1, we infer AG -- I.

Figure 7.8 shows a procedure that demonstrates formally how to use Armstrong's
axioms to compute tr'+. In this procedure, when a functional dependency is added to

F + = F
repeat

for each functional dependency f in F+
apply reflexivity and augmentation rules on /
add the resulting functional dependencies to F+

for each pair of functional dependencies fi and fz in F+
if fi and f2 canbe combined using transitivity

add the resulting functional dependency to F +

until ,F + does not change any further

Figure 7.8 A procedure to compute F+.
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F+ , it may be already present, and in that case there is no change to -F +. We shall see
an alternative way of computing F'+ in Section7.4.2.

The left-hand and right-hand sides of a functional dependency are both subsets
of l?. Since a set of size nhas 2' subsets, there are a total of 2n x 2n : 22' possible
functional dependencies, where n is the number of attributes in /?. Each iteiation of
the repeat loop of the procedure, except the last iteration, adds at least one functional
dependency to -F+. Thus, the procedure is guaranteed to terminate.

7.4.2 Closure of Attribute Sets
We say that an attribute B is functionally determined by a jf a --- B. To test whether
a set a is a superkey, we must devise an algorithm for computing the set of attributes
functionally determined by a. One way of doing this is to iompute F+,take all func-
tiorral dependencies with a as the ieft-hand side, and take the union of the right-hand
sides of all such dependencies. Flowever, doing so can be expensive, since F+ can be
large.

_ An efficient algorithm for computing the set of attributes functionally determined
by a is useful not only for testing whether a is a superkey, but also for several other
tasks, as we will see later in this section.

Let a be a set of attributes. We call the set of all attributes functionally determined
by a under a set F of functional dependencies the closure of a under F; we denote
itby a+. Figure 7.9 shows an algoriihm, written in pseudocode, to compute a+. The
input is a set F of functional dependencies and the set o of attributes. Th" output is
stored in the variable result.

To illustrate how the algorithm works, we shall use it to compute (AG)+ with the
functional dependencies defined in Section 7.4.1..We start with iesult :,4G. The first
time that we execute the while loop to test each functional dependency, we find that

o A ---+ B causes us to includeB inresult. To see this fact, we observe that A - + B
is in F, A C result (which is AG), so result:: result UB.

o A --. C causes result to become ABCG.

o CG --.Ff causes result to become ABCGH.

o CG ---+ I causes result to become ABCGHI.

The second time that we execute the while loop, no new attributes are added to result,
and the algorithm terminates.

resuLt:: ct)
while (changes to result) do

for each functional dependency 0 - .y in F do
begin

if 13 C y6ull then result i: result U nl
. end

Figure 7.9 An algorithm to compute a+, the closure of a under F.
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Let us see why the algorithm of Figure 7.9 is correct. The first step is correct/ since
e, ---+ (r, always holds (by the reflexivity rule). We claim that, for any subset B of result,
a --+ P. Since we start the while loop with a ---+ resultbeing true, we can add 1 to result
only if B C result and B -+ 7. But then result --. P by the reflexivity rule, so a -' P by
transitivity. Another application of transitivity shows that a --+ 7 (using sx -+ B and
g - i. The union rule implies that o ---+ result U ?, so a functionally determines any
new result generated in the while loop. Thus, any attribute returned by the algorithm

rr c l n a ' .
It is easy to see that the algorithm finds all a+. If there is an attribute in a+ that

is not yet inresult, then there must be a functional dependency 0 - I for which B C
result, and at least one attribute in 7 is notinresult.

It turns out that, in the worst case, this algorithm may take an amount of time
quadratic in the size of F. There is a faster (although slightly more complex) algorithm
that runs in time linear in the size of F; that algorithm is presented as part of Practice
Exercise 7.8.

There are several uses of the attribute closure algorithm:

o To test if a is a superkey, we compute a+, and check if a+ contains all at-
tributes of R.

o We can check if a functional dependency * - 0 holds (or, in other words,
is in f'+), by checking If B C a+. That is, we compute a+ by using attribute
closure, and then check if it contains 0. This test is particularly useful, as we
will see later in this chaPter.

o It gives us an alternative way to compute -F+: For each 7 C R,we find the
closure 'yt, andfor each S C ^'l+, we outPut a functional dependency 1 -t S.

7.4.3 Cqnonicol Cover
Suppose that we have a set of functional dependencies F on a relation schema. When-
eveia user performs an update on the relation, the database system must ensure that

the update does not violate any functional dependencies, that is, all the functional
dependencies in f' are satisfied in the new database state.

the system must roll back the update if it violates any functional dependencies in
the set F.

We can reduce the effort spent in checking for violations by testing a simplified set

of functional dependencies that has the same closure as the given set. Any database
that satisfies the simplified set of functional dependencies will also satisfy the origi-
nal set, and vice versa, since the two sets have the same closure. However, the sim-

plified set is easier to test. We shall see how the simplified set can be constructed in a

moment. First, we need some definitions.
An attribute of a functional dependency is said to be extraneous if we can remove

it without changing the closure of the set of functional dependencies. The formal

definition of extraneous attributes is as follows. Consider a set F of functional de-

pendencies and the functional dependency a --+ B in F.
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o Attribute A is extraneous in a lf A € a, and F logically implies ('F - {a ,-
Pj) u {@- a) - .0}.

o Attribute A is extraneous in B if A € p, andthe set of functional dependencies
(F - {a -- P}) U {a --+ U3 - A)} logically impties F.

For example, suppose we have the functional dependencies AB --- C and. A -- C
in f'. Then, B is extraneous in AB -- C. As another example, suppose we have the
functional dependencies AB -- CD and A --+ C in F. Then C wouta be extraneous
in the right-hand side of AB --+ CD.

Beware of the direction of the implications when using the definition of extraneous
attributes: If you exchange the left-hand side with right-hand side, the implication
will always hold. That is, (f' - {. - gD u {(* - A) - p} always logical$ implies
F,lnd also F always logically implies (F - {a-- 0D U {a -* @ - ny

Here is how we can test efficiently if an attribute is extraneous. Let l? be the rela-
tion schema, and let F be the given set of functional dependencies that hold on R.
Consider an attribute Ain a dependency a -- 13.

c If A a 13, to check if ,4. is extraneous consider the set
F ' : ( F  - { o *  0 } ) o { a . -  ( 1 3  -  A ) }

and check if a - A can be inferred from .F r. To do so, compute a+ (the closure
of a) under Ft; if 6a+ includes ,4, then ,4 is extraneous in p.

c I f  A € a,to checkif  ,4isextraneous, let . f  :  a- {A},  andcheck i f  1- B
can be inferred from F. To do so, compute 7+ (the crosure of 7) under F; if 1+
includes all attributes in B, then A is extraneous in a.

For example, suppose F contains AB -- CD, A,-+ E,and E -- C. To check
if C is extraneous in AB -- CD, we compute the attribute closure of AB under
Ft : {AB ---+ D, A ---+ E, and E --. C}. The ilosure is ABCDE,which includes CD,
so we infer that C is extraneous.

A canonical cover ,Q for F is a set of dependencies such that F logically implies all
dependencies in .F", and -Fl logically implies all dependencies in F. Furtirerm ore, F.
must have the following properties:

o No functional dependency in -F" contains an extraneous attribute.

o Each left side of a functional dependency in F" is unique. That is, there are no
two dependencies at + 0r and a2 ---+ B2 in .F" such that a1 : qr.

A canonical cover for a set of functional dependencies F can be computed as de-
picted in Figure 7.70.It is important to note that when checking if an attribute is
extraneous, the check uses the dependencies in the current value of F", and. not the
dependencies in F. If a functional dependency contains only one attribute in its right-
hand side, for example n -- C, and that attribute is found to be extraneous, w" wolld
get a functional dependency with an empty right-hand side. Such functional depen-
dencies should be deleted.
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r ;  - g

repeat
Use the union rule to replace any dependencies in F. of the form

dr + /randal ---+ B2withc-t  -  0102.
Find a functional dependency a ---+ B in f." with an extraneous

attribute either in a ot in B.
/* Note: the test for extraneous attributes is done using tr'., not F * /

If an extraneous attribute is found, delete it from a ---+ P.
until tr| does not change.

Figure 7.10 Computing canonical cover.

The canonical cover of F, F", can be shown to have the same closure as F; hence,
testing whether fL is satisfied is equivalent to testing whether f is satisfied. However,
F" is minimal in a certain sense-it does not contain extraneous attributes, and it
combines functional dependencies with the same left side. It is cheaper to test f'"
than it is to test -F itself.

Consider the following set F of functional dependencies on schema (A, B, C):

1-,_+ BC
B ---+ C
A ---+ B
AB--.  C

Let us compute the canonical cover for F.

o There are two functional dependencies with the same set of attributes on the
left side of the arrow:

A---+ BC
A ---+ B

We combine these functional dependencies into A -- BC.

o Ais extraneous in AB '-+ C because F logically implies (F - {AB -- C}) U

{B - C}. This assertion is true because B ---+ C is already in our set of func-
tional dependencies.

o C is extraneous in A -- BC, since A'- BC is logically implied by A --+ B andB
__+ C.

Thus, our canonical cover is

i D
t1, --) D

B - - C

Given a set f. of functional dependencies, it may be that an entire functional de-

pendency in the set is extraneous, in the sense that dropping it does not change the

ilos,rte of F. We can show that a canonical cover F"of F contains no such extraneous
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functional dependency. Suppose that, to the contrary, there were such an extraneous
functional dependency in f,. The right-side attributes of the dependency would then
be extraneous, which is not possible by the definition of canoniial coveis.

A canonical cover might not be unique. For instance, consider the set of functional
dependencies -F : {A ---+ BC , 3 ---, AC , and C --. AB} .If we apply the extraneity
test to 4 -* BC, we find that both B and c are extraneous under .F. However, it is
incorrect to delete both! The algorithm for finding the canonical cover picks one of
the two, and deletes it. Then,

l. If C is deleted, we get the set p' : {A --+ B, B ---' AC, and C -- ,48}. Now,
B is not extraneous in the right hand side of A ---+ B under -F,. Continuing the
algorithm, we find A and B are extraneous in the right-hand side of c --+- 1B ,
Ieading to two canonical covers

F. : {A ---+ B, B ---+ C, and C ---' A}, and
F.: {A ---+ B, B -- AC, and C -- B}.

2. If B is deleted, we get the set {A -- C, B ---+ AC, and C -- AB}. This case is
symmetrical to the previous case, leading to the canonical covers

F": {A -> C, C ---+ B, and B - A}, and
F" : {A ---} C, B ---+ C, and C ---+ AB}.

As an exercise, can you find one more canonical cover for _F ?

7.4.4 Lossless Decomposition
Let R be a relation schema, and let F be a set of functional dependencies on R. Let €1
and R2 form a decomposition of R. Let r(l?) be a relation with schema -R. we say that
the decomposition is a lossless decomposition if for all legal database instancei (that
is, database instances that satisfy the specified functional dependencies and other
constraints),

f la , ( " )  x  l laz ( r )  : ,

In other words, if we project r onto fir and Rz, arrd compute the natural join of the
projection results, we get back exactly r. A decomposition that is not a lossless de-
composition is called a lossy decomposition. The terms lossless-join decomposition
and lossy-join decomposition are sometimes used in place of lossless decomposition
and lossy decomposition.

We can use functional dependencies to show when certain decompositions are
lossless. Let R, Rr, Rz, and F be as above. l?r and Rz form a lossless decomposition
of R if at least one of the following functional dependencies is in f'+:

o  R r l R z - R t

o  E r l l  R z - R z
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In other words, if -R1 n E2 forms a superkey of either R1 or R2, the decomposition

of .R is a lossless decomposition. We can use attribute closure to test efficiently for

superkeys, as we have seen earlier.
To illustrate this, consider the schema

bor -loan : (customer-id, Ioan-numb er, amount)

that we decomposed in Section 7.1.2into

borrower : (customer-id, Ioan-number)
Ioan : (losn-number, amount)

Here borrow ) Ioan : Ioanstumber and loannumber --+ amoLtnt, satisfying the lossless-
decomposition ruIe.

For the general case of decomposition of a schema into multiple schemas at once,
the test for lossless decomposition is more complicated. See the bibliographical notes
for references on the topic.

While the test for binary decomposition is clearly a sufficient condition for loss-
less decomposition, it is a necessary condition only if all constraints are functional
dependencies. We shall see other types of constraints later (in particular, a type of
constraint called multivalued dependencies discussed in Section 7.6.1), thal can en-
sure that a decomposition is lossless even if no functional dependencies are Present.

7.4.5 Dependency Preservqtion
Using the theory of functional dependencies, it is easier to characterize dependency
preservation than using the ad-hoc approach we took in Section 7.3.3.

Let F be a set of functional dependencies on a schema R, and let Er, Rz,. . . , Rnbe
a decomposition of R. The restriction of F to Rz is the set .4 of all functional depen-
dencies in F+ that include only attributes of ,Ri. Since all functional dependencies in
a restriction involve attributes of only one relation schema, it is possible to test such
a dependency for satisfaction by checking only one relation.

Nbte that the definition of restriction uses all dependencies in F+, not just those in
tr'. For instance, suppose p : {A ---+ B, B - C}, and we have a decomposition into
AC and AB.The reitriction of F to AC is then n -- C, since,4 --+ C is in F+, even
though it is not in F.

The set of restrictions F1, F2, . . . , Fn is the set of dependencies that can be checked
efficiently. We now must ask whether testing only the restrictions is sufficient. Let
F' : Fr t-) Fz U ..' U Fn. Ft is asetof functionaldependenciesonschemaR,but,
ingeneral, F' + F.However,evenif F' + F,itmaybethat Ft+ : F+.If thelatteris
true, then every dependency in F is logically implied by F', and, if we verify that F/
is satisfied, we have verified that F is satisfied. We say that a decomposition having
the property Ft+ - f'+ is a dependency-preserving decomposition.

Figure 7.11 shows an algorithm for testing dependency preservation. The input
is aset D: {Rt,  Rz,. . . ,Rn} of decomposedrelat ionschemas,and a setFof func-
tional dependencies. This algorithm is expensive since it requires computation of F+ .
Instead of applying the algorithm of Figure 7.1.1.,we consider two alternatives.



7.4 Functional-Dependency Theory 247

compute.F-+;
for each schema RrinD do

begin
fl : : the restriction of F+ to Ra;

end
F ' : : A
for each restriction -B do

begin
F' : F'l) F.i

end
compute -F'+;
if (P'+ : f'+) then return (true)

else return (false);

Figure7.11 Testing for dependency preservation.

First, note that if each member of F can be tested on one of the relations of the
decomposition, then the decomposition is dependency preserving. This is an easy
way to show dependency preservation; howeveq, it does not alwayi work. There arl
cases where, even though the decomposition is dependency preserving, there is a
dependency in F that cannot be tested in any one relalion in the becompoJition. Thus,
this alternative test can be used only as a sufficient condition that is easy to check; if
it fails we cannot conclude that the decomposition is not dependency preserving;
instead we will have to apply the general test.

We now give a second alternative test for dependency preservation that avoids
computing F+. We explain the intuition behind the test aftei pt"settting the test. The
test applies the following procedure to each a ---+ p in F.

result = ct
while (changes to result) do

for each Ri in the decomposition
S = ( r e s u l t o R , ) + n R t
resu l t= resu l tUt

The attribute closure here is under the set of functional dependencies f'. If result
contains all attributes in 13, then the functional dependency i - g is preserved. The
decomposition is dependency preserving if and only if the procedurdshows that all
the dependencies in.F are preserved.

The two key ideas behind the above test are as follows.

o The first idea is to test each functional dependency a --+ B in F to see if it is
preserved in F'(where,F/ is as defined in Figure 7.i,1).To do so we compute
the closure of a under Ft; the dependency is preserved exactly when the clo-
sure includes B. The decomposition is dependency preserving if (and only if)
all the dependencies in F are found to be preserved.

o The second idea is to use a modified form of the attribute-closure algorithm
to compute closure under Jr/, without actually first computing Ft. we wish to
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avoid computing tr'l since computing it is quite expensive. Note that F/ is the

union of fl, where -4 is the restriction of tr'on.Rz. The algorithm comPutes the

attribute closure of (result n Rz) with respect to tr-, intersects the closure with

Ri, and adds the resultant set of attributes to result; this sequence of steps is

equivalent to computing the closure under of result under -fl. Repeating this

step for each z inside the while loop gives the closure of result under F'.

To understand why this modified attribute-closure approach works cor-

rectly, we note that for any 1 C Rt,1 - 7+ is a functional dependency in -F +,

and 7 ---+ 7+ a Ri is a functional dependency that is in -S, the restriction of F+

to Ri. Conversely, if 1 -- 6 were in fl, then d would be a subset of 1+ n Ri.

This test takes polynomial time, instead of the exponential time required to com-

DUte tl

7.5 Algorithms for Decomposition
Real-world database schemas are much larger than the examples that fit in the pages
of a book. For this reason, we need algorithms for the generation of designs that are
in appropriate normal form. In this section, we present algorithms for BCNF and 3NF.

7.5.1 BCNF Decomposition
The definition of BCNF can be used to directly test if a relation is in BCNF. However,
computation of F+ can be a tedious task. We first describe below simplified tests for

verifying if a relation is in BCNF. If a relation is not in BCNF, it can be decomposed
to create relations that are in BCNF. Later in this section we describe an algorithm to
create a lossless decomposition of a relation, such that the decomposition is in BCNF.

7.5.1.1 Testing for BCNF
Testing of a relation to see if it satisfies BCNF can be simplified in some cases:

o To check if a nontrivial dependency a --+ B causes a violation of BCNF, com-
pute a+ (the attribute closure of o), and verify that it includes all attributes of
R; that is, it is a superkey of R.

o To check if a relation schema -R is in BCNF, it suffices to check only the depen-
dencies in the given set F' for violation of BCNF, rather than check all depen-
dencies in .F+.

We can show that if none of the dependencies in f' causes a violation of
BCNF, then none of the dependencies in .F.+ will cause a violation of BCNF
either.

Unfortunately, the latter procedure does not work when a relation is decomposed.
That is, it does not suffice to use F when we test a relation Ri, in a decomposition
of R, for violation of BCNF. For example, consider relation schema R (A, B, C, D, E),

with functional dependencies F containing A -- B and BC -- D. SuPpose this were

decomposed into R1 (,4, B) and R2(A, C, D, E). NoW neither of the dependencies in
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result:: {R};
done:: false;
compute F +;

while (not done) do
if (there is a schema Ri in result that is not in BCNF)

then begin
let a --+ pbe a nontrivial functional dependency that holds
on.R4 such that a --+ fiz is not in F+, utrd o n A": A;
result :: (result - R) U (Rr - 13) u ( a, g);

end
else done:: true;

Figure7.l2 BCNF decomposition algorithm.

.F contains only attributes from (A,C, D,E) so we might be misled into thinking /?2
satisfies BCNF. In fact, there is a dependency AC ---+ D in F+ (which can be infeired
using the pseudotransitivity rule from the two dependencies in F), that shows that
R2 is not in BCNF. Thus, we may need a dependency that is in .F +, but is not in F, to
show that a decomposed relation is not in BCNF.

An alternative BCNF test is sometimes easier than computing every dependency
in F +. To check if a relation Ri in adecomposition of R is in ncNn we ipply this tesi:

o For every subset a of attributes in Ri, check that cv+ (the attribute closure of a
under F) either includes no attribute of Ri - a, or includes all attributes of -Ra.

If the condition is violated by some set of attributes a in -R1, consider the following
functional dependency, which can be shown to be present in F+:

a---  (a+ - a) n &.
The above dependency shows that /?a violates BCNF.

7.5.1.2 BCNF Decomposition Algorithm
We are now able to state a general method to decompose a relation schema so as to
satisfy BCNF. Figure 7.12 shows an algorithm for this task. If R is not in BCNF, we
can decompose R into a collection of BCNF schemas Rr, Rz, . . . , Rnby the algorithm.
The algorithm uses dependencies that demonstrate violation of BCNi to perlorm the
decomposition.

The decomposition that the algorithm generates is not only in BCNF, but is also
a lossless decomposition. To see why our algorithm generatei only lossless d.ecom-
positions, we note that, when we replace a schema fiz with (R, - 0 and (a, l3), the
dependency a --+ B holds, and (fii - p) a (a,0) : a.

- If we did not require a n P : fl, then those attributes in a n p would not appear in
the schema (R, - 13) and the dependency a -- p would no longer hold.

It is easy to see that our decomposition o{ bor-Ioarz in Secti,on 7.3.2 would result
from applying the algorithm. The functional dependen cy loan_number + arneLrnl ,^1ir-
fies the da P :0 condition and would therefore be chosen to decompose the schema.
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The BCNF decomposition algorithm takes time exponential in the size of the initial

schema, since the algorithm for checking if a relation in the decomposition satisfies

BCNF can take exponential time. The bibliographical notes provide references to an

algorithm that can compute a BCNF decomposition in polynomial time. However, the

algorithm may "overnorrnalize," that is, decompose a relation unnecessarily.

As a longer example of the use of the BCNF decomposition algorithm/ supPose we

have a database design using the lending schema below:

lending : (branch-name, branchtity, assets, customer:name,
lonn-number, amount)

The set of functional dependencies that we require to hold onlending are

br nnchnsme ---+ assets br anch-city
loan-number ---+ frTltouftt branch-name

A candidate key for this schema is {loannumber, customername}.

We can apply the algorithm of Figure 7 .12 to the lending example as follows:

o The functional dependencY

br anch:name'--+ assets br anch-city

holds, but branchname is not a superkey. Thus, lending is not in BCNF. We

replace lendingby

branch : (br anch:name, br anch-city, assets)

loan-info : (brnnchname, custotnerttarne, Ioan-number, amount)

o The only nontrivial functional dependencies that hold onbranchincludebranch

-name on the left side of the arrow. Since brsnchstame is a key for branch, t}:.e

relation branch is in BCNF.

o The functional dependency

loan-number ---+ ftTtxouftt branch:name

holds on loanjnfo, but loan-number is not a key for loan-info. We replace loan
jnfoby

Ioanb : (Ioan-numb er, br nnch-name, amount)

borrower : (customerttame, Ioan-number)

c loanb andborrower are in BCNF.

Thus, the decompositionof lending results in the three relation schemas btanch,loanb,

andborrower, each of which is in BCNF. You can verify that the decomposition is

lossless and dependency preserving'
Note that although the loanb schema above is in BCNF, we could choose to de-

compose it further using the functional dependency loan-number --'+ arlto'ttftt, to get the

schemas
loan : (loan-numb er, amount)
loan-br anch : (loan-numb er, branch-nnme)
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let fl be a canonical cover for F;
i . - n .

for each functional dependencv ct -- B in tr} do
i f  none of the schemas Ri,  j  :  I ,2, . .  . ,  z Jontains aB

then begin
i : : i + 7 ;
R i : :  a  B ;

end
if none of the schem as Ri, i : I, 2,. . ., z contains a candidate key for R

then begin
;  . - ;  L  1 .
u  . _  u  I  L ,

Ri i: arr\ candidate kev for R;
end

re tu rn  (R t ,R r , . . . ,R t )

Figure 7.13 Dependency-preserving, lossless decomposition into 3NF.

These correspond to the schemas that we have used in this chapter.

7.5.2 3NF Decomposition
Figure 7.13 shows an algorithm for finding a dependency-preserving, lossless de-
composition into 3NF. The set of dependencies .F'" used in the algorithrnis a canonical
cover for F. Note that the algorithm considers the set of schemas Ri, i : L,2, . . . ,,i;
initially z : 0, and in this case the set is empty.

Let us apply this algorithm to our 
"ra-pt" 

of Section 7.3.4wherewe showed that

cust_bsnker_branch = (cwtornerjd, ernployeejd, branch_name, type)

is in 3NF even though it is not in BCNF. The algorithm would use the following func-
tional dependencies in -F:

F1: customerjd, employee_id -,-+ branch:name, type
F2i employee_id ---+ foytngTrrmt
Fs: customerjd, br anch_name ---+ ernploy ee_id

The attribute branch-name is extraneous in the right-hand side of F1. No other at-
tribute is extraneous, so -F-" contains customer_id, employee_id t tApe, as well as .F2 and
F3. The algorithm then generates as R1 the schema (customer-id, employeejd, type), as
/?z the schema, (employee-id,branch-name), and as R3 the schema (custbmer_id,brainch
:name, employee_id). The algorithm then finds that R1 contains a candid.ate kev, so no
further relation schema is created.

Before creating a schema Rt, lhe algorithm checks if it is contained in an already
created schema R1. The algorithm can be extended to delete any already createi
schema €z that is contained in a schema Ri that is created later- In the ibove ex-
ample, ,R2 is contained in R3, and hence /?2 can be deleted from the decomposition,
by this algorithm extension.

The algorithm ensures the preservation of dependencies by explicitly building a
schema for each dependency in a canonical covei. It ensures tirat the detomposit[n
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is a lossless decomposition by guaranteeing that at least one schema contains a can-

didate key for the schema being decomposed. Practice Exercise 7.72 provides some

insight into the proof that this suffices to guarantee a lossless decomposition.
This algorithm is also called the 3NF synthesis algorithm, since it takes a set of de-

pendencies and adds one schema at a time, instead of decomposing the initial schema

repeatedly. The result is not uniquely defined, since a set of functional dependencies

can have more than one canonical cover, and, further, in some cases the result of the

algorithm depends on the order in which it considers the dependencies in fi. The

algorithm may decompose a relation even if it is already in 3NF, as the preceding

example illustrated; however, the decomposition is still guaranteed to be in 3NF.

If a relation Rr is in the decomposition generated by the synthesis algorithm, then

Rr is in 3NF. Recall that when we test for 3NF, it suffices to consider functional de-

pendencies whose right-hand side is a single attribute. Therefore, to see that fit is in

3NF, you must convince yourself that any functional dependency 7 '- B that holds

on R1 satisfies the definition of 3NF. Assume that the dependency that generated Ri

in the synthesis algorithm is a ---+ B. Now, B must be in a or B, since B is in R, and

d --+ P generated Rt.Let us consider the three possible cases:

o B is inboth a and. B.In this case, the dependency o ---) Pwould not havebeen

in .F. since B would be extraneous in p. Thus, this case cannot hold.

o B is in B but not a. Consider two cases:

n 7 is a superkey. The second condition of 3NF is satisfied'

! 1 is not a superkey. Then a must contain some attribute not in 7. Now,

since 7 ---+ B is in f'+, it must be derivable from F" by using the attribute

closure algorithm on 7. The derivation could not have used * ' 0-
if it had been used, a must be contained in the attribute closure of 7,
which is not possible, since we assumed 7 is not a superkey. Now, us-

i ngo - -  (P - {B } )  andT ' -  B ,wecande r i ve  a - -  B  ( s i nceT  CaB,and l

cannot contain B because 1 -- B is nontrivial). This would imply that B

is extraneous in the right-hand side of a + 0, which is not possible since

o --+ Bis in the canonical cover .F". Thus, if B is in p, thenT must be a

superkey, and the second condition of 3NF must be satisfied.

o  B i s i n a b u t n o t P .
Since a is a candidate key, the third alternative in the definition of 3NF is

satisfied.

Interestingly, the algorithm we described for decomposition into 3NF can be imple-

mented in po$nomial time, even though testing a given relation to see if it satisfies

3NF is NP-hard (which means that it is very unlikely that a polynomial-time algo-

rithm will ever be invented for this task).

7.5.3 Comporison of BCNF qnd 3NF

Of the two normal forms for relational database schemas, 3NF and BCNE there are

advantages to 3NF in that we know that it is always possible to obtain a 3NF design
without sacrificing losslessness or dependency preservation. Nevertheless, there are
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disadvantages to 3NF: We may have to use null values to represent some of the possi-
ble meaningful relationships among data items, and there iJ the problem of repeiition
of information.

Our goals of database design with functional dependencies are:

1. BCNF

2. Losslessness

3. Dependency preservation

Since it is not always possible to satisfy all three, we may be forced to choose between
BCNF and dependency preservation with 3NF.

- It is worth noting that SQLdoes not provide a way of specifying functional depen-
dencies, except for the special case of declaring superkeys by using the primary^key
or unique constraints. It is possible, although a little complicated, to write assertions
that enforce a functional dependency (see Practice Exercise 7.9); unfortunately, test-
ing the assertions would be very expensive in most database systems. Thus even if
we had a dependency-preserving decomposition, if we use standard SeL we can test
efficiently only those functional dependencies whose left-hand side is a key.

Although testing functional dependencies may involve a join if the decomposition
is not dependency preserving, we can reduce the cost by using materialized views,
which many database systems support. Given a BCNF decomposition that is not de-
pendency preserving, we consider each dependency in a minimum cover.e that is
not preserved in the decomposition. For each such dependency a - {3, we define
a materialized view that computes a join of all relations in the decomposition, and
projects the result on aB. The functional dependency can be easily tested on the ma-
terialized.view,by means of a constraint unique (a). On the negative side, there is a
space and time overhead due to the materialized view, but on the positive side, the
application programmer need not worry about writing code to keep redundant data
consistent on updates; it is the job of the database system to mainiain the material-
ized view, that is, keep it up to date when the database is updated. (Later in the book,
in Section 14.5, we outline how a database system can perform materialized view
maintenance efficiently.)

Thus, in case we are not able to get a dependency-preserving BCNF decomposition,
it is generally preferable to opt for BCNF, and use techniquei such as materialized
views to reduce the cost of checking functional dependencies.

7.6 Decomposition using Multivqlued Dependencies
Some relation schemas, even though they are in BCNF, do not seem to be sufficiently
normalized, in the sense that they still suffer from the problem of repetition of infoi-
Tut1"": Consider again our banking example. Assume that, in an alternative design
for the bank database schema, we have the schema

cust-loan: (loan-number, customer-id, customer-nfrme, customer-street, customertitv)
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The astute reader will recognize this schema as a non-BCNF schema because of the
functional dependency

customer-id ---+ customerJlame, customer-street customer-city

and because customer-id is not a key for cust-Ioan. However, assume that our bank is
attracting wealthy customers who have several addresses (say, a winter home and
a summer home). Then, we no longer wish to enforce the functional dependency
customerjd ---+ customerstreet customer-city, though, of course, we still want to enforce
customer-id --+ customer:tame (that is, the bank is not dealing with customers who
operate under multiple aliases!). Following the BCNF decomposition algorithm/ we
obtain two schemas:

: kustomer-id, customer stame)
: (loannumber, customerid, customer'street, customer-citv)

Both of which are in BCNF (recall that not only may customers have more than one
loan but also that a loan may be made to a SrouP of people, and therefore, neither
customer-id -- loan-number nor loan-number -'-+ customerid hold).

Despite R2being in BCNF, there is redundancy. We repeat the address of each
residence of a customer once for each loan that that customer has. We could solve
this problem by decomposing R2 further into:

loantust-id = (Ioan-numb er, customer-id)
custtesidence = (customerid, customer-street, customerdtv)

but there is no constraint that would lead us to do this.
To deal with this problem, we must define a new form of constraint, called amul-

tiaalued dependency. As we did for functional dependencies, we shall use multivalued
dependencies to define a normal form for relation schemas. This normal form, called
fourth normal form (+NF), is more restrictive than BCNF. We shall see that every 4NF
schema is also in BCNF, but there are BCNF schemas that are not in 4NF.

7.6.1 Multivqlued Dependencies
Functional dependencies rule out certain tuples from being in a relation.If A -- B,
then we cannot have two tuples with the same A value but different B values. Mul-
tivalued dependencies, on the other hand, do not rule out the existence of certain
tuples. Instead, they require that other tuples of a certain form be present in the rela-

tion. For this reason, functional dependencies sometimes are referred to as equality-
generating dependencies, and multivalued dependencies are referred to as tuple-
generating dependencies.

Let R be a relation schema and let a C R and p C R. The multivalued dependency

c r n 0

holds on R if, in any legal relation r (R) , lot all pairs of tuples tr and t2 in r such that
t{*] : t2 [a], there exist tuples 13 and ta in r such that

R1
Rz



7.6 Decomposition Using Multivalued Dependencies

Figure7.I4 Thbular representation of a --r* P.

tr fal : t2lal : tslal : talal
tzu3l :  t r l7 l
ts lR -  0 l :  tz lR -  0 l
tql7l : tzl7l
t u l a -  0 l : t t l R -  P )

This definition is less complicated than it appears to be. Figure 7.74 gives a tabular
picture of t 1, t2, ts, ar.d ta. Intuitively, the multivalued dependency a --+ + p says that
the relationship between a and B is independent of the relationship between a and
R - P. If the multivalued dependency a -->+ B is satisfied by all relations on schema
-R, then a ---+-+ B is a triaial multivalued dependency on schema R. Thus, st --;+ B is
t r i v i a l i f B C a o r p l a : R .

To illustrate the difference between functional and multivalued dependencies, we
consider the schema R2 again, and an example relation on that schema shown in Fig-
ute7.1,5. We must repeat the loan number once for each address a customer has, and
we must repeat the address for each loan a customer has. This repetition is unnec-
essary/ since the relationship between a customer and his address is independent of
the relationship between that customer and a loan. If a customer with customer-id
99-"123 has a loan (say, loan number L-23),we want that loan to be associated with all
of that customer's addresses. Thus, the relation of Figure 7.76 is illegal. To make this
relation legal, we need to add the tuples (L-23,99-723, Main, Manchester) and (L-27,
99-"123, North, Rye) to the relation of Figure 7.16.

Comparing the preceding example with our definition of multivalued dependency,
we see that we want the multivalued dependency

customer-id -">-+ customer-street customer-city

to hold. (The multivalued dependency customer-id ---+-+ Iosn:number wiII do as well.
We shall soon see that they are equivalent.)

L-23

L-23
L-93

99-TZJ

99-723
15-106

North
Main
Lake

t(ye
Manchester
Horseneck

a t . . ' a i

a t . . . a i

a ; t r . . . a ;

h ,  h .
" r +  1 . . . " 1

a i + 1 . ' . a n

a t . . . a i

a t . . . a i

a i * t . . . a j

Figure 7.15 An example of redundancy in a relation on a BCNF schema.
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L-23
L-27

99-123
99-723

North
Main

Rye
Manchester

Figure7.15 An illegal ,R2 relation.

As with functional dependencies, we shall use multivalued dependencies in two
ways:

1. To test relations to determine whether they are legal under a given set of func-
tional and multivalued dependencies

2. To specify constraints on the set of legal relations; we shall thus concern our-
selves with only those relations that satisfy a given set of functional and mul-
tivalued dependencies

Note that, if a relation r fails to satisfy a given multivalued dependency, we can con-
struct a relation r' that does satisfy the multivalued dependency by adding tuples
to r.

Let D denote a set of functional and multivalued dependencies. The closure D+
of D is the set of all functional and multivalued dependencies logically implied by D.
As we did for functional dependencies, we can compute D+ from D, using the formal
definitions of functional dependencies and multivalued dependencies. We can man-
age with such reasoning for very simple multivalued dependencies. Luckily, multi-
valued dependencies that occur in practice appear to be quite simple. For complex
dependencies, it is better to reason about sets of dependencies by using a system of
inference rules. (Section C.1.1 of the appendix outlines a system of inference rules for
multivalued dependencies.)

From the definition of multivalued dependency, we can derive the following rule:

o  I f  a - B , t h e n c - * 0 .

In other words, every functional dependency is also a multivalued dependency.

7.6.2 Fourth Normql Form
Consider again our example of the nCNf'schema

R2 : (loannumber, customerjd, customer-street, c ust omer -c it y)

in which the multivalued dependency customer-id ---+-) customerstreet customer-city
holds. We saw in the opening paragraphs of Section 7.6 that, although this schema is
in BCNF, the design is not ideal, since we must repeat a customer's address informa-
tion for each loan. We shall see that we can use the given multivalued dependency
to improve the database design, by decomposing this schema into a fourth normal
form decomposition.
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result:: {R};
done :: false;
compute D+; Given schema Ri,Iet Da denote the restriction of D+ to ft;
while (not done) do

if (there is a schema Ri in result that is not in 4NF w.r.t. De)
then begin

let a ---+-+ lj be a nontrivial multivalued dependency that holds
on /?4 such that a --+ R.i,isnotin Di, and o O 0 : A;
result :: (result - nu) u (Ro - {j) u (*, l3);

end
else done:: true;

Figure7.I7 4NFdecomposition algorithm.

A relation schema R is in fourth normal form (4NF) with respect to a set D of
functional and multivalued dependencies if, for all multivalued dependencies in D+
of the form a ---;-+ B, where cv C R and {3 C R, at least one of the following holds

o a ----> B is a trivial multivalued dependency.

o o is a superkey for schema R.

A database design is in 4NF if each member of the set of relation schemas that consti-
tutes the design is in 4NF.

Note that the definition of 4NF differs from the definition of BCNF in only the use
of multivalued dependencies instead of functional dependencies. Every 4NF schema
is in BCNF. To see this fact, we note that, if a schema R is not in BCNF, then there is
a nontrivial functional dependency o + P holding on R, where a is not a superkey.
Since a ---+ B implies a + 0,R cannotbe in 4NF.

Let R be a relation schema, and let Rt, Rz, . . . , Rn be a decomposition of R. To
check if each relation schema R4 in the decomposition is in 4NF, we need to find
what multivalued dependencies hold on each .Ri. Recall that, for a set F of functional
dependencies, the restriction Fi of F to Ra is all functional dependencies in -F + that
include only attributes of fi.;. Now consider a set D of both functional and multivalued
dependencies. The restriction of D to B.; is the set ,i consisting of

1. All functional dependencies in D+ that include only attributes of R;

2. All multivalued dependencies of the form

u ---+-> finP,

where o C Rt and a --++ 0 is in D+

7.6.3 4NF Decomposition
The analogy between 4NF and BCNF applies to the algorithm for decomposing a
schema into 4NF. Figure 7.17 shows the 4NF decomposition algorithm. It is identiial
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to the BCNF decomposition algorithm of Figure 7.72, except that it uses multivalued,
instead of functional, dependencies and uses the restriction of D+ to Ri.

If we apply the algorithm of Figure 7.17 to (to*o"*au, ,*to*u:4, customer-street,
customer-city), we find that customerjd ---r. loan-number is a nontrivial multivalued de-
pendency, and customerid is not a superkey for the schema. Following the algorithm,
we replace it by two schemas:

loan-cust-id = (Ioan-numb er, customerid)
cust-residencs = (customerjd, customerstreet, customerdty)

This pair of schemas, which is in 4NF, eliminates the redundancy we encountered
earlier.

As was the case when we were dealing solely with functional dependencies, we
are interested in decompositions that are lossless and that preserve dependencies.
The following fact about multivalued dependencies and losslessness shows that the
algorithm of Figure 7.77 generates only lossless decompositions:

o Let R be a relation schema, and let D be a set of functional and multivalued
dependencies on R. Let .R1 and R2 form a decomposition of R. This decompo-
sition is lossless of R if and only if at least one of the following multivalued
dependencies is in D+:

Rt)Rz " Rr
Rt)Rz " R2

Recall that we stated in Section 7.4.4 that, if A1 n Rz - + Rr or R1 fl Rz - Rz, then
/?1 and R2 arc a lossless decomposition of R. The preceding fact about multivalued
dependencies is a more general statement about losslessness. It says that, for eaery
lossless decomposition of R into two schemas fi1 and R2, or.e of the two dependen-
cies ,Rr ) R2 ---+-+ R1 or R1 ) R2 --->-+,R2 must hold.

The issue of dependency preservation when we decompose a relation becomes
more complicated in the presence of multivalued dependencies. Section C.1.2 of the
appendix pursues this topic.

7.7 More Normal Forms
The fourth normal form is by no means the "ultimate" normal form. As we saw ear-
lier, multivalued dependencies help us understand and tackle some forms of rep-
etition of information that cannot be understood in terms of functional dependen-
cies. There are types of constraints called join dependencies that generalize multi-
valued dependencies, and lead to another normal form called project-join normal
form (pINr) (PJNF is called fifth normal form in some books). There is a class of even
more general constraints that leads to a normal form called domain-key normal form
(DKNF).

A practical problem with the use of these generalized constraints is that they are
not only hard to reason with, but there is also no set of sound and complete inference
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rules for reasoning about the constraints. Hence PJNF and DKNF are used quite rarelv.
Appendix C provides more details about these normal forms.

Conspicuous by its absence from our discussion of normal forms is second nor-
mal form (2NF). We have not discussed it, because it is of historical interest only. We
simply define it, and let you experiment with it in Practice Exercise 2.15.

7.8 Dqtqbqse-Design Process
So far we have looked at detailed issues about normal forms and normalization. In
this section we study how normalization fits into the overall database-design process.

Earlier in the chapter, starting in Section 7.3,we assumed that a relation schema
B is given, and proceeded to normalize it. There are several ways in which we could
have come up with the schema R:

L. R could have been generated in converting an E-R diagram to a set of relation
schemas.

2. R could have been a single relation containing all attributes that are of interest.
The normalization process then breaks up R into smaller relations.

3. i? could have been the result of an ad-hoc design of relations that we then test
to verify that it satisfies a desired normal form.

In the rest of this section, we examine the implications of these approaches. We also
examine some practical issues in database design, including denormalization for per-
formance and examples of bad design that are not detected by normalization.

7.8.1 E-R Model qnd Normqlizstion
When we carefully define an E-R diagram, identifying all entities correctly, the re-
lation schemas generated from the E-R diagram should not need much further nor-
malization. However, there can be functional dependencies between attributes of an
entity. For instance, suppose an employee entity had attributes department-number and,
depnrtment-nddress, and there is a functional dependency departmentnumber -'depart-
ment-nddress. We would then need to normalize the relation generated fromemployee.

Most examples of such dependencies arise out of poor E-R diagram design. Inihe
above example, if we had designed the E-R diagram correctly, we would have created
a department entity with attribute department-nddress and a relationship between em-
ployee and department. Similarly, a relationship involving more than two entities may
not be in a desirable normal form. Since most relationships are binary, such cases
are relatively rare. (In fact, some E-R diagram variants actually make it difficult or
impossible to specify nonbinary relations.)

Functional dependencies can help us detect poor E-R design. If the generated re-
lations are not in desired normal form, the problem can be fixed in the E-R diagram.
That is, normalization can be done formaily as part of data modeling. Alternatlvely,
normalization can be left to the designer's intuition during E-R modeling, and can be
done formally on the relations generated from the E-R model.
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A careful reader will have noted that in order for us to illustrate a need for mul-
tivalued dependencies and fourth normal form, we had to begin with schemas that
were not derived from our E-R design. Indeed, the process of creating an E-R design
tends to generate 4NF designs. If a multivalued dependency holds and is not im-
plied by the corresponding functional dependency, it usually arises from one of the
following sources:

o A many-to-many relationship

o A multivalued attribute of an entity set

For a many-to-many relationship, each related entity set has its own schema and
there is an additional schema for the relationship set. For a multivalued attribute,
a separate schema is created consisting of that attribute and the primary key of the
entity set (as in the case of the dependentstame attribute of the entity set employee).

The universal-relation approach to relational database design starts with an as-

sumption that there is one single relation schema containing all attributes of interest.
This single schema defines how users and applications interact with the database.

7.8.2 Ncming of Attributes qnd Relqtionships
A desirable feature of a database design is the unique-role assumption, which means
that each attribute name has a unique meaning in the database. This prevents us from
using the same attribute to mean different things in different schemas. For exam-
ple, we might otherwise consider using the attribute number for loan number in the
loan scherna and for account number in the accounf schema. The join of a relation on
schema loan wlth one on account is meaningless ("information on loan-account pairs
where the loan and the account happen to have the same number"). While users
and application developers can work carefully to ensure use of the right number in
each circumstance, having a different attribute name for loan number and for account
number serves to reduce user errors. Indeed, we have observed the unique-role as-
sumptions in our database designs in this book, and this is a good general practice to
follow.

While it is a good idea to keep names for incompatible attributes distinct, if at-
tributes of different relations have the same meaning, it may be a good idea to use
the same attribute name. For example, we used attribute names customer-id and em-
ployee-id int]ne customer and employee entity sets (and relations). If we wished to gen-
eralize these entity sets by creating aperson entity set, we would have to rename the
attribute. Thus, even if we do not currently have a generalization of customer and em-
ployee, if we foresee such a possibility it is best to use the same name in both entity
sets (and relations).

Although technically, the order of attribute names in a schema does not matter, it
is convention to list primary-key attributes first. This makes reading default output
(as from select *) easier to read.

In large database schemas, relationship sets (and schemas derived therefrom) are
often named via a concatenation of the names of related entity sets, perhaps with
an intervening hyphen or underscore. We have used a few such names, for exam-
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ple account-branch andloan-branch. We used the names borrozoer or depositor instead of
using longer concatenated names such as customer-lonn or customer-nccount. This was
acceptable since it is not hard for you to remember the associated entities for a few re-
lationships. We cannot always create relationship names by simple concatenation; for
example, a manager or works-for relationship between employees would not make
much sense if it were called employeetmployee! Similarty, if there are multiple relation-
ship sets possible between a pair of entity sets, the relationship names must include
extra parts to identify the relationship.

Different organizations have different conventions for naming entities. For exam-
ple, we may call an entity set of customers customer or customers.We have chosen
to use the singular form in our database designs. Using either singular or plural is
acceptable, as long as the convention is used consistently across all entities.

As schemas grow larger, with increasing numbers of relationships, using consis-
tent naming of attributes, relationships, and entities makes life much easier for the
database designer and application programmers.

7.8.3 Denormqlizqtion for Performqnce
Occasionally database designers choose a schema that has redundant information;
that is, it is not normalized. They use the redundancy to improve performance for
specific applications. The penalty paid for not using a normalized schema is the extra
work (in terms of coding time and execution time) to keep redundant data consistent.

Forinstance, suppose that the name of an account holder has to be displayed along
with the account number and balance, every time the account is accessed. In oui
normalized schema, this requires a join of account with depositor.

One alternative to computing the join on the fly is to store a relation containing all
the attributes of account and depositor. This makes displaying the account informaiion
faster. Howevel, the balance information for an account is repeated for every person
who owns the account, and all copies must be updated blthe applicatiory^,rh".t-
ever the account balance is updated. The process of taking a normalized schema and
making it nonnormalized is called denormalization, and designers use it to tune per-
formance of systems to support time-critical operations.

A better alternative, supported by many database systems today, is to use the nor-
malized schema, and additionally store the join of sccount and depositor as a mate-
tialized view. (Recall that a materialized view is a view whose result is stored in
the database, and brought up to date when the relations used in the view are up-
dated.) Like denormalization, using materialized views does have space and time
overheads; however, it has the advantage that keeping the view up to date is the job
of the database system, not the application programmer.

7.8.4 Other Design lssues
There are some aspects of database design that are not addressed by normalization,
and can thus lead to bad database design. Data pertaining to time or to ranges of time
have several such issues. we give examples here; obviously, such designs should be
avoided.
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Consider a company database, where we want to store earnings of companies in
different years. A relation earnings(company-id, yenr, nmount) could be used to store
the earnings information. The only functional dependency on this relation is company
-id, year ---+ aflxoltntt and the relation is in BCNF.

An alternative design is to use multiple relations, each storing the earnings for a
different year. Let us say the years of interest are 2000,2007, and2002; we would then
have relations of the form earnings2))}, earnings2)}1, earnings2)02, all of which are
on the schema (company-id, earnings). The only functional dependency here on each
relation would be company-id -- esrnings, so these relations are also in BCNF.

However, this alternative design is clearly a bad idea-we would have to create
a new relation every year/ and would also have to write new queries every year, to
take each new relation into account. Queries would also be more complicated since
they may have to refer to many relations.

Yet another way of representing the same data is to have a single relation company

4ear(company-id, earnings2)O), earnings200L, earnings2)}2). Here the only functional
dependencies are from company-id to the other attributes, and again the relation is in

BCNF. This design is also a bad idea since it has problems similar to the previous de-
sign-namely we would have to modify the relation schema and write new queries
every year. Queries would also be more complicated, since they may have to refer to

many attributes.
Representations such as those in the companyyear relation, with one column for

each value of an attribute, are called crosstabs; they are widely used in spreadsheets
and reports and in data analysis tools. While such representations are useful for dis-

play to users, for the reasons just given, they are not desirable in a database design.
SQL extensions have been proposed to convert data from a normal relational repre-

sentation to a crosstab, for display.

7.9 Modeling Temporql Dqtq
Suppose we retain data in our bank showing not only the address of each customer,
but also all former addresses of which the bank is aware. We may then ask queries
such as "Find all customers who lived in Princeton in 1981." In this case, we may
have multiple addresses for customers. Each address has an associated start and end
date, indicating when the customer was resident at that address. A special value for
the end date, e.g., null, or a value well into the future such as 9999-72-37, can be used
to indicate that the customer is still resident at that address.

In general, temporal data are data that have an associated time interval during
which they are valid.a We use the term snapshot of data to mean the value of the
data at a particular point in time. Thus a snapshot of customer data gives the values
of all attributes, such as address, of customers at a particular point in time.

Modeling temporal data is a challenging problem for several reasons. For example,
suppose we have a customer entity with which we wish to associate a time-varying
address. To add temporal information to an address, we would then have to cre-

4. There are other models of temporal data that distinguish between valid time and transaction time,
the latter recording when a fact was recorded in the database. We ignore such details for simplicity.
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ate a multivalued attribute, each of whose values is a composite value containing
an address and a time interval. In addition to time-varying attribute values, entitiei
may themselves have an associated valid time. For example, an account entity may
have a valid time from the date it is opened to the date it is closed. Relationships
too may have associated valid times. For example,the depositor relationship between
a customer and an account may record when the customer became an owner of the
account. We would thus have to add valid time intervals to attribute values, enti-
ties, and relationships. Adding such detail to an E-R diagram makes it very difficult
to create and to comprehend. There have been several proposals to extend the E-R
notation to specify in a simple manner that an attribute br relationship is time varv-
ing, but there are no accepted standards.

When we track data values across time, functional dependencies that we assumed
to hold, such as

customer-id ^--+ customer_street, customer_city

may no longer hold. The following constraint (expressed in English) would hold in-
stead: " A customer-id has only one customerstreet and customer-city value for any given
time f."

Functional dependencies that hold at a particular point in time are called temporal
functional dependencies. Formally, a temporal functional dependency x 3 y holds
on a relation schema R if , for all legal instances r of R, all snapshots of r satisfy the
functional dependency X ---+ Y.

We could extend the theory of relational database design to take temporal func-
tional dependencies into account. However, reasoning with regular functional de-
pendencies is difficult enough already, and few designers are prepared to deal with
temporal functional dependencies.

In practice, database designers fall back to simpler approaches to designing tem-
poral databases. One commonly used approach is to design the entire databaie (in-
cluding E-R design and relational design) ignoring temporal changes (equivalently,
taking only a snapshot into consideration). After this, the designer studies the vari-
ous relations and decides which relations require temporal variation to be tracked.

The next step is to add valid time information to each such relation, by adding
start and end time as attributes. For example, assume we have a relation

c o ur s e(c o ur s e_i d, c o ur s e _t itl e)

associating a course title with each course, which is identified by a course-id. The title
of the course may change over time, which can be handled by adding a valid time
range; the resultant schema would be

course(course_id, course_title, start, end)

An instance of this relation might have two records (CS101, "Introduction to Pro-
gramming", 1985-01-01, 2000-72-37) and (CS101, .,Introduction to C",2001 -07-01,9999_
12-37) .If the relation is updated by changing the course title to "Introduction to Java,"
the time "9999-12-31" would be updated to the time until which the old value (..In-
troduction to C") is valid, and a new tuple would be added containing the new title
("Introduction to Java"), with an appropriate start time.
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If another relation had a foreign key referencing a temporal relation, the database
designer has to decide if the reference is to the current version of the data or to the
data as of a particular point in time. For example, a relation that records the cur-
rent room assignments for each course may implicitly refer to the temporally current
value associated with each course-id. On the other hand, a record in a student's tran-
script should refer to the course title at the time when the student took the course. In
this latter case, the referencing relation must also record time information, to identify
a particular record from the course relation.

The original primary key for a temporal relation would no longer uniquely iden-
tify a tuple. To resolve this problem, we could add the start and end time attributes
to the primary key. Howevel some problems remain:

o It is possible to store data with overlapping intervals, which the primary-key
constraint would not catch. If the system supports a native aalid time type, it
can detect and prevent such overlapping time intervals.

e To specify a foreign key referencing such a relation, the referencing tuples
would have to include the start and end time attributes as part of their for-
eign key, and the values must match that in the referenced tuple. Further, if
the referenced tuple is updated (and the end time which was in the future is
updated), the update must propagate to all the referencing tuples.

If the system supports temporal data in a better fashion, we can allow the
referencing tuple to specify a point in time, rather than a rar:.ge/ and rely on
the system to ensure that there is a tuple in the referenced relation whose valid
time interval contains the point in time. For example, a transcript record may
speclfy acourse-id anda time (say the start date of a semester), which is enough
to identify the correct record inthe course relation.

As a common special case, if all references to temporal data refer to only the cur-
rent data, a simpler solution is to not add time information to the relation, but instead
create a correspondinghistory relation that has temporal information, for past values.
For example, in our bank database, we could use the design we have created, ignor-
ing temporal changes, to store only the current information. All historical information
is moved to historical relations. Thus, the customer relation may store only the current
address, while a relation customerhistory may contain all the attributes of customer,
with additional start-time and end-time attributes.

Although we have not provided any formal way to deal with temporal data, the
issues we have discussed and the examples we have provided should help you in
designing a database that records temporal data. Further issues in handling temporal
data, including temporal queries, are covered later, in Section24.2.

7.1O Summcry
o We showed pitfalls in database design, and how to systematically design a

database schema that avoids the pitfalls. The pitfalls included repeated infor-

mation and inabilitv to represent some information.
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o we showed the development of a relational database design from an E-R de-
sign, when schema may be combined safely, and when a schema should be
decomposed. All valid decompositions must be lossless.

o we described the assumptions of atomic domains and first normal form.

o we introduced the concept of functional dependencies, and used it to present
two normal forms, Boyce-Codd normal form (BCNF) and third normal form
(3NF).

o If the decomposition is dependency preserving, given a database update, all
functional dependencies can be verifiable from individual relations, without
computing a join of relations in the decomposition.

o we showed how to reason with functional dependencies. we placed special
emphasis on what dependencies are logically implied by a set of dependen-
cies. we also defined the notion of a canonical cover, which is a minimal set of
functional dependencies equivalent to a given set of functional dependencies.

o we outlined an algorithm for decomposing relations into BCNF. There are re-
lations for which there is no dependency-preserving BCNF decomposition.

o we used the canonical covers to decompose a relation into 3NF, which is a
small relaxation of the BCNF condition. Relations in 3NF may have some re-
dundancy, but there is always a dependency-preserving decomposition into
3NF.

o we presented the notion of multivalued dependencies, which specify con-
straints that cannot be specified with functional dependencies alone. we de-
fined fourth normal form (4NF) with multivalued dependencies. section C.1.1
of the appendix gives details on reasoning about multivalued dependencies.

o other normal forms, such as pJNF and DKNR eliminate more subtle forms
of redundancy. However, these are hard to work with and are rarely used.
Appendix C gives details on these normal forms.

o In reviewing the issues in this chapter, note that the reason we could define
rigorous approaches to relational database design is that the relational data
model rests on a firm mathematical foundation. That is one of the primary
advantages of the relational model compared with the other data modets thit
we have studied.

Review Terms
o E-R model and normalization

o Decomposition

o Functional dependencies

o Lossless decomposition

o Atomic domains

First normal form (fNf')

Legal relations

Superkey

E satisfies F

F holds on l?

a

a

a

a

a
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o Boyce-Codd normal form
(BCNF)

o Dependencypreservation

o Third normal form (3NF)

o Tiivial functional dependencies

o Closure of a set of functional
dependencies

o Armstrong's axioms

r Closure of attribute sets

r Restriction of F to ,R,:

o Canonical cover

o Extraneous attributes

o BCNF decomposition algorithm

r 3NF decomposition algorithm

o Multivalued dependencies

o Fourth normal form (4NF)

o Restriction of a multivalued
dependency

o Project-join normal form (PINF)

o Domain-key normal form (DKNF)

o Universal relation

o Unique-role assumption

o Denormalization

Prqctice Exercises
7.1 Suppose that we decompose the schema R: (A, B, C, D, E) into

(A' B' C)
(A' D' E)

Show that this decomposition is a lossless decomposition if the following set F
of functional dependencies holds:

A --+ BC
CD --+ E
B ---+ D
E--+A

List all functional dependencies satisfied by the relation of Figure 7.18.

Explain how functional dependencies can be used to indicate the following:

o A one-to-one relationship set exists between entity sets account and customer.
o A many-to-one relationship set exists between entity sets account and cus-

tomer.

7.2

/ . J

ffi
aa,Tn,T c.  I
|  _ t  ^ t  _  |

I  a 1 l b 1 l c 2 l

I  a , l  u , l  c ,  I
l a , l b . l c " l

Figure 7.18 Reiation of Practice Exercise 7.2.
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7.4 Use Armstrong's axioms to prove the soundness of the union ruIe. (Hint: Use the
augmentation rule to show that, if a -- p, then ot - a0. Appty the augmentation
rule again, using o ---+ 7, and then apply the transitivity rule.)

7.5 Use Armstrong's axioms to prove the soundness of the pseudotransitivity rule.

7.6 Compute the closure of the following set F of functional dependencies for rela-
tionschema R. : (A, B, C, D, E).

A--+ BC
C D - + E
B - - + D
E - - A

List the candidate keys for R.

7.7 Using the functional dependencies of Practice Exercise 7.6, compute the canon-
ical cover F".

7.8 Consider the algorithm in Figure 7.79 to compute a+. Show that this algorithm
is more efficient than the one presented in Figure 7.9 (Section 7.4.2) and that it
computes a+ correctly.

7.9 Given the database schema R(a,b, c), anda relation r on the schema R, write an
SQL query to test whether the functional dependency b ---+ c holds on relation
r. Also write an SQL assertion that enforces the functional dependencv. Assume
that no null values are present.

7.10 Let Rt-, Rz,. . . , Rn be a decomposition of schema u. Let u(u)be a relation, and
Iet 16 : IIa, (r). Show that

u C r t X 1 2 X . . . . X r n

7.11 Show that the decomposition in Practice Exercise 7.1 is not a dependency-preser-
ving decomposition.

7.12 Show that it is possible to ensure that a dependency-preserving decomposition
into 3NF is a lossless decomposition by guaranteeing that at least one schema
contains a candidate key for the schema being decomposed. (Hlnf: show that
the join of all the projections onto the schemas of the decomposition cannot
have more tuples than the original relation.)

7.13 Give an example of a relation schema R' and set f" of functional dependencies
such that there are at least three distinct lossless decompositions of R/ into BCNF.

7.14 Let aprime attribute be one that appears in at least one candidate key. Let a and
B be sets of attributes such that a -- p holds, but 13 ---+ a does not hold. Let Abe
an attribute that is not in a, is not in p, and for which g - A holds. we say that
A is transitiaely dependent on a. We can restate our definition of 3NF as foilows:
A relation schema R is in 3NF with respect to a set F of functional dependencies
if there are no nonprime attributes A in R for which A is transitiverv dependent
on a key for R.
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result :: A;
/" fdcount is an array whose lth element contains the number

of attributes on the left side of the lth FD that are
not yet known tobe in a+ * /

loyi  : :  1to lFl  do
begin

let B - 7 denote the ithFD;

fdcount ltl ': l l3l;
end

/" appears is an array with one entry for each attribute. The
entry for attribute A is a list of integers. Each integer
I on the list indicates that A appears on the left side
of t}l.e i,th FD * /

for each attribute A do
begin

appearslA] :: NIL;
foyi  : :  1to lFl  do

begin
Iet 13 ---+ 7 denote the ithFD;
if A e B then add I to appenrs lA];

end
end

addin (cv);
return (result);

procedure addin (a);
for each attribute Ain a do

begin
if A / resultthen

begin
result '.: resultU {A};
for each element i of appearslA] do

begin

fdcount lil :: fdcount li.l - l;
if fdcount lzl :: 0then

begin
let B -' 1 denote the lth FD;
addin (ry);

end
end

end
end

Figure7.l9 An algorithm to compute a*.



Exercises

Show that this new definition is equivalent to the original one.

7.15 A functional dependency a ---- p is called a partial dependency if there is a
proper subset 7 of a such that 1 ---+ p.we say that B is partially dependent on a. A
relation schema R is in second normal form (ZNf') if each attribute A in R meets
one of the following criteria:

o It appears in a candidate key.
o It is not partially dependent on a candidate key.

show that every 3NF schema is in 2NF. (Hint: show that every partial depen-
dency is a transitive dependency.)

7.16 Give an example of a relation schema R and a set of dependencies such that R is
in BCNF, but is not in 4NF.

Exercises

7.17 Explain what is meant by repetition of information and inabitity to represent in-
formation' Explain why each of these properties may indicate a bad relational
database design.

7.18 Why are certain functional dependencies called triainl functional dependencies?

7.19 Use the definition of functional dependency to argue that each of Armstrong,s
axioms (reflexivity, augmentation, and transitivity) is sound.

7.20 Consider the following proposed rule for functional dependencies: If a -- B and
'Y -- P, then a ---+ 7. Prove that this rule is not soundby showing a relation r that
satisfies a -- 13 and 7 - B,but does not satisfy a + j.

7.21 Use Armstrong's axioms to prove the soundness of the decomposition rule.

7.22 using the functional dependencies of Practice Exercise 7.6, compute B+ .

7.23 Show thatthefollowingdecompositionof theschemaRof PracticeExerciseT.l
is not a lossless decomposition:

(4, B, C)
(C, D, E)

Hint: Give an example of a relation r on schema R such that

f I .q . ,p,c  ( r )  x  116' ,  o ,e ( r )  *  ,

7.24 List the three design goals for relational databases, and explain why each is
desirable.

7.25 Give a lossless decomposition into BCNF of schema R of Practice Exercise 7.1.

7.26 rn designing a relational database, why might we choose a non-BCNF design?

7.27 Give a lossless, dependency-preserving decomposition into 3NF of schema R of
Practice Exercise 7.1.
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7.28 Given the three goals of relational database design, is there any reason to design

a database schema that is in 2NF, but is in no higher-order normal form? (See

Practice Exercise 7.75 for the definition of 2NF.)

7.29 Givenarelationalschema r(A,B,C,D),doesA ---'. BC logicallyimply A---+- R

and ,4 ---.. C? If yes prove it, else give a counter example.

7.30 Explain why 4NF is a normal form more desirable than BCNF.
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Practically all use of databases occurs from within application programs. Correspond-
ingly, almost all user interaction with databases is indirect, viJ application progiams.
Not surprisingly, therefore, database systems have long supported tools such a"s form
and GUI builders, which help in rapid development of ipplications that interface
with users. In recent years, the Web has become the most widely used user interface
to databases

In the first part of this chapter (Sections 8.1 through g.4), we study tools and tech_
nologies that are required to build database applications. In particular, we concen-
trate on tools that help in the development of user interfaces to databases. We start
with an overview of tools for construiting forms interfaces and reports. We then pro-
vide a detailed overview of how to develop applications with Wet-based interfaces.

Later in the chaptel, we cover triggers. Triggers allow applications to monitor
database events (activities) and take actions when specified events take place. Thev
also provide a way of adding rules and actions without modifying existing applica-
tion code. Triggers were a late addition to the sel standard. we present sQriyntax
both as it exists in the SQL:1999 standard and as it exists in some commercial ryri"11r.

Finally, we cover authorization and security. We describe the authorization mech-
anisms provided by SQL and the syntax for their use. We then discuss the limitations
of the SQL authorization mechanisms and present further concepts and technologies
required for securing databases and applications.

8.1 User Interfqces and Tools
Although many people interact with databases, few people use a query language to
directly interact with a database system. Most peoplelnteract with i daiabas! tyit"-
through one of the following means:

311
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1. Forms and graphical user interfaces allow users to enter values that com-

plete predefined queries. The system executes the queries and appropriately

formats and displays the results to the user. Graphical user interfaces provide

an easy-to-use way to interact with the database system.

2. Report generators permit predefined reports to be generated on the current

database contents. Analysts or managers view such reports in order to make

business decisions.

3. Data analysis tools permit users to interactively browse and analyze data.

It is worth noting that such interfaces use query languages to communicate with

database systems.
In this section, we provide an overview of forms, graphical user interfaces, and

report generators. Chapter 18 covers data analysis tools in more detail. Unfortunately,

there are no standards for user interfaces, and each database system usually provides

its own user interface. In this section, we describe the basic concepts, without going

into the details of any particular user-interface product.

8.1.1 Forms ond Grophicql User Interfqces

Forms interfaces are widely used to enter data into databases, and extract informa-
tion from databases, via predefined queries. For example, World Wide Web search
engines provide forms that are used to enter ke)-words. Hitting a "submit" button
causes the search engine to execute a quely using the entered keywords and display
the result to the user.

As a more database-oriented example, you may connect to a university registra-
tion system, where you are asked to fill in your identification number and password
into a form. The system uses this information to verify your identity, as well as to
extract information, such as your name and the courses you have registered for, from
the database and display it. There may be further links on the Web page that let you
search for courses and find further information about courses such as the syllabus
and the instructor.

Programmers can create forms and graphical user interfaces by using Web browsers
as the front end, or by using forms and other facilities provided by programming
language application-programmer interfaces (APIs), such as ]ava Swing, or the APIs
provided with Visual Basic or Visual C++. Web browsers supporting HTML consti-
tute the most widely used forms and graphical user interface today. While the Web
browser provides the front end for user interaction, the back-end processing is done
at the Web server, using technologies such as ]ava servlets, Java Server Pages (JSP), or
Active Server Page (ASP). We study how to create forms using HTML in Section 8.3.2
and how to create back-end systems using Java servlets in Section 8.4.

There are a variety of tools that simplify the creation of graphical user interfaces
and forms. These tools allow application developers to create forms in an easy declar-
ative fashion, using form-editor Plograms. Users can define the type, size, and fot-
mat of each field in a form by using the form editor. System actions can be associated
with user actions, such as filling in a field, hitting a function key on the keyboard, or
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submitting a form. For instance, the execution of a query to fill in name and address
fields may be associated with filling in an identification number field, and execution
of an update statement may be associated with submitting a form. Examples of such
systems include oracle Forms, sybase PowerBuilder, and oracle HTML-DB.

Simple error checks can be performed by defining constraints on the fields in the
form. For example, a constraint on a date field may check that the date entered by the
user is correctly formatted, and lies in a desired range (for example, a reservation sys-
tem may require the date to be not before today's date and not more than 6 mot ihs
into the future). Although such constraints can be checked when the transaction is
executed, detecting errors early helps the user to correct errors quickly. Menus that
indicate the valid values that can be entered in a field can help eliminate the possi-
bility of many types of errors. System developers find that the ability to controi such
features declaratively with the help of a user-interface development tool, instead of
creating a form directly by using a scripting or programming language, makes their
job much easier.

8.1.2 Report Generqtors
Report generators are tools to generate human-readable summary reports from a
database. They integrate querying the database with the creation of formatted text
and summary charts (such as bar or pie charts). For example, a report may show the
total sales in each of the past 2 months for each sales region.

The application developer can specify report formats by using the formatting fa-
cilities of the report generator. Variables can be used to store parameters such as the
month and the year and to define fields in the report. Tables, graphs, bar charts, or
other graphics can be defined via queries on the database. The query definitions can
make use of the parameter values stored in the variables.

Once we have defined a report structure on a report-generator facility, we can
store it and can execute it at any time to generate a report. Report-generator systems
provide a variety of facilities for structuring tabular output, such as defining table
and column headers, displaying subtotals for each group in a table, automitically
splitting long tables into multiple pages, and displaying subtotals at the end of eacir
page.

Figure 8.1 is an example of a formatted report. The data in the report are generated
by aggregation on information about orders.

Report-generation tools are available from a variety of vendors, such as Crystal
Reports and Microsoft (SQL Server Reporting Services). Several application suites,
such as Microsoft Office, provide a way of embedding formatted query results from a
database directly into a document. Chart generation facilities provided by Crystal Re-
ports, or by spreadsheets such as Excel can be used to access data from databases, and
generate tabular depictions of data or graphical depictions using charts or graphs.
One or more of these charts can be embedded within text documents created uJng,
for example, Microsoft Word. A Microsoft Office feature called OLE (object linkinlg
and embedding) is used to link the charts into the text document. The charts are
created initially from data generated by executing queries against the database; the
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Acme Supply Company, Inc.
Quarterly Sales Report

Period: Jan. 1 to March 31,2005

Figure 8.1 A formatted report.

queries can be re-executed and the charts regenerated when required, to generate a
current version of the overall report.

In addition to generating static reports, report-generation tools support the cre-
ation of interactive reports. For example, a user can "drill down" into areas of inter-
est, for example move from an aggregate view showing the total sales across an entire
year to the monthly sales figures for a particular year. We revisit interactive analysis
of data later, in Section 18.2.

8.2 Web Interfqces to Dqtqbqses
The World Wide Web (Web, for short), is a distributed information system based
on hypertext. Web interfaces to databases have become very important. After outlin-
ing several reasons for interfacing databases with the Web, we provide an overview
of Web technology (Section 8.3). We then outline techniques for building Web inter-
faces to databases, using servlets and server-side scripting languages (Section 8.4. We
round out this topic by outlining techniques for building large scale Web applications
and improving their performance in Section 8.5.

The Web has become important as a front end to databases for several reasons: Web
browsers provide a uniaerssl front end to information supplied by back ends located
anywhere in the world. The front end can run on any computer system, and there is
no need for a user to download any special-purpose software to access information.
Further, today, almost everyone who can afford it has access to the Web.

With the growth of information services and electronic commerce on the Web,
databases used for information services, decision support, and transaction process-
ing must be linked with the Web. The HTML forms interface is convenient for trans-
action processing. The user can fill in details in an order form, then click a submit

Computer Hardware

Computer Software

Computer Hardware

Computer Software

TotalSales 2,100,000



8.3 Web Fundamentals

<html>
<body>
<table BORDER COLS=S>
<tr> <td>A-1 01 </td> <td>Downtown</td> <td>500</td> </tr>
<tr> <td>A-1 02</td> <td>Perryridge</td> <td>400</td> </tr>
<tr> <td>A-201</td> <td>Brighton </td> <td>900</td> </tr>
</table>
<center> The <i>account</i> relation </center>

<form action="BankQuery" method=get>
Select accounVloan and enter number <br>
<select name="type">

<option value="account" selected>Account </option>
<option value="loan"> Loan </option>

</select>
<input type=text size=S name="number,,>
<input type=submit value="submit">
</form>
</body>
</html>

Figure 8.2 An HTML source text.

Although HTML code can be created using a plain text editor, there are a number
of editors that permit direct creation of HTML text by using a graphical interface.
Such editors allow constructs such as forms, menus, and tables to be inserted into the
HTML document from a menu of choices, instead of manually typing in the code to
generate the constructs.

HTML supports stylesheets, which can alter the default definitions of how an HTML
formatting construct is displayed, as well as other display attributes such as back-
ground color of the page. The cqscading stylesheet (CSS) standard allows the same
stylesheet to be used for multiple HTML documents, giving a distinctive but uniform
look to all the pages on a Web site.

A-101 Downtown 500

A-702 Perryridge 400

A-201 Brighton 900

The account relation

Select account/loan and enter number

Figure 8.3 Display of HTML source from Figure 8.2.
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8.3.3 Client-Side Scripting ond Applets
Embedding of program code in documents allows Web pages to be active, carrying
out activities such as animation by executing programs at the local site, instead of just
presenting passive text and graphics. The primary use of such programs is flexible
interaction with the user, beyond the limited interaction power provided by HTML
and HTML forms. Further, executing programs at the client site speeds up interaction
greatly, compared to every interaction being sent to a server site for processing.

A danger in supporting such programs is that, if the design of the system is done
carelessly, program code embedded in a Web page (or equivalently, in an email mes-
sage) can perform malicious actions on the user's computer. The malicious actions.
could range from reading private information, to deleting or modifying information
on the computer, up to taking control of the computer and propagating the code
to other computers (through email, for example). A number of email viruses have
spread widely in recent years in this way.

One of the reasons that the laztalangaage became very popular is that it provides
a safe mode for executing programs on users' computers. |ava code can be compiled
into platform-independent "byte-code" that can be executed on any browser that sup-
ports Java. Unlike local programs, Java programs (applets) dor,rrnloaded as part of a
Web page have no authority to perform any actions that could be destructive. They
are permitted to display data on the screen, or to make a network connection to the
server from which the Web page was downloaded, in order to fetch more informa-
tion. However, they are not permitted to access local files, to execute any system
programs, or to make network connections to any other computers.

While java is a full-fledged programming language, there are simpler languages,
called scripting languages, that can enrich user interaction, while providing the same
protection as java. These languages provide constructs that can be embedded with
an HTML document. Client-side scripting languages are languages designed to be
executed on the client's Web browser. Of these, the laoascripf language is by far the
most widely used. Javascript is commonly used for a variety of tasks. For example,
functions written in Javascript can be used to perform error checks (validation) on
user input, such as a date string being properly formatted, or a value entered (such

as age) being in an appropriate range.
javascript can even be used to dynamically modify the HTML code being dis-

played. The browser parses HTML code into an in-memory tree structure defined by
a standard called the Document Object Model (DOM). Javascript code can modify
the tree structure to carry out certain operations. For example, suPPose a user needs
to enter a number of rows of data such as items in a bill being created. A table con-
taining text boxes and other form input methods can be used to gather user input.
The table may have a default size,but if more rows are needed, the user may click
on a button labeled (for example) "Add Item." This button can be set up to invoke a

Javascript function that modifies the DOM tree by adding an extra row in the table.
There are also special-purpose scripting languages for specialized tasks such as

animation (for example, Macromedia Flash and Shockwave) and three-dimensional
modeling [Virtual Reality Markup Language (VRML)]. Scripting languages can also
be used on the server side, as we shall see.
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Figure 8.4 Three-layer Web architecture.

8.3.4 Web Servers qnd Sessions

I 
Web server is a program running on the server machine, which accepts requests

from a Web browser and sends back results in the form of HTML documents. The
browser and Web server communicate by a protocol called the HyperText Trans-
fer Protocol (HTTP). HTTP provides powerful features, beyond thesiimple transfer
of documents. The most important feature is the ability to execute programs, with
arguments supplied by the use1, and deliver the results back as an HTMldocument.

As a result, a Web server can easily act as an intermediary to provide access to
a variety of information services. A new service can be created by creating and in-
stalling an application program that provides the service. The common gateway in-
terface (cGI) standard defines how the Web server communicates with applicition
programs. The application program typically communicates with a databise server,
through ODBC, }DBC, or other protocols, in order to get or store data.

Figure 8.4 shows a Web service using a three-layer architecture, with a Web servel,
an application servet and a database server. Using multiple levels of servers in-
creases system overhead; the CGI interface starts a new process to service each re-
quest, which results in even greater overhead.

Most Web services today therefore use a two-layer Web architecture, where the
application program runs within the web server, as in Figure g.5. we study systems
based on the two-layer architecfure in more detail in subsequent sections.

There is no continuous connection between the client and the Web server; when
a Web server receives a request, a connection is temporarily created to send the re-
quest and receive the response from the Web server. But the connection is then closed,
and the next request comes over a new connection. In contrast, when a user logs on
to a computer, or connects to a database using oDBC or JDBC, a session is creited,
and session information is retained at the server and the client until the session is
terminated-information such as the user-identifier of the user and session options
that the user has set. One important reason that HTTP is connectionless is thai most

server
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Figure 8.5 Two-layer Web architecture.

computers have limits on the number of simultaneous connections they can accom-
modate, and if a large number of sites on the Web open connections, this limit would
be exceeded, denying service to further users. With a connectionless service, the con-
nection is broken as soon as a request is satisfied, leaving connections available for
other requests.

Most Web-based information services, however, need session information to allow
meaningful user interaction. For instance, services typically restrict access to informa-
tion, and therefore need to authenticate users. Authentication should be done once
per session, and further interactions in the session should not require reauthentica-
tion.

To implement sessions in spite of connections getting closed, extra information has
to be stored at the client and returned with each request in a session; the server uses
this information to identify that a request is part of a user session. Extra information
about the session also has to be maintained at the server.

This extra information is usually maintained in the form of a cookie at the client;
a cookie is simply a small piece of text containing identifying information, and with
an associated name. For example, google.com may set a cookie with the name prefs,

which encodes preferences set by the user such as the preferred language and the
number of answers displayed pel page. On each search request, google.Com can re-

trieve the cookie named prefs ftom the user's browser, and display results according
to the specified preferences. A domain (Web site) is permitted to retrieve only cook-
ies that it has set, not cookies set by other domains, and cookie names can be reused
across domains.

For the purpose of tracking a user session, an application may generate a session
identifier (usually a random number not currently in use as a session identifier), and
send a cookie named (for instance) sessionid containing the session identifier. The

session identifier is also stored locally at the server. When a request comes in, the

application server requests the cookie named sessionid from the client. If the client
does not have the cookie stored, or returns a value that is not currently recorded as a
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valid session identifier at the servel, the application concludes that the request is not
part of a current session. If the cookie value matches a stored session identifier, the
request is identified as part of an ongoing session.

If an application needs to securely identify users, it can set the cookie only after
authenticating the user; for example a user may be authenticated only when i valid
user name and password are submitted. 1' -

For applications that do not require high security, such as publicly available news
sites, cookies can be stored permanently at the browser and at the server; they iden-
tify the user on subsequent visits to the same site, without any identification infor-
mation being typed in. For applications that require higher security, the server may
invalidate (drop) the session after a time-out period, or when the user togs out. (Typ-
ically a user logs out by hitting a logout button, which submits a logout iorm, whbse
action is to invalidate the current session.) Invalidating a session merely consists
of dropping the session identifier from the list of active sessions at the application
server.

8.4 Servlets qnd JSP
In a two-layer Web architecture, an application runs as part of the Web server it-
self'_One way of implementing such an architecture is to load Java programs into
the Web server. The Java servlet specification defines an application pro-gramming
interface for communication between the Web server and the applicaiion ptogtu-l
The HttpServlet class in java implements the servlet API specificition; servlet cLss",
used to implement specific functions are defined as subclasses of this class. 2 Often
the word seralet is used to refer to a Java program (and class) that implements the
servlet interface. Figure 8.6 shows a servlet example; we explain it in detail shortly.

The code for a servlet (that is, aJava program that implements the servlet inier-
face) is loaded into the Web server when the server gets slarted, or when the server
receives a remote HTTP request to execute a particular servlet. The task of a servlet
is to process such a request, which may involve accessing a database to retrieve nec-
essary information, and dynamically generate an HTML page to be returned to the
client browser.

8.4.1 A Servlet Exomple
Servlets are commonly used to dynamically generate responses to HTTp requests.
They can access inputs provided through HTML forms, ipply "business logic,, to

1. The user identifier could be stored at the client end, in a cookie named, for example, userid. Such
cookies can be used for low-security applications, such as free Web sites identifying theiiusers. However,
for applications that require a higher level of security, such a mechanism creates a security risk The value
of a cookie can be changed at the browser by a malicious user, who can then masquerade as a di{ferent
user. Setting a cookie (named sessionid, for example) to a randomly generated session identifier (from a
large space of numbers) makes it highly improbable that a user can masquerade as (that is, pretend to
be) another user. A sequentially generated session identifiep on the other hand, would be susceptible to
* ^ ^ ^ . . ^ - ^ l : - -ur4DYuEl4Uul6.

2. The servlet interface can also support non-HTTP requests, although our example uses only HTTp.
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decide what response to provide, and then generate HTML output to be sent back
to the browser.

Figure 8.6 shows an example of servlet code to implement the form in Figure 8.2.
The servlet is called BankQueryservlet, while the form specifies that action="Bank-
Query." The Web server must be told that this servlet is to be used to handle requests
for BankQuery. The form specifies that the HTTP get mechanism is used for transmit-
ting parameters. So the docet$ method of the servlet, as defined in the code, gets
invoked.

Each request results in a new thread within which the call is executed, so multiple
requests can be handled in parallel. Any values from the form menus and input fields
on the Web page, as well as cookies, pass through an object of the HttpServletRequest
class that is created for the request, and the reply to the request passes through an
object of the class HttpservletResponse.

The docetQ method in the example extracts values of the parameter's type and
number by using request.getParameterQ, and uses these values to run a query against
a database. The code used to access the database is not shown; refer to Section 4.5.2
for details of how to use }DBC to access a database. The servlet code returns the results
of the query to the requester by printing them out in HTML format to the HttpServlet-
Response object response.

import java.io.*;
import javax.servlet.*;
import javax.servlet. http,. ;

public class BankQueryServlet extends HttpServlet {
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, lOException
t

String type = request.getParameter("type");
String numbef = reQuest.getParameter("numbef');
... code to find the loan amount/account balance ...
... using JDBC to communicate with the database ..
... we assume the value is stored in the variable balance

response.setoontentType("text/htm l") ;
PrintWriter out = response.getwriter0;
out. println("< HEAD> <TITLE> Query Result<ff ITLE> </HEAD >") ;
out.println("< BODY>") ;
out.println("Balance on " + type + number +" =" + balance);
out.println("</BODY>") ;
out.close0;

Figure 8.5 Example of servlet code.
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8.4.2 Servlet Sessions
Recall that the interaction between a browser and a Web server is stateless. That is,
each time the browser makes a request to the server, the browser needs to connect to
the server, request some information, then disconnect from the server. Cookies can
be used to recognize that a request is from the same browser session as an earlier
request. However, cookies form a low-level mechanism, and programmers require a
better abstraction to deal with sessions.

Jh" servlet API provides a method of tracking sessions and storing session-related
information. Invoking the method getSession(false) of the class HttpServletRequest
retrieves the HttpSession object corresponding to the browser that sent the request.
An argument value of true would have specified that a new session object must be
created if the request is a new request. When the getSession$ method is invoked, the
server first asks the client to return a cookie with a specified name.

If the client does not have a cookie of that name, or returns a value that does not
match any_ongoing session, then the request is not part of an ongoing session. In
this case, the servlet could direct the user to a login page, which could alow the
user to provide a user name and password. The servlet corresponding to the login
page could verify that the password matches the user (for example, by looking up
authentication information in the database). Other methods for autheniicating risers
are possible. If the user is properly authenticated, the login servlet would execute a
getsession(true), which would return a new session obiect. To create a new session
the Web server would internally carry out the following tasks: set a cookie (called,
for example, sessionld) with a session identifier as its aisociated value at the client
browsel, create a new session object, and associate the session identifier value with
the session object.

The servlet code can also store and look up (attribute-name, varue) pairs in the
HttpSession object, to maintain state across multiple requests within a iession. For
example, the login servlet could store the user-id of the user as a session parameter
by executing the method session.setAttribute("userid", userid) on the r"rriol obiect
(where the Java variable userid contains the user identifier), after the user is authen-
ticated and the session obiect has been created.

If the request was part of an ongoing session, the browser would have returned the
cookie value, and the corresponding session object is returned by the Web server. The
servlet can then retrieve- session parameters such as user-id from the session object
by executing the method session.getAttribute("userid"). If the attribute userid is not
set, the function would return a null value, which would indicate that the client user
has not been authenticated.

8.4.3 Servlet Life Cycle
The life cycle of a servlet is controlled by the Web server in which the servlet has been
depioyed. When there is a client request for a specific servlet, the server first checks
if an instance of the servlet exists or not. If not, the Web server loads the servlet class
into the Java virtual machine (ryM), and creates an instance of the servlet class. In
addition, the server calls the init$ method to initialize the servlet instance. Notice
that each servlet instance is initialized only once when it is loaded.
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After making sure the servlet instance does exist, the server invokes the service

method of the servlet, with a request object and a response object as parameters. By

default, the server creates a new thread to execute the service method; thus, multi-

ple requests on a servlet can execute in parallel, without having to wait for earlier

requests to complete execution. The service method calls doGet or doPost as appro-

priate.
When no longer required, a servlet can be shut down by calling the destroyQ

method. The server can be set up to automatically shut down a servlet if no requests

have been made on a servlet within a time-out period; the time-out period is a server

parameter that can be set as appropriate for the application.

8.4.4 Servlet Support
The Sun ]ava servletrunner program provides minimal support for running servlets
and is a quick way to get started with servlets. It can receive requests on a specified
port, invoke appropriate servlets, and send the response back to the client'

Many application servers provide built-in support for servlets. Examples include
the open-source ]Boss application server, Sun's ]ava Web Server, Netscape's Enter-
prise Server, BEA Weblogic Application Server, Oracle Application Server, and IBM's
WebSphere Application Server. One of the most popular stand-alone servlet engines
is the Tomcat Server from the Apache Jakarta Project, which is a free open-source
project.

These application servers provide a variety of other services, in addition to the
basic servlet support provided by servletrunner. For example, if a servlet code is
modified, they can detect this and recompile and reload the servlet transparently.
As another example, many application servers allow the server to run on multiple
machines to improve performance and route requests to an appropriate copy. They
also provide functionality to monitor the status of the application server, including
performance statistics. Many appiication servers also support the java 2 Enterprise
Edition (IZEE) platform, which provides support and APIs for a variety of tasks, such
as for handling objects, parallel processing across multiple application servers, and
for handling XML data (XML is described later in Chapter 10).

8.4.5 Server-Side Scripting
Writing even a simple Web application in a Proglamming language such as Java or C
is a time-consuming task that requires many lines of code and programmers who are
familiar with the intricacies of the language. An alternative approach, that of server-
side scripting, provides a much easier method for creating many applications. Script-
ing languages provide constructs that can be embedded within HTML documents. In
server-side scripting, before delivering a Web page, the server executes the scripts
embedded within the HTML contents of the page. Each piece of script, when exe-
cuted, can generate text that is added to the page (or may even delete content from
the page). The source code of the scripts is removed from the page, so the client may
not even be aware that the page originally had any code in it. The executed script
may contain SQL code that is executed against a database.



_ Several scripting languages have appeared in recent years, including Server-Side
Javascript from Netscape, Jscript from Microsoft,Java server pages (ISp) from sun,
the PHP Hypertext Preprocessor (pup), ColdFusion's ColdFusion Markup Language
(Crvr), andZope's DTML.In fact, it is even possible to embed code written itiota"er
scripting languages such as vBScript, Perl, and python into HTML pages. For in-
stance, Microsoft's Active Server Pages (ASP) supports embedded VBsciipt and lscript.
These languages sYpPort similar features, but differ in the style of progrimming ani
the ease with which simple applications can be created.

We briefly describe below ]ava Server pages (JSp), a scripting language that allows
HTML programmers to mix static HTML with dynamically-generated giut. The mo-
tivation is that, for many dynamic Web pages, most of their content is still static (that
is, the same content is present whenever the page is generated). The dynamic content
of the Web pages (which are generated, for example, on the basis of foim parameters)
is often a small part of the page. Creating such pages by writing servlet iode results
in a large amount of HTML being coded as Java strings. JSP instead allows Java code
to be embedded in static HTML; the embedded Java code generates the dynamic part
of the page. JSP scripts are actually translated into servlet code which is then com-
piled, but the application programmer is saved the trouble of writing much of the
Java code to create the servlet.

Figure 8.7 shows the source text of an HTML page that includes a JSp script. The
Java code is distinguished from the surrounding HTML code by being enclSsed in
lvo ... %>.The script calls the request.getparamete( to get the value of the at-
tribute name. Depending on the value, the script decides what should be printed
after "Hello." A more realistic example may perfbrm more complex actions, such as
looking up values from a database using ]DBC.

]SP also supports the concept of a tag library, which allows the use of tags that look
much like HTML tags, butare interpreted at the server, and are replaced by appropri-
ately generated HTML code. JSP provides a standard set of tags that define varlaUtes
and control flow (iterators, if-then-else), along with an e*preriion language based on
Javascript (but interpreted at the server). The set of tags is extensible, and i number of
tag libraries have been implemented. For example, there is a tag library that supports

8.4 Servlets and JSP

<html>
<head> <title> Hello </title> </head>
<body>
< H 1  >
< "/" if (request.getParameter("name") -= null)
{ out.println("Hello World',); }
else { out.println("Hello, " + request.getparameter(..name"));

o/o)

< / H 1 >
</body>
<ihtml>

Figure 8.7 An HTML source text with a JSp script.



Chapter 8 Application Design and Development

paginated display of large data sets, and a library that simplifies display and parsing
of dates and times. See the bibliographic notes for references to more information on

]SP tag libraries.

8.5 Building Lorge Web Applicotions
In building Web applications, much of the programming effort goes into the user
interface, rather than into database-related tasks. In the first part of this section we
study ways to reduce the programming effort for this task. Later in this section, we
describe some techniques to improve application performance.

8.5.1 Constructing Web Interfqces
We describe below several techniques to reduce the programming effort in building
the user interface.

Many HTML constructs are best generated by using appropriately defined java

functions, instead of being written as part of the code of each Web page. For exam-
ple, address forms typically require a menu containing country or state names. In-

stead of writing lengthy HTML code to create the required menu each time it is used,
it is preferable to define a function that outputs the menu, and to call the function
wherever required.

Menus are often best generated from data in the database, such as a table con-
taining country names or state names. The function generating the menu executes a
database query and populates the menu, using the query result. Adding a country or
state then requires only a change to the database, not to the application code. This
approach has the potential drawback of requiring increased database interaction,
but such overheads can be minimized by caching query results at the application
server.

Forms to input dates and times, or inputs that require validation, are similarly

best generated by calling appropriately defined functions. Such functions can output

]avascript code to perform validation at the browser.
Displaying a set of results from a query is a common task for many database appli-

cationi. It is possible to build a generic function that takes an SQL query (or ResultSet)
as argument, and display the tuples in the query result (or nesultSet) in a tabular
form- JDBC metadata calls can be used to find information such as the number of
columns and the name and types of the columns in the query result; this information
is then used to display the query result.

To handle situations where the query result is very large, such a query result dis-

play function can provide for paginntion of results. The function can display a fixed

number of records in a page and provide controls to step to the next or previous page

or jump to a particular page of the results.
There is unfortunately no (widely used) standard Java API for functions to carry

out the user-interface tasks described above. Building such a library can be an inter-

esting programming project.
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8.5.2 Microsoft Active Server Poges
Microsoft's Active Server Pages (ASP), and its more recent version, Active Server
Pa8es.NET(ASP.NET), is a widely used alternative to lSP /Java. ASP.NET is similar to
JSP, in that code in a language such as Visual Basic or C# can be embedded within
HTML code. In addition, ASP.NET provides a variety of controls (scripting commands)
that are interpreted at the server, and generate HTML that is then sent to the client.
These controls can significantly simplify the construction of Web interfaces. We pro-
vide a brief overview of the benefits that these controls offer.

For example, controls such as drop-down menus and list boxes can be associated
with a DataSet object. The DataSet object is similar to a 1DBC ResultSet object, and is
typically created by executing a query on the database. The HTML menu contents are
then generated from the DataSet object's contents; for example, aquery may retrieve
the names of all departments in an organizationinto the DataSet, andine associated
menu would contain these names. Thus, menus that depend on database contents
can be created in a convenient manner with very little programming.

Validator controls can be added to form input fields; these declaratively specify
validity constraints such as value ranges, or whether the input is a required input for
which a value must be provided by the user. The server creates appropriate HTML
code combined with JavaScript to perform the validation at the user's browser. Er-
ror messages to be displayed on invalid input can be associated with each validator
control.

IJser actions can be specified to have an associated action at the server. For exam-
ple, a menu control can specify that selecting a value from a menu has an associated
server-side action (this is implemented by JavaScript code ge.nerated by the server).
Visual Basic/C# code that displays data pertaining to the selected value can be asso-
ciated with the action at the server. Thus, selecting a value from a menu can result in
associated data on the page getting updated, without requiring the user to click on a
submit button.

The DataGrid control provides a very convenient way of displaying query results.
A DataGrid is associated with a DataSet object, which is typically the result of a
query. The server generates HTML code that displays the query result as a table. Col-
umn headings are generated automatically from query result metadata. In addition,
DataGrids provide several features, such as pagination, and allow the user to sort
the result on chosen columns. AII the HTML code as well as server-side functionality
to implement these features is generated automatically by the server. The DataGrid
even allows users to edit the data and submit changes back to the server. The appli-
cation developer can specify a function, to be executed when a row is edited, that lan
perform the update on the database.

Microsoft Visual Studio provides a graphical user interface for creating ASp pages
using these features, further reducing the programming effort.

see the bibliographic notes for references to more information on ASp.NET.

8.5.3 lmprovingApplicqtion Performonce
Web sites may be accessed by millions of people from across the globe, at rates of
thousands of requests per second, or even more, for the most populir sites. Ensuring
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that requests are served with low response times is a major challenge for Web site
developers.

Caching techniques of various types are used to exploit commonalities between
transactions. For instance, suppose the application code for servicing each user re-

quest needs to contact a database through JDBC. Creating a new JDBC connection
may take several milliseconds, so opening a new connection for each user request is
not a good idea if very high transaction rates are to be supported.

Connection pooling is used to reduce this overhead; it works as follows. The con-
nection pool manager (a part of the application server) creates a pool (that is, a set) of
open ODBC/JDBC connections. Instead of opening a new connection to the database,
the code servicing a user request (typically a servlet) asks for (requests) a connec-
tion from the connection pool and returns the connection to the pool when the code
(servlet) completes its processing. If the pool has no unused connections when a con-
nection is requested, a new connection is opened to the database (taking care not
to exceed the maximum number of connections that the database system can sup-

port concurrently). If there are many open connections that have not been used for

a while, the connection pool manager may close some of the open database connec-
tions. Many application servers, and newer ODBC/JDBC drivers provide a built-in

connection pool manager.
A common error that many programmers make when creating Web applications

is to forget to close an opened JDBC connection (or equivalently, when connection

pooling is used, to forget to return the connection to the connection pool). Each re-

quest then opens a new connection to the database, and the database soon reaches

the limit of how many open connections it can have at a time. Such problems often

do not show up on small-scale testing, since databases often allow hundreds of open

connections, but show up only on intensive usage. Some programmers assume that

connections, like memory allocated by Java programs, are garbage collected auto-
matically. Unfortunately, this does not happen, and programmers are responsible for

closing connections that they have opened.
Certain requests may result in exactly the same query being resubmitted to the

database. The cost of communication with the database can be greatly reduced by

caching the results of earlier queries and reusing them, so long as the query result has

not changed at the database. Some Web servers support such query-result caching.

Costs can be further reduced by caching the final Web page that is sent in response

to a request. If a new request comes with exactly the same parameters as a previous
request and if the resultant Web page is in the cache, then it can be reused to avoid

the cost of recomputing the page. Caching can be done at the level of fragments of

Web pages, which are then assembled to create complete Web pages.
Cached query results and cached Web pages are forms of materialized views. if the

underlying database data change, they can be discarded, ot can be recomputed, or

even incrementally updated, as in materialized-view maintenance (described later, in

Section 14.5). Some database systems (such as Microsoft SQL Server) provide away

for the application server to register a query with the database, and get a notification

from the database when the result of the query changes. Such a notification mech-

anism can be used to ensure that query results cached at the application server are

up-to-date.
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8.5 Ti'iggers
A trigger is a statement that the system executes automatically as a side effect of
a modification to the database. To design a trigger mechanism, we must meet two
requirements:

1. Specify when a trigger is to be executed. This is broken up into an eaent that
causes the trigger to be checked and a condition that must be satisfied for trig-
ger execution to proceed.

2. Specify the nctions to be taken when the trigger executes.

The above model of triggers is referred to as the event-condition-action model for
triggers.

The database stores triggers just as if they were regular data, so that they are per-
sistent and are accessible to all database operations. Once we enter a trigger into the
database, the database system takes on the responsibility of executing ii whenever
the specified event occurs and the corresponding condition is satisfied.

8.6.1 Need for Triggers
Triggers are useful mechanisms for alerting humans or for starting certain tasks au-
tomatically when certain conditions are met. As an illustration, suppose that, instead
of allowing negative account balances, the bank deals with overdrafts by setting the
account balance to zero and creating a loan in the amount of the overdraft. The bank
gives this loan a loan number identical to the account number of the overdrawn ac-
count. For this example, the condition for executing the trigger is an update to the ac-
count relation that results in a negativebslance value. Suppose that Jones'withdrawal
of some money from an account made the account balance negative. Let f denote the
account tuple with a negative balsnce value. The actions to be taken are:

o Insert a new tuple s in the lonnrelation with

slloan :numb er] : tlaccount -numb er]
slbr a n ch -n a m i) : tlb ran rh -n a me]
slamou n tl - - tlbala n ce]

(Note that, since tfbalancel is negative, we negate t[balance] to get the loan
amount-a positive number.)

o Insert a new tluple u in the borrower relation with

ulcus L om er -name) : "J ones''
u ll o nn -numb erl : 71 o rc o rn t -n umb er]

c Sett[balance] to 0.

As another example of the use of triggers, suppose a warehouse wishes to main-
tain a minimum inventory of each item; when the inventory level of an item falls
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create trigger orerdraft-trigger after update onaccount
referencing new row as nrow
for each row
whennrow.bnlsnce <0
begin atomic

insert into borrower
(select customer -name, account -numb er
trom depositor
where nrow.account ttumber : depositor.account -number) ;

insert into loan values
(nrow.account -number, nrow.brnnch :name / - nrow.balance) ;

update account set balnnce : 0
where account.account stumber = nrou).ncco1.tnt -number

end

Figure 8.8 Example of SQL:1999 syntax for triggers.

below the minimum level, an order should be placed automatically. This is how the
business rule can be implemented by triggers: On an update of the inventory level
of an item, the trigger should compare the level with the minimum inventory level
for the item, and if the level is at or below the minimum, a new order is added to an
orders rclation.

Note that trigger systems cannot usually perform updates outside the database,
and hence, in the inventory replenishment example, we cannot use a trigger to di-
rectly place an order in the external world. Instead, we add an order to the orders
relation as in the inventory example. We must create a separate permanently run-
ning system process that periodically scans the orders relation and places orders. This
system process would also note which tuples in the orders relation have been pro-
cessed and when each order was placed. The process would also track deliveries of
orders and alert managers in case of exceptional conditions such as delays in deliv-
eries. Some database systems provide built-in support for sending email from SQL
queries and triggers, using the above approach.

8.6.2 Tkiggers in SQL
SQl-based database systems use triggers widely, although before SQL:1999 they were
not part of the SQL standard. Unfortunately, each database system implemented its
own syntax for triggers, leading to incompatibilities. We outline in Figure 8.8 the
SQL:1999 syntax for triggers (which is similar to the syntax in the IBM DB2 and Oracle
database systems).

This trigger definition specifies that the trigger is initiated after any update of the
relation nccount is executed. An SQL update statement could update multiple tuples
of the relation, and the for each row clause in the trigger code would then explicitly
iterate over each updated row. The referencing new row as clause creates a variable
nrow (ca\led a transition variable), which stores the value of an updated row after
the update.
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The when statement specifies a condition, namely nrow.bnlance < 0. The system
executes the rest of the trigger body only for tuples that satisfy the condition. The
begin atomic ... end clause serves to collect multiple SQL statements into a single
compound statement. The two insert statements with the begin ... end structure
carry out the specific tasks of creating new tuples intheborrower andloanrelationsto
represent the new loan. The update statement serves to set the account balance back
to 0 from its earlier negative value.

The triggering event and actions can take many forms:

o The triggering euent canbe insert or delete, instead of update.
For example, the action on delete of an account could be to check if the

holders of the account have any remaining accounts, and if they do not, to
delete them from fhe depositor relation. You can define this trigger as an exer-
cise (Practice Exercise 8.5).

As another example, if a new depositor is inserted, the triggered action could
be to send a welcome letter to the depositor. Obviously a trigger cannot di-
rectly cause such an action outside the database, but could instead add a tu-
ple to a relation storing addresses to which welcome letters need to be sent. A
separate process would go over this table, and print out letters to be sent.

Many database systems support a variety of other triggering events, such
as when a user (application) logs on to the database (that is, opens a connec-
tion), the system shuts down, or changes are made to system settings.

o For updates, the trigger can specify columns whose update causes the trigger
to execute. For instance, if the first line of the overdraft trigger were replaced
by

create trigger oaerdraft_trigger after update ofbalance on account

then the trigger would be executed only on updates to balance; updates to
other attributes would not cause it to be executed.

e The referencing old row as clause can be used to create a variable storing the
old value of an updated or deleted row. The referencing new row as clause
can be used with inserts in addition to updates.

o tiggers can be activated before the event (insert/delete/update) instead of
after the event.

Such triggers can serve as extra constraints that can prevent invalid up-
dates. For instance, if we wish not to permit overdrafts, we can create a be-
fore trigger that checks if the new balance is negative, and if so it rolls back
the transaction. Although an after trigger could have been used for this pur-
pose, its use would result in the update being done first, and the transaction
rolled back.

As another example, suppose the value in a phone number field of an in-
serted tuple is blank, which indicates absence of a phone number. we can
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define a trigger that replaces the value by the null value. The set statement
can be used to carry out such modifications.

create trigger setnull-triggerbefore update on r
referencing new row as nrow

:ln:;t#y:ffiT!i_..0,
o Instead of carrying out an action for each affected row we can carry out a sin-

gle action for the entire SQL statement that caused the insert/delete/update.
To do so, we use the for each statement clause instead of the for each row
clause.

The clauses referencing old table as or referencing new table as can then
be used to refer to temporary tables (called transition tqbles) containing all the
affected rows. Tiansition tables cannot be used with before triggers, but can
be used with after triggers, regardless of whether they are statement triggers
or row triggers.

A single SQL statement can then be used to carry out multiple actions on
the basis of the transition tables.

o Triggers can be disabled or enabled; by default they are enabled when they
are created, but can be disabled by using alter trigger trigger-name disable
(some databases use alternative syntax such as disable trigger trigger-name).
A trigger that has been disabled can be enabled again. A trigger can instead be
dropped, which removes it permanently,by using the command drop trigger
trigger-name.

Returning to our warehouse inventory example, suppose we have the following
relations:

c inuentory(item, leael), which notes the current amount (number/weight/vol-

ume) of the item in the warehouse

o minleael(item,Ier:el), which notes the minimum amount of the item to be main-
tained

o reorder(item, amount), which notes the amount of the item to be ordered when
its level falls below the minimum

o orders(item, amount), which notes the amount of the item to be ordered.

Note that we have been careful to place an order only when the amount falls from
above the minimum level to below the minimum level. If we check only that the
new value after an update is below the minimum level, we may place an order er-
roneously when the item has already been reordered. We can then use the trigger
shown in Figure 8.9 for reordering the item.

Many database systems provide nonstandard trigger implementations, or imple-
ment only some of the trigger features. For instance, many database systems do not
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create trigger reorder_trigger after update of amount on imtentory
referencing old row as orou)t new row as nroru
for each row
when nrow.leu eI <: (select lea el

fuomminleael
where minleuel.item = orow.item)

and orow.Ieoel > (selectleael
fuomminleael
where minleaelitem = orow.item)

begin
insert into orders

(select item, amount
from reorder
where reorder.item : oroTo.item)

end

Figure 8.9 Example of trigger for reordering an item.

implement the before clause, and the keyword on is used instead of after. They may
not implement the referencing clause. Instead, they may specify transition tables by
using the keywords inserted or deleted. Figure 8.10 illustrates how the overdraft trig-
ger would be written in Microsoft SQL Server. Read the user manual for the databaJe
system you use for more information about the trigger features it supports.

8.6.3 When Not to Use Triggers
There are many good uses for triggers, such as those we have iust seen in Secti on8.6.2,
but some uses are best handled by alternative techniques. For example, in the past,
system designers used triggers to maintain summary data. For instance, they used
triggers on insert/delete/update of a employee relation containing salary and dept at-
tributes to maintain the total salary of each department. Flowever, many database
systems today support materialized views (see Section 3.9.1), which provide a much
easier way to maintain summary data. Designers also used triggers extensively for
replicating databases; they used triggers on insert,/delete/update of each relation to
record the changes in relations called change or delta relations. A separate process
copied over the changes to the replica (copy) of the database, and the system executed
the changes on the replica. Modern database systems, however, provide built-in fa-
cilities for database replication, making triggers unnecessary for replication in most
cases.

,In fact, many trigger applications, including our example overdraft trigger, can be
substituted by appropriate use of stored procedures. For example, suppoJe updates
to thebalance attribute of account are done only through a particular stoied pro."dn.".
That procedure would in turn check for negative balance, and carry out ihe actions
of,the overdraft trigger. Programmers should be careful to not directly update the
balance value but only update it through the stored procedure; this could be ensured
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create trigger oaerdraft -trigger on account
for update
AS

if inserted.balance < 0
begin

insert into borrower
(select customer -name, account Jlumb er
fuorol. depositor, inserted
where inserted.account -number : depositor.qccount stumber)

insert into loan values
(inserted.account -number, insetted.brsnch -naffie, - inserted.bslance)

update nccount setbalance : 0
trom accounf, inserted
where a ccount. nc count -numb er = inserted.a c count -numb er

end

Figure 8.10 Example of trigger in MS-SQL Server syntax.

by not giving the application/user update authorization to the balance attribute, but
providing execute authorization on the associated stored procedure. Similar encap-
sulation can be used to replace the reorder trigger by a stored procedure.

Another problem with triggers lies in unintended execution of the triggered action
when data is loaded from a backup copy, or when database updates at a site are repli-
cated on a backup site. In such cases, the triggered action has already been executed,
and typically should not be executed again. When loading data, triggers can be ex-
plicitly disabled. For backup replica systems that may have to take over from the
primary system, triggers would have to be disabled initially, and enabled when the
backup site takes over processing from the primary. As an alternative, some database
systems allow triggers to be specified as not for replication, which ensures that they
are not executed on the backup site during database replication. Other database sys-
tems provide a system variable that denotes that the database is a replica on which
database actions are being replayed; the trigger body should check this variable and
exit if it is true. Both solutions remove the need for explicit disabling and enabling of
triggers.

Triggers should be written with great care, since a trigger error detected at run-
time causes the failure of the insert /delete/update statement that set off the trigger.
Furthermore, the action of one trigger can set off another trigger. In the worst case,
this could even lead to an infinite chain of triggering. For example, suppose an insert
trigger on a relation has an action that causes another (new) insert on the same rela-
tion. The insert action then triggers yet another insert action, and so on ad infinitum.
Database systems typicalty limit the length of such chains of triggers (for example, to
76 or 32) and consider longer chains of triggering an error.

Triggers are occasionally called rules, or actiae rules, but should not be confused
with Datalog rules (see Section 5.4), which are really view definitions.



8.7 Authorization in SQL 33s

8.7 Authorizotion in SQL
We saw the basic set of privileges in SQL in Section 4.3 including the privileges delete,
insert, select, and update.

In addition to these forms of privileges for access to data, we may (conceptually)
grant a user different types of authorization to modify the database schema:

o Authorization to create new relations

o Authorization to add attributes to, or delete attributes from, a relation

o Authorization to drop a relation

The SQL standard specifies a primitive authorization mechanism for the database
schema: Only the owner of the schema can carry out any modification to the schema.
Thus, schema modifications-such as creating or deleting relations, adding or drop-
ping attributes of relations, and adding or dropping indices-may be executed by
only the owner of the schema. Several database implementations have -or" po*"i-
ful authorization mechanisms for database schemas, similar to those discussed ear-
lie1, but these mechanisms are nonstandard.

SQL also includes a references privilege that permits a user to declare foreign keys
when creating relations. Initially, it may appear that there is no reason ever to pre-
vent users from creating foreign keys referencing another relation. However, recall
that foreign-key constraints restrict deletion and update operations on the referenced
relation' Suppose 4 creates a foreign key in a relation r referencin g the branch-name
attribute of the brancfr relation and then inserts a tuple into r pertiining to the per-
ryridge branch. It is no longer possible to delete the Perryridge branch from the
branch relation without also modifying relation r. Thus, the definition of a foreign
key by [! restricts future activity by other users; therefore, there is a need for tl-re
references privilege.

The references privilege on s is also required to create a check constraint on a
relation r if the constraint has a subquery referencing relation s.

SQL defines an execute privilege; this privilege auihorizes a user to execute a func-
tion or procedure. Thus, only a user who has the execute privilege on a function /0
can call the function (either directly or from within an SeL query).

SQL also includes a usage privilege that authorizes a user to use a specified domain
(recall that a domain corresponds to the programming-language notion of a type, and
may be user defined).

The ultimate form of authority is that given to the database administrator. The
database administrator may authorize new users, restructure the database, and so
on. This form of authorization is analogous to that of a superuser or operator for an
operating system.

8.7.1 Gronting of Privileges
A user who has been granted some form of authorization may be allowed to pass
on this authorization to other users. However, we must be careful how authorizition
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DBA U2---------------- U5

Figure8.11 Authorization-grant graph.

may be passed among users, to ensure that such authorization can be revoked at
some future time.

Consider, as an example, the granting of update authorization on the loan rela-
tion of the bank database. Assume that, initially, the database administrator grants
update authorizatio n on loan to users [Jt, (Jz, and (Jz, who may in turn pass on this
authorization to other users. The passing of authorization from one user to another
can be represented by an authofization graph. The nodes of this graph are the users.
The graph includes an edge Ui ---+ Ui if user Ui grants update authorization on lonn
to t/7. The root of the graph is the database administrator. In the sample graph in
Figure 8.1L, observe that user [/5 is granted authorization by both t/r and Uz; [Iq is
granted authorization by only t/r.

A user has an authorizationif and only if there is a path from the root of the autho-
fization graph (namely, the node representing the database administrator) down to
the node representing the user.

Suppose that the database administrator decides to revoke the authorization of
user [!. Since [/a has authorization from Ul,that authorization should be revoked as
well. However, Ur was granted authorization by both Ut and [/2. Since the database
administrator did not revoke update authorization onloan fromUz, [/5 retains update
authorization on loan.If [/z eventually revokes authorization from L[, then [/5 loses
the authorization.

A pair of devious users might attempt to defeat the rules for revocation of
authoiization by granting authorization to each other, as shown in Figure 8.1'2a.If
the database administrator revokes authorization from Uz,Uz retains authorization
through [/3, as in Figure 8.12b.If authorization is revoked subsequently ftorn(\,Us
appears to retain authorization through U2, ds in Figure 8.12c. However, when the
database administrator revokes authorization from Lr3, the edges from U3 to U2 and
fromUz to [/3 are no longer part of a path starting with the database administrator.
We require that all edges in an authorization graph be part of some path originating
with the database administrator. The edges between [/2 and (Jz are deleted, and the
resulting authorization graph is as in Figure 8.13.
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Figure 8.12 Attempt to defeat authorization revocation.

8.7.2 Gronting Privileges in SQL
we saw the basic sQL syntax for granting and revoking privileges in section 4.3.
Recall that the grant statement is used to confer authorization. The basic form of this
statement is:

grant <privilege list> on <relation name or view name> to <user/role list>

Thepriailege lisf allows the granting of several privileges in one command. The notion
of roles is covered later, in Section 8.2.3.

The following grant statement grants users [!, (]2, arrd I/3 the select privilege on
t};re qccount relation:

grant select on account to U1, (J2, (J3

The update privilege may be given either on all attributes of the relation or on only
some. If the update privilege is included in a grant statement, the list of attributes
on which update authorization is to be granted optionally appears in parentheses
immediately after the update keyword. If the list of attributes is omitted, the update
privilege will be granted on all attributes of the relation.

DBA

u1 u2 U"
J

Figure 8.13 Authorization graph.
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This grant statement gives users flr,Uz, and [/3 update authorizationontheamount
attribute of the loan relation:

grant update (nmount) onloan to Uy, U2, Us

The insert privilege may also specify a list of attributes; any inserts to the relation
must specify only these attributes, and the system either gives each of the remaining
attributes default values (if a default is defined for the attribute) or sets them to null.

The user name public refers to all current and future users of the system. Thus,
privileges granted to public are implicitly granted to all current and future users.

The SQL references privilege is granted on specific attributes in a manner like
that for the update privilege. The following grant statement allows user [! to create
relations that reference the key branchtlame of thebranch relation as a foreign key:

grant references (branch-name) onbranch to (Jt

By default, a user/role that is granted a privilege is not authorized to grant that
privilege to another user/role. If we wish to grant a privilege and to allow the recip-
ient to pass the privilege on to other users, we append the with grant option clause
to the appropriate grant command. For example, if we wish to allow [/r the select
privilege onbranch and allow [! to grant this privilege to others, we write

grant select onbranch to t/r with grant option

The creator of an object (relation/view/role) gets all privileges on the object, in-
cluding the privilege to grant privileges to others.

8.7.3 Roles
Consider a bank where there are many tellers. Each teller must have the same types
of authorizations to the same set of relations. Whenever a new teller is appointed, she
will have to be given all these authorizations individually.

A better scheme would be to specify the authorizations that every teller is to be
given, and to separately identify which database users are tellers. The system can use
these two pieces of information to determine the authorizations of each person who
is a teller. When a new person is hired as a teller, a user identifier must be allocated
to him, and he must be identified as a teller. Individual permissions given to tellers
need not be specified again.

The notion of roles captures this scheme. A set of roles is created in the database.
Authorizations canbe granted to roles, in exactly the same fashion as they are granted
to individual users. Each database user is granted a set of roles (which may be empty)
that he or she is authorized to perform.

In our bank database, examples of roles could include teller,branch-manager, audi-
t or, and sy st em-a dministr at or.

A less preferable alternative would be to create a teller userid, and permit each
teller to connect to the database using the teller userid. The problem with this scheme
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is that it would not be possible to identify exactly which teller carried out a transac-
tion, leading to security risks. The use of roles has the benefit of requiring users to
connect to the database with their own userid.

Any authorization that can be granted to a user can be granted to a role. Roles
are granted to users just as authorizations are. And like other authorizations, a user
may also be granted authorization to grant a particular role to others. Thus, branch
managers may be granted authorization to grant the teller role.

Roles can be created in SQL:1999 as follows

create role teller

Roles can then be granted privileges just as the users can, as illustrated in this state-
ment:

grant select onaccount
to teller

Roles can be granted to users, as well as to other roles, as these statements show.
grantteller to john
create tole manager
gtant teller to manager
grant manager to mary

Thus the privileges of a user or a role consist of

r All privileges directly granted to the user/role

o All privileges granted to roles that have been granted to the user/role

Note that there can be a chain of roles; for example, the role employee may be
granted to all tellers.In turn the role teller is granted to all managers. Thus, the msn-
ager role inherits all privileges granted to the roles employee and to teller inaddition
to privileges granted directly to mannger.

The actions executed by a session have all the privileges granted directly to the
user/ as well as all privileges granted to roles that are granted (directly or indirectly
via other roles) to that user. Thus, if a user John has been granted the role *orogrr,
actions executed by the user John get all privileges granted directly to John, as well
as privileges granted to mnnager, plus privileges granted to teller if the role teller was
granted to the role manager.

In addition to the notion of the (current) user of a session, SQL also has a notion
of the current role associated with a session. By default, the current role associated.
with a session is null (except in some special cases). The current role associated with
a session can be set by executing set role role-ttame. The specified role must have been
granted to the user, else the set role statement fails.

_ when a privilege is granted, by default it is treated as having been granted by
the current user, that is, the grantor is the current user. To granl a privilege witir
the grantor set to the current role associated with a session, w" .utr iaa tn" clause
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granted by current-role to the grant statement, provided the current role is not null.

The motivation for specifying that the grantor of a privilege is a specified role will

become clear later, when we discuss revocation of privileges.

8.7.4 Revoking of Privileges
To revoke an authorization, we use the revoke statement. It takes a form almost iden-

tical to that of grant:

revoke <privilege list> on <relation name or view name>
from <user/role list> [restrict ] cascadel

Thus, to revoke the privileges that we granted previously, we write

revoke select on branch from(J1, Uz, (Js

revoke update (amount) onloan fromUr, (Jz, Uz
revoke references (brsnch-nsme) onbranch from U1

As we saw in Section 8.7.1., the revocation of a privilege from a user/role may cause
other users/roles also to lose that privilege. This behavior is called cascading of the
reaoke.In most database systems, cascading is the default behavior; the keyword cas-
cade can thus be omitted, as we have done in the preceding examples. The revoke
statement may alternatively specify restrict:

revoke select on branch from (J 1, Uz, (J z restrict

In this case, the system returns an error if there are any cascading revokes, and does
not carry out the revoke action. The following revoke statement revokes only the
grant option, rather than the actual select privilege:

revoke grant option for select onbranch from U1

Cascading of revokes is inappropriate in many situations. Suppose Mary has the
role of manager, grants teller to john, and later the role manager is revoked from Mary
(perhaps because Mary leaves the company); John continues to be employed, and
should retain the teller role.

To deal with the above situation, SQL:1999 permits a privilege to be granted by a
role rather than by a user. Suppose the granting of the role teller (or other privileges)
to ]ohn is done with the grantor set to the role manager (using the granted by cur-
rentrole clause we saw earlier, with the current role set to manager), instead of the
grantor being the user Mary. Then, revoking of roles/privileges (including the role
mannger) from Mary will not result in revoking of privileges that had the grantor set
to the role manager, even if Mary was the user who executed the grant; thus, John
would retain the teller role even after Mary's privileges are revoked.
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8.7-5 Authorizqtion on views, Functions, qnd procedures

In Chapter 3, we introduced the concept of aiews as a means of providing a user
with a personalized model of the database. A view can hide data that a uier does
not need to see. The ability of views to hide data serves both to simplify usage of the
system and to enhance security. Views simplify system usage because they restrict
the user's attention to the data of interest. Although a user may be denied direct
access to a relation, that user may be allowed to access part of that relation through a
view. Thus, a combination of relational-level security and view-Ievel security limits a
user's access to precisely the data that the user needs.

In our banking example, consider a clerk who needs to know the names of all
customers who have a loan at each branch. This clerk is not authorized to see infor-
mation regarding specific loans that the customer may have. Thus, the clerk must be
denied direct access to the loan relation. But, if she is to have access to the information
needed, the clerk must be granted access to the view cust-loan,which consists of only
the names of customers and the branches at which they have a loan. This view can
be defined in SQL as follows:

create view cust_loqn as
(select br anch _name, cLlstomer :name
fromborrower,loan
where borrower.losn number = loqn.loan stumber)

Suppose that the clerk issues the following SeL query:

select n

from cust_loan

Clearly, the clerk is authorized to see the result of this query. However, when the
query Processor translates it into a query on the actual ."luti-ot"rr in the database, it
produces a query on borrower and loqn. Thus, the system must check authorization
on the clerk's query before it begins query processing.

A user who creates a view does not necessarily receive all privileges on that view.
She receives only those privileges that provide no additional authorization beyond
those that she already had. For example, a user cannot be given update authorization
on a view without having update authorization on the relations used to define the
view. If a user creates a view on which no authorization can be granted, the system
will deny the view creation request. In our cust-loan view example, the creator of the
view must have read authorization on both theborrower andloanrelations.

The execute privilege can be granted on a function or procedure, enabling a user to
execute_ the function/procedure. By default, just like views, functions and piocedures
have all the privileges that the creator of the function or procedure had. In effect, the
function or procedure runs as if it were invoked by the user who created the function.
The current user of the session is set to the creator of the function or procedure while
it is executing.

Although this behavior is appropriate in many situations, it is not always appro-
priate. In SQL:2003, if the function definition has an extra clause sql security invbker,
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then it is executed under the privileges of the user who invokes the function, rather

than the privileges of the definer of the function. This allows the creation of libraries

of functions that can run under the same authorization as the invoker.

8.7.6 Limitqtions of SQL Authorizqtion
The current SQL standards for authorization have some shortcomings. For instance,
suppose you want all students to be able to see their own grades, but not the grades
of anyone else. Authorization must then be at the level of individual tuples, which is
not possible in the SQL standards for authorization.

Furthermore, with the growth in the Web, database accesses come primarily from
Web application servers. The end users may not have individual user identifiers on
the database, and indeed there may only be a single user identifier in the database
corresponding to all users of an application server.

The task of authorization then falls on the application server; the entire authoiza-
tion scheme of SQL is bypassed. The benefit is that fine-grained authorizations, such
as those to individual tuples, can be implemented by the application. The problems
are these:

o The code for checking authorization becomes intermixed with the rest of the
application code.

o Implementing authorizationthrough application code, rather than specifying
it declaratively in SQL, makes it hard to ensure the absence of loopholes. Be-
cause of an oversight, one of the application programs may not check for au-
thorization, allowing unauthorized users access to confidential data. Verifying
that all application programs make all required authorization checks involves
reading through all the application server code, a formidable task in a large
system.

Some database systems provide mechanisms for fine-grained authorization. For
example, the Oracle Virtual Private Database (vrp) allows a system administrator
to associate a function with a relation; the function returns a predicate that must
be added to any query that uses the relation (different functions can be defined for
relations that are being updated). For example, the function for the sccount relation
could return a predicate such as

sccountnumber in
(select ac count -numb er
from denositor
where depositor.name = syscontext.user -id))

This predicate would get added to the where clause of every query that used the
account relation. As a result (assuming that the depositor's name should match the
database userjd) each database user can see only the tuples corresponding to ac-
counts that she owns. Thus, VPD provides authorization at the level of specific rows
of a relation, and is therefore said to be a row-leael authorizatior mechanism.
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You should be aware that_adding the predicate may change the meaning of a query
significantly. For example, if a user wrote a query to find thelvetuge u..o.rnt balince,
she would end up getting the average of the barances of her own accounts.

To handle Web applications where the application connects to the database using
a single user identifieq, Oracle also?llows applications to set the user id on a connec"-
tion. See the bibliographic notes for pointers to more information on Oracle VpD.'The various provisions that a database system may make for authorization may
still not provide sufficient protection for highly sensitive data. In such cases, datamay
be stored in encrypted form. Encryption is described in more detail in Section 8.8.1.

8.7.7 Audit Trqils
Many secure database applications require an audit trail be maintained. An audit
trail is a log of all changes (inserts/deletes/updates) to the database, along with in-
formation such as which user performed the -hange and when the change"was per-
formed.

The audit trail aids security in several ways. For instance, if the balance on an
account is found to be incorrect, the bank may wish to trace all the updates performed
on the account to find out incorrect (or fraudulent) updater ur -bil as the persons
who carried out the updates. The bank could then also use the audit trail to irace all
the updates performed by these persons, in order to find other incorrect or fraudulent
updates.

It is possible to create an audit trail by defining appropriate triggers on relation
updates (using system-defined variables that identify tie uier na-" utld time). How-
ever, many database systems provide built-in mechanisms to create audit trails, which
are much more convenient to use. Details of how to create audit trails vary across
database systems, and you should refer to the database-system manuals for details.

8.8 Applicotion Security
Application data security has to deal with several security threats and issues beyond
those handled by SQL authorization. For example, data must be protected white they
are being transmitted; data may need be protected from intruders who are able tt
lYlutt operating system security; and data may have complex privacy restrictions
that go beyond what a database can enforce. We address thes" and bther related
issues in this section.

8.8.1 Encryption Techniques
There are a vast number of techniques for the encryption of data. Simple encryption
techniques may not provide adequate security, since it may be easy for utr rrt urrtho-
rized user to break the code. As an example of a weak encryption technique, consider
the substitution of each character with the next character in the alphabef. Thus,

Perryridge
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becomes

Qfsszsjehf

If an unauthorized user sees only "Qfsszsjehf," she probably has insufficient infor-
mation to break the code. F{owever, if the intruder sees a large number of encrypted
branch names, she could use statistical data regarding the relative frequency of char-
acters to guess what substitution is being made (for example, E is the most common
letter in English text, followedby T, A, O,N,1 and so on).

A good encryption technique has the following properties:

o It is relatively simple for authorized users to encrypt and decrypt data.

o It depends not on the secrecy of the algorithm, but rather on a parameter of
the algorithm called the encryptionkey.

o Its encryption key is extremely difficult for an intruder to determine.

one approach, the Data Encryption standsrd (DES), issued in 1977, does both a

substitution of characters and a rearrangement of their order on the basis of an en-

cryption key. For this scheme to work, the authorized users must be provided with

the encryption key via a secure mechanism. This requirement is a major weakness,

since theicheme is no more secure than the security of the mechanism by which

the encryption key is transmitted. The DES standard was reaffirmed in1983,1987,

and again in1,993. However, weakness in DES was recognized in 7993 as reaching a

point where a new standard to be called the Advanced Encryption Standard (AES),

needed to be selected. In 2000, the Rijndael algorithm (named for the inventors

V. Rijmen and ]. Daemen), was selected to be the AES. The Rijndael algorithm was

chosen for its significantly stronger ievel of security and its relative ease of imple-

mentation on current computer systems as well as such devices as smart cards. Like

the DES standard, the Rijndael algorithm is a shared-key (or symmetric-key) algo-
rithm in which the authorized users share a key'

Public-key encryption is an alternative scheme that avoids some of the problems

that we face with the DES. It is based on two keys: a public key and a priante key. Each

user [/2 has a public key Ei and a private key Di. All public keys are published: They

can be seen by anyone. Each private key is known to only the one user to whom the

key belongs. If user [/r wants to store encrypted data, (Jt encrypts them using public

key E1. Decryption requires the private key D1.
Because the encryption key for each user is public, it is possible to exchange infor-

mation securely by this scheme. If user [/r wants to share data with (Jz, Ur encrypts

the data using E2.the public key of t/2. Since only user [/2 knows how to decrypt the

data, information is transferred securely.
For public-key encryption to work, there must be a scheme for encryption that

can be made pnUtic without making it easy for people to figure out the scheme for

decryption. In other words, it must be hard to deduce the private key, given the public

key. Such a scheme does exist and is based on these conditions:

o There is an efficient algorithm for testing whether or not a number is prime'
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o No efficient algorithm is known for finding the prime factors of a number.

For purposes of this scheme, data are treated as a collection of integers. We create
a public key by computing the product of two large prime numbers: pr and &. The
private key consists of the pair (P1,Pz). The decryption algorithm cannot be used
successfully if only the product P1P2 is known; it needs the individual values Pr and
P2. Since all that is published is the product P1P2, an unauthorized user would need
to be able to factor P1P2 to steal data. By choosing Pr and P2 tobe sufficiently large
(over 100 digits), we can make the cost of factoring PyP2 prohibitively high (on the
order of years of computation time, on even the fastest computers).

The details of public-key encryption and the mathematical justification of this tech-
nique's properties are referenced in the bibliographic notes.

Although public-key encryption by this scheme is secure, it is also computation-
ally expensive. A hybrid scheme used for secure communication is as folbws: DES
keys are exchanged via a public-key encryption scheme, and DES encryption is used
on the data transmitted subsequentlv.

8.8.2 Encryption Support in Dqtqbqses
Many file systems and database systems today support encryption of data. such en-
cryption protects the data from someone who is able to access the data, but is not
able to access the decryption key. In the case of file-system encryption, the data to be
encrypted is usually large files and directories containing information about files.

In the context of databases, encryption can be done at several different levels. At
the lowest level, the disk blocks containing database data can be encrypted, using a
key available to the database-system software. When a block is retrieved from diik,
it is first decrypted and then used in the usual fashion. Such disk-block-level en-
cryption protects against attackers who can access the disk contents but do not have
access to the encryption key. It also has the advantage of requiring relatively low
time and space overheads. For example, if data in a laptop computer database need
to be protected from theft of the computer itself, such encryption can be used. The
decryption key would have to be provided by the user whenlver the database soft-
ware is restarted. Similarly, someone who gets access to backup tapes of a database
would not be able to access the data contained in the backups without knowing the
decryption key.

In a shared database system, disk-block encryption cannot be used to protect data
from other privileged users such as database administrators who can issue queries on
the database. To protect data against such access, encryption must be donibefore the
data reach the database. The application must encrypt the data before sending it to
the database. Several database systems provide APIs for encryption that providJsuch
support for specified columns. A single key may be used for all encrypled columns
and for all rows for a particular column. Using a different key for each row is not
feasible, since it would make the job of key management very difficult.

The secure storage of decryption keys is anothei related prtblem. If they are stored
as a file in the operating system, someone who is able to breach operuiit g system
security would be able to get access to the keys. Some operating systemJpiovide
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secure storage; that is, they allow only the application that stored the key to retrieve it.
The application itself may be identified by a hash value on its executable, so attackers
who replace the application by a modified copy cannot get access to the key.

Encryption of small values, such as identifiers or names, is made complicated by
the possibility of dictionary attacks, particularly if the encryption key is publicly
avaiiable. For example, if date-of-birth fields are encrypted, an attacker trying to de-
crypt a particular encrypted value e could try encrypting every possible date of birth
until he finds one whose encrypted value matches e. Such attacks can be deterred by
adding extra random bits to the end of the value before encryption (and removing
them after decryption). Such extra bits (sometimes referred to as snlt bits) provide
good protection against dictionary attack-

8.8.3 Authenticqtion
Authentication refers to the task of verifying the identity of a person/software con-
necting to a database. The simplest form of authentication consists of a secret pass-
word which must be presented when a connection is opened to a database.

Password-based authentication is used widely by operating systems as well as
databases. However, the use of passwords has some drawbacks, especially over a
network. If an eavesdropper is able to "sniff' the data being sent over the network,
she may be able to find the password as it is being sent across the network. Once
the eavesdropper has a user name and password, she can connect to the database,
pretending to be the legitimate user'

8.8.3.1 Chollenge-Response Systems

A more secure scheme involves a challenge-response system. The database system
sends a challenge string to the user. The user encrypts the challenge string using a

secret password as encryption key and then returns the result. The database system
can verify the authenticity of the user by decrypting the string with the same secret
password and checking the result with the original challenge string. This scheme
ensures that no passwords travel across the network.

Public-key systems can be used for encryption in challenge-response systems.
The database system encrypts a challenge string using the user's public key and

sends it to the user. The user decrypts the string using her private key, and returns

the result to the database system. The database system then checks the response.

This scheme has the added benefit of not storing the secret password in the database,

where it could potentially be seen by system administrators.
Storing the private key of a user on a computer (even a personal computer) has the

risk that if the computer is compromised, the key may be revealed to an attacker who

can then masquerade as the user. Smart cards provide a solution to this problem.ln
a smart card, ihe key can be stored on an embedded chip; the operating system of the

smart card guarantees that the key can never be read, but allows data to be sent to

the card for encryption or decryption, using the private key.3

3. Smart cards provide other functionality too, such as the ability to store cash digitally and make pay-

ments, which is not relevant in our context.
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8.8.3.2 Digitol Signotufes
Another interesting application of fublic-key encryption is in digital signatures to
verify authenticity of data; digital signatures play the electronic role of physical sig-
natures on documents. The private key is used to sign data, and the signed data ca-n
be made public. Anyone can verify' them by the public key, but tro otre could have
generated the signed data without h,aving the private key. Thus, we can authenticate
the data; that is, we can verify that ihe data were indeed created by the person who
claims to have created them.

Furthermore, digital signatures {lso serve to ensure nonrepudiation. That is, in
case the person who created the dath later claims she did not create it (the electronic
equivalent of claiming not to have signed the check), we can prove that that person
must have created the data (unless $er private key was leaked to others).

8.8.3.3 Digitol Certificofes
Authentication is in general a two-jvay process, where each of a pair of interacting
entities authenticate themselves to tl,re other. Such pairwise authentication is needed
even when a client contacts a Web site, to prevent a malicious site from masquerading
as a legal web site. such masquera{ing could be done, for example, if the network
routers were compromised, and data rerouted to the malicious site.

For a user to ensure that she is i/;rteracting with an authentic Web site, she must
have the site's public key. This raisep the problem of how the user can get the public
key - if it is stored on the Web site, the malicious site could supply a different key,
and the user would have no way of verifying if the suppliea puUtic key is itself au-
thentic. Authenticatiorl can be handlled by a system of digitai certificales, whereby
public keys are signed by a certification agency, whose public key is well known. For
example, the public keys of the rooi certification authorities are stored in standard
Web browsers. A certificate issued bjr them can be verified by using the stored public
keys.

A two-level system would place a1-r excessive burden of creating certificates on the
root certification authorities, so a mlltilevel system is used instead, with one or more
root certification authorities and a tfee of certification authorities below each root.
Each authority (other than the root {uthorities) has a digital certificate issued by its
parent.

A digital certificate issued by a certification authority,4 consists of a public key
Kn and arr encrypted text E that ca be decoded by using the public tey lra. tne
encrypted text contains the name of the party to whom the certificate was issued
and their public key K".In case the certification authority,4 is not a root certification
authority, the encrypted text also cdntains the digital certificate issued to ,4 by its
parent certification authority; this cbrtificate authenticates the key Ka itself. (that
certificate may in turn contain a cerjtificate from a further parent authority, and so
on./

To verify a certificate, the encrypted text -E is decrypted by using the public key,
and if ,4 is not a root authority, the p{blic key Ksis verlfied recursively by using the
digital certificate contained within -@; recursion terminates when a ceitificate isiued
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by the root authority is reached. Verifying the certificate establishes the chain through

which a particular site was authenticated, and provides the name and authenticated

public key for the site.
Digitai certificates are widely used to authenticate Web sites to users, to prevent

malicious sites from masquerading as other Web sites. In the HTTPS protocol (the

secure version of the HTTP protocol), the site provides its digital certificate to the

browser, which then displays it to the user. If the user accepts the certificate, the

browser then uses the provided public key to encrypt data. A malicious site will have

access to the certificate, but not the private key, and will thus not be able to decrypt

the data sent by the browser. Only the authentic site, which has the corresponding

private key, can decrypt the data sent by the browser. We note that public- /private-
key encryption and decryption costs are much higher than encryption/decryption

costs using symmetric private keys. To reduce encryption costs, HTTPS actually cre-

ates a one-time symmetric key after authentication, and uses it to encrypt data for the

rest of the session.
Digital certificates can also be used for authenticating users. The user must submit

a digital certificate containing their public key to a site, which verifies that the certifi-

cate has been signed by a trusted authority. The user's public key can then be used

in a challenge-response system to ensure that the user possesses the corresponding

private key, thereby authenticating the user.

8.8.3.4 Centrql Authenticqtion
When users access multiple Web sites, it is often annoying for the user to have to au-

thenticate herself to each site separately, often with different passwords on each site.

There are systems that allow the user to authenticate herself to one central authenti-
cation service, and other Web sites can authenticate the user through this Web site;

the same password can then be used to access multiple sites.
A singie,sign-on system further allows the user to be authenticated once (typically

by entering a password) and multiple applications can then verify the user's identity
through the cLntral authentication service without requiring reauthentication. Such

single-sign-on mechanisms have long been used in distributed operating systems

r.r.h ur Kerberos, and implementations are now available for Web applications. See

the bibliographic notes for more information.
In addition to authenticating users, a central authentication service can provide

other services, such as providing information about the user such as name, email,

and address information, to the application. This obviates the need to enter this in-

formation separately in each application. Directory systems such as LDAP and Active

Directories, and authentication systems such as Microsoft's Passport service, provide
mechanisms for authenticating users as well as for providing user information.

8.8.4 Securing APPlicotions
There are many ways in which an application's security can be compromised, even

if the database system is itself secure. We outline some potential security holes, and

how to guard against them.
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In SQL injection attacks, the attacker manages to get an application to execute
an SQL query created by the attacker. Such attacks work as follows. Consider the
form source text shown in Figure 8.2. Suppose the corresponding servlet shown in
Figure 8.6 creates an sQL query string using the followingJavaexpression:

"select balance from account where account-num ber =,,, + number + ,,,,,

where number is a variable containing the string input by the user. A malicious at-
tacker using the web form can then type a string such as "';<some sel stateme nt);,,,
where <some SQL statement> denotes any SQL statement that the attacker desires,
in place of a valid account number. The servlet would then create and submit the
following string.

select balance from account where account_number = , , ; <some SeL statement>; ,

The quote inserted by the attacker closes the string, the following semicolon termi-
nates the query, and the following text inserted by the attacker gets interpreted as
an SQL query. Thus, the malicious user has managed to insert an arbitrary Sqt state-
ment, which gets executed by the application. The statement can cause significant
damage, since it can bypass all security measures implemented in the apflication
code.

To avoid such attacks, it is best to use prepared statements to execute SeL queries.
When setting a parameter of a prepared query, }DBC automatically adds escape char-
acters so that the user-supplied quote would no longer be able to t-erminate the string.
Equivalently, a function that adds such escape characters could be applied on inprit
strings before they are concatenated with the SQL query, instead of using prepaied
statements.

Another problem that application developers must deal with is storing passwords
in clear text in the application code. For example, programs such as ySp icripts often
contain passwords in clear text. If such scripts are stored in a directory acceisible by
a Web servet an external user may be able to access the source code olthe script, ani
get access to the password for the database account used by the application. To avoid
such problems, many application servers provide mechanismsio store passwords
in encrypted form, which the server decrypts before passing it on to the database.
Such a feature removes the need for storing passwotds ur cl"ur text in application
Programs.

As another measure against compromised database passwords, many database
systems allow access to the database to be restricted to a given set of Internet ad-
dresses. Attempts to connect to the database from other Internet addresses are re-
jected.

8.8.5 Privocy
In a world where an increasing amount of personal data are available online, people
are increasingly worried about the privacy of their data. For example, most people
would want their personal medical data to be kept private and not revealed pnUti"ty.
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However, the medical data must be made available to doctors and emergency med-

ical technicians who treat the patient. Many countries have laws on privacy of such

data, which define when and to whom the data may be revealed. Violation of privacy

law can result in criminal penalties in some countries. Applications that access such

private data must be built carefully, keeping the privacy laws in mind.

On the other hand, aggregated private data can play an important role in many

tasks such as detecting drug side effects, or in detecting the spread of epidemics.

How to make such data available to researchers carrying out such tasks, without

compromising the privacy of individuals, is an important real-world problem. As

an example, suppose a hospital hides the name of the patient, but provides a re-

searcher with tlie date of birth and the zip code (postal code) of the patient (both of

which may be useful to the researcher). Just these two pieces of information can be

used to uniquely identify the patient in many cases (using information from an exter-

nal database), compromising their privacy. In this particular situatiorg one solution

would be to give the year of birth but not the date of birth, along with the zip code,

which may suffice for the researcher. This would not provide enough information to

uniquely identify most individuals.a
As another example, Web sites often collect personal data such as address, tele-

phone, email, and credit card information. Such information may be required to carry

out a transaction such as purchasing an item from a store. However, the customer

may not want the information to be made available to other organizations/ or may

want part of the information (such as credit card numbers) to be erased after some

period of time as a way to prevent it from falling into unauthorized hands in the

event of a security breach. Many Web sites allow customers to specify their privacy

preferences, and must then ensure that these preferences are respected.

8.9 Summory
o Most users interact with databases via forms and graphical user interfaces,

and there are numerous tools to simplify the construction of such interfaces.
Report generators are tools that help create human-readable reports from the

contents of the database.

o The Web browser has emerged as the most widely used user interface to

databases. HTML provides the ability to define interfaces that combine hlper-
links with forms facilities. Web browsers communicate with Web servers by

the HTTP protocol. Web servers can pass on requests to application programs/
and return the results to the browser'

o There are several client-side scripting languages- javascript is the most widely
used-that provide richer user interaction at the browser end'

o Web servers execute application programs to implement desired functionality.
Servlets are a widely used mechanism to write application programs that run

4. For extremely old people, who are relatively rare, even the year of birth plus postal code may be

enough to uniqu"ty ia"trtity tn" individual, so a range of values, such as B0 years or older, may be provided

instead of the actual age for people older than 80 years.
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o Forms

o Graphical user interfaces

o Report generators

o Web interfaces to databases

o HyperText Markup Language
(HTML)

o Hyperlinks

o Uniform resource locator (URL)

o Client-side scripting

o javascript
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o Document Object Model (OOV)

r Applets

o Client-side scripting language

o Web servers

o Session

o HyperText Transfer Protocol
(HTTP)

o Common Gateway Interface
(ccD

r Connectionless

as part of the Web server process, in order to reduce overheads. There are also
many server-side scripting languages that are interpreted by the web server
and provide application program functionality as part of theweb server.

o Triggers define actions to be executed automatically when certain events oc-
cur and corresponding conditions are satisfied. Tiiggers have many uses, such
as implementing business rules, audit logging, and even carrying out actions
outside the database system. Although triggers were added only lately to the
sQL standard as part of seL:1999, most database systems have long imple-
mented triggers.

o A user who has been granted some form of authority may be allowed to pass
on this authority to other users. Howevet we must be careful about ho# au-
thorization can be passed among users if we are to ensure that such autho-
rization can be revoked at some firture time.

o Roles help to assign a set of privileges to a user according to the role that the
user plays in the organization.

o sQL authorization mechanisms are coarse grained and of limited value to ap-
plications that deal with large numbers of users. Extensions to provide row-
level access control and to deal with large numbers of application users have
been developed, but are not standard as yet.

' Encryption plays a key role in protecting information and in authentication of
users and web sites. Challenge-response systems are often used to authenti-
cate users. Digital certificates play a key role in authenticating web sites.

. Application developers must pay careful attention to security, to prevent sel
injection attacks and other attacks by malicious users.

o Protecting the privacy of data is an important task for database applications.
Many countries have legal requirements on maintaining privacy of certain
kinds of data, such as medical data.
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o Cookie o Revocation of privileges

o Servlets o Authorization on views

o Servlet sessions o Execute authorization

o JSP o Invoker Privileges

o Server-side scripting o Row-level authorization

o Connection pooling I Audit trails

o ASp.NET o Encryption

o Trigger o Public-keY encrYPtion

o Event-condition-action model o Authentication

o Before and after triggers o Challenge-response

o Transition variables and tables o Digital signatures

e Authorization o Digital certificates

o Privileges o Central authentication

o Privilege to grant privileges o Single-sign-on

o Grant option o SQL injection

o Roles o privacy

Prqctice Exercises
8.1 What is the main reason why servlets give better performance than programs

that use the common gateway interface (CGI), even though Java programs gen-

erally run slower than C or C++ programs?

8.2 List some benefits and drawbacks of connectionless protocols over protocols

that maintain connections.

8.3 List three ways in which caching can be used to speed up Web server perfor-

mance.

8.4 Consider a view branch-cust defined as follows;

create view branch-cust as
select brnnch -name / customer -name
fuonl. dePositor, account
where depositor.account number = account.account number

Suppose that the view is materialized; that is, the view is computed and stored.

Write triggers to maintairz the view, that is, to keep it up-to-date on insertions to

and deletions from depositor or nccount. Do not bother about updates.

8.5 Write an SQL trigger to carry out the following action: On delete of an account,

for each owner of the account, check if the owner has any remaining accounts,

and if she does not, delete her from the depositor relation'
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8.6 Suppose someone impersonates a company and gets a certificate from a certifi-
cate-issuing authority. What is the effect on things (such as purchase orders or
programs) certified by the impersonated company, and on things certified by
other companies?

8.7 Perhaps the most important data items in any database system are the pass-
words that control access to the database. Suggest a scheme for the secure stor-
age of passwords. Be sure that your scheme allows the system to test passwords
supplied by users who are attempting to log into the syitem.

Exercises

8.8 Write a servlet and associated HTML code for the following very simple appli-
cation: A user is allowed to submit a form containing a value, say n, uidstrbuta
get a response containing n,,*,, symbols.

8.9 Write a servlet and associated HTML code for the following simple application:
A user is allowed to submit a form containing a number, iy n,^and,ihould get
a resPonse saying how many times the value n has been submitted previouJlv.
The number of times each value has been submitted previously should be stored
in a database.

8.10 Write a servlet that authenticates a user (based on user names and passwords
stored in a database relation), and sets a session variable called userid after au-
thentication.

8.11 what is an sQL injection attack? Explain how it works, and what precautions
must be taken to prevent SeL injection attacks.

8.12 Write pseudocode to manage a connection pool. Your pseudocode must include
a function to create a pool (providing a database connection string, database
user name and password as parameters), a function to request a connection from
the pool, a connection to release a connection to the pool, and a function to close
the connection pool.

8.13 Suppose there are two relations r and s, such that the foreign key B of r refer-
ences the primary key A of s. Describe how the trigger mechanism can be used
to implement the on delete cascade option, when i iuple is deleted from s.

8.14 The execution of a trigger can cause another action to be triggered. Most database
systems place a limit on how deep the nesting can be. Exptiin why they might
place such a limit.

8.15 Explain why, when_ a managel say Mary, grants an authorization, the grant
should be done by the manager role, rather than by the user Mary.

8.16 Suppose user A, who has all authorizations on a relation r, grants select on
relation r to public with grant option. suppose user B then grants select on
r to A. Does this cause a cycle in the authorization graph? Exphln why.
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8.1-7 Make a list of security concerns for a bank. For each item on your list, state
whether this concern relates to physical security, human security, operating-
system security, or database security.

8.18 Database systems that store each relation in a separate operating-system file
may use the operating system's security and authorization scheme, instead of
defining a special scheme themselves. Discuss an advantage and a disadvantage
of such an approach.

8.19 Oracle's VPD mechanism implements row-level security by adding predicates
to the where clause of each query. Give an example of a predicate that could
be used to implement row-level security, and three queries with the following
properties:

a. For the first query, the query with the added predicate gives the same result
as the original querY.

b. For the second query, the query with the added predicates gives a result that
is always a subset of the original query result.

c. For the third query, the query with the added predicate gives incorrect an-
swers.

8.20 What are two advantages of encrypting data stored in the database?

8.21 Suppose you wish to create an audit trail of changes to the accounf relation.

a. Define triggers to create an audit trail, logging the information into a re-
lation called, for example, nccount-trall. The logged information should in-

clude the user-id (assume a function useridj provides this information) and
a timestamp, in addition to old and new values. You must also provide the
schema of the account-trail relation.

b. Can the above implementation guarantee that updates made by a malicious

database administrator (or someone who manages to get the administra-
tor's password) will be in the audit trail? Explain your answer.

8.22 Hackers may be able to fool you into believing that their Web site is actually a
Web site (such as a bank or credit card Web site) that you trust. This may be done
by misleading email, or even by breaking into the network infrastructure and

re-routing neiwork traffic destined for, say mybank.com, to the hackers site. If

you enter your user name and password on the hackers' site, the site can record
it, and use it later to break into your account at the real site. When you use a URL

such as https://mybank.com, the HTTPS protocol is used to prevent such attacks.
Explain how the protocol might use digital certificates to verify authenticity of

the site.

8.23 Explain what is a challenge-response system for authentication. Why is it more

secure than a traditional password-based system?
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Project Suggestions
Each of the following_r-r u lTgu project, which can be a semester-long project done by
a group of students. The difficulty of the project can be adjusted uuiiiy Uy adding or
deleting features.

Project 8.1 Consider the E-R schema of Practice Exercise 6.4 (Chapter 6), which repre-
sents information about teams in a league. Design and impiement a web_based
system to enter, update, and view the data.

Project 8.2 Design and implement a shopping cart system that lets shoppers collect
items into a shopping cart (you can decide what information is to be supplied
for each item) and purchased together. you can extend and use the E-R ,"h"-u
of Exercise 6-27 of Chapter 6. You should check for availability of the item and
deal with nonavailable items as you feel appropriate.

Project 8.3 Design and implement a Web-based system to record student registration
and grade information for courses at a university.

Project 8.4 Design and implement a system that permits recording of course perfor-
mance information-specifically, the markJ given to each siudent in eich as-
signment or exam of a course, and computation of a (weighted) sum of marks
to get the total course marks. The number of assignments/-exams should not be
predefined; that is, more assignments/examr catrte added at any time. The svs-
tem should also support grading, permitting cutoffs to be speciiied for various
grades.

You may also wiqh to integrate it with the student registration system of
Project 8.3 (perhaps being implemented by another projectleam).

Project 8.5 Design and implement a Web-based system for booking classrooms at
your university. Periodic booking (hxed days / times each week for a whole sem-
ester) must be supported. Cancellation of specific lectures in a periodic booking
should also be supported.

_ You may also wish to integrate it with the student registration system of
Project 8.3 (perhaps being implemented by another projeciteam) so that class-
rooms can be booked for courses, and cancellations oJ a iecture or extra lectures
can be noted at a single interface, and will be reflected in the classroom booking
and communicated to students via email.

Proiect 8.6 Design and implement a system for managing online multiple-choice
tests. You should support distributed contribution of questions (by teaching as-
sistants, for example), editing of questions by whoeverls in chargeof the corlrse,
and creation of tests from the available set oi questions. You shoula aho be able
to administer tests online, either at a fixed time for all students, or atany time
but with a time limit from start to finish (support one or both), and give students
feedback on their scores at the end of the ailotted time.

Projert 8.7 Design and implement a system for managing email customer service.
Incoming mail goes to a common pool. There is u r"t of customer service agents
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who reply to email. If the email is part of an ongoing series of replies (tracked

using the in-reply-to field of email) the mail should preferably be replied to by
the same agent who replied earlier. The system should track all incoming mail
and replies, so an agent can see the history of questions from a customer before
replying to an email.

Project 8.8 Design and implement a simple electronic marketplace where items can
be listed for sale or for purchase under various categories (which should form a
hierarchy). You may also wish to support alerting services, whereby a user can
register interest in items in a particular category, perhaps with other constraints
as well, without publicly advertising her interest, and is notified when such an

item is listed for sale.

Project 8.9 Design and implement a Web-based newsgroup system. Users should be
able to subscribe to newsgroups, and browse articles in newsgroups. The system
tracks which articles were read by a user, so they are not displayed again. Also

provide search against old articles.
You may also wish to provide a rating service for articles, so that articles

with high rating are highlighted, permitting the busy reader to skip low-rated
articles.

Project 8.10 Design and implement a Web-based system for managing a sports *lad-

der.', Many people register, and may be given some initial rankings (perhaps

based on paJt petfotmance). Anyone can challenge anyone else to a match, and

the rankings are adjusted according to the result.
One simple system for adjusting rankings just moves the winner ahead of

the loser in the rank order, in case the winner was behind earlier. You can try to

invent more complicated rank-adjustment systems.

Project 8.11 Design and implement a publication-listing service. The service should

permit entering of information about publications, such as title, authors, year,
where the publication appeared, and pages. Authors should be a separate entity

with attributes such as name, institution, department, email, address, and home

page'- 
Your application should support multiple views on the same data. For in-

stance, you should provide all publications by a given author (sorted by year,

for example), or all publications by authors from a given institution or depart-

ment. You should also support search by keywords, on the overall database as

well as within each of the views.

Project S.12 A common task in any organization is to collect structured information

from a group of people. For example, a manager may need to ask employees to

enter their vacation plans, a professor may wish to collect feedback on a partic-

ular topic from students, or a student organizing an event may wish to allow

other students to register for the event, or someone may wish to conduct an

on-line vote on some toPic.
Create a system that will allow users to easily create information collection

events. When creating an event, the event creator must define who is eligible
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to participate; to do so, your system must maintain user information, and al-
low predicates defining a subset of users. The event creator should be able to
specify a set of inputs (with types, default values, and validation checks) that
the users will have to provide. The event should have an associated deadline,
and the ability to send reminders to users who have not yet submitted their
information. The event creator may be given the option of automatic enforce-
ment of the deadline.based on a specified date/time, or may choose to login
and declare the deadline is over. Statistics about the submissions should be gEn-
erated-to do so, the event creator may be allowed to create simple rrr-*uri",
on the entered information. The event creator may choose to make some of the
summaries publrr, viewable by all users, either continually (e.g., how many peo-
ple have responded) or after the deadline (e.g., what -ui th" average feedback
score).

Project 8.13 Create a library of functions to simplify creation of Web interfaces. you
must implement at least the following functions: a function to display a JDBC
result set (with tabular formatting), functions to create different types of text
and numeric inputs (with validation criteria such as input type and optional
range, enforced at the client by appropriate Javascript code), iunctions to input
date and time values (with default values), and funitions to create menu items
based on a result set. For extra credit, allow the user to set style parameters such
as colors and fonts, and provide pagination support in the iables (hidden form
parameters can be used to specify which page is to be displayed). Build a sample
database application to illustrate the use of these functions.

Project 8.14 Design and implement a web-based multiuser calendar system. The svs-
tem must track appointments for each person, with multi-occurrence 

"rr"r-rtr,such as weekly meetings, shared events (where an update made by the event
creator gets reflected to all those who share the event). Provide interfaces to
schedule multiuser events, where an event creator can add a number of users
who are invited to the event. Provide email notification of events. For extra cred-
its implement a web service that can be used by a reminder program running
on the client machine.

Bibliogrophical Notes
Information about servlets, including tutorials, standard specifications, and software,
is available on java.sun.com/products/servlet. Information about JSp is available at
java'sun.com/products/jsp. Information on JSP tag libraries can also be found at this
URL. Information about the .NET framework and about Web application develop-
ment using ASP.NET can be found at msdn.microsoft.com.

lhe oliginal SQL proposals for assertions and triggers are discussed in Astrahan
et al. [7976], Chamberlin et al. [7976], and Chamberlin et al. t19811. Melton and Simon
[20011, Melton [2002], and Eisenberg and Melton U.9991provide textbook coverage of
SQL:1,999, including coverage of assertions and triggers in SeL:1999.
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More information on Oracle's Virtual Private Database (VPD), which provides
fine-grained authorization among other features, may be found at www.oracle.com/-
technology/deploy/securityiindex.html. Fine-grained authorization is also discussed
in Rizvi et al. [2004].

Atreya et al. [2002] provide textbook coverage of digital signatures, including
X.509 digital certificates and public-key infrastructure. Information about the Pub-
cookie single-sign-on system may be found at www.pubcookie.org.

Tools
Development of a Web application requires several software tools such as an ap-
plication server, a compiler and editor for a programming language such as Java
or C#, and other optional tools such as a Web server. We list a few of the better-
known tools here: the Java SDK from Sun (java.sun.com), the Apache Tomcat sys-
tem (jakarta.apache.org), which support servlets and 1SP, the Apache Web server
(apache.org), the JBoss application server (jboss.org), Microsoft's ASP.NET tools
(msdn.microsoft.com/asp.nev), IBM WebSphere (www.software.ibm.com), Caucho's
Resin (www.caucho.com), Allaire's Coldfusion and ]Run products (wwwallaire.com),

andZope (www.zope.org). A few of these, such as Apache Tomcat and Apache Web
server are free for any use/ some are free for noncommercial use or for personal use,
while others need to be paid for. See the respective Web sites for more information.







Traditional database applications consist of data-processing tasks, such as banking
and payroll management, with relatively simple data types, which are well suiteJ
to the relational data model. As database systems were applied to a wider range of
applications, such as computer-aided design and geographical information systems,
limitations imposed by the relational model emerged as an obstacle. The solution was
the introduction of object-based databases, which allow one to deal with complex
data types.

9.1 Overview
The first obstacle faced by programmers using the relational data model was the lim-
ited type system supported by the relational model. Complex application domains
require correspondingly complex data types, such as nested record structures, multi-
valued attributes and inheritance, which are supported by traditional programming
languages. such features are in fact supported in the E-R and extended E-R nota-
tions, but had to be translated to simpler SQL data types. The object-relational data
model extends the relational data model by providing a richer type system including
complex data types and object orientation. Relational query languages, in particu-
lar sQL, need to be correspondingly extended to deal with the richer type iystem.
Such extensions attempt to preserve the relational foundations-in pariicular, the
declarative access to data-while extending the modeling power. Obfect-relational
database systems, that is, database systems based on the object-relation model, pro-
vide a convenient migration path for users of relational databases who wish to use
object-oriented features.

The second obstacle was the difficulty in accessing database data from programs
written in programming languages such as C++ or Java. Merely extending the type
system supported by the database was not enough to solve this problem completely.

361
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Differences between the type system of the database and the type system of the pro-
gramming language make data storage and retrieval more complicated, and need to
be minimized. Having to express database access using a language (SQL) which is
different from the programming language again makes the job of the Programmer
harder. It is desirable, for many applications, to have programming language con-
structs or extensions that permit direct access to data in the database, without having
to go through an intermediate language such as SQL.

The term persistent programming languages refers to extensions of existing pro-
gramming languages to add persistence and other database features, using the native
type system of the programming language. The term object-oriented database sys-
tems is used to refer to database systems that support an object-oriented type system,
and allow direct access to data from an object-oriented programming language using
the native type system of the language.

In this chapter, we first explain the motivation for the development of complex
data types. We then study object-relational database systems; our coverage is based
on the object-relational extensions added to the SQL:1999 version of the SQL standard.
Our description is based on the SQL standard, specifically using features that were
introduced in SQL:1999 and SQL:2003. Note that most database products support only
a subset of the SQL features described here. Refer to the user manual of the database
system you use to find out what features it supports.

We then briefly study object-oriented database systems that add persistence sup-
port to object-oriented programming languages. Finally, we outline situations in which
the object-relational approach is better than the object-oriented approach, and vice
versa, and mention criteria for choosing between them.

9.2 Complex Dqtq Types
Traditional database applications consist of data-processing tasks, such as banking
and payroll management. Such applications have conceptually simple data types.
The basic data items are records that are fairly small and whose fields are atomic-
that is, they are not further structured, and first normal form holds (see Chapter 7).
Further, there are only a few record tyPes.

In recent years, demand has grown for ways to deal with more complex data types'
Consider, for example, addresses. While an entire address could be viewed as an
atomic data item of type string, this view would hide details such as the street ad-
dress, city, state, and postal code, which could be of interest to queries. On the other
hand, if an address were represented by breaking it into the components (street ad-
dress, city, state, and postal code), writing queries would be more complicated since
they would have to mention each field. A better alternative is to allow structured data

types, which allow a type address with subparts street-nddress, city, stnte, andpostal
-code.

As another example, consider multivalued attributes from the E R model. Such

attributes are natural, for example, for representing phone numbers, since people
may have more than one phone. The alternative of normalization by creating a new

relation is expensive and artificial for this example.
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with complex type systems we can represent E-R model concepts, such as com-
posite attributes, multivalued attributes, generalization, and specialization directly,
without a complex translation to the relational model.

In Chapter 7, we defined first normal form (tNr), which requires that all attributes
have stomic domains. Recall that a domain is stomic if elements of the domain are
considered to be indivisible units.

The assumption of 1NF is a natural one in the bank examples we have considered.
However, not all applications are best modeled by 1NF relations. For example, rather
than view a database as a set of records, users of certain applications view if as a set of
objects (or entities). These objects may require several records for their representation.
A simple, easy-to-use interface requires a one-to-one correspondence between the
user's intuitive notion of an object and the database system's notion of a data item.

Conside4 for example, a library application, and suppose we wish to store the
following information for each book:

o Book title

o List of authors

o Publisher

o Set of keywords

We can see that, if we define a relation for the preceding information, several domains
will be nonatomic.

o Authors. A book may have a list of authors, which we can represent as an
array. Nevertheless, we may want to find all books of which Jones was one
of the authors. Thus, we are interested in a subpart of the domain element
"authors."

o Keywords. If we store a set of keywords for a book, we expect to be able to
retrieve all books whose keywords include one or more specified keywords.
Thus, we view the domain of the set of keywords as nonatomic.

o Publisher. Unlike keywords and authors, publisher does not have a set-valued
domain. However, we may view publisher as consisting of the subfields name
andbrqnch. This view makes the domain of publisher nonatomic.

Figure 9.1 shows an example relation, books.

Figure 9.1 Non-1NF books relation,books.
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Figure 9.2 4NF version of the relationbooks.

For simplicity we assume that the title of a book uniquely identifies the book.l We
can then represent the same information using the following schema:

o authors\itle, suthor, position)

o keyrn or ds(title, keywor d)

o b ooks$(title, pLtb-name, pub -br anch)

The above schema satisfies 4NF. Figure 9.2 shows the normalized representation of

the data from Figure 9.1.
Although our example book database can be adequately expressed without using

nested relations, the use of nested relations leads to an easier-to-understand model.
The typical user or programmer of an information-retrieval system thinks of the
databaie in terms of books having sets of authors, as the non-1NF design models.
The 4NF design requires queries to join multiple relation, whereas the non-1NF de-
sign makes many types of queries easier.

On the other hand, it may be better to use a first normal form representation
instead of collections in other situations. For instance, consider the depositor rela-

tionship in our bank example. The relationship is many-to-many between customers
and accounts. We could conceivably store a set of accounts with each customer/ or a

set of customers with each account, or both. If we store both, we would have data

1. This assumption does not hold in the real world. Books are usually identified by a 1O-digit ISBN

number that uniquelv identifies each published book'

parsing
analysis
Internet
Web

keywords

McGraw-Hill
Oxford

books4
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redundancy (the relationship of a particular customer to a particular account would
be stored twice).

The ability to use complex data types such as sets and arrays can be useful in many
applications but should be used with care.

9.3 Structured Types qnd Inheritqnce in SQL
Before sQL:1.999, the sQL type system consisted of a fairly simple set of predefined
types. sQL:1999 added an extensive type system to sel, allowing structured types
and type inheritance.

9.3.1 Structured Types
Structured types allow composite attributes of E-R diagrams to be represented di-
rectly. For instance, we can define the following structured type to repiesent a com-
posite attribute name wlth component attribute firstnsme andlastname:

create type Name as
(fir stname varchar(20),
lastname varchar(20))
final

Similarly, the following structured type can be used to represent a composite attribute
nddress:

create type Address as
(street varchar(2}),
city varcha{2}),
zipcode varchar(9))
not final

Such types are called user-defined types in SQL. The above definition corresponds
to the E-R diagram in Figure 6.4. The final and not final specifications are related to
subtyping, which we describe lateq, in Section 9.3.2.2

We can now use these types to create composite attributes in a relation, by simply
declaring an attribute to be of one of these types. For example, we could creaie a tatll
customer as follows

create table customer (
nameName,
address Address,
dnteOfBirth date)

2 The final specification for Name indicates that we cannot create subtypes for name, whereas the not
final specification for Address indicates that we can create subtvpes of addiess.
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The components of a composite attribute can be accessed using a "dot" notation;
for instance name.firstname returns the firstname component of the name attribute.
An access to attribute name would return a value of the structured type Name.

We can also create a table whose lows are of a user-defined type. For example, we
could define a type CustomerType and create the table customer as follows:

create type CustomerType as (
nameNqme,
address Address,
dnteOftirth date)
not final

create table customer of CustomerType

An alternative way of defining composite attributes in SQL is to use unnamed row
types. For instance, the relation representing customer information could have been
created using row types as follows:

create table customer-r (
name row (firstname varchar(20),

I astname varchar(2O)),
nddress row (street varchar(20),

city varchar(2}),
zipcode varchar(9)),

dateOfBirth date)

This definition is equivalent to the preceding table definition, except that the at-
tributes name and address have unnamed types, and the rows of the table also have
an unnamed type.

The following query illustrates how to access component attributes of a composite
attribute. The query finds the last name and city of each customer.

select nnme,lastnnme, address.citv
from customer

A structured tlpe can have methods defined on it. We declare methods as part of
the type definition of a structured type:

create type CustomerType as (
nameName,
address Address,
dateOftirth date)
not final

method a ge O nD nt e(onD at e date)
returns interval vear

We create the method body separately:
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create instance method ageOnDate (onDate date)
returns interval year
for CustomerType

begin
return onDate - self.dateOfBirth:

end

Note that the for clause indicates which type this method is for, while the keyword
instance indicates that this method executes on an instance of the Customer type.
The variable self refers to the Customer instance on which the method is involed.
The body of the method can contain procedural statements, which we saw earlier
in Section 4.6. Methods can update the attributes of the instance on which they are
executed.

Methods can be invoked on instances of a type. If we had created a table customer
of type CustomerType, we can invoke the method ageOnDate\ as illustrated below to
find the age of each customer.

select name.Iastname, ageOnD ate(current_date)
frotn customer

In SQL:1999 constructor functions are used to create values of structured types. A
function with the same name as a structured type is a constructor function-for the
structured type. For instance, we could declare a constructor for the tvpe Name like
this:

create function N ame (firstname v archar(2}), Iastname varchar(20))
retsrns Name
begin

set self.firstnlTns = firstname;
set self.Iastname = Iastnamel

end

We can then use new Name('John','Smith,) to create a value of the type Name.
We can construct a row value by listing its attributes within parentheses. For in-

stance, if we declare an attribute name as a row type with components firstname and
lastnsme we can construct this value for it:

('Ted', 'Codd')

without using a constructor.

- By default every structured type has a constructor with no arguments, which sets
the attributes to their default values. Any other constructors havelo be created explic-
itly. There can be more than one constructor for the same structured type; although
they have the same name, they must be distinguishable by the trumbeiof a.gr*"rit,
and types of their arguments.

_The following statement illustrates how we can create a new tuple in the Customer
relation. We assume that a constructor has been defined for Addreis,just like the con-
structor we defined for Nnme.
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insert into Customer
values

(new N sm e ('John','Smith' ),
new Address('2O Main St', 'New York', '7100L'),

date'1960-8-22')

9.3.2 Type Inheritqnce
Suppose that we have the following type definition for people:

create type Person
(name varchar(Z}),
address varchar(20))

We may want to store extra information in the database about people who are stu-
dents, and about people who are teachers. Since students and teachers are also peo-
ple, we can use inheritance to define the student and teacher types in SQL:

create type Student
under Person
(degree varchar(20),
dep nr tment varchar(20) )

create type Teacher
under Person
(salary integer,
dep ar tm ent varchar(20))

Both Student and Teacher inherit the attributes of Person-namely, name and nddress.

Student and,Teacher are said to be subtypes of Person, andPerson is a supertype of

Student, as well as of Teacher.
Methods of a structured type are inherited by its subtypes, just as attributes are.

However, a subtype can redefine the effect of a method by declaring the method

again, using overriding method in place of method in the method declaration.
The SeL standard also requires an extra fielcl at the end of the type definition,

whose value is either final or not final. The keyword final says that subtypes may

not be created from the given type, while not final says that subtypes may be created.

Now suppose that we want to store information about teaching assistants, w-ho

are simultanbously students and teachers, perhaps even in different departments. We

could do this if the type system supports multiple inheritance, where a type is de-

clared as a subtype of multiple types. Note that tlhe SQL standard (up to the SQL:1999

and SeL:2003 versions at least) does not support multiple inheritance, although future

versions of the SQL standard may support it.
For instance, if our type system supports multiple inheritance, we can define a

type for teaching assistant as follows:

create typ e Teachin g Assis t ant
under Student,Teacher
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TeachingAssistant would inherit all the attributes of Student and. Teqcher. There is a
problem, however, since the attributes nanne, address, and department are present in
Student, as well as inTeacher.

The attributes name and address are actually inherited from a common source, per-
son' So there is no conflict caused by inheriting them from Studenf as well as Teacher.
However, the attribute department is defined separately in Student andTeacher.In fact,
a teaching assistant may be a student of one department and a teacher in another
department. To avoid a conflict between the two occurrences of depnrtment, we can
rename them by using an as clause, as in this definition of the type kachingAssistant:

cre ate ty p e Teachin g As sist ant
under Student with (department as student_dept),

Teacher with (department as tencher_dept)

we note again that sQL supports only single inheritance-that is, a type can in-
herit from only a single type; the syntax used is as in our earlier e*amples. Multiple
inheritance as in the TeachingAssistnnt example is not supported in sel-.

In SQL, as in most other languages, a value of a structured type must have exactly
one "most-specific type." That is, each value must be associated with one specific
type, called its most-specific type, when it is created. By means of inheritance, it
is also associated with_each of the supertypes of its most-specific type. For example,
suppose that an entity has the type Person, as well as the type Studenl. Then, the mbst-
specific type of the entity is Student, since Studenf is a subtype of Person. However,
an entity cannot have the type Student as well as the type Teacher unless it has a type,
such as TeachingAssistant, that is a subtype of Tencher, as well as of Student (which is
not possible in SQL since multiple inheritance is not supported by SeL).

9.4 Tqble Inheritqnce
Subtables in SQL correspond to the E-R notion of specialization/generalization. For
instance, suppose we define the people table as follows:

create table people of Person

We can then define tables studenfs and teachers as subtables of people, as follows:

create table students of Student
under people

create table teschers ofTeacher
und.er people

The types of the subtables must be subtypes of the type of the parent table. Thereby,
every attribute present inpeople is also present in the subtables.

Further, when we declare students and teachers as subtables of people, every tuple
present in students or teachers becomes also implicitly present in people. Thus, ii a
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query uses the tabie people, it will find not only tuples directly inserted into that table,
but also tuples inserted into its subtables, namely students and teachers. However,
only those attributes that are present in people can be accessed by that query,

SeL permits us to find tuples that are in people but not in its subtables by using
*onIy people" in place of people in a query. The only keyword can also be used in
delete and update statements. Without the only keyword, a delete statement on a su-
pertable, such as people, also deletes tuples that were originally inserted in subtables
(such as students); for example, a statement

delete fuompeople where P

would delete all tuples from the table people, as well as its subtables students and
tenchers, that satisfy P. If the only keyword is added to the above statement, tuples
that were inserted in subtables are not affected, even if they satisfy the where clause
conditions. Subsequent queries on the supertable would continue to find these tuples.

Conceptually, multiple inheritance is possible with tables, just as it is possible with

types. For example, we can create a table of type TeachingAssistant:

create table t eachin g-nssist ant s
of TeachingAssistnnt

under students, teachers

As a result of the declaration, every tuple present in the tenching-assistants table is

also implicitly present in the teachers and in the students table, and in turn in the
people tible.VVe note, however, that multiple inheritance of tables is not supported by

SQL.
There are some consistency requirements for subtables. Before we state the con-

straints, we need a definition: We say that tuples in a subtable correspond to tuples

in a parent table if they have the same values for all inherited attributes. Thus, corre-

sponding tuples represent the same entity.
The consistency requirements for subtables are:

1. Each tuple of the supertable can correspond to at most one tuple in each of its

immediate subtables.

2. SeL has an additional constraint that all the tuples corresponding to each

other must be derived from one tuple (inserted into one table).

For example, without the first condition, we could have two tuples in students (ot

teachers) that correspond to the same person.
The second condition rules out a tuple in people corresponding to both a tuple in

students and a tuple in teachers, unless all these tuples are implicitly present because

a tuple was inserted in a table teaching-assistants, which is a subtable of both teachers

and students.
Since SeL does not support multiple inheritance, the second condition actually

prevents a person from being both a teacher and a student. Even if multiple inheri-
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tance were supported, the same problem would arise if the subtable teaching_assistants
is absent. Obviously it would be useful to model a situation where a petion can be
a teacher and a student, even if a common subtable teaching-nssistants is not present.
Thus, it can be useful to remove the second consistency constraint. Doing so would
allow an object to have multiple types, without requiring it to have a most-specific
type.

_ F9t example, suppose we again have the type person, with subtyp es student and,
Teacher, and the corresponding table people, with subtables teachers ind students. We
can_then have a tuple in teachers and a tuple in students corresponding to the same
tuple in people. There is no need to have a type TeachingAssistait that is a subtype of
both Student andTeacher. We need not create a typeTealhingAssistant unless we wish
to store extra attributes or redefine methods in a manner specific to people who are
both students and teachers.

we note, however, that sel- unfortunately prohibits such a situation, because of
consistency requirement 2. Since SQL also does not support multiple inheritance, we
cannot use inheritance to model a situation where a person carrbe both a student
and a teacher. As a result, SQL subtables cannot be used to represent overlapping
specializations from the E-R model.

We can of course create separate tables to represent the overlapping specializa-
tions/generalizations without using inheritance. The process -ur der"tib6d earlier,
in Section 6.9.5. rn the above example, we would create tables people, students, and
teachers, with the students and teachers tables containing the primary-key attribute of
Person and other attributes specific to Student andTeacher, reipectively. The people ta-
ble would contain information about all persons, including students and teachers.
We would then have to add appropriate referential-integrily constraints to ensure
that students and teachers are also represented in the peop=le table.

In other words, we can create onrb-n improved implementation of the subtable
mechanism using existing features of SQL, with some extia effort in defining the table,
as well as some extra effort at query time to specify joins to access required-attributes.

To end the section, we note that sel- defines a new privilege called under, which
is required in order to create a subtype or subtable under another type or table. The
motivation for this privilege is similar to that for the references priviiege.

9.5 Arroy qnd Multiset Types in SeL
sQL supports two collection types: arrays and multisets; array types were added in
SQL:1999, while multiset types were added in SQL:2003. Recall that a multiset is an
unordered collection, where an element may occur multiple times. Multisets are like
sets, except that a set allows each element to occur at most once.

Suppose we wish to record information about books, including a set of keywords
for each book. Suppose also that we wished to store the names o] authors oia book
as an array; unlike elements in a multiset, the elements of an array are ordered, so
we can distinguish the first author from the second author, and so on. The following
example illustrates how these array and multiset-valued attributes can be defined ii
SQL.
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create type Publisher as
(name varcha{Z}),
brnnch varchar(20))

create type Book as
(title varchar(2]),
author-nrray varchar(20) array [101,
publate date,
publisher Publisher,
keyw or d-set varchar(20) multiset)

create table books of Book

The first statement defines a type calledPublisher,which has two components: a name

and a branch. The second statement defines a structured type Book, which contains

a title, an author-srray, which is an array of up to 10 author names, a publication

d.ate, apublisher (of type Publisher), and a multiset of keywords. Finally, atablebooks

containing tuples of type Book is created.

Note tliat we used an affay, instead of a multiset, to store the names of authors,

since the ordering of authors generally has some significance, whereas we believe

that the ordering of keywords associated with a book is not significant.

In general, multivalued attributes from an E-R schema can be mapped to multiset-

valued attributes in SQL; if ordering is important, SQL arrays can be used instead of

multisets.

9.5.1 Creoting qnd Accessing Collection Vqlues

An array of values can be created in SQL:1999 in this way:

array['silber schatz','Korth','Sudarshan']

Similarly, a multiset of keywords can be constructed as follows

multiset['computer','database','SQU]

Thus, we can create a tuple of the type defined by the books relation as:

('Compilers' , arayf'Smith', 'jones'l , new Publisher('McGraw-Hill', 'New York'),
multiset['parsing',' analysis'] )

Here we have created a value for the attribute Publisher by invoking a constructor

function for Publisher with appropriate arguments. Note that this constructor for Pub-

Iisher mustbe explicitly created, and is not present by default; it can be declared just

like the constructor for Nqme, which we saw earlier in Section 9'3.
If we want to insert the preceding tuple into the relation books, we could execute

the statement
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insert intobooks
values
('Compilers', arcayf'Smith,,,Jones,],

new Publisher(' McGraw-Hill','New York'),
multiset['parsing','analysis'])

we can access or update elements of an array by specifying the array index, for
example author -nrr ay[I).

9.5.2 Querying Collection-Volued Attributes
We now consider how to handle collection-valued attributes in queries. An expres-
sion evaluating to a collection can appear an)-where that a relation name may appear,
such as in a from clause, as the following paragraphs illustrate. We use thetible-books
that we defined earlier.

If we want to find all books that have the word "database" as one of their key-
words, we can use this query:

select title
fuombooks
where'database' in (unnest(keyword_set))

Note that we have used unnest(keyrnord_sef) in a position where SeL without nested
relations would have required a select-from-where subexpression.

If we know that a particular book has three authors, we could write:

sele ct suthor _sr r ayIT), autho r _arr ay [2], author _nrr ayl3J
frombooks
where title =,Database System Concepts,

Now, suppose that we want a relation containing pairs of the form "title, author
-name" for each book and each author of the book. we can use this cruerv:

select B.title, A,author
frornbooks as B, unnest(B.author_arraA) as A(author)

Since the author-array attribute of books is a collection-valued field, unnest(B.author
-nrray) can be used in a from clause, where a relation is expected.. Note that the tuple
variable B is visible to this expression since it is defined earlier in the from clause.

- When unnesting an affay, the previous query loses information about the ordering
of elements in the array. The unnest with ordinality clause can be used to get thii
information, as illustrated by the following query. This query can be used to g6nerate
the authors relation, which we saw earlier, from the boolls reLafion.

select title, A.author, A.position
fuombooks as B,

snnest(B.author_nrray) with ordinality as A(nuthor, position)
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The with ordinality clause generates an extra attribute which records the position of
the element in the array. A similar query,but without the with ordinality clause, can
be used to generate thekeyword relation.

9.5.3 Nesting qnd Unnesting
The transformation of a nested relation into a form with fewer (or no) relation-valued
attributes is called unnesting. The books relation has two attributes, author-nrray and
keyword-set, that are collections, and two attributes, title andpublisher, that are not.
Suppose that we want to convert the relation into a single flat relation, with no nested
relations or structured types as attributes. We can use the following query to carry out

the task:

select title, A.author, publisher.name as pub-name, publisher.branch
as pub -br anch, K'keY w or d

fuombooks as B, unnest(B.nuthor-nrrny) as A(author),
unnest (B.keyw or d-set) as K(keywor d)

The variable B in the from clause is declared to range over books. The variable A is

declared to range over the authors in author-nrrav for the book B, and K is declared to

range over the keyword s inthekeywordset of the book B. Figure 9.1 shows an instance

books relation, and Figure 9.3 shows the relation, which we shall call flat-books that is

the result of the preceding query. Note that the relation flat-books is in 1NB since all

its attributes are atomic valued.
The reverse process of transforming a 1NF relation into a nested relation is called

nesting. Nesting can be carried out by an extension of grouping in SQL. In the nor-

mal use of grouping in SQL, a temporary multiset relation is (logically) created for

each group, and an aggregate function is applied on the temporary relation to get a

singlJ (atomic) value. ihe collect function returns the multiset of values, instead of

"t"iting 
a single value, we can create a nested relation. Suppose that we are given the

tNp refition flat-books, as in Figure 9.3. The following query nests the relation on the

attribute keyword:

Figure 9.3 flat-books: result of unnesting attributes author-nrray andkeywordset of
relationbooks.
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select title, author, Publisher(pub_name, pub_branch) as publisher,
colle ct(key w o r d) as key w or d s et

from flat-books
group by title, author, publisher

The result of the query on the flat-books relation from Figure 9.3 appears in Figure 9.4.
If we want to nest the author attribute also into a multiset, we can use thJquerv:

select title, collect(author) as suthorset,
P ublisher (pub _name, pub_br anch) as publisher,

colle ct(key w o r d) as key w o r d -s et
fuomflat_books
group by title, ptLblisher

Another approach to creating nested relations is to use subqueries in the select
clause. An advantage of the subquery approach is that an order by clause can be
optionally used in the subquery, to generate results in a desired order, which can
then be used to create an array. The following query illustrates this approach; the
keywords array and multiset specify that an array and multiset (respeciively) are to
be created from the results of the subqueries.

select title.
array( select author
from authors as A
where A.title = B.title
order by A.position) as author_nrray,

Publisher(pub-name, pub_branch) as publisher,
multiset( select keyword
fromkeywords as K
where K.title = B.title) as kevword-set,

fuombooks4 asB

The system executes the nested subqueries in the select clause for each tuple gener-
ated by the from and where clauses of the outer query. Observe that the attrib utJB.titte
from the outer query is used in the nested queries, to ensure that only the correct sets
of authors and keywords are generated for each title.
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Figure 9.4 A partially nested version of the flat_books relation.
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SQL:2003 provides a variety of operators on multisets, including a function set(M)
which returns a duplicate free version of a multiset M, an intersection aggregate op-

eration, which returns the intersection of all the multisets in a group, a fusion aggre-
gate operation, which returns the union of all multisets in a group, and a submultiset
predicate, which checks if a multiset is contained in another multiset.

The SQL standard does not provide any way to update multiset attributes except

by assigning a new value. For example, to delete a value a frorn a multiset attribute
A, we would have to set it to (A except all multiset[o]).

9.6 Object-ldentity qnd Reference Types in SQL
Object-oriented languages provide the ability to refer to objects. An attribute of a type
can be a reference to an object of a specified type. For example, in SQL we can define
a type Department with a field name and a field head which is a reference to the type
Person, and a table departments of type Department, as follows:

create type Department (
name varchar(20),
head ret(Person) scope people

)
create table departments of Department

Here, the reference is restricted to tuples of the table people. The restriction of the
scope of a reference to tuples of a table is mandatory in SQL, and it makes references
behave like foreign keys.

We can omit the declaration scope people from the type declaration and instead
make an addition to the create table statement:

create table departments of Depnrtment
(head w ith options scop e p eople)

The referenced table must have an attribute that stores the identifier of the tu-
ple. We declare this attribute, called the self-referential attribute, by adding a ref is
clause to the create table statement:

create table people ol P erson
rcf is person-id system generated

Here, person-id is an attribute name, not a keyword, and the create table statement
specifies that the identifier is generated automatically by the database.

In order to initialize a reference attribute, we need to get the identifier of the tuple
that is to be referenced. We can get the identifier value of a tuple by means of a query.
Thus, to create a tuple with the reference value, we may first create the tuple with a
null reference and then set the reference separately:
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insert into depnrtments
values ('CS', null)

update departments
sethead = (select p.person_id

fuompeople asp
where name = 'Tohn')

where ftaTfl€ ='CS'

An alternative to system-generated identifiers is to allow users to generate iden-
tifiers. The type of the self-referential attribute must be specified as pirt of the type
definition of the referenced table, and the table definition must specify that the refer-
ence is user generated:

create type Person
(name varchar(2}),
qddress varchar(2O))
ref using varchar(20)

create table people of Person
rcf is person-id user generated

When inserting a tuple inpeople, we must then provide a value for the identifier:

insert into people (person_id, name, nddress) values
('07284567' ,'John', '23 Coyote Run')

No other tuple for people or its supertables or subtables can have the same identifier.
We can then use the identifier value when inserting a tuple into departments, without
the need for a separate query to retrieve the identifier:

ins ert into dep ar tment s
values (' CS',' 01284567' )

It is even possible to use an existing primary-key value as the identifier, by includ-
ing the ref from clause in the type definition:

create type Person
(nnme v ar char(20) primary key,
address varchar(20))
ref fuorn(name)

create table people of Person
rcf is person-id derived

Note that the table definition must specify that the reference is derived, and must still
specify a self-referential attribute name. When inserting a tuple for departments, we
can then use

insert into dep ar tment s
values ('CS','John')
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References are dereferenced in SQL1999 by the -> symbol. Consider the depart-

ments table defined earlier. We can use this query to find the names and addresses of

the heads of all departments:

selec t head*>name, head->address
from departments

An expression such as"hend->name" is called a path expression.
Since head is a reference to a tuple in the people table, the attribute name in the

precedingqueryis thennmeattributeof thetuple fromthepeopletable. Referencescan

be used to hide join operations; in the preceding example, without the references, the

head field of departmenl would be declared a foreign key of the table people. To find

the name and address of the head of a department, we would require an explicit
join of the relations departments and people. The use of references simplifies the query

considerably.
We can use the operation deref to return the tuple pointed to by a reference, and

then access its attributes, as shown below.

select deref (head).name

front depsrtments

9.7 lmplementing O-R Feqtures
Object-relational database systems are basically extensions of existing relational data-
base systems. Changes are clearly required at many levels of the database system.
However, to minimize changes to the storage system code (relation storage, indices,
etc.), the complex data types supported by object-relational systems can be translated
to the simpler type system of relational databases.

To understand how to do this translation, we need only look at how some features
of the E-R model are translated into relations. For instance, multivalued attributes in
the E-R model correspond to multiset-valued attributes in the object-relational model.
Composite attributes roughly correspond to structured types. ISA hierarchies in the
E-R model correspond to table inheritance in the object-relational model'

The techniques for converting E-R model features to tables, which we saw in Sec-
tion 6.9, can be used, with some extensions, to translate object-relational data to rela-
tional data at the storage level.

Subtables can be stored in an efficient manner, without replication of all inherited
fields, in one of two ways:

o Each table stores the primary key (which may be inherited from a parent table)
and the attributes that are defined locally. Inherited attributes (other than the
primary key) do not need to be stored, and can be derived by means of a join

with the supertable, based on the primary key.

r Each table stores all inherited and locally defined attributes. When a tuple is
inserted, it is stored only in the table in which it is inserted, and its presence is
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inferred in each of the supertables. Access to all attributes of a tuple is faster,
since a join is not required.

However, in case the type system allows an entity to be represented in two
subtables without being present in a common subtable of both, this represen-
tation can result in replication of information. Further, it is hard to translate
foreign keys referring to a supertable into constraints on the subtables; to ef-
ficiently implement such foreign keys, the supertable will have to be defined
as a view, and the database system would have to support foreign keys on
views.

Implementations may choose to represent array and multiset types directly, or
may choose to use a normalized representation internally. Normalized representa-
tions tend to take uP more space and require an extra join/grouping cost to collect
data in an array or multiset. However, normalized representations may be easier to
implement.

The ODBC and JDBC application program interfaces have been extended to retrieve
and store structured types; for example, ]DBC provides a method getObject0 which
is similar to getStringQ but returns a Java Struct object, from which the components
of the structured type can be extracted. It is also possible to associate aJavacliss with
an sQL structured type, and JDBC will then convert between the types. See the 9DBC
or JDBC reference manuals for details.

9.8 Persistent Progrqmming Longuqges
Database languages differ from traditional programming languages in that they di-
rectly manipulate data that are persistent-that is, data that continue to exist even
after the program that created it has terminated. A relation in a database and tuples
in a relation are examples of persistent data. In contrast, the only persistent data ihat
traditional programming languages directly manipulate are files.

Access to a database is only one component of any real-world application. While a
data-manipulation language like SQL is quite effective for accessing data, a program-
ming language is required for implementing other components of the appliiation
such as user interfaces or communication with other computers. The traditlonal way
of interfacing database languages to programming languages is by embedding sel
within the programming language.

A persistent programming language is a programming language extended with
constructs to handle persistent data. Persistent programming languages can be dis-
tinguished from languages with embedded SeL in at least two ways:

1. with an embedded language, the type system of the host language usually dif-
fers from the tlpe system of the data-manipulation language. The program-
mer is responsible for any type conversions between the host language and
sQL. Having the programmer caffy out this task has several drawbacks:

o The code to convertbetween objects and tuples operates outside the object-
oriented type system, and hence has a higher chance of having undetected
errors.
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o Conversion between the object-oriented format and the relational format
of tuples in the database takes a substantial amount of code. The format
translation code, along with the code for loading and unloading data from
a database, can form a significant percentage of the total code required for
an application.

In contrast, in a persistent programming language, the query language is
fully integrated with the host language, and both share the same type system.
Objects can be created and stored in the database without any explicit type or
format changes; any format changes required are carried out transparently.

2. The programmer using an embedded query language is responsible for writ-
ing explicit code to fetch data from the database into memory.If any updates
are performed, the programmer must write code explicitly to store the up-
dated data back in the database.

In contrast, in a persistent programming language, the programmer can
manipulate persistent data without writing code explicitly to fetch it into mem-
ory or store it back to disk.

In this section we describe how object-oriented programming languages, such as
C++ and ]ava, can be extended to make them persistent programming languages.
These language features allow programmers to manipulate data directly from the
programming language, without having to go through a data-manipulation language
such as SQL. Thereby, they provide tighter integration of the programming languages
with the database than, for example, embedded SQL.

There are certain drawbacks to persistent programming languages, however, that
we must keep in mind when deciding whether to use them. Since the programming
language is usually a powerful one, it is relatively easy to make programming er-
rors that damage the database. The complexity of the language makes automatic
high{evel optimization, such as to reduce disk I/O, harder. Support for declarative
querying is important for many applications, but persistent programming languages
currently do not support declarative querying well.

In this chapter, we describe a number of conceptual issues that must be addressed
when adding persistence to an existing programming language. We first address
language-independent issues, and in subsequent sections we discuss issues that are
specific to the C++ language and to the Java language. However, we do not cover de-
tails of language extensions; although several standards have been proposed, none
has met universal acceptance. See the references in the bibliographic notes to learn
more about specific language extensions and further details of implementations.

9.8.1 Persistence of Obiects
Object-oriented programming languages already have a concept of objects, a rype
system to define object types, and constructs to create objects. However, these objects
are trsnsient-they vanish when the program terminates, just as variables in a Java or
C program vanish when the program terminates. If we wish to turn such a language
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into a database programming language, the first step is to provide a way to make
objects persistent. Several approaches have been proposed.

e Persistence by class. The simplest, but least convenient, way is to declare that
a class is persistent. All objects of the class are then persistent objects by de-
fault. Objects of nonpersistent classes are all transient.

This approach is not flexible, since it is often useful to have both transient
and persistent objects in a single class. Many object-oriented database sys-
tems interpret declaring a class to be persistent as saying that objects in the
class potentially can be made persistent, rather than that all objects in the class
are persistent. Such classes might more appropriately be called "persistable"
classes.

o Persistence by creation. In this approach, new syntax is introduced to create
persistent objects, by extending the syntax for creating transient objects. Thus,
an object is either persistent or transient, depending on how it was created.
Several object-oriented database systems follow this approach.

r Persistence by marking. A variant of the preceding approach is to mark ob-
jects as persistent after they are created. All objects are created as transient
objects, but, if an object is to persist beyond the execution of the program, it
must be marked explicitly as persistent before the program terminates. This
approach, unlike the previous one, postpones the decision on persistence or
transience until after the object is created.

o Persistence by reachability. One or more objects are explicitly declared as
(root) persistent objects. All other objects are persistent if (and only if) they are
reachable from the root object through a sequence of one or more references.

Thus, all objects referenced by (that is, whose object identifiers are stored
in) the root persistent objects are persistent. But also, all objects referenced
from these objects are persistent, and objects to which they refer are in turn
persistent, and so on.

A benefit of this scheme is that it is easy to make entire data structures per-
sistent by merely declaring the root of such structures as persistent. However,
the database system has the burden of following chains of references to detect
which objects are persisten! and that can be expensive.

9.8.2 Object ldentity qnd Pointers
In an object-oriented programming language that has not been extended to handle
persistence, when an object is created, the system returns a transient object identifier.
Transient object identifiers are valid only when the program that created them is
executing; after that program terminates, the objects are deleted, and the identifier
is meaningless. When a persistent object is created, it is assigned a persistent object
identifier.

The notion of object identity has an interesting relationship to pointers in pro-
gramming languages. A simple way to achieve built-in identity is through pointers
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to physical locations in storage. In particular, in many object-oriented languages such
as C++, a transient object identifier is actually an in-memory pointer.

Flowever, the association of an object with a physical location in storage may
change over time. There are several degrees of permanence of identity:

o Intraprocedure. Identity persists only during the execution of a single pro-
cedure. Examples of intraprogram identity are local variables within proce-
dures.

o Intraprogram. Identity persists only during the execution of a single pro-
gram or query. Examples of intraprogram identity are global variables in pro-
gramming languages. Main-memory or virtual-memory pointers offer only
intraprogram identity.

o Interprogram. Identity persists from one program execution to another. Point-
ers to file-system data on disk offer interprogram identity, but they may change
if the way data is stored in the file system is changed.

o Persistent. Identity persists not only among program executions, but also
among structural reorganizations of the data. It is the persistent form of iden-
tity that is required for object-oriented systems.

In persistent extensions of languages such as C++, object identifiers for persis-
tent objects are implemented as "persistent pointers." A persistent pointer is a type of
pointer that, unlike in-memory pointers, remains valid even after the end of a Pro-
gram execution, and across some forms of data reorganization. A programmer may
use a persistent pointer in the same ways that she may use an in-memory pointer
in a programming language. Conceptually, we may think of a persistent pointer as a
pointer to an object in the database.

9.8.3 Storoge qnd Access of Persistent Objects
What does it mean to store an object in a database? Clearly, the data part of an ob-
ject has to be stored individually for each object. Logically, the code that implements
methods of a class should be stored in the database as part of the database schema,
along with the type definitions of the classes. However, many implementations sim-
ply store the code in files outside the database, to avoid having to integrate system
software such as compilers with the database system.

There are several ways to find objects in the database. One way is to give names
to objects, just as we give names to files. This approach works for a relatively small
number of objects, but does not scale to millions of objects. A second way is to expose
object identifiers or persistent pointers to the objects, which can be stored externally.
Unlike names, these pointers do not have to be mnemonic, and can even be physical
pointers into a database.

A third way is to store collections of objects, and to allow programs to iterate over
the collections to find required objects. Collections of objects can themselves be mod-
eled as objects of a collection type. Collection types include sets, multisets (that is, sets
with possibly many occurrences of a value), lists, and so on. A special case of a col-
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lection is a class extent, which is the collection of all objects belonging to the class. If a
class extent is present for a class, then, whenever an object of the class is created, that
object is inserted in the class extent automatically, and, whenever an object is deleted,
that object is removed from the class extent. Class extents allow classes to be treated
like relations in that we can examine all objects in the class, just as we can examine
all tuples in a relation.

Most object-oriented database systems support all three ways of accessing persis-
tent objects. They give identifiers to all objects. They usually give names only to class
extents and other collection objects, and perhaps to other selected objects, but not to
most objects. They usually maintain class extents for all classes that can have per-
sistent objects, but, in many of the implementations, the class extents contain only
persistent objects of the class.

9.8.4 Persistent C++ Systems
Several object-oriented databases based on persistent extensions to C++ have ap-
peared in the past two decades (see the bibliographical notes). There are differences
between them in terms of the system architecture, yet they have many common fea-
tures in terms of the programming language.

Several of the object-oriented features of the C++ language help in providing a
good deal of support for persistence without changing the language itself. For exam-
ple, we can declare a class called Persistent-Object with attributes and methods to
support persistence; any other class that should be persistent can be made a subclass
of this class, and thereby inherit the support for persistence. The C++ language (like
some other modern programming languages) also lets us redefine standard function
names and operators-such a.s *, -, the pointer dereference operator ->, and so on
-according to the type of the operands on which they are applied. This ability is
called oaerloading; it is used to redefine operators to behave in the required manner
when they are operating on persistent objects.

Providing persistence support via class libraries has the benefit of making only
minimal changes to C++ necessary; moreover, it is relatively easy to implement.
However, it has the drawback that the programmer has to spend much more time
to write a Program that handles persistent objects, and it is not easy for the program-
mer to specify integrity constraints on the schema or to provide support for declara-
tive querying. Some persistent C++ implementations support extensions to the C++
syntax to make these tasks easier.

The following aspects need to be addressed when adding persistence support to
C++ (and other languages):

o Persistent pointers: A new data type has to be defined to represent persis-
tent pointers. For example, the ODMG C++ standard defines a template class
d-Ref< T > to represent persistent pointers to a class ?. The dereference op-
erator on this class is redefined to fetch the object from disk (if not already
present in memory), and returns an in-memory pointer to the buffer where
the object has been fetched. Thus if p is a persistent pointer to a class ?, one
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can use standard syntax such as p->A or p->f(v) to access attribute ,4 of class
? or invoke method / of class ?.

The ObjectStore database system uses a different approach to persistent
pointers. It uses normal pointer types to store persistent pointers. This poses
two problems: (1) in-memory pointer sizes may be only  bytes, which is too
small to use with databases larger than 4 gigabytes, and (2) when an object is
moved on disk, in-memory pointers to its old physical location are meaning-
less. ObjectStore uses a technique called "hardwareswizzling" to address both
problems; it prefetches objects from the database into memory, arLd replaces
persistent pointers by in-memory pointers, and when data are stored back on
disk, in-memory pointers are replaced by persistent pointers. When on disk,
the value stored in the in-memory pointer field is not the actual persistent
pointer; instead, the value is looked up in a table to find the full persistent
pointer value.

o Creation of persistent objects: The C++ new operator is used to create per-
sistent objects by defining an "overloaded" version of the operator that takes
extra arguments specifying that it should be created in the database. Thus in-
stead of new T0, one would call new (db) T0 to create a persistent object,
where db identifies the database.

o Class extents: Class extents are created and maintained automatically for each
class. The ODMG C++ standard requires the name of the class to be passed
as an additional parameter to the new operation. This also allows multiple
extents to be maintained for a class, by passing different names.

o Relationships: Relationships between classes are often represented by storing
pointers from each object to the objects that it is related to. Objects related to
multiple objects of a given class would store a set of pointers. Thus if a pair
of objects is in a relationship, each should store a pointer to the other. Persis-
tent C++ systems provide a way to specify such integrity constraints and to
enforce them by automatically creating and deleting pointers: For example,
if a pointer is created from an object o to an object b, a pointer to a is added
automatically to object b.

o lterator interface: Since programs need to iterate over class members, an in-
terface is required to iterate over members of a class extent. The iterator inter-
face also allows selections to be specified, so that only objects satisfying the
selection predicate need to be fetched.

o Transactions: Persistent C++ systems provide support for starting a transac-
tion, and for committing it or rolling it back.

o Updates: One of the goals of providing persistence support to a programming
language is to allow transparent persistence. That is, a function that operates
on an object should not need to know that the object is persistent; thereby, the
same functions can be used on obiects regardless of whether they are persis-
tent or not.
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However, one resultant problem is that it is difficult to detect when an ob-
ject has been updated. Some persistent extensions to C++ required the pro-
Srammer to explicitly specify that an object has been modified by calling a
function mark-modifiedQ. In addition to increasing programmer effort, this
approach increases the chance of programming errors resulting in a corrupt
database. If a programmer omitted a call to mark-modifiedQ, it is possible that
one update made by a transaction may never be propagated to the database,
while another update made by the same transaction is propagated, violating
atomicity of transactions.

other systems, such as objectstore, use memory protection support pro-
vided by the operating system/hardware to detect writes to a block of mem-
ory and mark the block as a dirty block that should be written later to disk.

o Query language: Iterators provide support for simple selection queries. To
support more complex queries, persistent C++ systems define a query lan-
guage.

A large number of object-oriented database systems based on C++ were developed
in the late 1980s and early 1990s. Flowever, the market for such databases turned out
to be much smaller than anticipated, since most application requirements are more
than met by using sQL through interfaces such as oDBC or JDBC. As a result, most
of the object-oriented database systems developed in that period do not exist any
longer. In the 1990s, the Object Data Management Group (ODMG) defined standards
for adding persistence to C++ and Java. However, the group wound up its activ-
ities around 2002. ObjectStore and Versant are among the original object-oriented
database systems that are still in existence.

Although object-oriented database systems did not find the commercial success
that theyhad hoped fo1, the motivation for adding persistence to programming lan-
guage still remains. There are several applications with high performance require-
ments that run on object-oriented database systems; using sel- would impose too
high a performance overhead for many such systems. With object-relational database
systems now providing support for complex data types, including references, it is
easier to store programming language objects in an SeL database. A new generation
of object-oriented database systems using object-relational databases as a backend
may yet emerge.

9.8.5 Persistent Jovo Systems
The Java language has seen an enormous growth in usage in recent years. Demand
for support for persistence of data in Java programs has grown correspondingly. Ini-
tial attempts at creating a standard for persistence in Java were lead by the ODMG
consortium; the consortium wound up its efforts later, but transferred its design to
the java Database Objects (IDO) effort, which is coordinated by Sun Microsystems.

The IDO model for object persistence in Java programs differs from the model for
persistence support in C++ programs. Among its features are:
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o Persistence by reachability: Objects are not explicitly created in a database.
Explicitly registering an object as persistent (using the makePersistentQ meth-
od of the PersistenceManager class) makes the object persistent. In addition,
any object reachable from a persistent object becomes persistent.

r Byte code enhancement: Instead of declaring a class to be persistent in the

Java code, classes whose objects may be made persistent are specified in a
configuration file (with suffix .jdo). An implementation-specihc enhancer pro-
gram is executed which reads the configuration file and carries out two tasks.
First, it may create structures in a database to store objects of the class. Second,
it modifies the byte code (generated by compiling the Java program) to handle
tasks related to persistence. Below are some examples of such modifications.

tr Any code that accesses an object could be changed to first check if the
object is in memory and if not, take steps to bring it into memory.

n Any code that modifies an object is modified to additionally record the
object as modified, and perhaps to save a pre-updated value used in case
the update needs to be undone (that is, if the transaction is rolled back).

Other modifications to the byte code may also be carried out. Such byte code
modification is possible since the byte code is standard across all platforms,
and includes much more information than compiled object code.

r Database mapping: JDO does not define how data are stored in the back-end
database. For example, a common scenario is to store objects in a relational
database. The enhancer program may create an appropriate schema in the
database to store class objects. How exactly it does this is implementation de-
pendent and not defined by lDO. Some attributes could be mapped to rela-
tional attributes, while others may be stored in a serialized form, treated as a
binary object by the database. JDO implementations may allow existing rela-
tional data to be viewed as objects by defining an appropriate mapping.

o Class extents: Class extents are created and maintained automatically for each
class declared to be persistent. All objects made persistent ale added auto-
matically to the class extent corresponding to their class. jDO Programs may
access a class extent, and iterate over selected members. The lterator interface
provided by lava can be used to create iterators on class extents, and step
through the members of the class extent. JDO also allows selections to be spec-
ified when an iterator is created on a class extent, and only objects satisfying
the selection would be fetched.

o Single reference type: There is no difference in type between a reference to a
transient object and a reference to a persistent object.

One approach to achieving such a unification of pointer types would be
to load the entire database into memory, replacing all persistent pointers by
in-memory pointers. After updates are done, the process would be reversed,
storing updated objects back on disk. Such an approach would be very ineffi-
cient for large databases.
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We now describe an alternative approach, which allows persistent objects
to be automatically fetched into memory when required, while allowing all
references contained in in-memory objects to be in-memory references. When
an object ,4 is fetched, a hollow object is created for each object Ba that it
references, and the in-memory copy of ,4 has references to the corresponding
hollow object for each Bi. Of course the system has to ensure that if an object
Ba was fetched akeady, the reference points to the already fetched object in-
stead of creating a new hollow object. Similarly, if an object Bi has not been
fetched, but is referenced by another object fetched earlier, it would already
have a hollow object created for it; the reference to the existing hollow object
is reused, instead of creating a new hollow object.

Thus, for every object oi that has been fetched, every reference from oa is
either to an already fetched object or to a hollow object. The hollow objects
form a fringe surrounding fetched objects.

Whenever the program actually accesses a hollow object O, the enhanced
byte code detects this and fetches the obiect from the database. When this
object is fetched, the same process of creating hollow objects is carried out for
all objects referenced by O. After this the access to the obiect is allowed to
proceed.3

An in-memory index structure mapping persistent pointers to in-memory
references is required to implement this scheme. When writing objects back to
disk, this index would be used to replace in-memory references by persistent
pointers in the copy written to disk.

The JDO standard is still at an early stage, and undergoing revisions. Several com-
panies provide implementations of JDO. However, it remains to be seen if JDO will be
widely used, unlike ODMG C++.

9.9 Object-Oriented versus Object-Relqtionql
We have now studied object-relational databases, which are object-oriented data-
bases built on top of the relation model, as well as object-oriented databases, which
are built around persistent programming languages.

Persistent extensions to programming languages and object-relational systems tar-
get different markets. The declarative nature and limited power (compared to a pro-
gramming language) of the SQL language provides good protection of data from pro-
gramming errors/ and makes high-level optimizations, such as reducing r/o, rela-
tively easy. (we cover optimization of relational expressions in Chapter 14.) object-
relational systems aim at making data modeling and querying easier by using com-

3. The technique using hollow objects described above is closely related to the hardware swizzling tech-
nique (mentioned earlier in Section 9.8.4). Hardware swizzling is used by some persistent C++ implemen_
tations to provide a single pointer type for persistent and in-memory pointers. Hardware swizzling uses
virtual memory protection techniques provided by the operating system to detect accesses to pages, and
fetches the pages from the database when required. In contrast, the Java version modifies byte code to
check for hollow objects, instead of using memory protectiory and fetches objects when requiied, instead
of fetching whole pages from the database.
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plex data types. Typical applications include storage and querying of complex data,
including multimedia data.

A declarative language such as SQL, however, imposes a significant performance
penalty for certain kinds of applications that run primarily in main memory, and
that perform a large number of accesses to the database. Persistent programming
Ianguages target such applications that have high performance requirements. They
provide low-overhead access to persistent data, and eliminate the need for data trans-
lation if the data are to be manipulated by a programming language. Howevel, they
are more susceptible to data corruption by programming errors, and usually do not
have a powerful querying capability. Typicat applications include CAD databases.

We can summarize the strengths of the various kinds of database systems in this
way:

o Relational systems: Simple data types, powerful query languages, high pro-
tection

o Persistent programming language-based OODBs: Complex data types, in-
tegration with programming language, high performance

o Object-relational systems: Complex data types, powerful query languages,
high protection

These descriptions hold in general, but keep in mind that some database systems
blur the boundaries. For example, object-oriented database systems built around
a persistent programming language can be implemented on top of a relational or
object-relational database system. Such systems may provide lower performance than
object-oriented database systems built directly on a storage system, but provide some
of the stronger protection guarantees of relational systems.

9.10 Summory
o The object-relational data model extends the relational data model by provid-

ing a richer type system including collection types and object orientation.

o Collection tlpes include nested relations, sets, multisets, and arrays, and the
object-relational model permits attributes of a table to be collections.

o Object orientation provides inheritance with subtypes and subtables, as well
as object (tuple) references.

o The SQL:1999 standard extends the SQL data-definition and query language to
deal with the new data types and with object orientation.

o We saw a variety of features of the extended data-definition language, as
well as the query language, and in particular support for collection-valued
attributes, inheritance, and tuple references. Such extensions attempt to pre-
serve the relational foundations-in particular, the declarative access to data
-while extending the modeling Power.
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o Object-relational database systems (that is, database systems based on the
object-relation model) provide a convenient migration path for users of re-
lational databases who wish to use object-oriented features.

o Persistent extensions to C++ and Java integrate persistence seamlessly and
orthogonally with existing programming language constructs and so are easy
to use.

o The ODMG standard defines classes and other constructs for creating and ac-
cessing persistent objects from C++, while the ]DO standard provides equiva-
lent functionality for Java.

o we discussed differences between persistent programming languages and
object-relational systems, and mention criteria for choosing between them.

Review Terms

o Nested relations
o Nested relational model
o Complex types
o Collection types
o Large object types
o Sets
o Arrays
o Multisets
o Structured types
o Methods
o Row types
o Constructors
o Inheritance

tr Single inheritance
tr Multiple inheritance

. Type inheritance
o Most-specific type
o Table inheritance
o Subtable
. Overlapping subtables

o Reference types

o Scope of a reference

o Self-referential attribute

r Path expressions

o Nesting and unnesting

o SQL functions and procedures

o Persistentprogramming
languages

o Persistence by

n Chss
I Creation
I Marking
n Reachability

o ODMG C++ binding

o ObjectStore

o JDO

I Persistence by reachability
tr Roots
n Holow objects
n Object-relational mapping

Prqctice Exercises
9.1 A car-rental company maintains a database for all vehicles in its current fleet.

For all vehicles, it includes the vehicle identification number, license number,
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manufacturer, model, date of purchase, and color. Special data are included for
certain types of vehicles:

o Trucks: cargo capacity
o Sports cars: horsepower, renter age requirement
o Vans: number of passengers
o Off-road vehicles: ground clearance, drivetrain (four- or two-wheel drive)

Construct an SQL:7999 schema definition for this database. Use inheritance where
appropriate.

9.2 Consider a database schema with a relation Emp whose attributes are as shown
below, with types specified for multivalued attributes.

Emp - (ename, ChildrenS et multiset(Children), SkillSet multiset( Skills) )
Children = (name, birthday )
Skills = (type, ExamSet setof(Exqms))
Exams = (year, city)

a. Define the above schema in SQL:2003, with appropriate types for each at-
tribute.

b. Using the above schema, write the following queries in SQL:2003.
i. Find the names of all employees who have a child born on or after Jan-

uary 1,2000.
ii. Find those employees who took an examination for the skill type "typ-

ing" in the city "Dayton."
iii. List all skill types in therelationEmp.

9.3 Consider the E-R diagram in Figure 9.5, which contains composite, multivalued,
and derived attributes.
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Figure 9.5 E-R diagram with composite, multivalued, and derived attributes.
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a. Give an SQL:2003 schema definition corresponding to the E-R diagram.
b. Give constructors for each of the structured types defined above.

9.4 Consider the relational schema shown in Figure 9.6.
a. Give a schema definition in SQL:2003 corresponding to the relational schema,

but using references to express foreign-key relationships.
b. Write each of the queries given in Exercise 2.9 on the above schema, using

SQL:2003.

9.5 Suppose that you have been hired as a consultant to choose a database system
for your client's application. For each of the following applications, state what
type of database system (relational, persistent programming language-based
OODB, object relational; do not specify a commercial product) you would rec-
ommend. Justify your recommendation.
a. A computer-aided design system for a manufacturer of airplanes
b. A system to track contributions made to candidates for public office
c. An information system to support the making of movies

9.6 How does the concept of an object in the object-oriented model differ from the
concept of an entity in the entity-relationship model?

Exercises

Redesign the database of Practice Exercise 9.2into first normal form and fourth
normal form. List any functional or multivalued dependencies that you assume.
Aiso list all referential-integrity constraints that should be present in the first
and fourth normal form schemas.

Consider the schema from Practice Exercise 9.2.

a. Give sQL:2003 DDL statements to create a relation EmpAwhichhas the same
information as Emp,but where multiset valued attributes ChildrenSet, Skills-
Set and ExsmsSet are replaced by array valued attribut es ChildrenArray , Skill-
sArray andExamsArray.

b. Write a query to convert data from the schema of Emp to that of EmpA, wlth
the array of children sorted by birthday, the array of skills by the skill type
and the array of exams by the year.

employee (person_name, street, city)
w orks (person-name, company _name, salary)
company (company _name, city)
mnnages (person_name, manager_name)

Figure 9.6 Relational database for Practice Exercise 9.4

9.7

9.8
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Figure9.7 Specialization and generalization.

c. Write an SQL statement to update tii.e Emp relation by adding a child Jeb,
with a birthdate of February 5,2001., to the employee named George.

d. Write an SQL statement to perform the same update as above but on the
EmpA relation. Make sure that the array of children remains sorted by year.

9.9 Consider the schemas for the tablepeople, and the tables studenfs and teachers,
which were created under people, in Section 9.4. Give a relational schema in third
normal form that represents the same information. Recall the constraints on sub-
tables, and give all constraints that must be imposed on the relational schema
so that every database instance of the relational schema can also be represented
by an instance of the schema with inheritance.

9.10 Explain the distinction between a type r and a reference type ref(r). Under what
circumstances would you choose to use a reference type?

9.1'1. a. Give anSQL:1.999 schema definition of the E-R diagram in Figure 9.7,which
contains specializations, using subtypes and subtables.



Tools

b. Give an SQL:1999 query to find the names of all people who are not secre-
taries.

c. Give an SQL:1999 query to print the names of people who are neither em-
ployees nor customers.

d. Can you create a person who is an employee and a customer with the schema
you created. Explain how, or explain why it is not possible.

9.12 Suppose a ]DO database had an object A, which references object B, which in
turn references object c. Assume all objects are on disk initially. suppose a
program first dereferences ,4, then dereferences B by following the reference
from A, and then finally dereferences C. Show the objects that are represented
in memory after each dereference, along with their state (hollow or filled, and
values in their reference fields).

Bibliogrophicol Notes
several object-oriented extensions to sel- have been proposed. posrGRES (Stone-
braker and Rowe [1986] and Stonebraker t19861) was an early implementation of an
object-relational system. Other early object-relational systems include the SQL exten-
sions of Oz (Bancilhon et al. t19891) and UniSQL (UniSQL 11,991.1). SeL:r999 was the
product of an extensive (and long-delayed) standardization effort, which originally
started off as adding object-oriented features to sQL and ended up adding many
more features, such as procedural constructs which we saw earlier. Support for mul-
tiset types was added as part of SQL:2003.

Textbooks on sQL:1999 include Melton and simon [2001] and Melton [2002]; the
latter book concentrates on the object-relational features of SQL:1999. Eisenberg et al.
[20041 provides an overview of SQL:2003, including its support for multisets. Refer
to the (online) manuals of the database system you use to find out what features of
SQL:1999 / SQL:2003 it supports.

A number of object-oriented database systems were developed in the late 1980s
and early 7990s. Among the notable commercial ones were ObjectStore (Lamb et al.
[7997D, Oz (Lecluse et al. [1988]), and Versant. The object database standard ODMG
is described in detail in Cattell [2000]. JDo is described by Roos [2002], Tyagi et al.
120031, and Jordan and Russell [2003].

Tools
There are considerable differences between different database products in their sup-
port for object-relational features. Oracle probably has the most extensive support
among the major database vendors. The Informix database system provides sup-
port for many object-relational features. Both Oracle and Informix provided object-
relational features before the SQL:1999 standard was finalized, and have some features
that are not part of SQL1999.

Information about ObjectStore and Versant, including download of trial versions,
may be obtained from their respective web sites (objectstore.com and versant.com).
The Apache DB project (db.apache.org) provides an object-relational mapping tool
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for Java that supports both an ODMG Java and JDO APIs. A reference implementation
of JDO may be obtained from sun.com; use a search engine to get the full URL.



Unlike most of the technologies presented in the preceding chapters, the Extensible
Markup Language (xML) was not originally conceived as a database technology. In
fact, like the Hyper-Text Markup Language (HTML) on which the world wide web is
based, XML has its roots in document management, and is derived from a language
for structuring large documents known as the Stnndord Generqlized Markup Language
(SGML). However, unlike sGML and HTML, XML can represent database data, as well
as many other kinds of structured data. It is particularly useful as a data format when
an application must communicate with another application, or integrate information
from several other applications. When XML is used in these contexts, many database
issues arise, including how to organize, manipulate, and query the XML data. In
this chapter, we introduce XML and discuss both the management of XML data with
database techniques and the exchange of data formatted as XML documents.

10.1 Motivqtion
To understand XML, it is important to understand its roots as a document markup
language. The term markup refers to anything in a document that is not intended tb
be part of the printed output. For example, a writer creating text that will eventually
be typeset in a magazine may want to make notes about how the typesetting should
be done. It would be important to type these notes in a way so that they could be
distinguished from the actual content, so that a note like "set this word in large size,
bold font" or "insert a line break here" does not end up printed in the magazine. such
notes convey extra information about the text. In electronic document processing, a
markup language is a formal description of what part of the document is content,
what part is markup, and what the markup means.

Just as database systems evolved from physical file processing to provide a sep-
arate logical view, markup languages evolved from specifying instructions for how
to print parts of the document to specify the function of the content. For instance,

39s



Chapter 10 XML

<bank>
<account>

<account-number> A-1 01 </account-number>
<branch-name> Downtown </branch-name>
<balance> 500 </balance>

</account>
<account>

<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 </balance>

</account>
<account>

<account-number> A-201 <l account-number>
<branch-name> Brighton </branch-name>
<balance> 900 </balance>

</account>
<customer>

<customer-name> Johnson </customer-name>
<customer-street> Alma </customer-street>
<customer-city> Palo Alto </customer-city>

</customer>
<customer>

<customer-name> Hayes </customer-name>
<customer-street> Main </customer-street>
<customer-city> Harrison </customer-city>

</customer>
<depositor>

<account-number> A-1 01 </account-number>
<customer-name> Johnson </customer-name>

</dePositor>
<depositor>

<account-number> A-201 <l account-number>
<customer-name> Johnson </customer-name>

</dePositor>
<depositor>

<account-number> A-1 02 </account-number>
<customer-name> Haves </customer-name>

<idepositor>
</bank>

Figure 10.1 XML representation of bank information.

with functional markup, text representing section headings (for this section, the word
"Motivation") would be marked up as being a section heading, instead of being
marked up as text to be printed in large size, bold font. From the viewpoint of type-
setting, such functional markup allows the document to be formatted differently in
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different situations. It also helps different parts of a large document, or different
pages in a large Web site, to be formatted in a uniform manner. More importantly,
functional markup also helps record what each part of the text represents semanti-
cally, and correspondingly helps automate extraction of key parts of documents.

For the family of markup languages that includes HTML, SGML, and XML, the
markup takes the form of tags enclosed in angle brackets, (). Tags are used in pairs,
with <tag> and </tag> delimiting the beginning and the end of the portion of the
document to which the tag refers. For example, the title of a document might be
marked up as follows.

<title>Database System Concepts<itiile>

Unlike HTML, XML does not prescribe the set of tags allowed, and the set may be
chosen as needed by each application. This feature is the key to XML's major role
in data representation and exchange, whereas HTML is used primarily for document
formatting.

For example, in our running banking application, account and customer informa-
tion can be represented as part of an XML document as in Figure 10.1. Observe the
use of tags such as account and account-number. These tags provide context for each
value and allow the semantics of the value to be identified. For this example, the XML
data representation does not provide any significant benefit over the triditional re-
lational data representation; however, we use this example as our running example
because of its simplicity.

Figure 10.2, which shows how information about a purchase order can be repre-
sented in XML, illustrates a more realistic use of XML. Purchase orders are typically
generated, by one organization and sent to another. Traditionally they were printed
on PaPer by the purchaser and sent to the supplier; the data would be manually re-
entered into a computer system by the supplier. This slow process can be greatly iped
lP by sending the information electronically between the purchaser atrd snppilet
The nested representation allows all information in a purchase order to be naturally
represented in a single document. (Real purchase orders have considerably more in-
formation than that depicted in this simplified example.) XML provides i standard
way of tagging the data; the two organizations must of course agree on what tags
appear in the purchase order, and what they mean.

_ Compared to storage of data in a relational database, the XML representation may
be inefficient, since tag names are repeated throughout the document. However, in
spite of this disadvantage, an XML representation has significant advantages when it
is used to exchange data between organizations, and for storing structured informa-
tion in files:

o First, the presence of the tags makes the message self-documenting; that is, a
schema need not be consulted to understand the meaning of the text. We can
readily read the fragment above, for example.

o second, the format of the document is not rigid. For example, if some sender
adds additional information, such as a tag last-accessed noting the last date
on which an account was accessed, the recipient of the XML data may simply
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<purchase-order>
<identifier> P-1 01 </identifier>
<purchaser>

<name> Crazy Coyote </name>
<address> Mesa Flat, Route 66, Arizona 12345, USA </address>

</purchaser>
<supplier>

<name> Acme Supplies </name>
<address> 1, Broadway, New York, NY USA </address>

</supplier>
<itemlist>

<item>
<identifier> RS1 </identifier>
<description> Atom powered rocket sled </description>
<quantitY> 2 </quantitY>
<price> 199.95 </Price>

</item>
<item>

<identifier> SG2 </identifier>
<description> Superb glue </description>
<quantity> 1 </quantitY>
< unit-of-measure> liter </unit-of-measure>
<price> 29.95 </Price>

</item>
</itemlist>
<total-cost> 429.85 </total-cost>
< payment-terms> Cash-on-delivery </payment-terms>
<shipping-mode> 1 -second-delivery </shipping-mode>

</purchaseorder>

Figure 10.2 XML representation of a purchase order.

ignore the tag. As another example, in Figure1}.2, the item with identifier SG2
has a tag called unit-of-measure specified, which the first item does not. The
tag is required for items that are ordered by weight or volume, and may be
omitted for items that are simply ordered by number.

The ability to recognize and ignore unexpected tags allows the format of
the data to evolve over time, without invalidating existing applications. Simi-
larly, the ability to have multiple occurrences of the same tag makes it easy to
represent multivalued attributes.

o Third, XML allows nested structures. The purchase order shown in Figure 10.2
illustrates the benefits of having a nested structure. Each purchase order has
a purchaser and a list of items as two of its nested structures. Each item in
turn has an item identifier, description and a price nested within it, while the
purchaser has a name and address nested within it.
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Such information would have been split into multiple relations in a rela-
tional schema. Item information would have been stored in one relation, pur-
chaser information in a second relation, purchase orders in a third, and the
relationship between purchase orders, purchasers and items would have been
stored in a fourth relation.

The relational representation helps to avoid redundancy; for example, item
descriptions would be stored only once for each item identifier in a normal-
ized relational schema. In the XML purchase order, however, the descriptions
may get repeated in multiple purchase orders that order the same item. How-
ever, gathering all information related to a purchase order into a single nested
structure, even at the cost of redundancy, is attractive when information has
to be exchanged with external parties.

o Finally, since the XML format is widely accepted, a wide variety of tools are
available to assist in its processing, including programming language ApIs to
create and to read xML data, browser software, and database tools.

We describe several applications for XML data later, in Section 10.7. ]ust as SeL is the
dominant language for querying relational data, XML has become the dominan t format
for data exchange.

1O.2 Structure of XML Dqtq
The fundamental construct in an XML document is the element. An element is simply
a pair of matching start- and end-tags and all the text that appears between them. 

"
XML documents must have a single root element that enCompasses all other ele-

ments in the document. In the-example in Figure 10.1, the <bank> element forms
the root element. Further, elements in an XML document must nest properly. For in-
stance,

<account> . . .  <balance> . . .  </balance> . . .  </account>

is properly nested, whereas

<account> . . .  <balance> . . .  </account> . . .  </balance>

is not properly nested.

<account>
This account is seldom used any more.
<account_number> A-102 </account_number>
<branch_name> Perryridge </branch*name>
<balance> 400 </balance>

</account>

Figure 10.3 Mixture of text with subelements.
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While proper nesting is an intuitive property, we may define it more formally.

Text is said to appear in the context of an element if it appears between the start-tag

and end-tag of that element. Tags are properly nested if every start-tag has a unique

matching end-tag that is in the context of the same parent element.
Note that text may be mixed with the subelements of an element, as in Figure 10.3.

As with several other features of XML, this freedom makes more sense in a document-

processing context than in a data-processing context, and is not particularly useful for

representing more-structured data such as database content in XML.

The ability to nest elements within other elements provides an alternative way to

represent information. Figure 10.4 shows a representation of the bank information

from Figure 10.1, but with account elements nested within customer elements. The

nested representation makes it easy to find all accounts of a customer, although it

would store account elements redundantly if they are owned by multiple customers.

Nested representations are widely used in XML data interchange applications to

avoid ioins. For instance, a purchase order would store the full address of sender and

<bank-1>
<customer>

<customer-name> Johnson </customer-name>
<customer-street> Alma </customer-street>
<customer-city> Palo Alto <icustomer-city>
<account>

<account-number> A-1 01 </account-number>
<branch-name> Downtown </branch-name>
<balance> 500 <ibalance>

</account>
<account>

<account-number> A-201 <l account-number>
<branch-name> Brighton </branch-name>
<balance> 900 </balance>

</account>
</customer>
<customer>

<customer-name> Hayes </customer-name>
<customer-street> Main </customer-street>
<customer-city> Harrison </customer-city>
<account>

<account-number> A-102 </account-number>
<branch-name> Perryridge </branch-name>
<balance> 400 <ibalance>

</account>
</customer>

</bank-1>

Figure 10.4 Nested XML representation of bank information.
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<account acct_type= "checking">
<account-number> A-1 02 </account_number>
<branch-name> Perryridge <ibranch_name>
<balance> 400 </balance>

</account>

Figure 10.5 Use of attributes.

receiver redundantly on multiple purchase orders, whereas a normalized represen-
tation may require a join of purchase order records with a companyuddress relation to
get address information.

In addition to elements, XML specifies the notion of an attribute. For instance, the
type of an account can be represented as an attribute, as in Figure 10.5. The attributes
of an element appear ds ?xatn€=aalue pairs before the closing ">" of a tag. Attributes
are strings, and do not contain markup. Furthermore, attributes can appear only once
in a given tag, unlike subelements, which may be repeated.

Note that in a document construction context, the distinction between subelement
and attribute is important-an attribute is implicitly text that does not appear in the
printed or displayed document. Howevel, in database and data exchange applica-
tions of XML, this distinction is less relevan! and the choice of representitrg dita ut
an attribute or a subelement is frequently arbitrary.

One final syntactic note is that an element of the form <element></element>,
which contains no subelements or text, can be abbreviated as <element/>; abbrevi-
ated elements may, however, contain attributes.

Since XML documents are designed to be exchanged between applications, a name-
space mechanism has been introduced to allow organizations to specify globalty
unique names to be used as element tags in documents. The idea of a namespace

is 
t9 Rrggend each tag or attribute with a universal resource identifier (for example, a

Web address). Thus, for example, if First Bank wanted to ensure that XML documents
it created would not duplicate tags used by any business partner's XML documents,
it_can prepend a unique identifier with a colon to each tag name. The bank may use
a Web URL such as

http:/iwww. Fi rstBan k.com

as a unique identifier. Using long unique identifiers in every tag would be rather
inconvenient, so the namespace standard provides a way to define an abbreviation
for identifiers.

In Figure 10.6, the root element (bank) has an attribute xmlns:FB, which declares
that FB is defined as an abbreviation for the URL given above. The abbreviation can
then be used in various element tags, as illustrated in the figure.

A document can have more than one namespace, declared as part of the root ele-
ment. Different elements can then be associated with different namespaces . A defautt
namespace can be defined by using the attribute xmlns instead of xmlns:FB in the root
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< bank xm I ns : FB="http ://www. Fi rstBan k, com" >

<FB:branch>
<FB:branch-name> Downtown </FB:branch-name>
<FB:branch-city> Brooklyn </FB:branch-city>

</FB:branch>

</bank>

Figure 10.6 Unique tag names can be assigned by using namespaces.

element. Elements without an explicit namespace prefix would then belong to the
default namespace.

Sometimes we need to store values containing tags without having the tags inter-
preted as XML tags. So that we can do so, XML allows this construct:

< ! [CDATA[<account> . .' </account>]l>

Because it is enclosed within CDATA, the text <account> is treated as normal text
data, not as a tag. The term CDATA stands for character data.

10.3 XML Document Schemq
Databases have schemas, which are used to constrain what information can be stored
in the database and to constrain the data types of the stored information. In contrast,
by default, XML documents can be created without any associated schema: An el-
ement may then have any subelement or attribute. While such freedom may occa-
sionally be acceptable given the self-describing nature of the data format, it is not
generally useful when XML documents must be processed automatically as part of
an application, or even when large amounts of related data are to be formatted in
XML.

Here, we describe the first schema definition language included as part of the XUL
standard, the Document Type Definition, as well as its more recently defined replace-
ment, XML Schems. Another XML schema definition language called Relax NG is also
in use, but we do not cover it here; for more information on Relax NG see the refer-
ences in the bibliographic notes section.

10.3.1 Document Type Definition
The document type definition (DTD) is an optional part of an XML document. The
main purpose of a DTD is much like that of a schema: to constrain and type the infor-
mation present in the document. However, the DTD does not in fact constrain types
in the sense of basic types like integer or string. Instead, it only constrains the appear-
ance of subelements and attributes within an element. The DTD is primarily a list of
rules for what pattern of subelements may aPPear within an element. Figure 10.7
shows a part of an example DTD for a bank information document; the XML docu-
ment in Figure 10.1 conforms to this DTD.
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<IDOCTYPE bank I
< ! ELEMENT bank ( (accountl customerl depositor)+) >
<!ELEMENT account ( account,number branch_name balance )>
<!ELEMENT customer ( customer-name customer-street customer_city )>
<!ELEMENT depositor ( customer_name account_number )>
<!ELEMENT account_number ( #pcDATA )>
<!ELEMENT branch_name (#pCDATA )>
<!ELEMENT balance( #PCDATA )>
<!ELEMENT customer_name( #pCDATA )>
< ! ELEMENT customer_street( #pCDATA r >
< ! ELEM ENT customer_city( #pCDATA ) >

l >

Figure 10.7 Example of a DTD.

Each declaration is in the form of a regular expression for the subelements of an
element. Thus, in the DTD in Figure 70.7, a bank element consists of one or more
account, customer, or depositor elements; the I operator specifies "or" while the *
operator specifies "one or more." Although not shown here, the * operator is used to
specify "zero or more," while the ? operator is used to specify an optional element
(that is, "zero or one").

The account element is defined to contain subelements account-number, branch_-
name and balance (in that order). Similarly, customer and depositor have the at_
tributes in their schema defined as subelements.

Finally, the elements account-number, branch-name, balance, customer_name, cu-
stomer,street, and customer-city are all declared to be of type #pcDATA. The ke)-word
#PCDATA indicates text data; it derives its name, historically, from "parsed chiracter
data." TWo other special type declarations are empty, which says thai the element has
no contents, and any, which says that there is no constraint on the subelements of the
element; that is, any elements, even those not mentioned in the DTD, can occur as
subelements of the element. The absence of a declaration for an element is equivalent
to explicitly deciaring the type as any.

The allowable attributes for each element are also declared in the DTD. Unlike
subelements, no order is imposed on attributes. Attributes may be specified to be
of type CDATA, lD, IDREF, or TDREFS; the type CDATA simply says thai the attribute
contains character data, while the other three are not so simple; they are explained in
more detail shortly. For instance, the following line from a ofO speiifies that element
account has an attribute of type acct-type, with default value checking.

<IATTL|ST account acct_type CDATA ..checking" >

Attributes must have a type declaration and a default declaration. The default
declaration can consist of a default value for the attribute or #REQUIRED, meaning
that a value must be specified for the attribute in each element, or #IMPLIED, meanin[
that no default value has been provided, and the document may omit this attributel
If an attribute has a default value, for every element that does not specify a value for
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<!DOCTYPE bank-2 [
<!ELEMENT account ( branch, balance )>
<IATTLIST account

account-number lD #REQUIRED
OWNETS IDREFS #REQUIRED >

< ! ELEMENT customer ( customer-name, customer-street, customer-city )>
<IATTLIST customer

customer-id lD #REQUIRED
ACCOUNTS IDREFS #REQUIRED >

... declarations for branch, balance, customer-name,
customer-street and customer-citv . . .

l >

Figure 10.8 DTD with lD and IDREFS attribute types.

the attribute, the default value is filled in automatically when the XML document is
read.

An attribute of type lD provides a unique identifier for the element; a value that
occurs in an lD attribute of an element must not occur in any other element in the
same document. At most one attribute of an element is permitted to be of type lD.

An attribute of type IDREF is a reference to an element; the attribute must contain
a value that appears in the lD attribute of some element in the document. The type
IDREFS allows a list of references, separated by spaces.

Figure 10.8 shows an example DTD in which customer account relationships are
represented by lD and IDREFS attributes, instead of depositor records. The account
elements use account-number as their identifier attribute; to do so, account-number
has been made an attribute of account instead of a subelement. The customer ele-
ments have a new identifier attribute called customer-id. Additionally, each customer
element contains an attribute accounts, of type IDREFS, which is a list of identifiers
of accounts that are owned by the customer. Each account element has an attribute
owners, of type IDREFS, which is a list of owners of the account.

Figure 10.9 shows an example XML document based on the DTD in Figure 10.8.
Note that we use a different set of accounts and customers from our earlier example,
in order to illustrate the IDREFS feature better.

The lD and IDREF attributes serve the same role as reference mechanisms in object-
oriented and object-relational databases, permitting the construction of complex data
relationships.

Document type definitions are strongly connected to the document formatting her-
itage of XML. Because of this, they are unsuitable in many ways for serving as the type
structure of XVt for data-processing applications. Nevertheless, a number of data
exchange formats have been defined in terms of DTDs, since they were part of the
original standard. Here are some of the limitations of DTDs as a schema mechanism.

o Individual text elements and attributes cannot be further typed. For instance,
the element balance cannot be constrained to be a positive number. The lack of
such constraints is problematic for data processing and exchange applications,
which must then contain code to verify the types of elements and attributes.
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<bank-2>
<account account_number=,,A_401,' owners=,,c1 00 c1 02">

<balance> 500 </balance>
</account>
< accou nt accou nt_n um ber=* A-402" owners=,,C 1 02 C 1 0 1', >

<branch_name> perryridge </branch_name>
<balance> 900 </balance>

</account>
<customer customer_id=,.C 1 00" accounts=..A _401,' >

<customer_name>Joe</customer_name>
<customer_street> Monroe </customer_street>
<customer_city> Madison </customer_city>

</customer>
<customer customer_id=..C 1 0 1 " accounts=..A _402,' >

<customer_name> Lisa</customer_name>
<customer_street> Mountain </customer_street>
<customer_city> M u rray H i | | </custome r_city>

</customer>
<customer custome r_id =,, C 1 02,, accou nts=..A _401 A_402', >

<customer_name> Mary</customer_name>
<customer_street> Erin </customer_street>
<customer_city> Newark </customer_city>

</customer>
</bank-2>

Figure 1O.9 XML data with tD and TDREF attributes.

o It is difficult to use the DTD mechanism to specify unordered sets of subele-
ments. Order is seldom important for data exchange (unlike document lay-
out, where it is crucial). While the combination of alternation (the I operation)
and the x or the * operation as in Figure 10.7 permits the specificatibn of un-
ordered collections of tags, it is much more difficult to specify that each tag
may only appear once.

o There is a lack of typing in lDs and IDREFSs. Thus, there is no way to specify
the type of element to which an IDREF or IDREFS attribute should retei. as a
result, the DTD in Figure 10.8 does not prevent the "owners', attribute of an
account element from referring to other accounts, even though this makes no
sense.

10.3.2 XML Schemo
An effort to redress the deficiencies of the DTD mechanism resulted in the devel-
opment of a more sophisticated schema language, XML schema. we provide a brief
overview of XML schema, and then list some areas in which it improves DTDs.
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<xs:schema xmlns:xs="http:i/www.w3 .otgl2001 lXMLSchema">
<xs:element name="bank" type="BankType" />
<xs:element name="account">

<xs:complexType>
<xs:sequence>

<xs:element name="account-number" type="xs:string"/>
<xs:element name="branch-name" type="xs:string"/>
<xs:element name=!'balance" type="xs:decimal"/>

</xs:sequence>
</xs:complexType>

<ixs:element>
<xs:element name="customer">

<xs:element name="customer-number" type="xs:string"/>
<xs:element name="customer-street" type="xs:string"/>
<xs:element name="customer-city" type="xs:string"/>

</xs:element>
<xs:element name="depositor">

<xs:complexType>
<xs:sequence>

<xs:element name="customer-name" type="xs:string"/>
<xs:element name="account-number" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:complexType name="BankType")

<xs:sequence>
<xs:element ref="account" minoccurs="O" maxOccurs="unbounded"/>
<xs:erement ref="customer" minOccU fs="O" maxOccurs="unbounded"/>
<xs:element ref="depositor" minOccufs="O" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
</xs:schema>

Figure 10.10 XML Schema version of DTD from Figure 10.7.

XML Schema defines a number of built-in types such as string, integer, decimal
date, and boolean. In addition, it allows user-defined Wpes; these may be simple
types with added restrictions, or complex types constructed using constructors such
as complexType and sequence.

Figure 10.10 shows how the DTD in Figure 10.7 can be represented by XML Schema;
we describe below XML Schema features illustrated by the figure.

The first thing to note is that schema definitions in XML Schema are themselves
specified in XML syntax, using a variety of tags defined by XML Schema. To avoid
conflicts with user-defined tags, we prefix the XML Schema tagby the namespace
prefix "xs:"; this prefix is associated with the XML Schema namespace by the xmlns:xs
specification in the root element:
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<xs:schema xmlns:xs=,,http://www.w3.org/2001 iXMLSchema,,>

Note that any namespace prefix could be used in place of xs; thus we could replace all
occurrences of "xs:" in the schema definition by.,xsd:,'without changing the meaning
of the schema definition. All types defined by xML Schema must bJpr:efixed by thiS
namespace prefix.

The first element is the root element banlt whose type is specified to be BankType,
which is declared later. The example then defines theiypes o? elements account, cus-
tomer, and depositor. Note that each of these is speiified by an element with tag
xs:element, whose body contains the type definition.

The type of account is defined to be i complex type, which is further specified to
consist of a sequence of elements account-nuhOer, branch-name and balince. Anv
type that has either attributes or nested subelements must be specified to be a coni-
plex type.

- Alternatively, the type of an element can be specified to be a predefined type by
the attribute type; observe how the XML schema types xs:string and xs:decimal are
used to constrain the types of data elements such as account_number.

Finally the example defines the type BankType as containin g zero or more occur-
rences of each of account, customer, and depositor. Note the use of ref to specifv the
occurrence of an element defined earlier. XML Schema can define the minimum and
maximum number of occurrences of subelements by using minoccurs and maxoc-
curs. The default for both minimum and maximum occuriences is 1, so these have
to be explicitly specified to allow zero or more account, depositol, and customer ele-
ments.

^. Attributes are specified using the xs:attribute tag. For example, we could have de-
fined account_number as an attribute by adding

<xs:attribute o?rne = ..account_number',/>

within the declaration of the account element. Adding the attribute use = ..required,,
to the above attribute specification declares that the att-ribute must be specified, where-
as the default value of use is optional. Attribute specifications would upp"u. dl.ectty
under the enclosing complexType specification, even if elements are nested within a
sequence specification.

we can use the xs:complexType element to create named complex types; the syn-
tax is the same as that used for the xs:comprexType element in nigure iO.to, exclpt
that we add an attribute hdrTte = typeName to the xs:complexTyp-e element, where
typeName is the name we_ wish to give to the type. we can then use the named type
to specify the type of an element using the type lttribnte, just as we used xs:decimal
and xs:string in our example.

In addition to defining types, a relational schema also allows the specification of
constraints. XML Schema allows the specification of keys and key references, corre-
sponding to the primary-key.and foreign-key definitionin sel. In sel- a primary-key
constraint or unique constraint ensures that the attribute values do not iecur within
the relation. In the context of xML, we need to specify a scope within which values
are unique and form a key. The selector is a path expression that defines the scope
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for the constraint, and field declarations specify the elements or attributes that form

the key. To specify that account numbers form a key for account elements under the

root bank element, we would add the following constraint specification to the schema
definition:

<xs:keY h?ITle = "accountKey">
<xs:selector xpath = " lbanv account"/>
<xs:f ield xpath = "account,nu mber" / >

</xs:key>

Correspondingly a foreign-key constraint from depositor to account may be de-

fined as follows:

<xs : keyref odrfl e = "depositorAccou ntFKey" r eler =" accou ntKey" >
<xs:selector xpath ='7bank/depositor"/>
<xs:field xPath = "account-number"/>

</xs:key>

Note that the refer attribute specifies the name of the key declaration that is being

referenced, while the field specification identifies the referring attributes.
XML Schema offers several benefits over DTDs, and is widely used today. Among

the benefits that we have seen in the examples above are these:

o It allows the text that appears in elements to be constrained to specific tyPes,

such as numeric types in specific formats or complex types such as sequences
of elements of other tYPes.

o It allows user-defined types to be created.

o It allows uniqueness and foreign-key constraints.

o It is integrated with namespaces to allow different parts of a document to

conform to different schemas.

In addition to the features we have seen, XML Schema supports several other features

that DTDs do not, such as these:

o It allows types to be restricted to create specialized types, for instance by spec-

ifying minimum and maximum values.

o It allows complex types to be extended by using a form of inheritance.

Our description of XML Schema is just an overview; to learn more about XML Schema,

see the references in the bibliographic notes.

1O.4 Querying qnd Trqnsformqtion
Given the increasing number of applications that use XML to exchange, mediate, and

store data, tools for effective management of XML data are becoming increasingly im-

portant. In particular, tools for querying and transformation of XUt data are essential
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to extract information from large bodies of XML data, and to convert data between
different representations (schemas) in XML. Just as the output of a relational query is
a re-lation,-the output of an XML query can be an XML document. As a result, qr"ryirrg
and transformation can be combined into a single tool.

Several languages provide increasing degrees of querying and transformation ca-
pabilities:

o XPath is a language for path expressions and is actually a building block for
the remaining two query languages.

o XQuery is the standard language for querying XML data. It is modeled after
SQL but is significantly different, since it i"tar to deal with nested XML data.
XQuery also incorporates Xpath expressions.

o XSLT was designed to be a transformation language, as part of the XSL style
sheet system, which is used to control the forrnatting of xvr data into HTML
or other print ordisplay languages. Although designed for formatting, xsLT
can generate XML as output, and can express many interesting queries. It is
currently the most widely available language for manipulating"Xfr4f- d.ata, al-
though XQuery is more appropriate for datibase manipulation.

A tree model of XML data is used in all these languages. An XML document is mod-
eled as a ttee, with nodes corresponding to elemmts and attributes. Element nodes
can have children nodes, which can be subelements or attributes of the element. Cor-
respondingly, each node (whether attribute or element), other than the root element,
has a parent node, which is an element. The order of elements and attributes in the
XML document is modeled by the ordering of children of nodes of the tree. The terms
parent, child, ancestor, descendant, and siblings are interpreted in the tree model of
XML data.

The text content of an element can be modeled as a text node child of the element.
Elements containing text broken up by intervening subelements can have multiple
text node children. For instance, an element contaiiing ..this is a <bold> wonde*ul
</bold> book" would have a subelement child corre"sponding to the element bold
and two text node children corresponding to "this is a" ind ..uo6n,,since such struc-
tures are not commonly used in database data, we shall assume that elements do not
contain both text and subelements.

10.4.1 XPsth
XPath addresses parts of an XML document by means of path expressions. The lan-
Suage can be viewed as an extension of the simple path expressioni in object-oriented
and object-relational databases (see Section g.O). flte current version of the Xpath
standard is XPath 2.0, and our description is based on this version.

A path expression in Xpath is a sequence of location steps separated by ,, /,, (in-
stead. of the "." operator that separates steps in SeL:1999). ihe iesult of i path ex_
pression is a set of nodes. For instance, on the document in Figure 10.9, the Xpath
expression
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ibank-2lcustomer/customer-name

would return these elements:

<customer-name>Joe</customer-name>
<customer-name> Lisa</customer-name>
<customer-name> Mary</customer-name>

The expression

lbank-2l customer/customer-name/text0

would return the same names, but without the enclosing tags.
Path expressions are evaluated from left to right. Like a directory hierarchy, the

inltial' /'indicates the root of the document. (Note that this is an abstract root "above"

<bank-2> that is the document tag.)
As a path expression is evaluated, the result of the path at any point consists of

an ordeied set of nodes from the document. Initially the "current" set of elements

contains only one node, the abstract root. When the next step in a path expression
is an element name, such as customer, the result of the step consists of the nodes

corresponding to elements of the specified name that are children of elements in the

currenl element set. These nodes then become the current element set for the next

step of the path expression evaluation. The result of a path expression is then the set

of nodes af[er the list step of path expression evaluation. The nodes returned by each

step appear in the same order as their appearance in the document'
Sinie multiple children can have the same name, the number of nodes in the node

set can increase or decrease with each step. Attribute values may also be accessed,

using the "@" symbol. For instance, lbank-2laccounV@account-number returns a set

of all values of account-number attributes of account elements. By default, IDREF

Iinks are not followed; we shall see how to deal with IDREFs later.
XPath supports a number of other features:

o Selection predicates may follow any step in a path, and are contained in square

brackets. For examPle,

lbank-2| accountlbalance > 4001

returns account elements with a balance value greater than 400, while

lb ank-21 acco u nt[bal an ce > 400U @ acco u nt-n u m be r

returns the account numbers of those accounts.
We can test the existence of a subelement by listing it without any comPar-

ison operation; for instance, if we removed just "> 400" from the above, the

expression would return account numbers of all accounts that have a balance
' subelement, regardless of its value.

o Xpath provides several functions that can be used as part of predicates, in-

cluding testing the position of the current node in the sibling order and the
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aggregate function count0, which counts the number of nodes matched by
the expression to which it is applied. For example, the path expression

lbank-2| account[count(./customer) > 2]

returns accounts with more than two customers. Boolean connectives and and
or can be used in predicates, while the function not(. . .) can be used for nega-
tion.

o The function id("foo") returns the node (if any) with an attribute of type lD and
value "foo." The function id can even be applied on sets of references, or even
strings containing multiple references separated by blanks, such as IDREFS.
For instance, the path

/ bank-2| acco u nVi d ( @ owne r)

returns all customers referred to from the owners attribute of account ele-
ments.

r The I operator allows expression results to be unioned. For example, if the
DTD of bank-2 also contained elements for loans, with attribute borrower of
type IDREFS identifying loan borrower, the expression

lb ank-2/ acco u nVi d ( @ own e r) | /ban k- 2 I to an I id(@ bo rrowe r)

gives customers with either accounts or loans. However, the I operator cannot
be nested inside other operators. It is also worth noting that the nodes in the
union are returned in the order in which they appear in the document.

o An XPath expression can skip multiple levels of nodes by using ,,1/,,. For in-
stance, the expression lbank-21/customer_name finds all customer_name el-
ements anywhere under the /bank-2 element, regardless of the elements in
which they are contained, and regardless of how many levels of enclosing
elements are present between the bank-2 and customer_name elements. ThiI
example illustrates the ability to find required data without full knowledge of
the schema.

o A step in the path need not just select from the children of the nodes in the
current node set. In fact, this is just one of several directions along which a
step in the path may proceed, such as parents, siblings, ancestors, ant descen-
dants. we omit details, but note that "/1", described ibove, is a short form for
specifying "all descendants," while ...." specifies the parent.

o The built-in function doc(name) returns the root of a named document; the
name could be a file name or a uRL. The root returned by the function can then
be used in a path expression to access the contents oi the document. Thus,
a pqth expression can be applied on a specified document, instead of being
applied on the current default document.
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For example, if the bank data in our bank example is contained in a
"bank.xml," the following path expression would return all accounts at
bank.

doc("bank.xml")/bank/accou nt

The function collection(name) is similar to doc, but returns a collection of doc-
uments identified by name.

10.4.2 XQuery
The World Wide Web Consortium (W3C) has developed XQuery as the standard
query language for XML. Our discussion is based on the latest draft of the Ianguage
standard available in early January 2005; although the final standard may differ, we
expect the main features we cover here will remain unchanged. The XQuery language
derives from an XML query language called Quilt; Quilt itself included features from
earlier languages such as XPath, discussed in Section 1,0.4.1, and two other XML quely
languages, XQL and XML-QL.

10.4.2.1 FLWOR Expressions
Xeuery queries are modeled after SQL queries, but differ significantly from SQL. They
are organized into five sections: for, let, whete, order by, and return. They are re-

ferred to as "FLWOR" (pronounced "flower") expressions, with the letters in FLWOR
denoting the five sections.

A simple FLWOR expression that returns account numbers of accounts with bal-

ance greitet than 400, shown below, is based on the XML document of Figure 10.9,

which uses lD and IDREFS:

for $x in lbank'2/account
let $acctno := $x/@account-number
where $x/balance > 400
return <account-number> { $acctno } </account-number>

The for clause is like the from clause of SgL, and specifies variables that range

over the results of XPath expressions. When more than one variable is specified, the

results include the Cartesian product of the possible values the variables can take,
just as the SQL from clause does.

The let clause simply allows the results of Xpath expressions to be assigned to

variable names for simplicity of representation. The where clause, like the SQL where

clause, performs additional tests on the joined tuples from the for clause. The order
by clause, like the SQL order by clause, allows sorting of the output. Finally, the

return clause allows the construction of results in XML.
A FLWOR quely need not contain all the clauses; for example a query may contain

just the for and return clauses, and omit the let, where, and order by clauses. The

preceding XQuery query did not contain an order by clause. In fact, since this query

file
the



r0.4 Querying and Transformation

is simple, we can easily do away with the let clause, and the variable gacctno in
the return clause could be replaced with $x/@account-number. Note further that,
since the for clause uses XPath expressions, selections may occur within the Xpath
expression. Thus, an equivalent query may have only for and return clauses:

for gx in lbank-2laccount[balance > 4OO]
return <account-number> { $x/@account_number } </account_number>

However, the let clause helps simplify complex queries. Note also that variables as-
signed by let clauses may contain sequences with muttiple elements or values, if the
path expression on the right-hand side returns a sequmce of multiple elements or
values.

observe the use of curly brackets ("{}") in the return clause. when Xeuery finds
an element such as <account-number> starting an expression, it treats its contents
as regular XML text, except for portions enclosed within curly brackets, which are
evaluated as expressions. Thus, if we omitted the curly brackeis in the above return
clause, the result would contain several copies of the itring "$></@account-number"
each enclosed in an account-number tag. The contents within the curly brackets are,
however, treated as expressions to be evaluated. Note that this convention applies
even if the curly brackets appear within quotes. Thus, we could modify the uiorr"
query to return an element with tag account, with the account numb". ur itr attribute,
by replacing the return clause by the following:

return <accou nt accou nt_n u mbe r=..{$x/ @ accou nt_n u m ber},, I >

XQuery provides another way of constructing elements using the element and
attribute constructors. For example, if the return clause in the previous query is re-
placed by following return clause, the query would return account elemenis with
account-number and branch-name as attributes and balance as a subelement.

return element account {
attribute account_number {$/@ account_number},
attribute branch_name {$Vbranch_name},
element balance {$x/balance}

]

Note that as before, the curly brackets are required to treat a string as an expression
to be evaluated.

10.4.2.2 Joins
Joins are specified in XQuery much as they are in sel-. The join of depositor, account,
and customer elements in Figure 10.1, which we write in isfr in Section 10.4.3, can
be written in XQuery this way:
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for $a in /bank/account,
$c in /bank/customer,
$d in /bank/depositor

where $a/account-number = $d/account-number
and $c/customer-name = $d/customer-name

return <cust-acct> { $c $a } </cust-acct>

The same query can be expressed with the selections specified as XPath selections:

for $a in /bank/account,
$c in /bank/customer,
$d in /bank/depositor[account-number - $a/account-number

and customer-name = $c/customer-name]
return <cust-acct> { $c $a } </cust-acct>

Path expressions in XQuery are the same as path expressions in XPath2.0. Path
expressions may return a single value or element, or a sequence of values or elements.
Inlhe absence of schema information it may not be possible to infer whether a path
expression returns a single value or a sequence of values. Such path expressions may

participate in comparison operations such &s :, {, and >:'
Xeuery has an interesting definition of comparison operations on sequences. For

example-the expression $x/balance > 400 would have the usual interpretation if the
result of $x/balance is a single value, but if the result is a sequence containing mul-
tiple values, the expression evaluates to true if at least one of the values is greater
tian 400. Similariy, the expression $</balanss = $y/balance evaluates to true if any
one of the values returned by the first expression is equal to any one of the values

returned by the second expression. If this behavior is not appropriate, the operators
eq, ne, lt, gt, le, ge can be used instead. These raise an error if either of their inputs is

a sequence with multiple values.

10.4.2.3 Nested Queries
Xeuery FLWOR expressions can be nested in the return clause, in order to generate
element nestings that do not appear in the source document. This feature is similar
to nested subqueries in the from clause of SQL queries in Section 9.5'3'

For instance, the XML structure shown in Figure 10.4, with account elements nested
within customer elements, can be generated from the structure in Figure 10.1 by this
query:

<bank-1> {
for $c in /bank/customer
return

<customer>
{ $ c r }
{ for $d in /bank/depositor[customer-name = $c/customer-name],

$a in /bank/account[account-number=$d/account-number]
return $a )

</customer>
) </bank-1>
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The query also introduces the syntax $c/*, which refers to all the children of the node
(or sequence of nodes) bound to the variable $c. Similarly, $c/textQ gives the text
content of an element, without the tags.

XQuery provides a variety of aggregate functions such as sum0 and count0 that
.T 

l" applied on sequences of elements or values. The function diitinct-valu"rfu up-
plied on a, sequence returns a sequence without duplication. The sequence (cottec-
tion) of values returned by a path expression may have some values repeated because
they are repeated in the documen! although an XPath expression result can contain
at most one occurrence of each node in the document. Xeuery supports many other
functions; see the references in the bibliographic notes for m-ore information. These
functions are actually common to xpath 2.0 and xquery, and can be used in any Xpath
path expression.

To avoid namespace conflicts, functions are associated with a namespace

http ://www.w3 .org/2004 I 1 O/xpath{u nctions

which has a default namesPace prefix of fn. Thus, these functions can be referred to
unambiguously as fn:sum or fn:count.

whilg XQuery does not provide a group by construct, aggregate queries can be
written by using the aggregate functions on path or FLWOR 

"*pt"riior-,r 
.rested within

the return clause. For example, the following query on the bank xirar schema finds
the total balance on all accounts owned by each customer.

for $c in /bank/customer
return

<customer-total-balance>
<customer_name> { $c/customer_name } </customer_name>
<total_balance> { fn:sum(

for $d in /ban k/depositor[customer-name = gc/customer-name],
$a in /bank/account[account-number = gd/account-numberl

return $a/balance
) ) </total_balance>

</cu stomer-total-balance >

10.4.2.4 Sorting of Results
Results can be sorted in XQuery by using the order by clause. For instance, this query
outputs all customer elements sorted by the customer_name subelement:

for gc in /bank/customer,
order by $c/customer_name
return <customer> { $cl- 1 </customer>

To sort in descending orde1, we can use order by customer-name descending.
Sorting can be done at multiple levels of nesting. For instance, we can get a nested

representation of bank information sorted in customer name order, with accounts of
each customer sorted by account number, as follows.
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<bank-1> {
for $c in /bank/customer
order by $c/customer-name
return

<customer>
{ $ c f }
{ for $d in /bank/depositor[customer-name = $c/customer-name],

$a in /bank/account[account-number = $d/account-number]
order by $a/account-number
return <account> { $a/. } </account> }

</customer>

] </bank-1>

10.4.2.5 Functions qnd TYPes

Xeuery provides a variety of built-in functions, such as numeric functions and string
matching and manipulation functions. In addition, XQuery supports user-defined
functioni. The following user-defined function returns a list of all balances of a cus-
tomer with a specified name:

define function balances(xs:string $c) as xs:decimal* {
for $d in /bank/depositor[customer-name = $c],

$a in /bank/account[account-numbel = $d/account-number]
return $aibalance

)

The type specifications for function arguments and return values are optional, and

may be o*itt"d. XQuery uses the type system of XML Schema. The namespace prefix
xs: used in the above example is predefined by XQuery to be associated with the XML

Schema namespace.
Types can b-e suffixed with a " to indicate a sequence of values of that type; for

example, the definition of function balances specifies the return value as a sequence
of numeric values. Types can be partially specified; for example, the type element
allows elements with any tag, while element(account) allows elements with the tag

account.
Xeuery performs type conversion automatically whenever required. For example,

if a numeric value represented by a string is compared to a numeric type, type con-

version from string to the numeric type is done automatically. When an element is

passed to a function that expects a string value, t;rpe conversion to a string is done

Ly concatenating all the text values contained (nested) within the element. Thus, the

function contain!(a,b), which checks if string a contains string b, can be used with

its first argument set to an element, in which case it checks if the element a contains

the string b nested anywhere inside it. XQuery also provides functions to convert

between types. For instance, number(x) converts a string to a number.
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10.4.2.6 Other Feqtures
XQuery offers a variety of other features, such as if-then-else constructs, which can be
used within return clauses, and existential and universal quantification, which can
be used in predicates in where clauses. For example, existential quantification can be
expressed in the where clause by using

some ge in path satisfies P

Y-1"t9 
path is a path expression and P is a predicate that can use $e. Universal quan-

tification can be expressed by using err"ry i., place of some.
As you can see from the lgoy" description, Xeuery with Xpath is a rather complex

language, and must deal with data having a comprex structure. Although it has been
several years since it was first defined (as a drait specification), manylmplementa_
tions either implement a subset of Xeuery or are inefficient on large data sets.

The XQ| standard provides an API to submit XQuery queries to an XML database
system and to retrieve the XML results. Its functionality is^similar to the TDBC ApI.

10.4.3 XSLTxx
A *{l-" sheet is a representation of formatting options for a document, usually stored
outside the document itself, so that formatting il separate from content. For example,
a style sheet for HTML might specify the font to be used on all headers, and ti.rus
replace a large number of font declarations in the HTML page. The xMr stylesheet
Language (XSL) was originally designed for generating FITNfi- from XML, and is thus
a logical extension of HTML style sheets. The languag:e includes a general-purpose
transformation mechanism, called XSL Transfo.-itiotts (xsLT), which can^be used
to transform one XML document into another XML document, or to other formats
such as HTML.I XSLT transformations are quite powerful, and in fact XSLT can even
act as a query language.

XSLT transformations are expressed as a series of recursive rules, called templates.
In their basic form, templates allow selection of nodes in an XML tree by ur-, xputh
expression. Howevel, templates can also generate new XML content, so thit selection
and content generation can be mixed in natural and powerful ways, while XSLr can
be 

_used as a query language, its syntax and semantici are quite dissimilar from those
of SQL.

- .A simple template for XSLT consists of a match part and a select part. Consider
this XSLT code:

<xsl:template match='7bank-2lcustomer',>
<xsl :val ue-of select=,,customer_name'7>

</xsl:template>
<xsl:template match="x"/>

1' The XSL standard consists of XSLT and a standard for specifying formatting features such as fonts,
page margins, and tables. Formatting is not relevant from a database perspectiv-e, so we do not cover it
here.
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<xsl:template match="/bank-2/customef '>

<customer>
<xsl :value-of select="customer-name"/>
</customer>

</xsl:temPlate>
<xsl :temPla1" ma1sl'l="x"/)

Figure 10.11 Using XSLI to wrap results in new XML elements.

The xsl:template match statement contains an XPath expression that selects one or
more nodes. The first template matches customer elements that occur as children of
the bank-2 root element. The xsl:value-of statement enclosed in the match statement
outputs values from the nodes in the result of the Xpath expression. The first template
outputs the value of the customer-name subelement; note that the value does not

contain the element tag.
Note that the second template matches all nodes. This is required because the de-

fault behavior of XSLT on elements of the input document that do not match any
template is to copy their attribute and text contents to the output document, and

apply templates recursively to their subelements.
A^y text or tag in the XSLI style sheet that is not in the xsl namespace is copied

unchanged to the output. Figure 10.1L shows how to use this feature to make each

customer name from our example aPPear as a subelement of a "<CUStOmef>" ele-

ment, by placing the xsl:value-of statement between <customer> and </customer>.

Creating in attribute, such as customer-id in the generated customer element, is trick-

ier and requires the use of xsl:attribute; see an XSLT manual for further details.

Structural recursion is a key part of XSLT. Recall that elements and subelements
naturally form a tree structure. The idea of structural recursion is this: When a tem-

plate matches an element in the tree structure, XSLT can use structural recursion to

apply template rules recursively on subtrees, instead of just outputting a value- It

appties rulis recursively by the xsl:apply-templates directive, which aPpears inside

other templates.
For example, the results of our previous query can be placed in a surrounding

<customers> element by the addition of a rule using xsl:applytemplates, as in

Figure 10.12 The new rule matches the outer "bank" tag, and constructs a result doc-

ument by applying all other templates to the subtrees appearing within the bank

element, bul wrapping the results in the given <customers> </customers> ele-

ment. Without recursion forced by the <xsl:apply{emplates/> clause, the template

would output <customers> </customefs), and then apply the other templates on

the subelements.
In fact, the structural recursion is critical to constructing well-formed XML doc-

uments, since XML documents must have a single top-level element containing all

other elements in the document.
XSLT provides a feature called keys that permits lookup of elements by using val-

ues of subelements or attributes; the goals are similar to that of the idQ function in

Xpath, but the XSIJI-keys feature permits attributes other than the lD attributes to be
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<xsl:template match=.7bank',>
<customers>
<xsl : applytemplates/>
</customers>

</xsl:template>
<xsl:template match=,Tcustomer',>

<customer>
<xsl :value-of select=,,customer_name',/>
</customer>

</xsl:template>
<xsl:template match=..*,,/>

Figure 10.12 Applying rules recursively.

used. Keys are defined by an xsl:key directive, which has three parts, for example:

<xsl:key name="acctno" match="account" USe=..dccount_number'7>

The name attribute is used_to distinguish different keys. The match attribute specifies
which nodes the key applies to. Finally, the use atiribute specifies the expression
to be used as the value of-the key. Note that the expression^need not be unique to
an element; that is, more than one element may havl the same expression valle. In
the example, the key named acctno specifies thit the account-number subelement of
account should be used as a key for that account.

Keys can be subsequently used-in templates as part of any pattern through the
key function. This function takes the nam^e of the key and a lrai.r", and returns the
set of nodes that match that value. Thus, the XML node for account *A-407. can be
referenced as key("acctno,,, .,A-401',).

Keys can be used to implement some types of joins, as in Figure 10.13. The code
1n 

tne fiqule c1' bg applied to XML data in the formar in Figur:e 10.1. Here, the key
function joins the depositor elements with matching customei and account elements.
The result of the query consists of pairs of customer and account elements enclosed
within cust_acct elements.

<xsl :key fl dffi e="dcctno" match="account"use=,.account_number"/>
<xsl: key fi?ffi e="cUStnO" match="customeF' use=.,customer_name"/>
<xsl:template match=,.depositor',>

<cust_acct>
<xsl:value-of select=key(..custno",,,customer_name")/>
<xsl :value-of select=key(.,acctno", ..account_number':)/>
</cust_acct>

</xsl:template>
<xsl :template match=.,*'7>

Figure 10.13 Joins in XSLT.
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XSLT allows nodes to be sorted. A simple example shows how xsl:sort would be

used in our style sheet to return customer elements sorted by name:

<xsl :temPlate match="/bank">
<xsl :apply-templates select="customer">
<xsl :sort select="customer-name"/>
</xsl :apply-temPlates>

</xsl:temPlate>
<xsl:template match="customer">

<customer>
<xsl :value-of select="customer-name"/>
<xsl :val ue-of select="customer-street"/>
<xsl :value-of select="customer-city"/>

</customer>

:';: I i:"tr55 ] s1s h = " * "/ >
Here, the xsl:apply-template has a select attribute, which constrains it to be applied
only on customer subelements. The xsl:sort directive within the xsl:apply{emplate el-

ement causes nodes to be sorted before they are processed by the next set of templates.
Options exist to allow sorting on multiple subelements/attributes, by numeric value,

and in descending order.

10.5 Applicotion Progrom lnterfoces to XML
With the wide acceptance of XML as a data representation and exchange format, soft-

ware tools are widely available for manipulation of XML data. There are two stan-
dard models for programmatic manipulation of XML, each available for use with a

number of popular programming languages. Both these APIs can be used to Parse an
XML document and create an in-memory representation of the document. They are
used for applications that deal with individual XML documents. Note, however, that

they are not suitable for querying large collections of XML data; declarative querying

mechanisms such as XPath and XQuery are better suited to this task.
One of the standard APIs for manipulating XML is based on the document obiect

modet (DOM), which treats XML content as a tree, with each element represented by

a node, called a DOMNode. Programs may access parts of the document in a naviga-

tional fashion, beginning with the root.
DOM libraries are available for most common programming languages and are

even present in Web browsers, where they may be used to manipulate the document

displiyed to the user. We outline here some of the interfaces and methods in the Java
API for DOM, to give a flavor of DOM.

o The Java DOM API provides an interface called Node, and interfaces Element

and Attribute, which inherit from the Node interface.

o The Node interface provides methods such as getParentNode0, getFirstChild0,

and getNextSibling0, to navigate the DOM tree, starting with the root node.
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o subelements of an element can be accessed by name, using getElementsBy-
TagName(name), which returns a list of all chiid elements wltn a specified tag
name; individual members of the list can be accessed by the metirod item(if
which returns the zth element in the list.

o Attribute values of an element can be accessed by name, using the method
getAttribute(name).

o The text value of an element is modeled as a Text node, which is a child of the
element node; an element node with no subelements has only one such child
node. The method getData0 on the Text node returns the text contents.

DoM also provides a variety of functions for updating the document by adding and
deleting attribute and element children of a noie, settlng node values, i1d so o"n.

Many more details are required for writing an actual Sovt prog.um; see the biblio-
graphical notes for references to further infoimation

DoM can be used to access XML data stored in databases, and an XML database
can be built with DoM as its_ primary interface for accessing and modifying data.
However, the DoM interface does not support any form of diarative queiyiig.

The second commonly used programtning interface, the simpte ApI fzr xML\sAx)
is an eaent model, designed to provide a common interface between parsers and ap-
plications. This API is built on the notion of eoent handlers, which consist of user-
specified functions associated with parsing events. Parsing events correspond to the
recognition of parts of a document; for example, un err"-nt is generated when the
start-tag is found for an element, and another event is generated-when the end-tag is
found. The pieces of a document are always encountered in order from start to fin[h.
. The SAX application developer creates handler functions for each even! and reg-
isters them. when a document is read in by the sAX parser, as each event occur!,
the handler function is called with parameters describing the event (such as erement
tag or text contents). The handler functions then carry o.tt th"ir task. For example, to
construct a tree representing the XML data, the handler functions for an attriblte or
element start event could add a node (or nodes) to a partially constructed tree. The
start- and end-tag event handlers would also have to Leep trick of the current node
in the tree to which new nodes must be attached; the element start event would set
the new element as the node as the point where further child nodes must be attached.
The correspolding element end event would set the parent of the node as the current
node where further child nodes must be attached.

sAX generally requires more programming effort than DoM, but it helps avoid the
overhead of creating a DoM tree in situationi where the application needs to create
its own data representation. If DoM were used for such appliications, there would be
unnecessary space and time overheads for constructing the DoM tree.

10.6 Storoge of XML Dqtq
Yu"{ applications require storage of xtvtt data. One way to store XML data is to store
it as documents in a file system, while a second is to build a special-purpose database
to store XML data. Another approach is to convert the XML data to a ielational reo-
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resentation and store it in a relational database. Several alternatives for storing XML

data are briefly outlined in this section.

10.6.1 Nonrelqtionql Dotq Stores

There are several alternatives for storing XML data in nonrelational data storage sys-

tems:

o Store in flat files. Since XML is primarily a file format, a natural storage mech-

anism is simply a flat file. This approach has many of the drawbacks, outlined
in Chapter 1, of using file systems as the basis for database applications. In

particular, it lacks data isolation, atomicity, concurrent access, and security.

Horr"'o"t, the wide availability of XML tools that work on file data makes it

relatively easy to access and query XML data stored in files. Thus, this storage

format may be sufficient for some applications.
o Create an XML database. XML databases are databases that use XML as their

basic data model. Early XML databases implemented the Document Object

Model on a C++-based object-oriented database. This allows much of the obi

ect-oriented database infrastructure to be reused, while providing a standard

XML interface. The addition of XQuery or other XML query languages pro-

vides declarative querying. Other implementations have built the entire XML

storage and querying infrastructure on top of a storage manager that provides

transactional suPPort.

Although several databases designed specifically to store XML data have been

built, building a full-featured database system from ground up is a vely complex

task. Such a ditabase must support not only XML data storage and querying but also

other database features such as transactions, security, support for data access from

clients, and a variety of administration facilities. It makes sense to instead use an ex-

isting database system to provide these facilities and implement XML data storage

and luerying eitirer on top of the relational abstractiory or as a layer parallel to the

relational abstraction. we study these approaches in section 1.0.6.2.

10.6.2 Relqtionql Dqtqbqses

Since relational databases are widely used in existing applications, there is a great

benefit to be had in storing XML data in relational databases, so that the data can be

accessed from existing applications.
Converting XML data to relational form is usually straightforward if the data were

generated from a relational schema in the first place and XML were used merely as

i d.utu exchange format for relational data. However, there are many applications

where the XMi data are not generated from a relational schema, and translating the

data to relational form for storage may not be straightforward. In particular, nested

elements and elements that recur (corresponding to set-valued attributes) complicate

storage of XML data in relational format. Several alternative approaches are available,

which we describe below.
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10.6.2.1 Store os String
Small XML documents can be stored as string (clob) values in tuples in a relational
database. Large XML documents with the top{evel element having many children
can be handled by storing each child element as a string in a separate tuple. For
instance, the XML data in Figure 10.1 could be stored as a-set of tuples in a ielation
elements(data), with the attribute data of eachtuple storing one XML element (account,
customer/ or depositor) in string form.

While the above representation is easy to use, the database system does not know
the schema of the stored elements. As a result, it is not possiile to query the data
directly' In fact, it is not even-possible to implement simpl6 selections such as finding
all account elements, or finding the account element *ith u""o.rr,t number A-401,
without scanning all tuples of the relation and examining the string contents.

A partial solution to this problem is to store different types oI elements in dif-
ferent relations, and also store the values of some critical elements as attributes of
the relation to enable indexing. For instance, in our example, the relations would be
accounttlements, customertlements, and depositortlements,iach with an attribute dats.
Each relation may have extra attributes to store the values of some subelements, such
as account-number or customer:name. Thus, a query that requires account elements
with a specified account number can be anr*et"d efficiently with this representa-
tion. such an approach depends on type information about XML data, such as the
DTD of the data.

some database systems, such as oracle, support function indices, which can help
avoid replication of attributes between the xMi string and relation attributes. Unlike
normal indices, which are on attribute values, function indices can be built on the
result of applying user-defined functions on tuples. For instance, a function index
can be built on a user-defined function that returns the value of the account-number
subelement of the XML string in a tuple. The index can then be used in the same wav
as an index on a account_number attribute.

The lbove approaches have the drawback that a large part of the XML information
is stored within strings. It is possible to store all the information in relations in one of
several ways that we examine next.

10.6.2.2 Tree Representqtion
Arbitrary XML data can be modeled as a tree and stored using a pair of relations:

nodes(id, type, lab el, z:alue)
chil d (chil d _i d, p ar en t _i d)

Each element and attribute in the XML data is given a unique identifier. A tuple in-
serted in the'nodes relation for each element and attribute with its identifier GA), it,
type (attribute or element), the name of the element or attribute (label), and the text
value of the element or attribute (aalue). The relation child isused to record the parent
element of each element and attribute. If order information of elements and attributes
must be preserved, an extra attribute position canbeadded to the child relation to indi-
cate the relative position of the child among the children of the parent. As an exercise,
you can represent the XML data of Figure 10.7by using this technique.
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This representation has the advantage that all XML information can be represented

directly in relational form, and many XML queries can be translated into relational

queries and executed inside the database system. However, it has the drawback that

each element gets broken up into many pieces, and a large number of joins are re-

quired to reassemble subelements into an element.

10.6.2.3 Mqp to Relqtions

In this approach, XML elements whose schema is known are mapped to relations and
attributes. Elements whose schema is unknown are stored as strings or as a tree.

A relation is created for each element type (including subelements) whose schema
is known and whose type is a complex type (that is, contains attributes or subele-
ments). The attributes of the relation are defined as follows.

o All attributes of these elements are stored as string-valued attributes of the
relation.

o If a subelement of the element is a simple type (that is, cannot have attributes
or subelements), an attribute is added to the relation to represent the subele-
ment. The type of the relation attribute defaults to a string value, but if the

subelement had an XML Schema lype, a corresponding SQL type may be used.
For example, the subelem ent account :number of the element acco unt becomes

an attribute of the relationaccount.

o Otherwise, a relation is created corresponding to the subelement (using the

same rules recursively on its subelements). Further,

! An identifier attribute is added to the relations representing the element.
(The identifier attribute is added only once even if an element has several
subelements.)

! An attribute parentjdis added to the relation representing the subelement,
storing the identifier of its parent element.

n If ordering is to be preserved, an attribute position is added to relation

representing the subelement.

Note that when we apply this approach to the elements below the root element of
the DTD of the data in Figure L0.1, we get back the original relational schema that we
have used in earlier chapters.

Variants of this approach are possible. For example, the relations corresponding to

subelements that can occur at most once can be "flattened" into the parent relation by

moving all their attributes into the parent relation. The bibliographical notes provide
references to different approaches to represent XML data as relations.

10.6.2.4 Publishing qnd Shredding XML Dqto

When XML is used to exchange data between business applications, the data most

often originates in relational databases. Data in relational databases must be pub-

lished, thatis, converted to XML form, for export to other applications. Incoming data
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must be shredded, that is, converted back from XML to normalized relation form and
stored in a relational.database. While application code can perform the publishing
and shredding operations, the operations are so common thaithe conversions should
be done automatically, without writing application code, where possible. Database
vendors have spent a lot of effort to xML-enable their database products.

An XMl-enabled d_atabase supports an automatic mechanism for publishing rela-
tional data as XML. The mapping used for publishing data may be simple or"com-
plex. A simple relation t9 xyl mapping migtrt createin XML ellment for every row
of a table, and make each column in that row a subelement of the XML elemeni. The
XML schema in Figure 10.1 can be created from a relational representation of bank
information, using such a mapping. such a mapping is straighiforward to generate
automatically. Such an XML view of relational data can be treated as a airlual xML
document, and XML queries can be executed against the virtual XML document.

A more complicated mapping would allow nested structures to be created. Exten-
sions of SQL with nested queries in the select clause have been developed to allow
easy creation of nested XML output. We outline these extensions in Section 70.6.3.

Mappings also have to be defined to shred XML data into a relational representa-
tion. For XML data created from a relational representation, the mapping required to
shred the data is a straightforward inverse of fhe mapping used topubl"ish the data.
For the general case, a mapping can be generated as outtnea in Section 70.6.2.3.

10.5.2.5 Nqtive storoge within o Relqtionql Dstqbqse
More recently, relational databases have begun to support native storage of XML.
Such systems store XML,data as strings or in more efiicient binary representations,
without converting the data to relational form. A new data type xml is introduced
to represent XML data,,although the CLoB and BLoB data types may provide the
underlying storage mechanism. XML query languages such as xpattr ana xquery are
supported to query XML data.

A relation with an attribute of type xml can be used to store a collection of XML
documents; each document is stored as a varue of type xml in a separate tuple.
Special-purpose indices are created to index the XML daia.

Several database systems provide native support for XML data. They provide an
xml data type and allow Xeuery queries to be embedded within sel- queries. An
XQuery query can be executed on a single XML document and can be embedded
within an SQL query to allow it to execute on each of a collection of documents, with
each document stored in a separate tuple. For example, see section29.71for more
details on native XML support in Microioft SeL Server 2005.

10.5.3 SQL/XML
The recently defined SeL/XML standard defines a standard extension of SeL, allow_
ing the creation of nested XML output. The standard has several parts, including a
standard way of mapping sel- types to XML schema types, and i standard *uy"to
map relational schemas to XML schemas, as well as sel- query language extensions.
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For example, the SQL/XML representation of the account relation would have an

XML schema with outermost element account, with each tuple mapped to an XML

element row, and each relation attribute mapped to an XML element of the same

name (with some conventions to resolve incompatibilities with special characters in

names). An entire SQL schema, with multiple relations, can also be mapped to XML in

a similar fashion. Figure 10.14 shows the SQL/XML representation of the bank schema

containing the relations ftccount, cltstomer, and depositor.

SeL/XML adds several operators and aggregate operations to SQL to allow the

construction of XML output directly from the extended SQL. The xmlelement func-

tion can be used to create XML elements, while xmlattributes can be used to create

attributes, as illustrated by the following query.

select xmlelement( name "account",
xmlattribut es( account-numb er as account-number),
xmlelement( name "branch-nam e", br sn ch-name),
xmlelement( name "balance", balance))

frort account

The above query creates an XML element for each account, with the account num-

ber represented as an attribute, and branch name and balance as subelements' The

result would look like the account elements shown in Figure 10.9, without the own-

ers attribute. The xmlattributes operator creates the XML attribute name using the

SQL attribute name, which can be changed using an as clause as shown.
The xmlforest operator simplifies the construction of XML structures. Its slmtax

and behavior are similar to those of xmlattributes, except that it creates a forest (col-

lection) of subelements, instead of a list of attributes. It takes multiple arguments,
creating an element for each argument, with the attribute's SQL name used as the

XML element name. The xmlconcat operator can be used to concatenate elements
created by subexpressions into a forest.

When ihe SQlvalue used to construct an attribute is null, the attribute is omitted.

Null values are omitted when the body of an element is constructed.
SeL/XML also provides a new aggregate function xmlagg which creates a forest

(collection) of Xtrrti elements from the collection of values on which it is applied. The

following query creates an element for each branch, containing as subelements all the

account numbers at that branch. Since the quely has a clause group by branch-name,

the aggregate function is applied on all accounts at each branch, creating a sequence
of account number elements.

select xmlelement( name "branch",
branchttame,
xmlagg ( xmlforest( accountnumber)

order by ac count -numb er))
fromsccount
group by branch-name
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<bank>
<account>

<row>
<account_number> A-1 01 </account_number>
<branch_name> Downtown </branch_name>
<balance> 500 </balance>

</row>
<row>

<account_number> A-102 </account_number>
<branch_name> perryridge </branch_name>
<balance> 400 </balance>

</row>
<row>

<account_number> A-201 </ account_number>
<branch_name> Brighton </branch_name>
<balance> 900 </balance>

</row>
</account>
<customer>

<row>
<customer_name> Johnson </customer_name>
<customer_street> Alma </customer_street>
<customer_city> palo Alto </customer_city>

</row>
<row>

<customer_name> Hayes </customer_name>
<customer_street> Main </customer_street>
<customer_city> Harrison </customer_city>

</row>
</customer>
<depositor>

<row>
<account_number> A-1 01 </account_number>
<customer_name> Johnson </customer_name>

</row>
<row>

<account_number> A-201 <l account_number>
<customer_name> Johnson </customer_name>

</row>
<row>

<account_number> A-1 02 </account_number>
<customer_name> Hayes </customer_name>

</row>
</depositor>

</bank>

Figure 10.14 SQL/XML representation of bank information.
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SQL/XML allows the sequence created by xmlagg to be ordered, as illustrated in

the preceding query. See the bibliographic notes for references to more information

on SQL/XML.

1O.7 XML Applicotions
We now outline several applications of XML for storing and communicating (ex-

changing) data and for accessing Web services (information resources).

10.7.1 Storing Dqtq with Complex Structure
Many applications need to store data that are structured, but are not easily mod-
eled as relations. Consider, for example, user preferences that must be stored by an
application such as a browser. There are usually a large number of fields, such as
home page, security settings, language settings, and display settings, that must be
recorded. Some of the fields are multivalued, for example, a list of trusted sites, or
maybe ordered lists, for example, a list of bookmarks. Applications traditionally used

some type of textual representation to store such data. Today, a large number of such

applications prefer to store such configuration information in XML format. The ad-
hoc textual representations used earlier require effort to design and effort to create
parsers that can read the file and convert the data into a form that a program can use.
The XML representation avoids both these steps.

XMl-based representations have even been proposed as standards for storing doc-

uments, spread sheet data and other data that are part of office application packages.
XML is also used to represent data with complex structure that must be exchanged

between different parts of an application. For example, a database system may IeP-
resent a query execution plan (a relational-algebra expression with extra information
on how to execute operations) by using XML. This allows one part of the system to

generate the query execution plan and another part to display it, without using a
shared data structure. For example, the data may be generated at a server system

and sent to a client system where the data are displayed.

10.7.2 Stqndqrdized Dqtq Exchqnge Formqts

XMl-based standards for representation of data have been developed for a variety
of specialized applications, ranging from business applications such as banking and

shipping to scientific applications such as chemistry and molecular biology. Some
examples:

o The chemical industry needs information about chemicals, such as their molec-

ular structure, and a variety of important properties, such as boiling and melt-
ing points, calorific values, and solubility in various solvents. ChemML is a
standard for representing such information.

o In shipping, carriers of goods and customs and tax officials need shipment
te"ords containing detailed information about the goods being shipped, from
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whom and to where they were sent, to whom and to where they are being
shipped, the monetary value of the goods, and so on.

o An on line marketplace in which business can buy and sell goods [a so_called
business-to-business (BzB) marketl requires information rrr.I-r u, product cata-
logs, inciuding detailed product desciiptions and price informaiion, prodrrct
inventories, quotes-for a proposed sale, and pntihur" orders. For example,
the RosettaNef standards for e-business applicitions define XML schemas and
semantics for representing data as well standards for message exchange.

Using normalized relational schemas to model such complex data requirements
would result in a large number of relations that do not coriespond directly to the
objects that are being modeled. The relations would often have large numbers of
attrib,utes; explicit representation of attribute/element names along i,vith values in
XML helps avoid confusion between attributes. Nested element representations help
reduce the number of relations that must be represented, as welf as the number ojjoins requiredto get required information, at the possible cost of redundancy. For in-
stance, in our bank example, listing customers with account elements nested within
account elements, as in Figure 10.4, results in a format that is more nafural for some
applications-in particulaq, for humans to read-than is the normalized representa-
tion in Figure 10.1.

10.7.3 Web Services
Applications often require data from outside of the organization, or from another
department in the same organization that uses a different database. In many such
situations, the outside organization or department is not willing to allow direct ac-
cess to its database using sQL, but is willing to provide limited firms of information
through predefined interfaces.

when the information is to be used directly by a human, organizations provide
Web-based forms, where users can input values and get back delired information in
HTML form. However, there are many applications *I-r"t" such information needs to
be accessed by software programs, rathefthan by end users. Providing the results of
a query in XML form is a clear requirement. In addition, it makes rer,re to specify the
input values to the query also in Xtrrtt format.

In effect, the provider of the information defines procedures whose input and out-
put are both in XML format. The HTTP protocol is used to communicate the input
and output information, since it is widely used and can go through firewalls that
institutions use to keep out unwanted traificfrom the Interiet.

The simple object Access protocol (soAp) defines a standard for invoking pro-
cedures, using XML forrepresenting the procedure input and output. soAp defines a
standard XML schema for representing the name of ti-re procedure, and result status
indicators such as failure/error indicaiors. The procedur^e parameters and results are
application-dependent XML data embedded ulhin the soAp XML headers.

Typically, HTTP is used as the transport protocol for soAp, but a message-based
protocol (such as email over the sMTp protocol) may also be used. The solp stan_
dard is widely used today. For example, Amazon and Google provide SoAp-based
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procedures to carry out search and other activities. These procedures can be invoked

Ly other applications that provide higher-level services to users. The SOAP standard
is independent of the underlying programming language, and it is possible for a_site
running one language, such as C#, to invoke a service that runs on a different lan-

gu.age, such as |ava.- 
A site providing such a collection of SOAP procedures is called a Web service.

Several siandards have been defined to support Web services. The Web Services
Description Language (WSDL) is a language used to describe a Web setvice's ca-

pabilities. WSDL ptorrid"s facilities that interface definitions (or function definitions)

provide in a traditional programming language, specifying what functions are avail-

able and their input and output types. In addition WSDL allows specification of the

URL and network port number to be used to invoke the Web service. There is also a

standard called Universal Descriptiory Discovery, and Integration (UDDI) that de-

fines how a directory of available Web services may be created and how a Proglam
may search in the directory to find a Web service satisfying its requirements.

'ihe following example illustrates the value of Web services. An airline company

may define a Web service providing a set of procedures that can be invoked by a

travel Web site; these may include procedures to find flight schedules and pricing

information, as well as to make flight bookings. The travel Web site may interact with

multiple Web services, provided by different airlines, hotels, and other companies, to

provide travel information to a customer and to make travel bookings. By supporting

foeb services, the individual companies allow a useful service to be constructed on

top, integrating the individual services. Users can interact with a single Web site to

-lke theit travel bookings, without having to contact multiple separate Web sites.

To invoke a Web service, a client must prepare an aPPloPriate SOAP XML message

and send it to the service; when it gets the result encoded in XML, the client must

then extract information from the XML result. There are standard APIs in languages

such as |ava and C# to create and extract information from SOAP messages.

See the bibliographic notes for references to more information on Web services.

10.7.4 Dqtq Mediqtion
Comparison shopping is an example of a mediation application, in which data about

items, inventory, pricing, and shipping costs are extracted from a variety of Web sites

offering a particular item for sale. The resulting aggregated information is signifi-

cantly morL valuable than the individual information offered by a single site.

A personal financial manager is a similar application in the context of banking.

Consider a consumer with a variety of accounts to manage, such as bank accounts,

savings accounts, and retirement accounts. Suppose that these accounts may be held

at difflrent institutions. Providing centralized management for all accounts of a cus-

tomer is a major challenge. XMl-based mediation addresses the problem by extract-

ing an XML representation of account information from the respective Web sites of

the financial inititutions where the individual holds accounts. This information may

be extracted easily if the institution exports it in a standard XML format, for example,

as a Web service. For those that do not, wrapper software is used to generate XML

data from HTML Web pages returned by the Web site' Wrapper applications need
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constant maintenance, since they depend on formatting details of web pages, which
change often. Nevertheless, the value provided by medlation often justi?ieJthe effort
required to develop and maintain wrappers.

Once the basic tools are available to extract information from each source, a medi-
ator application is used to combine the extracted information under a single schema.
This may require further transformation of the XML data from each siti since dif-
ferent sites may structure the same information differently. For instance, one of the
banks-may export information in the format in Figure 10.1, while another may use the
nested format in Figure 10.4. They may also use different names for the same informa-
tion (for instance, acct-number and account-id), or may even use the same name for
different information. The mediator must decide on a single schema that represents
ail required information, and must provide code to transf&m data between different
representations. Such issues are discussed in more detail in Section 22.8, in the con-
text of distributed databases. XMl-_query languages such as XSLT and Xeuery play an
important role in the task of transformation Letween different XML representations.

1O.8 Summory
o Like the Hyper-Text Markup Language (HTML) on which the Web is based,

the Extensible Markup Language (xML) is a descendant of the standard Gen_
eralized Markup Language (SGML). XML was originally intended for provid_
ing functional markup for web documents, but has now become the de facto
standard data format for data exchange between applications.

o XML documents contain elements with matching starting and ending tags in-
dicating the beginning and end of an element. Elemen-ts may havE suiele-
ments nested wjth]n them, to any level of nesting. Elements may also have
attributes. The choice between representing infot^itiotr as attribuies and sub-
elements is often arbitrary in the context oi data representation.

o Elements may have an attribute of type lD that stores a unique identifier for
the element. Elements may also storereferences to other elem^ents by using at-
tributes of type IDREF. Attributes of type IDREFS can store a list of ieferen-"ces.

o Documents may optionally have their schema specified by a Document Type
Declaration (orp). The DTD of a document specifies what elements may"oc-
qy, how they may be nested, and what attributes each element may have.
Although DTDs are widely used, they have several limitations. For instance,
they do not provide a type system.

o XML schema is now the standard mechanism for specifying the schema of an
XML document. It provides a large set of basic types, as well as constructs
for creating complex types and specifying integrity constraints, including key
constraints and foreign-key (keyref) constraints.

o XML data can be represented as tree structures, with nodes corresponding to
elements and attributes. Nesting of elements is reflected by the parent-ciild
structure of the tree representation.
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r Path expressions can be used to traverse the XML tree structure, to Iocate re-

quired data. XPath is a standard language for path expressions, and allows

rlquired elements to be specified by a file-system-like path,-and additionally

allows selections and other features. XPath also forms part of other XML query

languages.

o The XQuery language is the standard language for querying XML data. It has

a structure not unlike sQL, with tor,let, whete, order by, and return clauses.

However, it supports many extensions to deal with the tree nature of XML

and to allow foilhe transformation of XML documents into other documents

with a significantly different structure. XPath path expressions form a part of

XQuery. XQuery supports nested queries and user-defined functions.

r The XSLT language was originally designed as the transformation language

for a style sheet facility, in other words, to apply formatting information to

XML documents. However, XSLT offers quite powerful querying and transfor-

mation features and is widely available, so it is used for querying XML data.

o The DOM and SAX APIs are widely used for programmatic access to XML data.

These APIs are available from a variety of programming languages'

r XML data can be stored in any of several different ways. XML data may also

be stored in file systems, or in XML databases, which use XML as their internal

representation.
XML data can be stored as strings in a relational database. Alternatively,

relations can represent XML data as trees. As another alternative, XML data

can be mapped to relations in the same way that E-R schemas are mapped to

relational ichemas. Native storage of XML in relational databases is facilitated

by adding an xml data tYPe to SQL.

o XML is used in a variety of applications, such as storing complex data, ex-

change of data between organizations in a standatdized form, data media-

tion,ind Web services. Web services provide a remote-Procedure call inter-

face, with XML as the mechanism for encoding parameters as well as results'
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Prqctice Exercises
10.1 Give an alternative representation of bank information containing the same

data as in Figure 10.1, but using attributes instead of subelementslAho give
the DTD for this representation.

10'2 Give the DTD for an XML representation of the following nested-relational
schema

Emp = (ename, Childrens et setof(Children), SkillsSet setof( Skills) )
Children = (name, Birthdqa)
Birthday = (day, month, yiar)
Skills = (type, ExamsSet setof(Exsms))
Exams = (year, city)

10.3 Write a query in XPath on the DTD of Practice Exercise 70.2to list all skill types
inEmp.

10.4 write a query in Xeuery on the XML representation in Figure 10.1 to find the
total balance, across all accounts, at each branch.
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<!DOCTYPE bibliograPhY I
<!ELEMENT book (title, author+, year, publisher, place?)>

<!ELEMENT article (title, author+, journal, year, number, volume, pages?)>

<!ELEMENT author ( last-name, first-name) >
<IELEMENT title ( #PCDATA )>
. . . similar PCDATA declarations for year, publisher, place, journal, year,

number, volume, pages, last-name and first-name

l >

Figure 10.15 DTD for bibliographical data.

10.5 Write a quely in XQuery on the XML representation in Figure 10'1 to compute

the left outer join of depositor elements with account elements. (Hint: Use uni-

versal quantification.)

10.5 Write queries in XQuery and XStt to output customer elements with associ-

ated aciount elements nested within the customer elements, given the bank

information representation using lD and IDREFS in Figure 10'9'

10.7 Give a relational schema to represent bibliographical information specified as

per the DTD fragment in Figure 10.15. The relational schema must keep track

bf tn" order of author elements. You can assume that only books and articles

appear as top-level elements in XML documents.

L0.8 Show the tree representation of the XML data in Figure 10.1, and the represen-

tation of the tree usingnodes and child relations described in Section 1'0.6.2.

L0.9 Consider the following recursive DTD.

<!DOCTYPE parts I
<!ELEMENT part (name, subpartinfo.)>
<!ELEMENT subpartinfo (part, quantity)>
<IELEMENT name ( #PCDATA )>
<!ELEMENT quantity ( #PCDATA )>

l >

a. Give a small example of data corresponding to this DTD.

b. Show how to map this DTD to a relational schema. You can assume that

part names are unique; that is, wherever a part apPears, its subpart struc-

ture will be the same.
c. Create a schema in XML Schema corresponding to this DTD'

Exercises

10.10 ShoW by giving a DTD, how to represent the Non-1NF books relation from Sec-

tion9.2, using XML.



Exercises

10.L1 Write the following queries in XQuery, assuming the DTD from practice Exer-
cise 10.2.

a. Find the names of all employees who have a child who has a birthday in
March.

b. Find those employees who took an examination for the skill type ,,typing,,
in the city "Dayton.',

c. List all skill types in Emp.

10.L2 Consider the XML data shown in Figure 10.2. suppose we wish to find purchase
orders that ordered two or more copies of ttre pJrt with identifi er l23.bonsider
the following attempt to solve this problem:

for gp in purchaseorder
where gp/parvid = 123 and gp/parVquantity 1:2
return $p

Explain why the query may return some purchase orders that order less than
two copies of part 123. Give a correct version of the above query.

10.13 Give a query in XQuery to flip the nesting of data from Exercise 10.10. That is, at
the outermost level of nesting the outpuimust have elements corresponding to
authors, and each such element must have nested within it items .orr"rpoid-
ing to all the books written by the author.

10.14 Give the DTD for an XML representation of the information in Figure 6.31. Cre-
ate a separate element type to represent each relationship, but use lD and IDREF
to implement primary and foreign keys.

L0.15 Give an XML schema representation of the DTD from Exercise 10.14.

10.16 write queries in Xeuery on the bibliography DTD fragment in Figure 10.15, to
do the following.

a. Find all authors who have authored a book and an article in the same vear.
b. Display books and articles sorted by year.
c. Display books with more than one author.
d. Find all books that contain the word "database" in their title and the word

"Hank" in an author,s name (whether first or last).

10.17 Give a relational mapping of the XML purchase order schema illustrated in
Figure 10.2, using the approach described in Section 10.6.2.g.

Suggest how to remove redundancy in the relational schema, if item identi-
fiers functionally determine the description and purchase and supplier names
functionally determine the purchase and suppliei address, respectively.

10.18 Write queries in SQL/XML to convert bank data from the relational schema
we have used in earlier chapters to the bank-l andbank-2 XML schemas. (For
tr.e bank-2 schema, you may assume that the customer relation has an extra
attribute customerid.\
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10.L9 As in Exercise 10.18, write queries to convert bank data to thebank-l, andbank-2
XML schemas, but this time by writing XQuery queries on the default SQL/XML
database to XML maPPing.

L0.20 One way to shred an XML document is to use XQuery to convert the schema
to an SeL/XML mapping of the corresponding relational schema, and then use
the SeL/XML mapping in the backward direction to populate the relation.

As an illustration, give an XQuery query to convert data from the bank-l
XML schema to the SQL/XML schema shown in Figure 10.14.

10.21 Consider the example XML schema from Section 70.3.2, and write XQuery que-
ries to carry out the following tasks.

a. Check if the key constraint shown in Section 10.3'2 holds.
b. Check if the keyref constraint shown in Section 10.3.2 holds.

10.22 Consider Practice Exercise 1.0.7, and suppose that authors could also apPear
as top-level elements. What change would have to be done to the relational
schema?
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Although a database system provides a high-level view of data, ult imately data have
to be stored as bits on one or more storage devices. A vast majority of databases
today store data on magnetic disk and fetch data into main memory for processins,
or copy data onto tapes and other backup devices for archival storage. the phvslcll
characteristics of storage devices play a major role in the way daL are storecl, in
particular because access to a random piece of data on disk is much slower than
memory access: Disk access takes tens of mill iseconds, whereas memory access takes
a tenth of a microsecond.

Chapier 11 begins with an overview of physical storage media, including mech-
anisms to minimize the chance of data loss due to device failures. The chapter then
describes how records are mapped to fi les, which in turn are mapped to bits on the
disk.

Many queries reference only a small proportion of the records in a fi le. An index
is a structure that helps Iocate desired records of a relation quickly, without examin-
ing all records. The index in this textbook is an example, although, unlike database
indices, it is meant for human use. Chapter 12 describes several types of indices used
rn database systems.

User queries have to be executed on the database contents, which reside on storage
devices. lt is usually convenient to break up queries into smaller operations, roughly
corresponding to the relational-algebra operations. Chapter l3 describes how queries
are processed, presenting algorithms for implementing individual operations, and
Lhen outlining how the operations are executed in synchrony, to process a query.

There are many alternative ways of processinga query, which can have widely
varying costs. Query optimization refers to the process of f inding the lowest-cost
method of evaluating a given query. Chapter 14 describes the process of query opti-
mizat ion.





In preceding chapters, we have emphasized the higher-level models of a database.
For example, at the conceptual or logicallevel, we viewed the database, in the relational
model, as a collection of tables. Indeed, the logical model of the database is the correct
level for database users to focus on. This is because the goal of a database system is
to simplify and facilitate access to data; users of the system should not be burdened
unnecessarily with the physical details of the implementation of the system.

In this chapteq, however, as well as in Chapterc 12,73, and 14, we piobe below the
higher levels as we describe various methods for implementing the data models and
languages presented in preceding chapters. We start with chaiacteristics of the un-
derlying storage media, such as disk and tape systems. We then define various data
structures that allow fast access to data. We consider several alternative structures,
each best suited to a different kind of access to data. The final choice of data structure
needs to be made on the basis of the expected use of the system and of the physical
characteristics of the specific machine.

1"1.1 Overview of Physiccl Storoge Mediq
Several types of data storage exist in most computer systems. These storage media
are classified by the speed with which data can be accessed, by the cost per unit of
data to buy the medium, and by the medium's reliability. Among the media typically
available are these:

o Cache. The cache is the fastest and most costly form of storage. Cache memory
is small; its use is managed by the computer system hardware. we shall not
be concerned about managing cache storage in the database system.

o Main memory. The storage medium used for data that are available to be op-
erated on is main memory. The general-purpose machine instructions op"tut"
on main memory. Although main memory may contain many megabytes of

441



Chapter 11 Storage and File Structure

data (a typical PC comes with at least 512 megabytes), or even hundreds of
gigabytes of data in large server systems, it is generally too small (or too ex-
pensive) for storing the entire database. The contents of main memory are
usually lost if a power failure or system ctash occurs.

o Flash memory. Flash memory differs from main memory in that data survive
power failure. Reading data from flash memory takes less than 100 nanosec-
onds (a nanosecond is 1/1000 of a microsecond), which is roughly as fast as
reading data from main memory. However, writing data to flash memory is
more complicated-data can be written once, which takes about 4 to 10 mi-
croseconds, but cannot be overwritten directly. To overwrite memory that has
been written already, we have to erase an entire bank of memory at once; it is
then ready to be written again. A drawback of flash memory is that it can sup-
port only a limited number of erase cycles, ranging from 10,000 to 1 million.
Flash memory is a form of electrically erasable programmable read-only memory
(EEPROM); other forms of EEPROM allow individual memory locations to be
erased and rewritten, but they are not as widely used.

Flash memory has found popularity as a replacement for magnetic disks
for storing small volumes of data (in 2005, usually less than 7 gigabyte, al-
though larger-capacity flash memory capable of storing multiple gigabytes is
becoming available) in low-cost computer systems, such as computer systems
that are embedded in other devices, in hand-held computers, and in other dig-
ital electronic devices such as digital cameras. (In early 2005,256 megabytes
of flash memory for a camera costs about $25, while 1 gigabyte costs less than
$100). Flash memory is also used in "USB keys," which can be plugged into
the Universal Serial Bus (USB) slots of computing devices. Such USB keys
have become a popular means of transporting data between computer sys-
tems ("floppy disks" played the same role in earlier days, but their limited
capacity has made them obsolete now).

o Magnetic-disk storage. The primary medium for the long-term on-line stor-
age of data is the magnetic disk. Usually, the entire database is stored on mag-
netic disk. The system must move the data from disk to main memory so that
they can be accessed. After the system has performed the designated opera-
tions, the data that have been modified must be written to disk.

The size of magnetic disks currently ranges from a few gigabytes to 400
gigabytes. A 250-gigabyte disk costs about $160 as of 2005. Both the lower
and upper end of this range have been growing at about 50 percent per year,
and we can expect disks of much larger capacity every year. Disk storage
survirles power failures and system crashes. Disk-storage devices themselves
may sometimes fail and thus destroy data, but such failures usually occur
much less frequently than do system crashes.

o Optical storage. The most popular forms of optical storage are the compact
disk (CD), which can hold about 700 megabytes of data and has a playtime
of about B0 minutes, and the digital aideo disk (DVD), which can hold 4.7 or
8.5 gigabytes of data per side of the disk (or up to 17 gigabytes on a two-
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sided disk). The expansion digital versatile disk is also used in place of digitat
video disk, since DVDs can hold any digital data, not just video data. Dati are
stored optically on a disk, and are tlaa by a laser.

The optical disks used in read-only compact disks (CD_ROM) or read_only
digital video disk (DVD-ROM) cannot be wiitten, but are supplied with data
prerecorded. There are also "record-once" versions of compact disk (called
CD-R) and digital video disk (called DVD-R and DVD+R), whilh can be written
only once; such disks are also called write-once, read-many (woRv) disks.
There are also "multiple-write" versions of compact disk (called CD-RW) and
digital video disk (DVD-RW DVD+RW, and DVD-RAM), which can be written
multiple times.

Optical disk jukebox systems contain a few drives and numerous disks
that can be loaded into one of the drives automatically (by a robot arm) on
demand.

. Thpe storage. Tape storage is used primarily for backup and archival data.
Although magnetic tape is cheaper than disks, access to data is much slower,
because the tape must be accessed sequentially from the beginning. For this
reason/ tape storage is referred to as sequential-access storage. In contrast,
disk storage is referred to as direct-access storage because it is possible to
read data from any location on disk.

Tapes have a high capacity (40- to 300-gigabyte tapes are currently avail-
able), and can be removed from the tape drive, to th"y are well suited to
cheap archival storage. Thpe libraries (jukeboxes) are used to hold exception-
ally large collections of data such as data from satellites, which could iniclude
as much as hundreds of terabytes (1 terabyte = I0r2 bytes), or even multiple
petabytes (1 petabyte - 1015 bytes) of data in a few cases.

The various storage media can be organized in a hierarchy (Figure 11.1) according
to their speed and their cost. The higher levels are expensive, but ire fast. As we mov!
down the hierarchy, the cost per bit decreases, whereas the access time increases. This
trade-off is reasonable; if a given storage system were both faster and less expensive
than another-other properties being the same-then there would be no rdason to
use the slower, mo.e 

"r.petrsive 
mem6ry. In fact, many early storage devices, includ-

ing paper tape and core memories, are relegated to museums tto*Ihut magnetic tape
and semiconductor memory have become faster and cheaper. Magnetic tipes them-
selves were used to store active data back when disks -"ie 

"r.pensive 
and had low

storage capacity. Today, almost all active data are stored on disks, except in very rare
cases where they are stored on tape or in optical jukeboxes.

The fastest storage media-for example, cache and main memory-are referred
to as primary storage. The media in the next level in the hierarchy-for example,
magnetic disks-are referred to as secondary storage, or on line storage. The media
in the lowest level in the hierarchy-for example, magnetic tape ani optical-disk
jukeboxes-are referred to as tertiary storage, oi off line storage.

In addition to the speed and cost of the various storage systems, there is also the
issue of storage volatiiity. Volatile storage loses its contents when the power to the
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Figure 11.1 Storage device hierarchy.

device is removed. In the hierarchy shown in Figure 11.1, the storage systems from
main memory up are volatile, whereas the storage systems below main memory are
nonvolatile. Data must be written to nonvolatile storage for safekeeping. We shall
return to this subject in Chapter 17.

11.2 Mognetic Disks
Magnetic disks provide the bulk of secondary storage for modern computer systems.

Atthough disk capacities have been growing year after year, the storage requirements

of large applications have also been growing very fast, in some cases even faster than

the growth rate of disk capacities. A large database may require hundreds of disks.

11.2.1 Physicol Chqrqcteristics of Disks
Physically, disks are relatively simple (Figure 11.2). Each disk platter has a flat circu-
lar shape. Its two surfaces are covered with a magnetic material, and information is
recorded on the surfaces. Platters are made from rigid metal or glass.

When the disk is in use, a drive motor spins it at a constant high speed (usually 60,
90, or 720 revolutions per second, but disks running at 250 revolutions per second are
available). There is a read-write head positioned just above the surface of the platter.
The disk surface is logically divided into tracks, which are subdivided into sectors. A
sector is the smallest unit of information that can be read from or written to the disk.
In currently available disks, sector sizes are typically 572bytes; there are about 50,000
to 100,000 tracks per platter, and 1 to 5 platters per disk. The inner tracks (closer to
the spindle) are of smaller length, and in current-generation disks, the outer tracks

optical disk

magnetic tapes
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arm assembly

Figure 11.2 Moving head disk mechanism.

contain more sectors than the inner tracks; typical numbers are around 500 sectors per
track in the inner tracks, and around 1000 sectors per track in the outer tracks. the
numbers vary among different models; higher-capacity models usually have more
sectors per track and more tracks on each platter.

The read-write head stores information on a sector magnetically as reversals of
the direction of magnetization of the magnetic material.

Each side of a platter of a disk has a read-write head that moves across the platter
to access different tracks. A disk typically contains many platters, and the readlwrite
heads of all the tracks are mounted on a single assembly called a disk arm, and move
together. The disk platters mounted on a spindle and the heads mounted on a disk
arm are together known as head-disk assemblies. Since the heads on all the platters
move together, when the head on one platter is on the lth track, the heads on all other
platters are also on the rith track of their respective platters. Hence, the zth tracks of all
the platters together are called the zth cylinder.

Today, disks with a platter diameter of 3 j inches dominate the market. They have
a lower cost and faster seek times (due to siraller seek distances) than do the iu.g"r-
diameter disks (up to 14 inches) that were common earlier, yet they provide hlgh
storage capacity. Disks with even smaller diameters are used in portable devices suih
as laptop computers, and some hand-held computers and portible music players.

The read-write heads are kept as close as possible to the disk surface fo increase
the recording density. The head typically floats or flies only microns from the disk
surface; the spinning of the disk creates a small breeze, and the head assembly is
shaped so that the breeze keeps the head floating just above the disk surface. Because
the head floats so close to the surface, platters must be machined carefully to be flat.

rotation



Chapter 11 Storage and File Structure

Head crashes can be a problem. If the head contacts the disk surface, the head can
scrape the recording medium off the disk, destroying the data that had been there. In
older-generation disks, the head touching the surface caused the removed medium
to become airborne and to come between the other heads and their platters, causing
more crashes; a head crash could thus result in failure of the entire disk. Current-
generation disk drives use a thin film of magnetic metal as recording medium. They
are much less susceptible to failure by head crashes than the older oxide-coated disks.

A disk controller interfaces between the computer system and the actual hard-
ware of the disk drive; in modern disk systems, the disk controller is implemented
within the disk drive unit. A disk controller accepts high-level commands to read or
write a sector, and initiates actions, such as moving the disk arm to the right track
and actually reading or writing the data. Disk controllers also attach checksums to
each sector that is written; the checksum is computed from the data written to the
sector. When the sector is read back, the controller computes the checksum again
from the retrieved data and compares it with the stored checksum; if the data are
corrupted, with a high probability the newly computed checksum will not match the
stored checksum. If such an error occurs, the controller will retry the read several
times; if the error continues to occur, the controller will signal a read failure.

Another interesting task that disk controllers perform is remapping of bad sectors.
If the controller detects that a sector is damaged when the disk is initially formatted,
or when an attempt is made to write the sector, it can logically map the sector to a
different physical location (allocated from a pool of extra sectors set aside for this
purpose). The remapping is noted on disk or in nonvolatile memory, and the write is
carried out on the new location.

Disks are connected to a computer system through a high-speed interconnection.
There are a number of common interfaces for connecting disks to personal computers
and workstations: (1) the AT attachment (ATA) interface (which is a faster version of
the integrated drive electronics (IDE) interface used earlier in IBM PCs); (2) the new
version of ATA, which is SATA (serial AIA; the original version of ATA is called PATA,
or Parallel AIA, to distinguish it from SATA); and (3) the small-computer-system
interconnect (SCSI; pronounced "scrszzy"). Mainframe and server systems usually
have a faster and more expensive interface, such as high-capacity versions of the
SCSI interface, and the Fiber Channel interface. Portable external disk systems often
use the USB interface or the FireWire interface.

While disks are usually connected directly by cables to the disk interface of the
computer system, they can be situated remotely and connected by a high-speed net-
work to the disk controller. In the storage area network (SAN) architecture, large
numbers of disks are connectedby a high-speed network to a number of server com-
puters. The disks are usually organized locally using a storage organization tech-
nique called redundant arrays of independent disks (nafo) (described later, in Sec-
tion 11.3), to give the servers a logical view of a very large and very reliable disk. The
computer and the disk subsystem continue to use SCSI or Fiber Channel interfaces to
talk with each other, although they may be separated by a network. Remote access
to disks across a storage area network means that disks can be shared by multiple
computers that could run different parts of an application in parallel. Remote access
also means that disks containing important data can be kept in a central server room
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where they can be monitored and maintained by system administrators, instead of
being scattered in different parts of an organization.

Network attached storage (NnS) is an alternative to SAN. NAS is much like SAN,
except that instead of the networked storage appearing to be a large disk, it provides
a file system interface using networked file syitbm prJtocols such as NpS or CrpS.

11.2.2 Performqnce Meqsures of Disks
The main measures of the qualities of a disk are capacity, access time, data-transfer
rate, and reliability.

Access time is the time from when a read or write request is issued to when data
transfer begins. To access (that is, to read or write) data on a given sector of a disk,
the arm first must move so that it is positioned over the 

"orr""i 
track, and then must

wait for the sector to aPpear under it as the disk rotates. The time for repositioning
the arm is called the seek time, and it increases with the distance that the ur* -uri
move. Typical seek times range from 2 to 30 milliseconds, depending on how far the
track is from the initial arm position. Smaller disks tend to have lower seek times
since the head has to travel a smaller distance.

- 
The average seek timeis the,average of the seek times, measured over a sequence

of (uniformly distributed) random requests. If all tracks have the same number of
sectots, and we disregard the- time required for the head to start moving and to stop
moving, we can show that the average seek time is one-third the woist-car" ,""i.
time. Thking these factors into account, the average seek time is around one-half of
the maximum seek time. Average seek times currently range between 4 and 10 mil-
liseconds, depending on the disk model.

Once the head has reached the desired track, the time spent waiting for the sector
to be accessed to appear under the head is called the rotalional latencv time. Rota-
tional speeds of disks today range from 5400 rotations per minute (90 rotations per
second) up to 15,000 rotations per minute (250 rotations per second), or, equivatenity,
4 milliseconds to 11.1 milliseconds per rotation. On arraverage, one-ha* of a rota-
tionof the disk is required for the beginning of the degired sectJr to appear under the
head. Thus, the average latency time of the disk is one-half the time foi a full rotation
of the disk.

The access time is then the sum of the seek time and the latency, and ranges from
8 to 20 milliseconds. Once the first sector of the data to be access"d hur corie under
the head, data transfer begins. The data-transfer rate is the rate at which data can be
retrieved from or stored to the disk. Current disk systems support maximum transfer
rates of 25 to 100 megabytes per second; transfer rates are signlficantly lower than the
maximum transfer rates for inner tracks of the disk, since they have fewer sectors. For
example, a disk with a maximum transfer rate of 100 megabyles per second may have
a sustained transfer rate of around 30 megabytes per second o.rlts ittt e. tracks.

The final commonly used measure of a disk iJ the mean time to failure (MTTF),
which is a measure of ihe reliability of the disk. The mean time to failure of a disk (or
of any other system) is the amount of time that, on avetage,we can expect the system
to ru1 continuously without any failure. According to vendors' claims, the mean time
to failure of disks today ranges from 500,000 to 1,200,000 hours-aboutsT to 736
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years. In practice the claimed mean time to failure is computed on the probability of

failure when the disk is new-the figure means that given 1000 relatively new disks,

if the MTTF is 1,200,000 hours, on an average one of them will fail in 1200 hours. A

mean time to failure of 1,200,000 hours does not imply that the disk can be expected

to function for 736 years! Most disks have an expected life span of about 5 years, and

have significantly higher rates of failure once they become more than a few years old.

Disk drives for desktop machines typically support the Parallel ATA(PATA) in-

terface which provides transfer rates of 133 megabytes per second, and the Serial

ATA(SATA) interface, which supports 150 megabytes per second. The older ATA-4 and

ATA-5 interfaces supported transfer rates of 33 and 66 megabytes per second, respec-

tively. Disk drives designed for server systems typically support the Ultra320 SCSI

interface, which provides transfer rates of up to 320 megabytes per second, and the

Fiber Channel FC 2Gb interface, which provides transfer rates of up to 256 megabytes

per second. The transfer rate of an inter.face is shared between all disks attached to the

interface (the SATA interface allows only one disk to be connected to each interface).

11.2.3 Optimizotion of Disk-Block Access

Requests for disk I/O are generated both by the file system and by the virtual memory
managet found in most operating systems. Each request specifies the address on the
disk to be referenced; that address is in the form of ablocknumber. A block is a logical
unit consisting of a fixed number of contiguous sectors. Block sizes range from 512
bytes to several kilobytes. Data are transferred between disk and main memory in
units of blocks.

Access to data on disk is several orders of magnitude slower than access to data in
main memory. As a result, a number of techniques have been developed for improv-
ing the speed of access to blocks on disk. One such technique, buffering of blocks
in memory to satisfy future requests, is discussed in Section 11.5. Here, we discuss
several other techniques.

o Scheduling. If several blocks from a cylinder need to be transferred from disk

to main memory, we may be able to save access time by requesting the blocks
in the order in which they will pass under the heads. If the desired blocks
are on different cylinders, it is advantageous to request the blocks in an or-
der that minimizes disk-arm movement. Disk-arm-scheduling algorithms
attempt to order accesses to tracks in a fashion that increases the number of
accesses that can be processed. A commonly used algorithm is the elevator
algorithm, which works in the same way many elevators do. suppose that,
inilialty, the arm is moving from the innermost track toward the outside of
the disk. Under the elevator algorithms control, for each track for which there
is an access request, the arm stops at that track, services requests for the track,
and then continues moving outward until there are no waiting requests for
tracks farther out. At this point, the arm changes direction, and moves toward
the inside, again stopping at each track for which there is a request, until it

reaches a track where there is no request for tracks farther toward the cen-
ter. Then, it reverses direction and starts a new cycle. Disk controllers usually
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perform the task of reordering read requests to improve performance, since
they are intimately aware of the organization of blocks ot-, airt, of the rota-
tional position of the disk platters, and of the position of the disk arm.

o File organization. To reduce block-access time, we can organize blocks on disk
in a way that corresponds closely to the way rre erpecidata to be accessed.
For example, if we expect a file to be accessed sequentially, then we should
ideally keep all the blocks of the file sequentially on adjacent cylinders. Older
operating systems, such as the IBM mainframe operating systems, provided
programmers fine corrtrol on placement of files, allowing a programmer to
reserve a set of cylinders for storing a file. However, this control plu.", a bur_
den on the programmer or system administrator to decide, for example, how
many cylinders to allocate for a file, and may require costly reorganization if
data are inserted to or deleted from the file.

Subsequent operating systems, such as unix and windows operating sys-
tems, hide the disk organization from users, and manage the illocation in-
ternally. However, over time, a sequential file may become fragmented; that
is, its blocks become scattered all over the disk. To reduce fragmentation, the
system can make a backup copy of the data on disk and reitore the entire
disk' The restore operation writes back the blocks of each file contiguously (or
nearly so). Some systems (such as different versions of the Windo,ri op"ritir1g
system) have utilities that scan the disk and then move blocks to decrease th6
fragmentation. The performance increases realizedfrom these techniques can
be large.

o Nonvolatile write buffers. since the contents of main memory are lost in
a power failure, information about database updates has to be recorded on
disk to survive possible system crashes. For this reason, the performance of
update-intensive database applications, such as transaction-processing sys-
tems, is heavily dependent on the speed of disk writes.

We can use nonvolatile random-access memory (NV_RAM) to speed up
disk writes drastically. The contents of NV-RAM are not lost in power faii-
ure. A common way to implement NV-RAM is to use battery-backed-up RAM.
The idea is that, when thetatabase system (or the operating system) requests
that a block be written to disk, the disk controller writes the tlock to an Nv_
RAM buffer, and immediately notifies the operating system that the write com-
pleted successfully. The controller writes the data to their destination on disk
whenever the disk does not have any other requests, or when the NV-RAM
buffer becomes full. when the database system iequests a block write, it no-
tices a delay only if the NV-RAM buffer is full. on recovery from a svstem
crash, any pending buffered writes in the NV-RAM ut" -ritt"r, back 1o the
disk.

NV-RAM buffers are found in certain high end disks, but are more fre-
quently found in "RAID controllers"; we study RAID in section 11.3.

. Log disk. Another approach to reducing write latencies is to use a log disk-
that is, a disk devoted to writing a sequential log-in much the same way as
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a nonvolatile RAM buffer. All access to the log disk is sequential, essentially
eliminating seek time, and several consecutive blocks can be written at once,
making writes to the log disk several times faster than random writes. As
before, the data have to be written to their actual location on disk as well, but
the log disk can do the write later, without the database system having to wait
for the write to complete. Furthermore, the log disk can reorder the writes to
minimize disk-arm movement. If the system crashes before some wnites to the
actual disk location have completed, when the system comes back up it reads
the log disk to find those writes that had not been completed, and carries them
out then.

File systems that support log disks as above are called journaling file sys-
tems. Journaling file systems can be implemented even without a separate log
disk, keeping data and the log on the same disk. Doing so reduces the mone-
tary cost, at the expense of lower Performance.

Most modern file systems implement journaling, and use the log disk when
writing internal file system information such as file allocation information.
Earlier-generation file systems allowed write reordering without using a log
disk, and ran the risk that the file system data structures on disk would be cor-
rupted if the system crashed. Suppose, for example, that a file system used a
linked list, and inserted a new node at the end by first writing the data for the
new node, then updating the pointer from the previous node. Suppose also
that the writes were reordered, so the pointer was updated first, and the sys-
tem crashes before the new node is written. The contents of the node would
then be whatever junk was on disk earlier, resulting in a corrupted data struc-
ture.

To deal with the possibility of such data structure corruption, earlier-
generation file systems had to perform a file system consistency check on sys-
tem restart, to ensure that the data structures were consistent. And if they were
not, extra steps had to be taken to restore them to consistency. These checks
resulted in long delays in system restart atter a crash, and the delays became
worse as disk systems grew to higher capacities. |ournaling file systems allow
quick restart without the need for such file system consistency checks.

However, writes performed by applications are usually not written to the
log disk. Database systems implement their own forms of logging' which we
study later in Chapter 17.

11.3 RAID
The data-storage requirements of some applications (in particular Web, database, and
multimedia applications) have been growing so fast that a iarge number of disks are
needed to store their data, even though disk drive capacities have been growing very
fast.

Having a large number of disks in a system presents opportunities for improving
the rate at which data can be read or written, if the disks are operated in parallel.
Several independent reads or writes can also be performed in parallel. Furthermore,
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this setup offers the potential for improving the reliability of data storage, because
redundant information can be stored on multiple disks. Thus, failure Jf one disk
does not lead to loss of data.

A variety of disk-organizalisr techniques, collectively called redundant arrays of
independent disks (RRIO;, have been proposed to aciieve improved perforrnance
and reliability.

- In the past, system designers viewed storage systems composed of several small
cheap disks as a cost-effective alternative to using iu.g", 

"*pun^rive 
disks; the cost per

megabyte of the smaller disks was less than that of laiger disks. In fact, the t in Ran,
which now stands for independent, originally stood fit inerpenriae. Today, howevel,
all disks are physically small, and larger-capacity disks aciualiy have alower cost
per megabyte. RAID systems are used for their higher reliability and higher perfor-
mance rate, rather than for economic reasons. Another key justification for RAID use
is easier management and operations.

11.3.1 lmprovement of Reliqbility viq Redundoncy
Let us first consider reliability. The chance that at least one disk out of a set of N disks
will fail is much higher than the chance that a specific single disk will fail. Suppose
that the mean time to failure of a disk is 100,000 horrrr, or sli-ghtly over 11 y"u.s.^fh"ry
the mean time to failure of some disk in an array of 100 disks will be t0b,0007t00 =
1000 hours, or around 42 days, which is not long at alMf we store only one copy of
the data, then each disk failure will result in losi of a significant amount of data (as
discussed in Section 11.2.1). Such a high frequency of data loss is unacceptable.

The solution to the problem of reliabitity is to introduce redundancf that is, we
store extra information that is not needed normally, but that can be.tsed: in the event
of failure of a disk to rebuild the lost information. Thus, even if a disk fails, data are
not lost, so the effective mean time to failure is increased, provided that we count
only failures that lead to loss of data or to nonavailability of 

^data.

_ 
The simplest (but most expensive) approach to introducing redundancy is to du-

plicate every disk. This technique is called mirroring (or, soietimes, shadowing). A
logical disk then consists of two physical disks, and eiery write is carried out onloth
disks. If one of the disks fails, the data can be read from the other. Data will be lost
only if the second disk fails before the first failed disk is repaired.

The mean time to failure (where failure is the loss of dita) of a mirrored disk de_
pends on the mean time to failure of the individual disks, as well as on the mean
time to repair, which is the time it takes (on an average) to replace a failed disk and
to restore the data on it. Suppose that the failures oflhe two disks are independent;
that is, there is no connection between the failure of one disk and the failure of the
other. Then, if the mean time to failure of a single disk is 100,000 hours, and the mean
time to repair is 10 hours, then the mean time to data loss of a mirrored disk sys-
t9m is 100,0002 lQ x 10) : 500 x 106 hours, or s7,000 years! (we do not go into the
derivations here; references in the bibliographical notes provide the detaii-s.)

You should be aware that the assumption of independence of disk failures is not
valid. Power failures, and natural disasters such as earthquakes, fires, and floods,
may result in damage to both disks at the same time. As disks age, the probability oi
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failure increases, increasing the chance that a second disk will fail while the first is

being repaired. In spite of all these considerations, however, mirrored-disk systems

offer much higher reliability than do single-disk systems. Mirrored-disk systems with

mean time to data loss of about 500,000 to 1,000,000 hours, or 55 to 110 years, are

available today.
Power failures are a particular source of concetn, since they occur far more fre-

quently than do natural disasters. Power failures are not a concern if there is no data

tiansfer to disk in progress when they occur. Flowever, even with mirroring of disks,

if writes are in progress to the same block in both disks, and power fails before both

blocks are fully written, the two blocks can be in an inconsistent state. The solution

to this problem is to write one copy first, then the next, so that one of the two copies

is always consistent. Some extra actions are required when we restart after a Power
failure, to recover from incomplete writes. This matter is examined in Practice Exer-

cise 11.2.

11.3.2 lmprovement in Performqnce viq Pqrqllelism

Now let us consider the benefit of parallel access to multiple disks. With disk mirror-
ing, the rate at which read requests can be handled is doubled, since read requests
can be sent to either disk (as long as both disks in a pair are functional, as is almost
always the case). The transfer rate of each read is the.same as in a single-disk system,
but the number of reads per unit time has doubled.

With multiple disks, we can improve the transfer rate as well (or instead) by strip-
ing data across multiple disks. In its simplest form, data striping consists of splitting
the bits of each byte across multiple disks; such striping is called bit-level striping.
For example, if we have an array of eight disks, we write blt i, of eagh byte to disk
z. The arriy of eight disks can be treated as a single disk with sectors that are eight
times the normal size, and, more important, that has eight times the transfer rate. In

such an organization, every disk participates in every access (read or write), so the
number of accesses that can be processed per second is about the same as on a sin-
gle disk, but each access can read eight times as many data in the same time as on a
single disk. Bitlevel striping can be generalized to a number of disks that either is a
multiple of 8 or a factor of 8. For example, if we use a\ affay of four disks, bits z and
4 + i of each byte go to disk z.

Block-level striping stripes blocks across multiple disks. It treats the array of disks
as a single large disk, and it gives blocks logical numbers; we assume the block num-

bers start from 0. With an array of n disks, block-level striping assigns logical block z

of the disk array to disk (z mod n) * 1; it uses the lllnlthphysical block of the disk
to store logical block i. For example, with 8 disks, logical block 0 is stored in physical
block 0 of disk 1, while logical block 11 is stored in physical block 1 of disk 4. When
reading a large file, block-level striping fetches n blocks at a time in parallel from the
n disks, giving a high data transfer rate for large reads. When a single block is read,
the data-transfer rate is the same as on one disk, but the remaining n - 1 disks are
free to perform other actions.

Block-level striping is the most commonly used form of data striping. Other levels
of striping, such as bytes of a sector or sectors of a block, also are possible.
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In summary, there are two main goals of parallelism in a disk system:

1. Load-balance multiple small accesses (block accesses), so that the throughput
of such accesses increases.

2. Parallelize large accesses so that the response time of large accesses is reduced.

11.3.3 RAID Levels
Mirroring provides high reliability, but it is expensive. Striping provides high data-
transfer rates, but does not improve reliability. Various alternitirre schemeJ aim to
grgvi$e redundancy at.lower cost by combining disk striping with ,.parity" bits
(which we describe next). These schemes have differer,, 

"or1-puriormance 
trade-offs.

The schemes are classified into RAID levels, as in Figure tt.g. (tn the figure, p indi-
cates error-correcting bits, and C indicates a second copy of the data.) For all levels,
the figure depicts four disks' worth of data, and the exira disks depicted are used to
store redundant information for failure recovery.

o RAID level 0 refers to disk arrays with striping at the level of blocks, but with-
out any redundancy (such as mirroring or parity bits). Figure 11.3a shows an
array of size 4.

o RAID level 1 refers to disk mirroring with block striping. Figure 11.3b shows
a mirrored organization that holds four disks worthbf data.

Note that some vendors use the term RAID level 1+0 or RAID level 10
to refer to mirroring with striping, and use the term RAID level 1 to refer to
mirroring without striping. Mirroring without striping can also be used with
arrays of disks, to give the appearance of a single large reliable disk: if each
disk has M blocks, logical blocks I to M are stored or-, dirk I, M + | to 2M on
the second disk and so on, and each disk is mirrored. 1

o RAID level 2, known as memory-style error-correcting-code (ECC) organiza-
tion, employs parity bits. Memory systems have long uied parity bits fJ, 

"r.o,detection and correction. Each byte in a memory system may have a parity bit
associated with it that records whether the numbers of bits in the byt! thai are
set to 1 is even (parity = 0) or odd (parity = 1). If one of the bits in the byte
gets damaged (either a 1 becomes a 0, or a 0 becomes a 1), the pariw or ihe
byte changes and thus will not match the stored parity. Similarly, if thl stored
parity bit gets damaged, it will not match the compufed parity. Thus, all 1-bit
errors will be detected by the memory system. Error-correcting schemes store
2 or more extra bits, and can reconstruct the data if a single biigets damaged.

The idea of error-correcting codes can be used direcily in disk urruvJ by
striping bytes across disks. For example, the first bit of 

-each 
uyte couta b!

1' Note that some vendors use the term RAID 0+1 to refer to a version of RAID that uses striping to
create_ a RAID 0 array, andrnirrors the array onto another array, with the difference from RAID i fjrrg
that if a disk faiis, the RAlD_0-array,containing the disk becomes unusable. The mirrored array can stili
be used, so there is no loss of data. This arrangement is inferior to RAID 1 when a disk has faiied, since
the other disks in the RAID 0 array can continue to be used in RAID 1, but remain idle in RAID 0+1.
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@@@ffi
(a) RAID 0: nonredundant striping

@ffiffi@@@@@
(b) RAID 1: mirrored disks

@@@@@@@
(c) RAID 2: memory-style error-correcting codes

@@@@@
(d) RAID 3: bit-interleaved parity

@@@@@
(e) RAID 4: block-interleaved parity

@@@@@
(fl RAID 5: block-interleaved distributed parity

@@@@@@
(g) RAID 6: P + Q redundancY

Figure 11.3 RAID levels.

stored in disk 1, the second bit in disk 2, and so on until the eighth bit is

stored in disk 8, and the error-correction bits are stored in further disks.
Figure 11.3c shows the level2 scheme. The disks labeled P store the error-

.ott"ition bits. If one of the disks fails, the remaining bits of the byte and the

associated error-correction bits can be read from other disks, and can be used

to reconstruct the damaged data. Figure 11.3c shows an afiay of size 4; note

RAID level 2 requires only three disks' overhead for four disks of data, unlike
RAID level 1, which required four disks' overhead.

RAID level 3, bit-interleaved parity organization, improves on level 2 by

exploiting the fact that disk contlollers, unlike memory systems, can detect
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whether a sector has been read correctly, so a single parity bit can be used for
error correction, as well as for detection. The idea is as follows. If one of the
sectors gets damaged, the system knows exact$ which sector it is, and, for
each bit in the sectoq, the system can figure out whether it is a 1 or a 0 by com-
puting the parity of the corresponding bits from sectors in the other disks. If
the parity of the remaining bits is equal to the stored. parity, the missing bit is
0; otherwise, it is 1.

RAID level 3 is as good as level 2, but is less expensive in the number of
extra disks (it has only a one-disk overhead), so level 2 is not used in practice.
Figure 11.3d shows the level3 scheme.

RAID ievel3 has two benefits over level 1. It needs only one parity disk for
several regular disks, whereas level L needs one mirror disk for everv disk.
and thus reduces the storage overhead. since reads and writes of a byte are
spread out over multiple disks, with.A/-way striping of data, the transier rate
for reading or writing a single block is l/ times ?aster than a RAID level 1 or-
ganizationvsing l/-way striping. on the other hand, RAID level 3 supports a
lower number of I/o operations per second, since every disk has to paiticipate
in every I/O request.

o RAID level 4, block-interleaved parity organization, uses block-level striping,
like RAID 0, and in addition keeps a parity block on a separate disk foi coi-
responding blocks from l/ other disks. This scheme is shown pictorially in
Figure 11.3e. If one of the disks fails, the parity block can be used with the
corresponding blocks from the other disks to restore the blocks of the failed
disk.

A block read accesses only one disk, alowing other requests to be pro-
cessed by the other disks. Thus, the data-transfer rite for ea"i u""es is sloi,yer,
but multiple read accesses can proceed in parallel, leading to a higher overali
I/o rate. The transfer rates for large reads is high, since all the disks can be
read in parailel; large writes also have high tranifer rates, since the data and
parity can be written in parallel.

-- s_mall independent writes, on the other hand, cannot be performed in par-
allel. A write of a block has to access the disk on which the block is stoied,
3s rlzell as the parity disk, since the parity block has to be updated. Moreover,
both the old value of the parity block and the old value of the block being
written have to be 

191d for the new parity to be computed. Thus, a sing[
write requires four disk accesses: two to read the two old blocks, and two to
write the two blocks.

o RAID level 5, block-interleaved distributed parity, improves on level 4by par-
titioning data and parity among all l/ * 1 disks, instead of storing aata in lf'disks 

and parity in one disk. In'level 5, all disks can participate in satisfying
read requests, unlike RAID level 4, where the parity disk cannot participate-,
so level 5 increases the total number of requeits that can be mef in u girrur-,
amount of time. For each set of l/ logical blocks, one of the disks store-s the
parity, and the other l/ disks store the blocks.
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Figure 11.3f shows the setup. The P's are distributed across all the disks.
For example, with an array of 5 disks, the parity block, labeled Pk, for logical
blocks 4k, 4k + I, 4k + 2, 4k + 3 is stored in disk (,k mod 5) + 1; the correspond-
ing blocks of the other four disks store the 4 data blocks 4k to 4k * 3. The
following table indicates how the first 20 blocks, numbered 0 to 19, and their
parity blocks are laid out. The Patteln shown gets repeated on further blocks.

Note that a parity block cannot store parity for blocks in the same disk,
since then a disk failure would result in loss of data as well as of parity, and
hence would not be recoverable. Level 5 subsumes level 4, since it offers better
read-write performance at the same cost, so level 4 is not used in practice.

o RAID level 6, the P + Q redundancy scheme, is much like RAID level 5, but
stores extra redundant information to guard against multiple disk failures.
Instead of using parity, level 6 uses error-correcting codes such as the Reed-
solomon codes (see the bibliographical notes). In the scheme in Figure 11.39,
2 bits of redundant data are stored for every 4 bits of data-unlike 1 parity bit

in levelS-and the system can tolerate two disk failures.

Finally, we note that several variations have been proposed to the basic RAID
schemes described here, and different vendors use different terminologies for the
variants.

11.3.4 Choice of RAID Level

The factors to be taken into account in choosing a RAID level are

r Monetary cost of extra disk-storage requirements

o Performance requirements in terms of number of I/O operations

o Performancd when a disk has failed

o Performance during rebuild (that is, while the data in a failed disk are being
rebuilt on a new disk)

The time to rebuild the data of a failed disk can be significant, and varies with
the RAID level that is used. Rebuilding is easiest for RAID level 1, since data can
be copied from another disk; for the other levels, we need to access all the other
disks in the array to rebuild data of a failed disk. The rebuild performance of a RAID
system may be an important factor if continuous availability of data is required, as it
is in high-performance database systems. Furthermore, since rebuild time can form a



RAIDI  l . J 457

significant part of the repair time, rebuild performance also influences the mean time
to data loss.

RAID levei 0 is used 
-in-high-performance applications where data safety is not

critical. Since RAID levels 2 and 4 are subsumed-by RAID levels 3 and 5, the choice
of RAID levels is restricted to the remaining levels. Bit striping (tevel3) is inferior to
block striping (level5), since blockstriping giuur as good data-"transfer rates for large
transfers, while using fewer disks for small transfers. For small transfers, the disk ac-
cess time dominates anyway, so the benefit of parallel reads diminishes. In fact, level
3 may perform worse than level 5 for a small ffansfel since the transfer completes
gnlY-w!e1 corresponding sectors on all disks have been fetched; the average laiency
for the disk array thus becomes very close to the worst-case latency for a si"ngle dis(
negating the benefits of higher transfer rates. Level 6 is not supported currlntly by
many RAID implementations, but it offers better reliability than level 5 ana 
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used in applications where data safety is very important.
The choice between RAID level 1 and level 5ls harder to make. RAID level 1 is

popular for applications_such as storage of log files in a database system, since it
offers the best write performance. RAID tevel 5 has a lower storage overhead than
level 1, but has a higher time overhead for writes. For applications where data are
read frequently, and written rarely, level 5 is the prefer.ed 

"hoi"".Disk-storage capacities have been growing at a rate of over 50 percent per year for
many years, and the cost per byte has been falling at the same .it". As i result, for
many existing database applications with moderate storage requirements, the mon-
etary cost of the extra disk storage needed for mirroring his beiome relatively small
(the extra monetary cost, howeve4 rernains a significait issue for storage-intensive
applications such as video data storage). Accesi speeds have improved at a much
slower rate (around a factor of 3 over 10 years), white the numbeiof I/o operations
required per second has increased tremendously, particularly for Web application
servers.

RAID level 5, which increases the number of l/O operations needed to write a
1".9_1"- tog]9a] block, pays a significant time penalty in ierms of write performance.
RAID level 1 is therefore the RAID level of choice for many applications with moderate
storage requirements, and high I/O requirements.

. RAID system designers have to make several other decisions as well. For example,
how many disks should there be in an array? How many bits should be protected by
each parity bit? If there are more disks in an array, data-transfer rates are higher, but
the system would be more expensive. If there ate *or" bits protected by a {afitybit,the space overhead due to parity bits is lower, but there is ai increased chance that a
second disk will fail before the first failed disk is repaired, and that will result in data
loss.

11.3.5 Hqrdwqre lssues
Another issue in the choice of RAID implementations is at the level of hardware.
RAID can be implemented with no change at the hardware level, using only software
modification' Such RAID implementations are called software RAID. Howlvel, there
are significant benefits to be had by building special-purpose hardware to support
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RAID, which we outline below; systems with special hardware support are called

hardware RAID systems.
Hardware RAID implementations can use nonvolatile RAM to record writes before

they are performed. In case of power failure, when the system comes back up, it

retrieves information about any incomplete writes from nonvolatile RAM and then

completes the writes. Without such hardware support, extra work needs to be done to

detect blocks that may have been partially written before power failure (see Practice

Exercise 11.2).
Some hardware RAID implementations permit hot swappingi that is, faulty disks

can be removed and replaced by new ones without turning power off. Hot swapping

reduces the mean time to repafu, since replacement of a disk does not have to wait

until a time when the system can be shut down. In fact many critical systems today

run on a24 x 7 schedule; that is, they run 24 hours a day,7 days a week, providing

no time for shutting down and replacing a failed disk. Further, many RAID imple-

mentations assign a spare disk for each array (or for a set of disk arrays). If a disk

fails, the spare disk is immediately used as a replacement. As a result, the mean time

to repair is reduced greatly, minimizing the chance of any data loss. The failed disk

can be replaced at leisure.
The power supply, or the disk controller, or even the system interconnection in a

RAID system could become a single point of failure, that could stop functioning of

the RAID system. To avoid this possibility, good RAID implementations have mul-

tiple redundant power supplies (with battery backups so they continue to function

even if power fails). Such RAID systems have multiple disk interfaces, and multiple

interconnections to connect the RAID system to the computer system (or to a net-

work of computer systems). Thus, failure of any single component will not stop the

functioning of the RAID sYstem.

11.3.6 Other RAID ApPlicotions
The concepts of RAID have been generalized to other storage devices, including ar-

rays of tapes, and even to the broadcast of data over wireless systems. When applied

to arrays of tapes, the RAID structures are able to recover data even if one of the tapes

in an array of tapes is damaged. When applied to broadcast of data, a biock of data

is split into short units and is broadcast along with aparity uni! if one of the units is

not received for any reason, it can be reconstructed from the other units.

11"4 Tertiory Storoge
In a large database system, some of the data may have to reside on tertiary storage.
The two most common tertiary storage media are optical disks and magnetic tapes.

11.4.1 Opticol Disks
Compact disks have been a popular medium for distributing software, multimedia
data such as audio and images, and other electronically published information. They
have a storage capacity of 640 to 700 megabytes, and they are cheap to mass-produce.



71.4 Tertiary Storage

Digital video disks (DVDs) have now replaced compact disks in applications that
require larger amounts of data. Disks in the DVD-S format can store 4i gigabytes of
data (in one recording layer), while disks in the DVD-9 format can store s.s gigauytes
of data (in two recording layers). Recording on both sides of a disk yields 
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capacities; DVD-10 and DVD-18 formats, which are the two-sided versions of prip-
5 and DVD-9, can store 9.4 gigabytes and,77 gigabytes, respectively. Newer formats
called the HD-DVD and the BIu-Ray DVD have a significantly higher capacity: HD-
DVD disks can store 12 to 30 gigabytes per disk, white nlu-Riy ovo disks can store
]f ^t_o SO gigabytes per disk. These are expected to become widely available around
2005-2006.

CD and DVD drives have much longer seek times (100 milliseconds is common)
than do magnetic-disk drives, since the head assembly is heavier. Rotational speeds
are typically lower than those of magnetic disks, although the faster CD urrd ovo
drives have rotation speeds of about 3000 rotations per mi'rute, which is comparable
to speeds of lower-end magnetic-disk drives_ Rotational speeds of CD drives origi_
nally corresponded to the audio CD standards, and the spleds of DVD drives ori[i-
nally corresponded to the DVD video standards, but 

"r.ttr"ttt-g"neration 
drives rotate

at many times the standard rate.
Data-transfer rates are somewhat less than for magnetic disks. Current CD drives

read at around 3 to 6 megabytes per second, and curient DVD drives read at g to 20
megabytes per second. Like magnetic-disk drives, optical disks store more data in
outside tracks and less data in inner tracks. The transfer rate of optical drives is char-
acterized as nx' which means the drive supports transfers at n times the standard
rate; rates of around 50x for CD and 16x for DVD are now common.

The record-once versions of optical disks (CD-& DVD-& and DVD+R) are popular
for distribution of data and particularly for archival storage of data Ue"a.rre tney
have a high capacity, have a longer lifetime than magnetic diiks, and can be removed
and stored at a remore location. Since they cannot 6e overwrittery they can be used
to store information that should not be modified, such as audit trails. The multiple-
write versions (CD-RW, DVD-RW, DVD+RW, and DVD_RAM) are also used for archival
PurPoses.

fukeboxes are devices that store a large number of optical disks (up to several
hundred) and load them automatically on demand to one of a small number of drives
(usually 1 to 10). The aggregate storage capacity of such a system can be many ter-
abytes. When a disk is accessed, it is loaded by a mechanicaf arm from a rack onto a
drive (any disk that was already in the drive must first be placed back on the rack).
The disk load/unload time is usually of the order of a few seconds-very much
longer than disk access times.

11.4.2 Mognetic Topes
Although magnetic tapes are relatively permanent, and can hold large volumes of
data, they are slow in comparison to magnetic and optical disks. Evei more impor-
tant, magnetic tapes are limited to sequential access. Thus, they cannot provide ian-
dom access for secondary-storage requirements, although historically,^prior to the
use of magnetic disks, tapes were used. as a secondary-stJrage medium. 

-
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Tapes are used mainly for backup, for storage of infrequently used information,
and as an off-line medium for transferring information from one system to another.
Tapes are also used for storing large volumes of data, such as video or image data,
that either do not need to be accessible quickly or are so voluminous that magnetic-
disk storage would be too expensive.

A tape is kept in a spool, and is wound or rewound past a read-write head.
Moving to the correct spot on a tape can take seconds or even minutes, rather than
milliseconds; once positioned, however, tape drives can write data at densities and
speeds approaching those of disk drives. Capacities vary, depending on the length
and width of the tape and on the density at which the head can read and write.
The market is currently fragmented among a wide variety of tape formats. Currently
available tape capacities range from a few gigabytes with the Digital Audio Tape
(OAT) format, 10 to 40 gigabytes with the Digital Linear Tape (DLI) format, 100 giga-
bytes and higher with the Ultrium format, to 330 gigabytes with Ampex helical scan
tape formats. Data-transfer rates are of the order of a few to tens of megabytes per
second.

Tape devices are quite reliable, and good tape drive systems perform a read of the
just-written data to ensure that it has been recorded correctly. Tapes, however, have
limits on the number of times that they can be read or written reliably.

Tape jukeboxes, like optical disk jukeboxes, hold large numbers of tapes, with

a few drives onto which the tapes can be mounted; they are used for storing large

volumes of data, ranging up to many petabytes (10rb bytes), with access times on
the order of seconds to a few minutes. Applications that need such enormous data
storage include imaging systems that gather databy remote-sensing satellites, and
large video libraries for television broadcasters.

Some tape formats (such as the Accelis format) support faster seek times (of the

order of tens of seconds), and are intended for applications that retrieve informa-
tion from jukeboxes. Most other tape formats provide larger capacities, at the cost
of slower access; such formats are ideal for data backup, where fast seeks are not
important.

Tape drives have been unable to keep up with the enormous improvements in

disk drive capacity and corresponding reduction in storage cost. While the cost of

tapes is low, the cost of tape drives and tape libraries is significantly higher than the
cost of a disk drive: a tape library capable of storing a few terabytes can costs tens
of thousands of dollars. Backing up data to disk drives has become a cost-effective
alternative to tape backup for a number of applications.

11.5 Storoge Access
A database is mapped into a number of different files that are maintained by the

underlying operating system. These files reside permanently on disks, with backups
on tapes. Ea.h file is partitioned into fixed-length storage units called blocks, which
are the units of both storage allocation and data transfer. We shall discuss in Section
11.6 various ways to organize the data logically in files.

A block may contain several data items. The exact set of data items that a block

contains is determined by the form of physical data organization being used (see



Section 11.6). We shall assume that no data item spans two or more
assumption is realistic for most data-processing applications, such as
example.
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blocks. This
our banking

- A major goal of the database system is to minimize thenumber of block transfers
between the disk and memory. one way to reduce the number of disk accesses is to
keep as many blocks as possible in main memory. The goal is to maximize the chance
that, when a block is accessed, it is already in main *"irory, and, thus, no disk access
is required.

.- 
sinc_e it is_ not possible t9 !9"p all blocks in main memory, we need to manage the

allocation of the space available in main memory for the storage of blocks. The buffer
is that part of main memory available for storige of copies 6r airt blocks. There is
ul-.uy: 

3 "9pI 
kept on disk of every brock, but the .opy o^ disk may be a version

of the block older than the version in the buffer. The sutsystem responsible for the
allocation of buffer space is called the buffer manager.

11.5.1 Buffer Monoger
Programs in a database.system make requests (that is, calls) on the buffer manager
when they need a block from disk. If the block is already in the buffer, the buffer min-
ager Passes the address of the block in main memory io the requester. If the block is
not in the buffer, the buffer manager first allocates space in the buffer for the block,
throwing out some other block, if necessary, to make space for the new block. The
thrown-out block is written back to disk oniy if it has been modified since the most
recent time that it was written to the disk. Then, the buffer manager reads in the re-
quested block from the disk to the buffel, and passes the address o? the block in main
memory to the requester. The internal actions of the buffer manager are transparent
to the programs that issue disk-block requests.

If you are familiar with operating-system concepts, you will note that the buffer
manager appears to be nothing more than a virtual-memory managel, like those
found in most operating systems. One difference is that the siie of the?atabur";;t
be much more than the hardware address space of a machine, so memory addresses
are not sufficient to address all disk blocki. Further, to serve the database system
well, the buffer manager must use techniques more sophisticated than typical virtual-
memory management schemes:

o Buffer replacement strategy. When there is no room left in the buffer, a block
must be removed from the buffer before a new one can be read in. Most oper-
ating systems use a least recently used (tnu) scheme, in which the block ihat
was referenced least recently is written back to disk and is removed from the
buffer. This simple approach can be improved on for database applications.

o Pinned blocks. For the database system to be able to recover from crashes
(Chapter 77) , 1t is necessary to restrict those times when a block may be written
back to disk. For instance, most recovery systems require that a block should
not be written to disk while an update on the block is in progress. A block that
is not allowed to be written back to disk is said to be pinnei. Although many
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operating systems do not support pinned blocks, such a feature is essential for

a database system that is resilient to crashes.

o Forced output of blocks. There are situations in which it is necessary to write
back the block to disk, even though the buffer space that it occupies is not

needed. This write is called the forced output of a block. We shall see the
reason for forced output in Chapter 17; briefly, main-memory contents and
thus buffer contents are lost in a crash, whereas data on disk usually survive
a crash.

11.5.2 Buffer-Replqcement Policies

The goal of a replacement strategy for blocks in the buffer is to minimize accesses
to the disk. For general-purpose programs, it is not possible to predict accurately
which blocks will be referenced. Therefore, operating systems use the past pattern of

block references as a predictor of future references. The assumption generally made

is that blocks that have been referenced recently are likely to be referenced again.

Therefore, if a block must be replaced, the least recently referenced block is replaced.

This approach is called the least recently used (LRU) block-replacement scheme'

fnU is an acceptable replacement scheme in operating systems. However, a data-

base system is able to predict the pattern of future references more accurately than an

op".uiit g system. A user request to the database system involves several steps. The

database system is often able to determine in advance which blocks will be needed by

looking at each of the steps required to perform the user-requested operation. Thus,

unhkebperating systems, which must rely on the past to predict the future, database

systems may have information regarding at least the short-term future.
To illustrate how information about future block access allows us to improve the

LRU strategy, consider the processing of the relational-algebra expression

borrower D4 customer

Assume that the strategy chosen to process this request is given by the pseudocode

program shown in Figure 11.4. (We shall study other, more efficient, strategies in

Chapter 13.)
Aisume that the two relations of this example are stored in separate files. In this

example, we can see that, once a tuple of borrowerhasbeenprocessed, that tuple is not

needed again. Therefore, once processing of an entire block of borrower tuples is com-

pleted, that block is no longer needed in main memory, even though it has been used

iecently. The buffer manager should be instructed to free the space occupied by a

borrowerblock as soon as the final tuple has been processed. This buffer-management
strategy is called the toss-immediate strategy.

No* consider blocks containing customer tuples. We need to examine every block

of customer tuples once for each tuple of the borrower relation. When processing of a

customerblocli is completed, we know that that block will not be accessed again until

all other customerblocks have been processed. Thus, the most recently used customer

block will be the final block to be re-referenced, and the least recently used customer
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for each tuple b of borrower do
for each tuple c of customer do

if blcustomer -namel = clcustomer-namel
then begin

let r be a tuple defined as follows:
xfcu st om er -n am ef : = bfcu s t o m er -n am e]
xll o an-numb erl : = bll o an -numb erl
xfcustomerstreet] := clcustomerstreetf
xfcust omer -cityJ := cfcu st om er dty)
include tuple r as part of result of borrower X customer

end
end

end

Figure 11.4 Procedure for computing join.

block is the block that will be referenced next. This assumption set is the exact oppo-
site of the one that forms the basis for the LRU strategy. Indeed, the optimal strategy
for block replacement for the above procedure is the most recently usea (UnU) strii-
egy. If a customer block must be removed from the buffer, the MRU strategy chooses
the most recently used block (blocks are not eligible for replacement while they are
being used).

For the MRU strategy to work correctly for our example, the system must pin the
customerblock currently being processed. After the final customer tuple has been pro-
cessed, the block is unpinned, and it becomes the most recently used block.

In addition to using knowledge that the system may have about the request being
processed, the buffer manager can use statistical information about the probability
that a request will reference a particular relation. For example, the data dictionary
that (as we will see in detail in Section 11.8) keeps track of the logical schema of the
relations as well as their physical storage information is one of the most frequently
accessed parts of the database. Thus, the buffer manager should try not to remove
data-dictionary blocks from main memory, unless other factors dictate that it do so.
In Chapter 72, we discuss indices for files. Since an index for a file may be accessed
more frequently than the file itselt the buffer manager should, in general, not remove
index blocks from main memory if alternatives are available.

The ideal database block-replacement strategy needs knowledge of the database
operations-both those being performed and those that will be performed in the
future. No single strategy is known that handles all the possible scenarios well. In-
deed, a surprisingly large number of database systems use LRU, despite that strat-
egy's faults. The practice questions and exercises explore alternative strategies.

The strategy that the buffer manager uses for block replacement is influenced by
factors other than the time at which the block will be referenced again. If the system
is processing requests by several users concurrently, the concurrency-control sub-
system (Chapter 1'6) may need to delay certain requests, to ensure preservation of
database consistency. if the buffer manager is given information from the concurrency-
control subsystem indicating which requests are being delayed, it can use this infoi-
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mation to alter its block-replacement strategy. Specifically, blocks needed by active
(nondelayed) requests can be retained in the buffer at the expense of blocks needed
by the delayed requests.

The crash-recovery subsystem (Chapter 17) imposes stringent constraints on block
replacement. If a block has been modified, the buffer manager is not allowed to write
back the new version of the block in the buffer to disk, since that would destroy
the old version. Instead, the block manager must seek permission from the crash-
recovery subsystem before writing out a block. The crash-recovery subsystem may
demand that certain other blocks be force-output before it grants permission to the

buffer manager to output the block requested. In Chapter 77, we define precisely the
interaction between the buffer manager and the crash-recovery subsystem.

11.6 File Orgqnizqtion
A file is organized togically as a sequence of records. These records are mapped ontg
disk blocki. Files are provided as a basic construct in operating systems, so we shall

assume the existence of an underlyingfle system. We need to consider ways of repre-

senting logical data models in terms of files.
Although blocks are of a fixed size determined by the physical properties of the

disk and by the operating system, record sizes vary. In a relational database, tuples
of distinct relations are generally of different sizes.

One approach to mapping the database to files is to use several files, and to store
records of only one fixed length in any given file. An alternative is to structure our
files so that we can accommodate multiple lengths for records; however, files of fixed-
length records are easier to implement than are files of variable-length records. Many
of the techniques used for the former can be apptied to the variable-length case. Thus,

we begin by considering a file of fixed-length records.

11.5.1 Fixed-Length Records
As an example, let us consider a file of nccount records for our bank database. Each
record of this file is defined (in pseudocode) as:

tYPe dePosit = record
a c c o u nt -numb er char(7}) ;
branch-name char(22);
balance numefic(72,2);

end

If we assume that each character occupies 1 byte and that numeric(12,2) occupies
B bytes, our account record is 40 bytes long. A simple approach is to use the first 40

bytes for the first record, the next 40 bytes for the second record, and so on (Figure

11.5). However, there are two problems with this simple approach:

1. It is difficult to delete a record from this structure. The space occupied by the

record to be deleted must be filled with some other record of the file, or we

must have a way of marking deieted records so that they can be ignored'
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record 0
record 1

record 2

record 3

record 4

record 5

record 6

record 7

record 8

Figure 11.5
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File containrng account records.

2. Unless the block size happens to be a multiple of 40 (which is unlikely), some
records will cross block boundaries. That is, part of the record will be stored
in one block and part in another. It would thus require two block accesses to
read or write such a record.

When a record is deleted, we could move the record that came after it into the
space formerly occupied by the deleted record, and so on, until every record fol-
lowing the deleted record has been moved ahead (Figure 11.6). Such an approach
requires moving a large number of records. It might be easier simply to move the
final record of the file into the space occupied by the deleted record (Figure 11.2).

It is undesirable to move records to occupy the space freed by a deleted record,
since doing so requires additional block accesses. Since insertions tend to be more fre-
quent than deletions, it is acceptable to leave open the space occupied by the deleted
record, and to wait for a subsequent insertion before reusing the space. A simple
marker on a deleted record is not sufficient, since it is hard to find this available tpice
when an insertion is being done. Thus, we need to introduce an additional struciure.

At the beginning of the file, we allocate a certain number of bytes as a file header.
The header will contain a variety of information about the file. For now, all we need

record 0

record 1

record 3

record 4

record 5

record 6

recordT

record B

Figure 11.6 File of Figure 11.5, with record 2 deleted and all records moved.
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record 0

record 1

record 8

record 3

record 4

record 5

record 6

record 7
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Figurel'|.7 File of Figure 11.5, with record 2 deleted and final record moved.

to store there is the address of the first record whose contents are deleted. We use this

first record to store the address of the second available record, and so on. Intuitively,

we can think of these stored addresses as pointers, since they point to the location of

a record. The deleted records thus form a linked list, which is often referred to as a

free list. Figure 11.8 shows the file of Figure 11.5, with the free list, after records 1, 4,

and 6 have been deleted.
On insertion of a new record, we use the record pointed to by the header. We

change the header pointer to point to the next available record. If no space is avail-

able, we add the new record to the end of the file.

Insertion and deletion for files of fixed-length records are simple to implement,

because the space made available by a deleted record is exactly the space needed to

insert a record. If we allow records of variable length in a file, this match no longer

holds. An inserted record may not fit in the space left free by a deleted record, or it

may fill only part of that space.

header

record 0

record 1

record 2

record 3

record 4

record 5

record 6

recordT

record B

Figure 11.8 File of Figure 11.5, with free list after deletion of records 1,4, and 6.
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11.6.2 Vqriqble-Length Records
Variable-length records arise in database systems in several ways:

o Storage of multiple record types in a file

o Record types that allow variable lengths for one or more fields

o Record types that allow repeating fields, such as arrays or multisets

Different techniques for implementing variable-length records exist.
The slotted-page structure is commonly used for organizing records within a

block, and appears in Figure 11.9. There is a header at the beginning of each block,
containing the following information:

1. The number of record entries in the header

2. The end of free space in the block

3. An array whose entries contain the location and size of each record

The actual records are allocated contiguously in the block, starting from the end of
the block. The free space in the block is contiguous, between the hnd entry in the
header array, and the first record. If a record is inserted, space is allocated for it at the
end of free sPace, and an entry containing its size and location is added to the head.er.

If a record is deleted, the space that it occupies is freed, and its entry is set to
deleted (its size is set to -I, for example). Further, the records in the block before the
deleted record are moved, so that the free space created by the deletion gets occupied,
and all free space is again between the final entry in the header array and the first
record. The end-of-free-space pointer in the header is appropriately updated as well.
\ec91ds can be grown or shrunk by similar techniques, as long as tiere is space in
the block. The cost of moving the records is not too high, since the size of a block is
limited: a typical value is 4 kilobytes.

The slotted-page structure requires that there be no pointers that point directly
to records. Instead, pointers must point to the entry in the header thai contains thl
actual location of the record. This level of indirection allows records to be moved to

Block Header Records

Size
Location

End of Free Space

Figure 11.9 Slotted-page structure.
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prevent fragmentation of space inside a block, while supporting indirect pointers to

the record.
Databases often store data that can be much larger than a disk block. For instance,

an image or an audio recording may be multiple megabytes in size, while a video

object may be multiple gigabytes in size. Recall that SQL supports the types blob and

clob, which store binary and character large objects.

Most relational databases restrict the size of a record to be no larger than the size

of a block, to simplify buffer management and free-space management. Large objects

are often stored in a special file (or collection of files) instead of being stored with

the other (short) attributes of records in which they occur. Large objects are often

represented using B+-tree file organizations, which we study in Section 12.3.4. B+ -

tree file organizations permit us to read an entire object, or specified byte ranges in

the object, as well as to insert and delete parts of the object.

11.7 Orgonizqtion of Records in Files
So far, we have studied how records are represented in a file structure. A relation is a
set of records. Given a set of records, the next question is how to organize them in a
file. Several of the possible ways of organizing records in files are:

o Heap hle organization. Any record can be placed anywhere in the file where
there is space for the record. There is no ordering of records. Typically, there is
a single file for each relation.

o Sequential file organization. Records are stored in sequential order, accord-
ing to the value of a "search key" of each record. Section 11.7.1 describes this
organization.

o Hashing file organization. A hash function is computed on some attribute of
each record. The result of the hash function specifies in which block of the
file the record should be placed. Chapter 12 describes this organization; it is

closely related to the indexing structures described in that chapter.

Generally, a separate file is used to store the records of each relation. However,
in a multitable clustering file organization, records of several different relations are
stored in the same file; further, related records of the different relations are stored on
the same block, so that one I/O operation fetches related records from all the rela-
tions. For example, records of the two relations can be considered to be related if they
would match in a ioin of the two relations. Section L1,.7.2 descrlbes this organization.

11.7.1 Sequentiql File Orgonizotion
A sequential file is designed for efficient processing of records in sorted order based

on some search key. A search key is any attribute or set of attributes; it need not be

the primary key, or even a superkey. To permit fast retrieval of records in search-key
order, we chain together records by pointers. The pointer in each record points to



1.1..7 Organization of Records in Files

A-277 Brightol 15U

{

ka

Downtown, 500 l
A- i10 Downtown 600 l
a-275' Mianus , 7nn..

A-102 Perryridge : 400,
A-201 l 900
A-2-78,

A222 Redwood l lrcAiimRound Hill,

Figure 11.10 Sequential file for account records.

the next record in search-key order. Furthermore, to minimize the number of block
accesses in sequential file processing, we store records physically in search-key order,
or as close to search-key order as possible.

Figure 11.10 shows a sequential file of account records taken from our banking
example. In that example, the records are stored in search-key order, using branch
-name as the search key.

The sequential file organization allows records to be read in sorted order; that can
be useful for display purposes, as well as for certain query-processing algorithms
that we shall study in Chapter 13.

It is difficult, howevet, to maintain physical sequential order as records are in-
serted and deleted, since it is costly to move many records as a result of a single
insertion or deletion. We can manage deletion by using pointer chains, as we saw
previously. For insertion, we apply the following rules:

1. Locate the record in the file that comes before the record to be inserted in
search-key order.

2. If there is a free record (that is, space left after a deletion) within the same block
as this record, insert the new record there. Otherwise, insert the new record in
an oaerflow block.In either case, adjust the pointers so as to chain together the
records in search-key order.

Figure 11.11 shows the file of Figure 11.10 after the insertion of the record (North
Town, ,4-888, 800). The structure in Figure 11.11 allows fast insertion of new records,
but forces sequential file-processing applications to process records in an order that
does not match the physical order of the records.

If relatively few records need to be stored in overflow blocks, this approach works
well. Eventually, however, the correspondence between search-key order and physi-
cal order may be totally lost, in which case sequential processing will become much
less efficient. At this point, the file should be reorganized so that it is once again phys-
ically in sequential order. Such reorganizations are costly, and must be done during
times when the system load is low. The frequency with which reorganizations are
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Figure 11.11 Sequential file after an insertion.

needed depends on the frequency of insertion of new records. In the extreme case in
which insertions rarely occul it is possible always to keep the file in physically sorted
order. In such a case, the pointer field in Figure 11.10 is not needed.

11.7.2 Multitqble Clustering File Orgonizotion

Many relational database systems store each relation in a separate file, so that they
can take full advantage of the file system that the operating system provides. Usu-
ally, tuples of a relation can be represented as fixed-length records. Thus, relations
can be mapped to a simple file structure. This simple implementation of a relational
database system is well suited to low-cost database implementations as in, for exam-
ple, embedded systems or portable devices. In such systems, the size of the database
is small, so little is gained from a sophisticated file structure. Furthermore, in such
environments, it is essential that the overall size of the object code for the database
system be small. A simple file structure reduces the amount of code needed to imple-
ment the system.

This simple approach to relational database implementation becomes less satisfac-
tory as the size of the database increases. We have seen that there are performance
advantages to be gained from careful assignment of records to blocks, and from care-
ful organization of the blocks themselves. Clearly, a more complicated file structure
may be beneficial, even if we retain the strategy of storing each relation in a separate
file.

However, many large-scale database systems do not rely directly on the underly-
ing operating system for file management. Instead, one large operating-system file is
allocated to the database system. The database system stores all relations in this one
file, and manages the file itself. To see the advantage of storing many relations in one
file, consider the following SQL query for the bank database:
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Figure11.12 The depositor relation.

select account-number, customer-name, customer-street, customer-city
Irom depositor, customer
where depositor.customerstame = cLtstomer.customer:name

This query computes a join of the depositor and customer relations. Thus, for each
tuple of depositor, the system must locate the customer tuples with the same value for
cust,omer-name.Ideally, these records will be located with ihe help of indices, which we
shall discuss in Chapter 12. Regardless of how these records ire located, however,
they need to be transferred from disk into main memory. In the worst case, each
record will reside on a different block, forcing us to do one block read for each record
required by the query.

As a concrete example, consider the depositor and customer relations of Figures
7'7 .12 and 1 1.13, respectively. In Figure 77.74, we show a file structure designed fir ef-
ficient execution of queries involving d,epos'itor x customer . The depositoT tuples for
each customer-name are stored near the custorner tuple for the corresponding cistomer
-name' This structure mixes together tuples of two relations, but allows for efficient
processing of the join. When a tuple of the customer relation is read, the entire block
containing that tuple is copied from disk into main memory. Since the corresponding
depositor tuples are stored on the disk near the customer tuple, the block containing thE
customer tuple contains tuples of the depositor relationneeded to process the query. If
a customer has so many accounts that tlne depositor records do not fit in one block,-the
remaining records appear on nearby blocks.

A multitable clustering file organization is a file organization, such as that illus-
trated in Figure 17.14, that stores related records of two or more relations in each
block. Such a file organization allows us to read records that would satisfy the ioin
condition by using one block read. Thus, we are able to process this particular query
more efficiently.

Our use of clustering of multiple tables into a single file has enhanced processing
of a particular join (depositor X customer),but it results in slowing processing of othei
types of query. For example,

Figure 11.13 The customer relation.
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Figure 11.14 Multitable clustering file structure.

select n

ftom customer

requires more block accesses than it did in the scheme under which we stored each

relition in a separate file. Instead of several customer records appearing in one block,

each record is located in a distinct block. Indeed, simply finding all the customer

records is not possible without some additional structure. To locate all tuples of the

customer relation in the structure of Figure 77.74, we can chain together all the records

of that relation using pointers, as in Figure 11.15.
When multitable ciustering is to be used depends on the types of query that the

database designer believes to be most frequent. Careful use of multitable clustering

can produce significant performance gains in query processing.

11.8 Dotq-DictionqrY Storoge
So far, we have considered only the representation of the relations themselves. A rela-

tional database system needs to maintain data about the relations, such as the schema

of the relations. This information is called the data dictionary or system catalog.

Among the types of information that the system must store are these:

o Names of the relations

o Names of the attributes of each relation

o Domains and lengths of attributes

Figure 11.15 Multitable clustering file structure with pointer chains.
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o Names of views defined on the database, and definitions of those views

o Integrity constraints (for example, key constraints)

In addition, many systems keep the following data on users of the system:

r Names of authorized users

o Authorization and accounting information about users

o Passwords or other information used to authenticate users

Further, the database may store statistical and descriptive data about the relations,
such as:

o Number of tuples in each relation

o Method of storage for each relation (for example, clustered or nonclustered)

The data dictionary may also note the storage organization (sequential, hash, or heap)
of relations, and the location where each relation is stored:

o If relations are stored in operating system files, the dictionary would note the
names of the file (or files) containing each relation.

o If the database stores all relations in a single file, the dictionary may note the
blocks containing records of each relation in a data structure such as a linked
list.

In Chapter 12, in which we study indices, we shall see a need to store information
about each index on each of the relations:

o Name of the index

o Name of the relation being indexed

o Attributes on which the index is defined

. Type of index formed

All this information constitutes, in effect, a miniature database. Some database
systems store this information by using special-purpose data structures and code.
It is generally preferable to store the data about the database in the database itself.
By using the database to store system data, we simplify the overall structure of the
system and harness the full power of the database for fast access to system data.

The exact choice of how to represent system databy relations must be made by
the,system designers. one possible representation, with primary keys underlined,
is shown in Figure 11.16. In this representation, the attribute index-nttribufes of the
relation Index-metsdafa is assumed to contain a list of one or more attributes, which
can be represented by a character string such as "branchstame, branch_city',. The Index
-metadata relation is thus not in first normal form; it can be normalized, but the above
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Relntion-rnetadata (relation-nnme , number-of-attributes , storage-organization, location)
Attribute-rnetadnta (sttributensme, relationname, domain-type, position,length)
Llsersnetadats (user-name, encrypted4nssword, Sroup)
Index-metsdqta (index-name, relqtion:name, index-type, index-nttributes)
View snet adat a (uiew -name, definition)

Figure 11.'16 Relational database representing system data.

representation is likely to be more efficient to access. The data dictionary is often
stored in a nonnormalizedform to achieve fast access.

The storage organization and location olthe Relation-metadata itself must be record-

ed elsewhere (for example, in the database code itself), since we need this information
to find the contents of Relationsnetadata.

11.9 Summory
o Several types of data storage exist in most computer systems. They are clas-

sified by the speed with which they can access data, by their cost per unit

of data to buy the memory, and by their reliability. Among the rnedia avail-
able are cache, main memory, flash memory, magnetic disks, optical disks, and
magnetic tapes.

o TWo factors determine the reliability of storage media: whether a power fail-
ure or system crash causes data to be lost, and what the likelihood is of phys-
ical failure of the storage device'

o We can reduce the likelihood of physical failure by retaining multiple copies

of data. For disks, we can use mirroring. Or we can use more sophisticated
methods based on redundant arrays of independent disks (RAIDs). By striping
data across disks, these methods offer high throughput rates on large accesses;
by introducing redundancy across disks, they improve reliability greatly. Sev-

eial different RAID organizations are possible, each with different cost, perfor-

mance, and reliability characteristics. RAID level 1 (mirroring) and RAID level

5 are the most commonlY used.

o One way to reduce the number of disk accesses is to keep as many blocks as

possible in main memory. Since it is not possible to keep all blocks in main

memory, we need to manage the allocation of the space available in main

memory for the storage of blocks. Thebuffer is that part of main memory avail-

able for storage of copies of disk blocks. The subsystem responsible for the

allocation of buffer space is called thebuffer ffiannger.

e We can organize a file logically as a sequence of records mapped onto disk

blocks. One approach to mapping the database to files is to use several files,

and to store records of only one fixed length in any given file. An alterna-

tive is to structure files so that they can accommodate multiple lengths for

records. The slotted-page method is widely used to handle varying length

records within a disk block.
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o Physical storage media

tr Cache
n Main memory
n Flash memory
n Magnetic disk
I Optical storage

o Magnetic disk

n Phtter
I Hard disks
I Floppy disks
n tacks
n Sectors
n Read-write head
n Disk arm
n Cylinder
! Disk controller
! Checksums
n Remapping of bad sectors

o Performance measures of disks
n Access time
n Seek time
n Rotational latency
I Data-transfer rate
n Mean time to failure (Ufff')

o Disk block

o Optimization of disk-block access
n Disk-arm scheduling
n Elevator algorithm
n File organization
n Defragmenting
n Nonvolatile write buffers
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I Nonvolatile random-access
memory (NV-RAM)

n Log disk
o Redundant arrays of independent

disks (RAID)

n Mirroring
n Data striping
! Bit-level striping
I Block-level striping

o RAID levels

I Level0 (block striping, no
redundancy)

! Level 1 (block striping,
mirroring)

n Level3 (bit striping, parity)
tr Level5 (block striping,

distributed parity)
n Level6 (block striping, P + Q

redundancy)
e Rebuild performance
o Software RAID

o Hardware RAID
o Hot swapping
o Tertiary storage

n Optical disks
n Magnetic tapes
! Jukeboxes

o Buffer

n Buffer manager
X Pinned blocks

o since data are transferred between disk storage and main memory in units
of a block, it is worthwhile to assign file records to blocks in such a way that
a single block contains related records. If we can access several of the records
we want with only one block access, we save disk accesses. Since disk accesses
are usually the bottleneck in the performance of a database system, careful
assignment of records to blocks can pay significant performance dividends.

o The data dictionary, also referred to as the system catalog,keeps track of meta-
data, that is data about data, such as relation names, attribute names and
types, storage information, integrity constraints, and user information.
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n Forced output of blocks

o Buffer-replacement Policies

I Least recently used (LRU)

! Toss-immediate
n Most recently used (MRU)

o File

o FiIe organization

I File header
n Free list

o Variable-length records

Prqctice Exercises
11.1 Consider the following data and

n Slotted-page structure

o Large objects

o Heap file organization

o Sequential file organization

o Hashing file organization

o Multitable clustering file organi-
zation

o Search key

o Data dictionary

o System catalog

parity-block arrangement on four disks:

The Bis represent data blocks; the 4s represent parity blocks. Parity block Pd

is the pariiy block for data blocks Bal4 to Bai. What, if any, problem might

this arrangement Present?

1l.Z Apower failure that occurs while a disk block is being written could result in

the block being only partially written. Assume that partially written blocks can

be detected. An atomic block write is one where either the disk block is fully

written or nothing is written (i.e., there are no partial writes). Suggest schemes

for getting the effect of atomic block writes with the following RAID schemes.
Your schemes should involve work on recovery from failure.

a. RAID level 1 (mirroring)
b. RAID ievel5 (block interleaved, distributed parity)

11.3 Give an example of a relational-algebra expression and a query-processing
strategy in each of the following situations:

a. MRU is preferable to LRU.
b. LRU is preferable to MRU.

11.4 Consider the deletion of record 5 from the file of Figure LL.7. Compare the

relative merits of the following techniques for implementing the deletion:

a. Move record 6 to the space occupied by record 5, and move record 7 to the

space occupied by record 6'
b. Move record 7 to the space occupied by record 5.
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c. Mark record 5 as deleted, and move no records.

11.5 Show the structure of the file of Figure 11.8 after each of the following steps:
a. Insert (Brighton, A-323,7600).
b. Delete record 2.
c. Insert (Brighton, A-626,2000).

11.6 Consider a relational database with two relations:

course (course:tame / r00m, instructor)
enrollment (course_nnme, student_name, grnde)

Define instances of these relations for three courses, each of which enrolls five
students. Give a file structure of these relations that uses multitable clustering.

11.7 Consider the following bitmap technique for tracking free space in a file. For
each block in the file, two bits are maintained in the bitmap. If the block is
between 0 and 30 percent full the bits are 00, between 30 and 60 percent the
bits are 01, between 60 and 90 percent the bits are 10, and above 90 percent the
bits are 11. such bitmaps can be kept in memory even for quite large files.

a. Describe how to keep the bitmap up to date on record insertions and dele-
tions.

b. Outline the benefit of the bitmap technique over free lists in searching for
free space and in updating free space information.

Exercises

11.8 List the physical storage media available on the computers you use routinely.
Give the speed with which data can be accessed on each medium.

11.9 How does the remapping of bad sectors by disk controllers affect data-retrieval
rates?

11.10 RAID systems typically allow you to replace failed disks without stopping ac-
cess to the system. Thus, the data in the faited disk must be rebuilt ut',d *titt"tt
to the replacement disk while the system is in operation. Which of the RAID
levels yields the least amount of interference between the rebuild and ongoing
disk accesses? Explain your answer.

11.11 Explain why the allocation of records to blocks affects database-svstem nerfor-
mance significantly.

11.12 rf possible, determine the buffer-management strategy used by the operating
system running on your local computer system and what mechanisms it pro-
vides to control replacement of pages. Discuss how the control on replacerient
that it provides would be useful for the implementation of database systems.

11.13 In the sequential file organization, why is an overflow block wsed, even if there
is, at the moment, only one overflow record?
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1L.L4 List two advantages and two disadvantages of each of the following strategies

for storing a relational database:

a. Store each relation in one file'
b. Store multiple relations (perhaps even the entire database) in one file.

11.15 Give a normalized version of the Index-metsdatq relation, and explain why us-

ing the normalized version would result in worse performance.

lL:1.6 1fyou have data that should not be lost on disk failure, and the data are write

intensive, how would you store the data?

1L.17 Inearlier generation disks the number of sectors per track was the same across

all tracks. Current generation disks have more sectors per track on outer tracks,

and fewer sectors per track on inner tracks (since they are shorter in length).

What is the effect of such a change on each of the three main indicators of disk

speed?

1,1.18 Standard buffer managers assume each page is of the same size and costs the

same to read. Consider a buffer manager that, instead of LRU, uses the rate

of reference to objects, that is, how often an object has been accessed in the

last n seconds. Suppose we want to store in the buffer objects of varying sizes,

and varying read costs (such as Web pages, whose read cost depends on the

site from which they are fetched). Suggest how a buffer manager may choose

which page to evict from the buffer.
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Many queries reference only a small proportion of the records in a file. For exam-
ple, a query like "Find all accounts at the Perryridge branch" or "Find the balance of
account number 4-101" references only a fraction of the account records. It is ineffi-
cient for the system to read every record and to check the branch-name field for the
name "Perryridge," or the account,number field for the value 4-101. ideallv the svs-
tem should be able to locate these records directly. To allow these forms of iccess, we
design additional structures that we associate with files.

1,2.1 Bqsic Concepts
An index for a file in a database system works in much the same way as the index
in this textbook. If we want to learn about a particular topic (specifi"d by u word or
a phrase) in this textbook, we can search for the topic in the index at theback of the
book, find the pages where it occurs, and then readthe pages to find the information
we are looking for. The words in the index are in sorted order, making it easy to find
the word we are looking for. Moreover, the index is much smalle. ihar1 the book,
further reducing the effort needed to find the words we are looking for.

Database-system indices play the same role as book indices in libraries. For ex-
ample, to retrieve an qccount record given the account number, the database system
would look up an index to find on which disk block the corresponding record resides,
and then fetch the diskblock, to get the account record.

Keeping a sorted list of account numbers would not work well on very large
databases with millions of accounts, since the index would itself be verybig; iurthJr,
even though keeping the index sorted reduces the search time, finding ai account
can still be rather time-consuming. Instead, more sophisticated indexing techniques
may be used. we shall discuss several of these techniques in this chapter.

441
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There are two basic kinds of indices:

o Ordered indices. Based on a sorted ordering of the values.

r Hash indices. Based on a uniform distribution of values across a range of
buckets. The bucket to which a value is assigned is determinedby afunction,
called ahashfunction.

We shall consider several techniques for both ordered indexing and hashing. No

one technique is the best. Rather, each technique is best suited to particular database

applications. Each technique must be evaluated on the basis of these factors:

o Access types: The types of access that are supported efficiently. Access types
can include finding records with a specified attribute value and finding records
whose attribute values fall in a specified range.

o Access time: The time it takes to find a particular data item, or set of items,

using the technique in question.

o Insertion time: The time it takes to insert a new data item. This value includes
the time it takes to find the correct place to insert the new data item, as well as
the time it takes to update the index structure.

o Deletion time: The time it takes to delete a data item. This value includes the

time it takes to find the item to be deleted, as well as the time it takes to update
the index structure.

r Space overhead: The additional space occupied by an index structure. Pro-

vided that the amount of additional space is moderate, it is usually worth-

while to sacrifice the space to achieve improved performance.

We often want to have more than one index for a file. For example, we may wish

to search for a book by author, by subject, or by title.
An attribute or set of attributes used to look up records in a file is called a search

key. Note that this definition of key differs from that used inprimary key, candidate

key, and superkey. This duplicate meaning for key is (unfortunately) well established
inpractice. Using our notion of a search key, we see that if there are several indices

on a file, there are several search keys.

12.2 Ordered Indices
To gain fast random access to records in a file, we can use an index structure. Each

index structure is associated with a particular search key. Just like the index of a book

or a library catalog, an ordered index stores the values of the search keys in sorted

order, and associates with each search key the records that contain it.
The records in the indexed file may themselves be stored in some sorted order,

just as books in a library are stored according to some attribute such as the Dewey

decimal number. A file may have several indices, on different search keys. If the file

containing the records is sequentially ordered, a clustering index is an index whose
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Figure 12.1 Sequential file for account records.

search key also defines the sequential order of the file. Clustering indices are also
called primary indices; the term primary index seems to denote an inde* on a pri-
mary key, but such indices can in fact be built on any search kev. The search kev of
a clustering index is often the primary key, althougn tnut is noi necessarily so. In-
dices whose search key specifies an order different from the sequential order of the
file are called nonclustering indices, or secondary indices. The terms "clustered,'and
"nonclustered" are often used in place of "clustering" and "nonclustering.,'

In Sections 72.2.7 through 72.2.3, we assume that all files are ordeied sequen-
tially on some search key. Such files, with a clustering index on the search key, are
called index-sequential files. They represent one of the oldest index schemes used.
in database systems. They are designed for applications that require both sequential
processing of the entire file and random access to individual records. In Section 12.2.4
we cover secondary indices.

Figure 12.1 shows a sequential file of account records taken from our banking ex-
ample. In the example of Figure 12.1, the records are stored in search-key order,i.vith
branch-name used as the search key.

12.2.1 Dense ond Sporse Indices
An index record, or index entry, consists of a search-key value and pointers to one
or more records with that value as their search-key value. The pointer to a record
consists of the identifier of a disk block and an offsei within the diik block to identify
the record within the block.

There are two types of ordered indices that we can use:

r Dense index: An index record appears for every search-key value in the file.
In a dense clustering index, the index record contains the search-key value
ald a pointer to the first data record with that search-key value. The rest of
the records with the same search-key value would be stored sequentially after
the first recotd, since, because the index is a clustering one, records are sorted
on the same search key.
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Dense index implementations may store a list of pointers to all records with

the same search-key value; doing so is not essential for clustering indices.

o Sparse index: An index record appears for only some of the search-key values.

As is true in dense indices, each index record contains a search-key value and

a pointer to the first data record with that search-key value. To locate a record,

*e fit-rd the index entry with the largest search-key value that is less than or

equal to the search-key value for which we are looking. We start at the record

poltrt"d to by that index entry, and follow the pointers in the file until we find

the desired record.

Figures 72.2 and 12.3 show dense and sparse indices, respectively, for the account

file. Suppose that we are looking up records for the Perryridge branch. Using the

dense index of Figure 72.2, we follow the pointer directly to the first Perryridge

record. We process this record, and follow the pointer in that record to locate the

next record ln search-key (branch-name) order. We continue processing records until

we encounter a record for a branch other than Perryridge. If we are using the sParse

index (Figure 72.3), we do not find an index entry for "Perryridge." Since the last en-

try (in alphabetic order) before "Perryridge" is "Mianus," we follow that pointer. We

then read the account file in sequential order until we find the first Perryridge record,

and begin processing at that point'
As *e hurre s""n, it is generally faster to locate a record if we have a dense index

rather than a sparse index. However, sparse indices have advantages over dense in-

dices in that they require less space and they impose less maintenance overhead for

insertions and deletions.
There is a trade-off that the system designer must make between access time and

space overhead. Although the decision regarding this trade-off depends on the spe-

cific application, a good compromise is to have a sparse index with one index entry

per bloik. The reason this design is a good trade-off is that the dominant cost in pro-

cessing a database request is the time that it takes to bring a block from disk into

main i-remory. Once we have brought in the block, the time to scan the entire block

Figure12.2 Denseindex.
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Figure 12.3 Sparse index.

is negligible. Using this sparse index, we locate the block containing the record that
we are seeking. Thus, unless the record is on an overflow block (see Section 1,7.7.7),
we minimize block accesses while keeping the size of the index (and thus our space
overhead) as small as possible.

For the preceding technique to be fully general, we must consider the case where
records for one search-key value occupy several blocks. It is easy to modify our
scheme to handle this situation.

12.2.2 Multilevel Indices
Even if we use a sParse index, the index itself may become too large for efficient
processing. It is not unreasonable, in practice, to have a file with 100,00b records, with
10 records stored in each block. If we have one index record per block, the index has
10,000 records. Index records are smaller than data records, so let us assume that 100
index records fit on a block. Thus, our index occupies 100 blocks. Such large indices
are stored as sequential files on disk.

If an index is sufficiently small to be kept in main memory, the search time to find
an entry is low. Howeve4 if the index is so large that it must be kept on disk, a search
for an entry requires several disk-block reads. Binary search can be used on the index

{i]e to locate an entry, but the search still has a large cost. If the index occupies b
blocks, binary search requires as many as flogr(b)lLlocks to be read. (frl denotes
the l_east integer that is greater than or equal to r; thatis, we round .tpward.) For our
100-block index, binary search requires seven block reads. On a diskiystem where a
block read takes 30 milliseconds, the search will take 210 milliseconds, which is long.
Note that, if overflow blocks have been used, binary search will not be possible. I-n
that case, a sequential search is typically used, and that requires b block reads, which
will take even longer. Thus, the process of searching a large index may be costly.

To deal with this problem, we treat the index just as we would ireat any other
sequential file, and construct a sparse index on the clustering index, as in Figure 12.4.
To locate a record, we first use binary search on the outer index to find the icord for
the largest search-key value less than or equal to the one that we desire. The pointer
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Figure12.4 Two-level sparse index.

points to a block of the inner index. We scan this block until we find the record that

iras the largest search-key value less than or equal to the one that we desire. The

pointer in this record points to the block of the file that contains the record for which

we are looking.
Using the two levels of indexing, we have read only one index block, rather than

the seven we read with binary search, if we assume that the outer index is already in

main memory. If our file is extremelylarge, even the outer index may glow too large

to fit in main memory. In such a case, we can create yet another level of index. Indeed,

we can repeat this process as many times as necessary. Indices with two or more

levels are ialled multilevel indices. Searching for records with a multilevel index

requires significantly fewer I/O operations than does searching for records by binary

sealch. Each level of index could correspond to a unit of physical storage. Thus, we

may have indices at the track, cylinder, and disk levels.
A typical dictionary is an example of a multilevel index in the nondatabase world.

The heider of each page lists the first word alphabetically on that page. Such a book

index is a multilevei index: The words at the top of each page of the book index form

a sparse index on the contents of the dictionary Pages.
Multilevel indices are closely related to tree structures, such as the binary trees

used for in-memory indexing. We shall examine the relationship later, in Section 12.3.
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12.2.3 lndex Updcte
Regardless of what form of index is used, every index must be updated whenever a
record is either inserted into or deleted from the file. We first describe algorithms for
updating single-Ievel indices.

o Insertion. First, the system performs a lookup using the search-key value that
aPpears in the record to be inserted. The actions the system takes next depend
on whether the index is dense or sparse:
n Dense indices:

1. If the search-key value does not appear in the index, the system inserts
an index record with the search-key value in the index at the appro-
priate position.

2. Otherwise the following actions are taken:

a. If the index record stores pointers to all records with the same
search-key value, the system adds a pointer to the new record to
the index record.

b. Otherwise, the index record stores a pointer to only the first record
with the search-key value. The system then places the record being
inserted after the other records with the same search-key values.

n Sparse indices: We assume that the index stores an entry for each block.
If the system creates a new block, it inserts the first search-key value (in
search-key order) appearing in the new block into the index. On the other
hand, if the new record has the least search-key value in its block, the
system updates the index entry pointing to the block; if not, the system
makes no change to the index.

o Deletion. To delete a record, the system first looks up the record to be deleted.
The actions the system takes next depend on whether the index is dense or
sparse:

n Dense indices:

1. If the deleted record was the only record with its particular search-key
value, then the system deletes the corresponding index record from
the index.

2. Otherwise the following actions are taken:

a. If the index record stores pointers to all records with the same
search-key value, the system deletes the pointer to the deleted record
from the index record.

b. Otherwise, the index record stores a pointer to only the first record
with the search-key value. In this case, if the deleted record was
the first record with the search-key value, the system updates the
index record to point to the next record.
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n Sparse indices:

1. If the index does not contain an index record with the search-key value

of the deleted record, nothing needs to be done to the index.

2. Otherwise the system takes the following actions:

a. If the deleted record was the only record with its search key, the

system replaces the corresponding index record with an index rec-

ord for the next search-key value (in search-key order). If the next

search-key value already has an index entry, the entry is deleted

instead of being replaced.

b. Otherwise, if the index record for the search-key value points to the

record being deleted, the system updates the index record to point

to the next record with the same search-key value.

Insertion and deletion algorithms for multilevel indices are a simple extension of

the scheme just described. On deletion or insertion, the system updates the lowest-

level index as described. As far as the second level is concerned, the lowest-level in-

dex is merely a file containing records-thus, if there is any change in the lowest-level

index, the system updates the second-level index as described. The same technique

applies to further levels of the index, if there are any.

12.2.4 Secondqry Indices

Secondary indices must be dense, with an index entry for every search-key value,
and a pointer to every record in the file. A clustering index may be sparse, storing
only some of the search-key values, since it is always possible to find records with in-
termediate search-key values by a sequential access to a part of the file, as described
earlier. If a secondary index stores only some of the search-key values, records with
intermediate search-key values may be anywhere in the file and, in general, we can-
not find them without searching the entire file.

A secondary index on a candidate key looks just like a dense clustering index,
except that the records pointed to by successive values in the index are not stored
sequentially. In general, howevel, secondary indices may have a different structure
from clustering indices. If the search key of a clustering index is not a candidate key,
it suffices if the index points to the first record with a particular value for the search

key, since the other records can be fetched by a sequential scan of the file.
In contrast, if the search key of a secondary index is not a candidate key, it is

not enough to point to just the first record with each search-key value. The remain-
ing records with the same search-key value could be anywhere in the file, since the

reiords are ordered by the search key of the clustering index, rather than by the search
key of the secondary index. Therefore, a secondary index must contain pointers to all
the records.

We can use an extra level of indirection to implement secondary indices on search
keys that are not candidate keys. The pointers in such a secondary index do not point
diiectly to the file. Instead, each points to a bucket that contains pointers to the file.
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Figure 12.5 Secondary index on account file, on noncandidate key balqnce.

Figure 12.5 shows the structure of a secondary index that uses an extra level of indi-
rection on the sccount file, on the search key balance.

A sequential scan in clustering index order is efficient because records in the file
are stored physically in the same order as the index order. However, we cannot (ex-
cept in rare special cases) store a file physically ordered by both the search key of
the clustering index and the search key of a secondary index. Because secondary-
key order and physical-key order diffe+ if we attempt to scan the file sequentially in
secondary-key order, the reading of each record is likely to require the reading of a
new block from disk, which is very slow.

The procedure described earlier for deletion and insertion can also be applied to
secondary indices; the actions taken are those described for dense indices storlng a
pointer to every record in the file. If a file has multiple indices, whenever the file is
modified, eaery index must be updated.

Secondary indices improve the performance of queries that use keys other than
the search key of the clustering index. Howevel, they impose a significant overhead
on modification of the database. The designer of a database decides which secondary
indices are desirable on the basis of an estimate of the relative frequency of querie"s
and modifications.

12.3 B+jfree Index Files
The main disadvantage of the index-sequential file organization is that performance
degrades as the file grows, both for index lookups and for sequential sCans through
the data. Although this degradation can be remedied by reoiganization of the fiL,
frequent rcorganizations are undesirable.

The B+-tree index structure is the most widely used of several index structures
that maintain their efficiency despite insertion and deletion of data. A B+-tree index
takes the form of a balanced tree in which every path from the root of the tree to a
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P n t ,

Figure 12.5 Typical node of a B+-tree.

Ieaf of the tree is of the same length. Each nonleaf node in the tree has between [n/2]
dnd n children, where r is fixed for a particular tree.

We shall see that the B+-tree structure imposes performance overhead on inser-
tion and deletion, and adds space overhead. The overhead is acceptable even for fre-
quently modified files, since the cost of file reorganization is avoided. Furthermore,
since nodes may be as much as half empty (if they have the minimum number of
children), there is some wasted space. This space overhead, too, is acceptable given
the performance benefits of the B+-tree structure.

12.3.1 Structure of q B+-Tree
A B+-tree index is a multilevel index, but it has a structure that differs from that of the

multilevel index-sequential file. Figure 12.6 shows a typical node of a B+-tree. It con-
t a i n s u p t o n _  l s e a r c h - k e y v a l u e s K r , K z , . . . , K n - 1 , ? n d n p o i n t e r s P t , P z , . . ' , P n .
The seirch-key values within a node are kept in sorted order; thus, if i, < j, then
Ke < Ki.

We consider first the structure of the leaf nodes. For z : I,2,...,fr - I, pointer

4 points to either a file record with search-key value Ki or to a bucket of pointers,

each of which points to a file record with search-key value Ke. The bucket structure is

used only if the search key does not form a candidate key, and if the file is not sorted
in the search-key value order. (We study later, in Section 12.5.3, how we can avoid
creating buckets, by making the search key appear to be unique.) Pointer Pn has a
special purpose that we shall discuss shortly.

Figure 12.7 shows one leaf node of a B+-tree for the sccount file, in which we have
chosen n tobe3, and the search key isbranch-name.Note that, since the account file is

ordered by branch-nnme, the pointers in the leaf node point directly to the file.

account file

Figure12.7 A leaf node for account B+-tree index (n : 3).
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Figure 12.8 B+-tree for nccount fite (n : 3).

Now that we have seen the structure of a leaf node, let us consider how search-key
values are assigned to particular nodes. Each leaf can hold up to n - 1 values. \Aie
al lowleaf  nodestoconta inasfewas f (n 1) /21 values.Ther ingesof  va luesineach
leaf do not overlap. Thus, if Li and Li are leaf nodes and e < 7, then every search-
key value in Li is less than every search-key value in Li.If the B+-tree index is to be
a dense index, every search-key value must appear in some leaf node.

Now we can explain the use of the pointer P,. Since there is a linear order on the
leaves based on the search-key values that they contain, we use P, to chain together
the leaf nodes in search-key order. This ordering allows for efficient sequentiil pro-
cessing of the file.

The nonleaf nodes of the B+-tree form a multilevel (sparse) index on the leaf nodes.
The structure of nonleaf nodes is the same as that for leif nodes, except that all point-
ers are pointers to tree nodes. A nonleaf node may hold up to n pointers, and must
hold at least lnl2] pointers. The number of pointers in a node is called the fanout of
the node.

Letus considera node conta in ingm pointers.  For  z  :  2 ,J , . . . , rn- I ,  pointer  f l
points to the subtree that contains search-key values less than Ki and. greater than or
equal to K.i-r. Pointer P- points to the part of the subtree that contiins those key
values greater than or equal to Km - r, and pointer pr points to the part of the subtrel
that contains those search-key values less than Ifi.

unlike other nonleaf nodes, the root node can hold fewer than lnl2] pointers;
however, it must hold at least two pointers, unless the tree consists of only one node.
It is always possible to construct a B+-tree, for any n, that satisfies the preceding
requirements. Figure 12.8 shows a complete B+-tree for the nccount file (n : 3). Foi
simplicity, we have omitted both the pointers to the file itself and the null pointers.

Figure 12.9 B+-tree for account file with n : S.
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As an example of a B+-tree for which the root must have less than lnf2) values,

Figure 12.9 shows a B+-tree for the account file with n : 5.

These examples of B+-trees are all balanced. That is, the length of every path from

the root to a leaf node is the same. This property is a requirement for a B+-tree. In-

deed, the '(8" in B+-tree stands for "balanced." It is the balance property of B+-trees

that ensures good performance for lookup, insertion, and deletion.

12.3.2 Queries on B+-Tkees
Let us consider how we process queries on a B+-tree. Suppose that we wish to find

all records with a search-key value of V. Figure 12.10 presents pseudocode for doing

so. Intuitively, the procedure works as follows. First, we examine the root node, look-

ing for the smallest search-key value greater than V. Suppose that we find that this

seirch-key value is Ka.We then follow pointer Pi to another node. If we find no such

value, then k ) K*-r, where m is the number of pointers in the node. In this case

we follow P- to another node. In the node we reached above, again we look for the

smallest search-key value greater than V, and once again follow the corresponding

pointer as above. Eventually, we reach a leaf node. At the leaf node, if we find search-

tey value Ka equals I/, then pointer Pa directs us to the desired record or bucket. If

the value I/ is not found in the leaf node, no record with key value V exists.

Thus, in processing a query, we traverse a path in the tree from the root to some

leaf node. If there are K search-key values in the file, the path is no longer than

lIogbl4(K)1.
In prictice, only a few nodes need to be accessed. T1pically, a node is made to

be the same size as a disk block, which is typical$ 4 kilobytes. With a search-key
size of 72 bytes, and a disk-pointer size of 8 bytes, n is around 200. Even with a

more conservative estimate of 32 bytes for the search-key size, n is around 100' With
n : 100, if we have 1 million search-key values in the file, a lookup requires only

floguo(1,000,000)l : 4 nodes to be accessed. Thus, at most four blocks need to be
read from disk for the lookup. The root node of the tree is usually heavily accessed

procedure find(u alue V )
setC =rootnode
while C is not a leaf node begin

Let Ki = smallest search-key value, if any, greater than V
if there is no such value then begin

Let rn = the number of pointers in the node
set C = node pointedtoby P*

end
else set C = the node pointedtoby Pi

end
if there is a key value Ki in C such that Ki: y

then pointer Pa directs us to the desired record or bucket
else no record with key value k exists

Figure 12.10 Querying a B+-tree.
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and is likely to be in the buffer, so typically only three or fewer blocks need to be read
from disk.

An important difference between B+-tree structures and in-memory tree struc-
tures, such as binary trees, is the size of a node, and as a result, the height of the
tree. In a binary tree, each node is small, and has at most two pointers. In i B+-tree,
each node is large-typically a disk block-and a node can hive a large number of
pointers. Thus, B+-trees tend to be fat and short, unlike thin and tall binary trees. In
a_ balanced binary tree, the path for a lookup can be of length flog2(K)1, where K is
the number of search-key values. with r( : 1,000,000 as in the previous example, a
balanced binary tree requires around 20 node accesses. If each node we.e otr u diffu.-
ent disk block, 20 block reads would be required to process a lookup, in contrast to
the four block reads for the B+-tree.

12.3.3 Updotes on B+ifrees
Insertion and deletion are more complicated than lookup, since it may be necessary to
split a node that becomes too large as the result of an insertion, or to coalesce nodes
(that is, combine nodes) if a node becomes too small (fewer than lnl2] pointers).
Furthermore, when a node is split or a pair of nodes is combined, lr" -rrit ensure
that balance is preserved. To introduce the idea behind insertion and deletion in a
B+-tree, we shall assume temporarily that nodes never become too large or too small.
Under this assumption, insertion and deletion are performed as defined next.

o Insertion. using the same technique as for lookup, we find the leaf node in
which the search-key value would appear. If the search-key value already ap-
pears in the leaf node, we add the new record to the file and, if necesruty, uda
to the bucket a pointer to the record. If the search-key value does not appear,
we insert the value in the leaf node, and position it such that the reutch k"ys
are still in order. We then insert the new record in the file and, if necessary,
create a new bucket with the appropriate pointer.

o Deletion. using the same technique as for lookup, we find the record to be
deleted, and remove it from the file. We remove the search-key value from the
leaf node if there is no bucket associated with that search-key value or if the
bucket becomes empty as a result of the deletion.

We now consider an example in which a node must be split. Assume that we wish
to insert a record with a branch-name value of "Clearview" into the B+-tree of Fig-
ure 12.8. using the algorithm for lookup, we find that "Clearview" should upp"i,
in the node containing "Brighton" and "Downtown." There is no room to inseri the
search-key value "Clearview." Therefore, the nodeis split into two nodes. Figure 12.11
shows the two leaf nodes that result from inserting "Clearview" and splitting the
node containing "Brighton" and "Downtown." In general, we take the n-searcli-key
values (the n - 1 values in the leaf node plus the value being inserted), and put thl
ftrst lnl2] in the existing node and the remaining values in a new node.

Having split a leaf node, we must insert the new leaf node into the B+-tree struc-
ture. In our example, the new node has "Downtown" as its smallest search-key value.
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Figure12.11 Split of leaf node on insertion of "Clearview."

We need to insert this search-key value into the parent of the leaf node that was split.
The B+-tree of Figure 12.12 shows the result of the insertion. The search-key value
"Downtown" was inserted into the parent. It was possible to perform this insertion
because there was room for an added search-key value. If there were no room, the

parent would have had to be split. In the worst case, all nodes along the path to the
ioot must be sptit. If the root itself is split, the entire tree becomes deeper.

The general technique for insertion into a B+-tree is to determine the leaf node I

into which insertion must occur. If a split results, insert the new node into the parent

of node l. If this insertion causes a split, proceed recursively up the tree until either

an insertion does not cause a split or a new root is created.
Figure 12.13 outlines the insertion algorithm in pseudocode. The procedure insert

inserts a key-value pointer pair into the index, using two subsidiary procedures in-

sert-in-leaf andinsertjn-parent. Inthepseudocode, L,N,PandT denotepointersto
nodes, with tr being used to denote a leaf node. L.Ki and L.Pi denote the iith value

and the zth pointeiin node tr, respectively; T.K.t and T.Pi are used similarly. The

pseudocode also makes use of the function parent(N) to find the parent ofa node ly'.

iry" 
"utr 

compute a list of nodes in the path from the root to the leaf while initially
finding the leaf node, and can use it later to find the parent of any node in the path

efficiently.
The piocedure insertin_parent takes as parameters N, K' ,N/, where node N was

split inlo l[ and l,//, with Ktbeingthe least value in N'. The procedure modifies the

parent of l/ to record the split. The procedures insert-intojndex and insertjn-parent
use a temporary area of memory ? to store the contents of a node being split. The

procedures can be modified to directly copy data from the node being split to the

newly created node, reducing the time required for copyingdata' However, the use

of the temporary space ? simplifies the procedures.

Figure12.12 Insertion of "Clearview" into the B+-tree of Figure 12.8.
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procedure insert(ualue K, po'inter P)
find the leaf node L that should contain key value 1(
if (tr has less than n - 1 key values)

then insertjnleaf (L, K, P)
else begin /" Lhas n, - 1 key values already, split it */

Create node ,L'
Copy L.P1. . .L.Kn_t to a block of memory ? that can

hold n (pointer, key-value) pairs
insert_inleaf (7, K, P)
Set Lt .Pn: L.Pn;Set L.Pn = [,t
Erase tr.P1 through L.Kn_r from -L
Copy T.Pl through T.K6yz1 fromT into _L starting at L.py
Copy T.Pp1z1+r through T.Kn from ? into ,L/ starting at Lt .p1
Let K'be the smallest key-value in tr/
insertjn_parent(.L, K,, L,)

end

procedure insertjnleaf (node L, aalue K, poi,nter p)
if 1{ is less than tr.I(1

then insert P, K into L justbefore L.p1
else begin

Let Ki be the highest value in L that is less than 1{
insert P,1( into L just after T.Ki

end

procedure insert-in-parent(node N, ualue K, , node Nt)
if l/ is the root of the tree

then begin
create a new node .R containing N, K, , Nt /* N and -A/, are pointers */
make R the root of the tree
return

end
Letp=parent (N)
if (P has less than n pointers)

then insert (K' , N') in P just after N
else begin /* Split P * /

Copy P to a block of memory ? that can hold p and (K, , N,)
Insert (K/,1t//) into T just after l/
Erase all entries from p; Create node p,
Copy 7.P1. . .7.P1_1zl into p
Let K, : T.K1n1z\
Copy T.P612j+t" . . .T.Pn+t into p/
insertjn_parent(p, K,,, p,)

end

Figure 12.13 Insertion of entry in a B+-tree.
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Figure12.14 Deletion of "Downtown" from the B+-tree of Figure72.72.

We now consider deletions that cause tree nodes to contain too few pointers. First,
let us delete "Downtown" from the B+-tree of Figure 72.72.We locate the entry for
"Downtown" by using our lookup algorithm. When we delete the entry for "Down-

town" from its leaf node, the leaf becomes empty. Since, in our example, n : 3 and

0 < [(r, - 1) 12), this node must be eliminated from the B+-tree. To delete a leaf node,

we must delete the pointer to it from its parent. In our example, this deletion leaves

the parent node, which formerly contained three pointers, with only two pointers.
Since 2 > lnl2l, the node is still sufficiently large, and the deletion operation is

complete. The resulting B+-tree aPpears in Figure 12.14.
When we make a deletion from a parent of a leaf node, the parent node itself may

become too small. That is exactly what happens if we delete "Perryridge" from the

B+-tree of Figure 12.14. Deletion of the Perrl.ridge entry causes a leaf node to become

empty. When we delete the pointer to this node in the latter's Parent, the parent is

left with only one pointer' since n : 3, lnl2] : 2, and thus only one pointer is too

few. However, since the parent node contains useful information, we cannot simply
delete it. Instead, we look at the sibling node (the nonleaf node containing the one

search key, Mianus). This sibling node has room to accommodate the information
contained in our now-too-small node, so we coalesce these nodes. The sibling node

now contains the keys "Mianus" and "Perryridge"; the value "Perryridge" was the

value separating the two coalesced nodes at the parent. The other node (the node

that originally contained the search key "Redwood") is then deleted from its parent
(which happer,s to be the root in our example). Figure 12.15 shows the result. Notice
that the root has only one child pointer after the deletion, so it is deleted and its sole

child becomes the root. So the depth of the B+-tree has been decreased by 1.

Figure 12.15 Deletion of "Perryridge" from the B+-tree of FigwreT2'14.
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Figure12.16 Deletion of "Perryridge" from the B+-tree of Figure 12.12.

- 
It is not always possible to coalesce nodes. As an illustration, delete "Perryridge"

from the B+-tree of Figure 72.72. rn this example, the "Downtown" entry is siill p"art
of the tree. once again, the leaf node containing "perrlridge" becomes empty. ihe
parent of the leaf node becomes too small (only one pointer). Howevel, in^this ex-
ample, the sibling node already contains the maximum number of pointers: three.
Thus, it cannot accommodate an additional pointer. The solution in this case is to re-
distribute the pointers such that each sibling has two pointers. The result appears in
Figure 12.16. Note that the redistribution of values necessitates a change of a search-
key value in the parent of the two siblings.

In general, to delete a value in a B+-tree, we perform a lookup on the value and
delete it. If the node is too small, we delete it from its parent. This deletion results
in recursive application of the deletion algorithm until the root is reached, a parent
remains adequately full after deletion, or redistribution is applied.

Figure 12.77 outlines the pseudocode for deletion from i B+-tree. The procedure
swap-variables(-A/,,A//) merely swaps the values of the (pointer) variables l/ and ,A/,;
this swap has no effect on the tree itself. The pseudocode uses the condition "too few
pointers/values." For nonleaf nodes, this criterion means less than lnf 2] pointers;
for leaf nodes, it means less than l(n - 1)l2l values. The pseudocode rediitributes
entries by borrowing a single entry from an adjacent node. We can also redistribute
entries by repartitioning entries equally between the two nodes. The pseudocode
refers to deleting an entry (K,P) from a node. In the case of leaf nodes, the pointer
to_ an entry actually precedes the key value, so the pointer p precedes the key value
K . For internal nodes, P follows the key value K .

It is worth noting that, as a result of deletiory a key value that is present in an
internal node of the Br -tree may not be present at anv l-eaf of the tree.

Although insertion and deleiion opeiations on B+-trees are complicated, they re-
quire relatively few I/O operations, which is an important benefit since I/O opera_
tions are expensive. It can be shown that the number of t/O operations neededJor a
worst-case insertion or deletion is proportional to logp,7 *(K), where n is the max-
imum number of pointers in a node, and K is the number of search-key values. In
other words, the cost of insertion and deletion operations is proportional to the height
of the B+-tree, and is therefore low. It is the speed of operation on B+-trees that makes
them a frequently used index structure in database implementations.
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procedure delete(ualue K, po'inter P)

find the leaf node t that contains (K, P)

delete-entry(L, K. P)

procedure delete-entry(node N, aalue K, po'inter P)

delete (K, P) from ly'
if (l/ is the root and l/ has only one remaining child)

then make the child of N the new root of the tree and delete N

else if (l/ has too few values/pointers) then begin

Let ly'/ be the previous or next child of parent(N)

Let Ktbe the value between pointers N and Nt in parent(N)

if (entries in l/ and -l// can fit in a single node)

then begin /* Coalesce nodes */

if (N is a predecessor of l/') then swap-variables(N, N')

if (l/ is not a leaf)
then append Kt andall pointers and values in ly' to N/

else append aIl (Ki,fl) pairs in l/ to l[/; set N' .Pn : 1g.pn

delete-entry(parent(N), K' , N); delete node ly'

end
else begin /* Redistribution: borrow an entry from ly'' */

if (N' is a predecessor of l/) then begin

if (N is a nonleaf node) then begin
Iet m be such that N' .P* is the last pointer in ly''

remove (N' .K*-t,1t7' .P-) from ly''

insert (ly'/.P* , K') as the first pointer and value in N,

by shifting other pointers and values right

replace K' in parent(lf) bY N'.K^-r

end
else begin

let mbe such that (N' .P*, yr .K^) is the last pointer/value

pair in N'
remove (N' .P*,Y ' .K*)  f rom N'

insert (ly'/.P,, , N' .K-) as the first pointer and value in N,

by shifting other pointers and values right

replace K' in parent(lf) bY N'.K*

end
end
else . . . symmetric to the then case . . .

end
end

Figure12.17 Deletion of entry from a B+-tree.
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12.3.4 B+-Tree File Orgonizqtion
As mentioned in Section72.3, the main drawback of index-sequential file organiza-
tion is the degradation of performance as the file grows: With growth, an incLasing
percentage of index records and actual records become out of order, and are stored in
overflow blocks. We solve the degradation of index lookups by using B*-tree indices
on the file. We solve the degradation problem for storing the actual iecords by using
the leaf level of the B+-tree to organize the blocks containing the actual r".oidr. Wi
use the B+-tree structure not only as an index, but also as an organi zer for records in
a file. In a B+-tree file organization, the leaf nodes of the tree store records, instead of
storing pointers to records. Figure 12.18 shows an example of a B+-tree file organiza-
tion. Since records are usually larger than pointers, the maximum number of iecords
that can be stored in a leaf node is less than the number of pointers in a nonleaf node.
However, the leaf nodes are still required to be at least half full.

Insertion and deletion of records from a B+-tree file organization are handled in
the same way as insertion and deletion of entries in a B+-tree index. When a record
with a given key value t' is inserted, the system locates the block that should contain
the record by searching the B+-tree for the largest key in the tree that is < o. If the
block located has enough free space for the record, the system stores the record in the
block. Otherwise, as in B+-tree ilsertion, the system spliis the block in two, and redis-
tributes the records in it (in the B+-tree-key order) to create space for the new record.
The split propagates up the B+-tree in the normal fashion. When we delete a record,
the system first removes it from the block containing it. If a block B becomes less
than half full as a result, the records in B are redistributed with the records in an ad-
jacent block B'. Assuming fixed-sized records, each block will hold at least one-half
as many records as the maximum that it can hold. The system updates the nonleaf
nodes of the B+-tree in the usual fashion.

When we use a B+-tree for file organization, space utilization is particularly im-
portant, since the space occupied by the records is likely to be much more than the
spac€ occuPied by keys and pointers. We can improve the utilization of space in a B+-
tree by involving more sibling nodes in redistribution during splits and merges. The
technique is applicable to both leaf nodes and internal nodes, and works as follows.

Figure 12.18 B+-tree file organization.
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During insertion, if a node is full the system attempts to redistribute some of its

entries to one of the adjacent nodes, to make space for a new entry. If this attempt fails

because the adjacent nodes are themselves full, the system splits the node, and splits
the entries evenly among one of the adjacent nodes and the two nodes that it obtained
by splitting the original node. Since the three nodes together contain one more record

than can fii in two nodes, each node will be about two-thirds full. More precisely, each
node will have at least l2nl3) entries, where n is the maximum number of entries that

the node can hold. ( [2] denotes the greatest integer that is less than or equal to r; that
is, we drop the fractionalpart, if any')

During deletion of a record, if the occupancy of a node falls below l2nl3), the

system attempts to borrow an entry from one of the sibling nodes. If both sibling
nodes have l2nl3) records, instead of borrowing an entry, the system redistributes
the entries in the node and in the two siblings evenly between two of the nodes, and

deletes the third node. We can use this approach because the total number of entries

is Zl2n I 3)- 1, which is less than 2n.Wlth three adjacent nodes used for redistribution,

each node can be guaranteed to have l3nl+l entries. In general, if rn nodes (m - 1

siblings) are involved in redistribution, each node can be guaranteed to contain at

Ieast f(m - I)nlm) entries. However, the cost of update becomes higher as more

sibling nodes are involved in the redistribution.
Noie that in a B+-tree index or file organization, leaf nodes that are adjacent to

each other in the tree may be located at different places on disk. When a file orga-

nization is newly created on a set of records, it is possible to allocate blocks that are

mostly contiguous on disk to leaf nodes that are contiguous in the tree. Thus a se-

quential scan of leaf nodes would correspond to a mostly sequential scan on disk.

As insertions and deletions occur on the tree, sequentiality is increasingly lost, and

sequential access has to wait for disk seeks increasingly often. An index rebuild may

be required to restore sequentiality.
B+-tree file organizations can be used to store large objects, such as SQL clobs and

blobs, which *uytr" larger than a diskblock, and as large as multiple gigabytes. Such

large objects can be stored by splitting them into sequences of smaller records that are

orglnized in a B+-tree file organization. The records can be sequentially numbered,

or-numbered by the byte offset of the record within the large object, and the record

number can be used as the search key.

12.3.5 lndexing Strings

Creating B+-tree indices on string-valued attributes raises two problems. The first

problem is that strings can be of variable length. The second problem is that strings

can be long, leading to a low fanout and a correspondingly increased tree height.

With variable-length search keys, different nodes can have different fanouts even

if they are full. A node must then be split if it is full, that is, there is no space to add

a new entry, regardless of how many search entries it has. Similarly, nodes can be

merged or entries redistributed depending on what fraction of the space in the nodes

is used, instead of being based on the maximum number of entries that the node can

hold.



The fanout of nodes can be increased by using a technique called prefix compres-
sion. With prefix compression, we do not store the entire search key value at internal
nodes. We only store a prefix of each search key value that is sufficient to distinguish
between the key values in the subtrees that it separates. For example, if we hia an
index on names, the key value at an internal node could be a prefix of a name; it
may suffice to store "Silb" at an internal node, instead of the full "silberschatz'l if
the closest values in the two subtrees that it separates are, say,,,Silas,,and ,.Silver,'
respectively.

12.4 B{ree Index Files
B-tree indices are similar to B+-tree indices. The primary distinction between the two
approaches is that a B-tree eliminates the redundant storage of search-key values.
In the-B+tree of Figure 12.12, the search keys "Downtown,; "Mianus,,' ..Redwood,"
and "Perryridge" appear twice. Every search-key value appears in some leaf node;
several are repeated in nonleaf nodes.

A B-tree allows search-key values to appear only once. Figure 12.19 shows a B-tree
that represents the same search keys as the B+-tree of Figure 12.72. Sincesearch keys
are not repeated in the B-tree, we may be able to store the index in fewer tree nodls
than in the corresponding B+-tree index. However, since search keys that appear in
nonleaf nodes appear nowhere else in the B-tree, we are forced to include an addi-
tional pointer field for each search key in a nonleaf node. These additional pointers
point to either file records or buckets for the associated search key.

A generalized B-tree leaf node appears in Figure 72.20a; a nonleaf node appears
in Figure 12.20b. Leaf nodes are the same as in B+-trees. In nonleaf nodes, the point-
ers P1 are the tree pointers that we used also for B+-trees, while the pointers bn ur"
bucket or file-record pointers. In the generalized B-tree in the figure, th"re are n - I
keys in the leaf node, but there are rn - 1 keys in the nonleaf noie. This discrepancy
occurs because nonleaf nodes must include pointers Bi, thus reducing the numter of
search keys that can be held in these nodes. Clearly, ffi I tu,but the ex-act relationship
between m and n depends on the relative size of search keys and pointers.

1 a  , 1 B-Tree Index Files

Round Hill
bucket

Brighton
bucket

Clearview
bucket

Mianus
bucket

Perryridge
bucket

Figure 12.19 B-tree equivalent of B+-tree in Figure 12.12.
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(b)

Figure 12.20 Typical nodes of a B-tree' (a) Leaf node. (b) Nonleaf node.

The number of nodes accessed in a lookup in a B-tree depends on where the search
key is located. A lookup on a B+-tree requires traversal of a path from the root of the

tree to some leaf node. In contrast, it is sometimes possible to find the desired value

in a B-tree before reaching a leaf node. However, roughly n times as many keys are

stored in the leaf level of a B-tree as in the nonleaf levels, and, since n is typically

large, the benefit of finding certain values early is relatively small. Moreover, the fact

thal fewer search keys appear in a nonleaf B-tree node, compared to B+-trees, implies

that a B-tree has a smaller fanout and therefore may have depth greater than that of

the corresponding B+-tree. Thus, lookup in a B-tree is faster for some search keys

but slowei for others, although, in general, lookup time is still proportional to the

logarithm of the number of search keys.-Deletion 
in a B-tree is more complicated. In a B+-tree, the deleted entry always

appears in a leaf. In a B-tree, the deleted entry may appear in a nonleaf node. The

ptop"r value must be selected as a replacement from the subtree of the node contain-

ittgin" deleted entry. Specifically, if search key Ki is deleted, the smallest search key

appearing in the subtree of pointer Pt +t must be moved to the field formerly occu-

pi"a Uy Kz. Further actions need to be taken if the leaf node now has too few entries.

in conirast, insertion in a B-tree is only slightly more complicated than is insertion in

a B+-tree.
The space advantages of B-trees are marginal for iarge indices, and usually do not

outweigh the disadvantages that we have noted- Thus, many database-system im-

plemen"ters prefer the structural simplicity of a B+-tree. The exercises explore details

of the insertion and deletion algorithms for B-trees.

12.5 Multiple-Key Access
Until now, we have assumed impticitly that only one index on one attribute is used to

process a query on a relation. However, for certain types of queries, it is advantageous

io ,tr" mutlipte indices if they exist, or to use an index built on a multiattribute search

kuy.

12.5.1 Using Multiple Single-Key Indices

Assume that the sccount file has two indices: one for branch-name and one for balance.

Consider the following query: "Find all account numbers at the Perryridge branch

with balances equal to $1000." We write
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select loan_nuTnber
fromaccount
where branch_name = "Perryridge" and balance = 1000

There are three strategies possible for processing this query:

1,. Use the index onbranch-name to hnd all records pertaining to the Perryridge
branch. Examine each such record to see whether balance = 1000.

2. Use the index onbalance to find all records pertaining to accounts with bal-
ances of $1000. Examine each such record to see whether branch:name = "Per-
ryridge."

3. Use the index on branch-name to find pointers to all records pertaining to the
Perryridge branch. Also, use the index onbalance to find pointers to all records
pertaining to accounts with a balance of $1000. Take the intersection of these
two sets of pointers. Those pointers that are in the intersection point to records
pertaining to both Perryridge and accounts with a balance of $1000.

The third strategy is the only one of the three that takes advantage of the existence
of multiple indices. However, even this strategy may be a poor choice if all of the
following hold:

o There are many records pertaining to the Perryridge branch.

o There are many records pertaining to accounts with a balance of $1000.

o There are only a few records pertainin g to both the Perryridge branch and
accounts with a balance of $1000.

If these conditions hold, we must scan a large number of pointers to produce a small
result. An index structure called a "bitmap index" can in some cases greatly speed up
the intersection operation used in the third strategy. Bitmap indices are outlined in
Section 12.9.

12.5.2 Indices on Multiple Keys
An alternative strategy for this case is to create and use an index on a search key
(branch-name, balance)-that is, the search key consisting of the branch name con-
catenated with the account balance. Such a search key, containing more than one
attribute, is sometimes referred to as a composite search key. The structure of the
index is the same as that of any other index, the only difference being that the search
key is not a single attribute, but rather is a list of attributes. The search key can be rep-
resented as a tuple of values, of the form (or, . . . , an), where the indexed attributes
are 41,. '.,An. The ordering of search-keyvalues isthelexicographic ordering.For ex-
ample, for the case of two attribute search keys, (a1, az) < (h,b2) if either a1 I b1
or o1 - b1 and a2 1 b2. Lexicographic ordering is basically the same as alphabetic
ordering of words.

We can use an ordered (B+-tree) index to answer efficiently queries of the form
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select loan-number
from account
where branch-nnme: 'Perr)'ridge' and balance: 1000

Queries such as the following query, which specifies an equality condition on the first
attribute of the search key (branch^nsme) and a range on the second attribute of the
search key (balance), can also be handled efficiently since they correspond to a range
query on the search attribute.

select loan-number
trorrt. account
where branch-nqme :'Perryridge' and balance < 1000

We can even use an ordered index on the search key (branch-name, bnlance) to an-
swer the following query on only one attribute efficiently:

select loan-number
ftom account
where brnnch-name :'Perryridge'

An equality condition branch-name = "Perryridge" is equivalent to a range query on
the range with lower end (Perryridge, -oo) and upper end (Perryridge, f oo). Range
queries on just thebrnnchstame attribute can be handled in a similar manner.

The use of an ordered-index structure on a composite search key, howevel, has a
few shortcomings. As an illustration, consider the query

select loan-number
from nccount
where branch-name < "Perryridge" and balance: 1000

We can answer this query by using an ordered index on the search key (branch-name,

balance): For each value of brnnchstnme that is less than "Perryridge" in alphabetic
order, the system locates records with a bnkmce value of 1000. However, each record
is likely to 6e in a different disk block, because of the ordering of records in the file,
leading to many I/O operations.

The difference between this query and the previous two queries is that the con-
dition on the first attribute (branchstame) is a comparison condition, rather than an
equality condition. The condition does not correspond to a range query on the search
k"y.

To speed the processing of general composite search-key queries (which can in-
volve one or more comparison operations), we can use several special structures.
We shall consider bitmap indices in Section 12.9. There is another structure, called the
R-tree, that can be used for this pulpose. The R-tree is an extension of the B+-tree
to handle indexing on multiple dimensions. Since the R-tree is used primarily with
geographical data types, we describe the structure in Chapter 24.
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12.5.3 Nonunique Seqrch Keys
Creating buckets of record pointers to handle nonunique search keys (that is, search
keys that can have more than one matching record) creates several complications
when B+-trees are implemented. If the buckets are kept in the leaf node, extra code is
needed to deal with variable-size buckets, and to deal with buckets that grow larger
than the size of the leaf node. If the buckets are stored in separate pages, an extra I/O
operation may be required to fetch records.

A simple solution to this problem, used by most database systems, is to make
search keys unique by adding an extra unique attribute to the search key. The value
of the extra attribute could be a record-id (if the database system supports record-
ids), or just a number that is unique among all records with the same search-key
value. For example, if we had an index on the customer-name attribute of the depositor
table, the entries corresponding to a particular customer name would have different
values for the extra attribute. The extended search key is thereby guaranteed to be
unique.

A search with the original search-key attribute becomes a range lookup on the
extended search key, as we saw in Section 1,2.5.2; the value of the extra attribute is
ignored when searching.

12.5.4 Covering Indices
Covering indices are indices that store the values of some attributes (other than the
search-key attributes) along with the pointers to the record. Storing extra attribute
values is useful with secondary indices, since they allow us to answer some queries
using just the index, without even looking up the actual records.

For example, suPpose that we have a nonclustering index on the account-number
attribute of the account relation. If we store the value of the bslance attribute along
with the record pointer, we can answer queries that require the balance (but not the
other attribute,branch-name) without accessing tlne account record.

The same effect could be obtained by creating an index on the search key (account
-number,balance),but a covering index reduces the size of the search key, allowing a
larger fanout in the internal nodes, and potentially reducing the height of the ind&.

12.5.5 Secondqry Indices qnd Record Relocqtion
some file organizations, such as the B+-tree flle organization, may change the loca-
tion of records even when the records have not been updated. As an example, when
a leaf page is split in a B+-tree hle organization, a number of records are moved to
a new page. In such cases, all secondary indices that store pointers to the relocated
records would have to be updated, even though the values in the records may not
have changed. Each leaf page may contain a fairly large number of records, and each
of them may be in different locations on each secondary index. Thus a leaf-page split
may require tens or even hundreds of I/O operations to update all affected secondary
indices, making it a very expensive operation.

_ One technique to handle this problem is as follows. In secondary indices, in place
of pointers to the indexed records, we store the values of the primary-index seirch-
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key attributes. For example, suppose we have a primary index on the attribute ac-
count-number of relation account; then a secondary index on branch:name would store
with each branch name a list of account-number values of the corresponding records,
instead of storing pointers to the records.

Relocation of records because of leaf-page splits then does not require any up-
date on any such secondary index. However, locating a record using the secondary
index now requires two steps: First we use the secondary index to find the primary-
index search-key values, and then we use the primary index to find the correspond-
ing records.

The above approach thus greatly reduces the cost of index update due to file reor-
ganization, although it increases the cost of accessing data using a secondary index.

12.6 Stqtic Hoshing
One disadvantage of sequential file organization is that we must access an index
structure to locate data, or must use binary seatch, and that results in more I/O oP-
erations. File organizations based on the technique of hashing allow us to avoid ac-
cessing an index structure. Hashing also provides a way of constructing indices. We
study file organizations and indices based on hashing in the following sections.

In our description of hashing, we shall use the term bucket to denote a unit of
storage that can store one oI more records. A bucket is typically a disk block, but
could be chosen to be smaller or larger than a disk block.

Formally, let K denote the set of all search-key values, and let B denote the set of
all bucket addresses. A hash function h is a function from K to B. Let h denote a hash
function.

To insert a record with search key Ki, we compute h(Kn), which gives the address
of the bucket for that record. Assume for now that there is space in the bucket to store
the record. Then, the record is stored in that bucket.

To perform a lookup on a search-key value Ki, w€ simply compute h(K1), then
search the bucket with that address. Suppose that two search keys, K5 and KT,have
the same hash value; that is, h(K5) : h(Kz).If we perform a lookup on K5, the
bucket h(Ks) contains records with search-key values K5 and records with search-
key values K7.Thus, we have to check the search-key value of every record in the
bucket to verify that the record is one that we want.

Deletion is equally straightforward. If the search-key value of the record to be
deleted is K;, we compute h(Kt), then search the corresponding bucket for that
record, and delete the record from the bucket.

Hashing can be used for two different purposes. In a hash file organization, we
obtain the address of the disk block containing a desired record directly by comput-
ing a function on the search-key value of the record. In a hash index organization we
organize the search keys, with their associated pointers, into a hash file structure.

12.6.1 Hqsh Functions
The worst possible hash function maps all search-key values to the same bucket. Such
a function is undesirable because all the records have to be kept in the same bucket.



12.6 Static Hashing

A lookup has to examine every such record to find the one desired. An ideal hash
function distributes the stored keys uniformly across all the buckets, so that every
bucket has the same number of records.

Since we do not know at design time precisely which search-key values will be
stored in the file, we want to choose a hash function that assigns search-key values to
buckets in such away that the distribution has these qualities:

o The distribution is uniform. That is, the hash function assigns each bucket the
same number of search-key values from the set of all possible search-key val-
ues.

o The distribution is random. That is, in the average case, each bucket will have
nearly the same number of values assigned to it, regardless of the actual dis-
tribution of search-key values. More precisely, the hash value will not be cor-
related to any externally visible ordering on the search-key values, such as
alphabetic ordering or ordering by the length of the search keys; the hash
function will appear to be random.

As an illustration of these principles, let us choose a hash function for the account
file using the search key branchttsme. The hash function that we choose must have
the desirable properties not only on the example account file that we have been using,
but also on an nccounf file of realistic size for a large bank with many branches.

Assume that we decide to have 26 buckets, and we define a hash function that
maPS names beginning with the lth letter of the alphabet to the lth bucket. This hash
function has the virtue of simplicity, but it fails to provide a uniform distribution,
since we expect more branch names to begin with such letters as B and R than Q and
X, for example.

Now suppose that we want a hash function on the search key balance. Suppose that
the minimum balance is 1 and the maximum balance is 100,000, and we use a hash
function that divides the values into 10 ranges, 1-10,000, 10,007-20,000 and so on. The
distribution of search-key values is uniform (since each bucket has the same number
of different balance values), but is not random. But records with balances between 1
and 10,000 are far more common than are records with balances between 90,001 and
100,000. As a result, the distribution of records is not uniform-some buckets receive
more records than others do. if the function has a random distribution, even if there
are such correlations in the search keys, the randomness of the distribution will make
it very likely that all buckets will have roughly the same number of records, as long
as each search key occurs in only a small fraction of the records. (If a single search
key occurs in a large fraction of the records, the bucket containing it is tikely to have
more records than other buckets, regardless of the hash function used.)

Typical hash functions perform computation on the internal binary machine rep-
resentation of characters in the search key. A simple hash function of this type first
computes the sum of the binary representations of the characters of a key, then re-
turns the sum modulo the number of buckets. Figure 12.21 shows the application of
such a scheme, with 10 buckets, to the accounf file, under the assumption that the lth
letter in the alphabet is represented by the integer i.
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bucket 1

bucket 2

bucket 9

Figure 12.21 Hash organization of account file, with branchstame as the key.

The following hash function can be used to hash a string in alavaimplementation:
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The function can be implemented efficiently by setting the hash result initially to 0,
and iterating from the first to the last character of the string, at each step multiplying
the hash value by 31 and then adding the next character (treated as an integer). The
result of the above function modulo the number of buckets can then be used for
indexing.

Hash functions require careful design. A bad hash function may result in lookup
taking time proportional to the number of search keys in the file. A well-designed
function gives an average-case lookup time that is a (small) constant, independent of
the number of search keys in the file.
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12.6.2 Hondling of Bucket Overflows
So fa4 we have assumed that, when a record is inserted, the bucket to which it is
mapped has space to store the record. If the bucket does not have enough space, a
bucket overflow is said to occur. Bucket overflow can occur for several reasons:

o Insufficient buckets. The number of buckets, which we denote nB, must be
chosen such that ns ) n,f f, where n, denotes the total number of records
that will be stored and f, denotes the number of records that will fit in a
bucket. This designatiory of course, assumes that the total number of records
is known when the hash function is chosen.

o Skew. Some buckets are assigned more records than are others, so a bucket
may overflow even when other buckets still have space. This situation is called
bucket skew. Skew can occur for two reasons:

1. Multiple records may have the same search key.
2. The chosen hash function may result in nonuniform distribution of search

keys.

So that the probability of bucket overflow is reduced, the number of buckets is
chosen tobe (n,lf,) x (1 + d), where d is a fudge factor, typicalty around 0.2. Some
space is wasted: About 20 percent of the space in the buckets will be empty. But the
benefit is that the probability of overflow is reduced.

Despite allocation of a few more buckets than required, bucket overflow can still
occur. We handle bucket overflow by using overflow buckets. If a record must be
inserted into a bucket b, and b is already full, the system provides an overflow bucket
for b, and inserts the record into the overflow bucket. If the overflow bucket is also
full, the system provides another overflow bucket, and so on. All the overflow buck-
ets of a given bucket are chained together in a linked list, as in Figure 72.22. Overflow
handling using such a linked list is called overflow chaining.

we must change the lookup algorithm slightly to handle overflow chaining. As
before, the system uses the hash function on the search key to identify a bucket b. The
system must examine all the records in bucket b to see whether they match the search
key, as before. In addition, if bucket b has overflow buckets, the system must examine
the records in all the overflow buckets also.

The form of hash structure that we have just described is sometimes referred to
as closed hashing. Under an alternative approach, called open hashing, the set of
buckets is fixed, and there are no overflow chains. Instead, if a bucket is full, the sys-
tem inserts records in some other bucket in the initial set of buckets B. One policv is
to use the next bucket (in cyclic order) that has space; this policy is called liiear prob-
ing. other policies, such as computing further hash functions, are also used. open
hashing has been used to construct symbol tables for compilers and assemblers,but
closed hashing is preferable for database systems. The reason is that deletion un-
der open hashing is troublesome. Usually, compilers and assemblers perform only
lookup and insertion operations on their symbol tables. However, in a database sys-
tem, it is important to be able to handle deletion as well as insertion. Thus, open
hashing is of only minor importance in database implementation.
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bucket 0

bucket 3

Figure 12.22 Overflow chaining in a hash structure.

An important drawback to the form of hashing that we have described is that
we must choose the hash function when we implement the system, and it cannot be
changed easily thereafter if the file being indexed grows or shrinks. Since the function
h maps search-key values to a fixed set B of bucket addresses, we waste space if B is
made large to handle future growth of the file. If B is too small, the buckets contain
records of many different search-key values, and bucket overflows can occur. As the
file grows, performance suffers. We study later, in Section 72.7, how the number of
buckets and the hash function can be changed dynamically.

12.6.3 Hqsh Indices
Hashing can be used not only for file organization, but also for index-structure cre-
ation. A hash index organizes the search keys, with their associated pointers, into a
hash file structure. We construct a hash index as follows. We apply a hash function
on a search key to identify a bucket, and store the key and its associated pointers
in the bucket (or in overflow buckets). Figure 12.23 shows a secondary hash index
on the account file, for the search key account-number. The hash function in the figure
computes the sum of the digits of the account number modulo 7. The hash index has
seven buckets, each of size 2 (realistic indices would, of course, have much larger
bucket sizes). One of the buckets has three keys mapped to it, so it has an overflow
bucket. In this example, account-number is a primary key for account, so each search
key has only one associated pointer. In general, multiple pointers can be associated
with each key.

overflow buckets for bucket 1

I
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Figure 12.23 Hash index on search key nccount-number of account fire.

We use the term hash index to denote hash file structures as well as secondary hash
indices. Strictly speaking, hash indices are only secondary index structures. A hash
index is never needed as a clustering index structure, since, if a file itself is orga-
nized by hashing, there is no need for a separate hash index structure on it. However,
since hash file organization provides the same direct access to records that indexing
provides, we pretend that a file organized by hashing also has a clustering hash indei
on it.

12.7 Dyncmic Hoshing
As we have seen, the need to fix the set B of bucket addresses presents a serious
problem with the static hashing technique of the previous section. Most databases
grow larger over time. If we are to use static hashing for such a database, we have
three classes of options:

bucket 0

ffi
bucket 1
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Choose a hash function based on the current file size. This option will result

in performance degradation as the database grows.

Choose a hash function based on the anticipated size of the file at some point

in the future. Although perfolmance degradation is avoided, a significant

amount of space may be wasted initially.

Periodically leorganize the hash structure in response to file growth. Such a

reorganization involves choosing a new hash function, recomputing the hash

function on every lecord in the file, and genelating new bucket assignments.

This reorganization is a massive, time-consuming operation. Furthermore, it

is necessary to forbid access to the file during reorganization.

Several dynamic hashing techniques allow the hash function to be modified dy-

namically to accommodate the growth or shrinkage of the database. In this section

we describe one form of dynamic hashing, called extendable hashing. The biblio-

graphical notes provide references to other forms of dynamic hashing'

12.7.1 Dqtq Structure
Extendable hashing copes with changes in database sizeby splitting and coalescing
buckets as the database grows and shrinks. As a result, space efficiency is retained.
Moreover, since the reorganization is performed on only one bucket at a time, the

resulting performance overhead is acceptably low.
With extendable hashing, we choose a hash function h with the desirable prop-

erties of uniformity and randomness. However, this hash function generates val-
ues over a relatively large range-namely, b-bitbinary integers. A typical value for
b is 32.

We do not create a bucket for each hash value. Indeed, 232 is over 4 billion, and
that many buckets is unreasonable for all but the largest databases. Instead, we create

buckets on demand, as records are inserted into the file. We do not use the entire b
bits of the hash value initially. At any point, we use I bits, where 0 < ? < b. These I

bits are used as an offset into an additional table of bucket addresses. The value of I

grows and shrinks with the size of the database.
Figure 12.24 shows a general extendable hash structure. The I appearing above

the bucket address table in the figure indicates that I bits of the hash value h(K) are
required to determine the correct bucket for K. This number will, of course, change
ur the file grows. Although I bits are required to find the correct entry in the bucket
address table, several consecutive table entries may point to the same bucket. All
such entries will have a common hash prefix, but the length of this prefix may be less
than l. Therefore, we associate with each bucket an integer giving the length of the
common hash prefix. In Figure 72.24the integer associated with bucketf is shown as
21. The number of bucket-address-table entries that point to bucket 7 is

' t .
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hash prefix

bucket address table

Figure 12.24 General extendable hash structure.
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12.7.2 Queries ond Updqtes
We now see how to perform lookup, insertion, and deletion on an extendable hash
structure.

To locate the bucket containing search-key value K1, the system takes the first I
high-order bits of lt'(K1),looks at the corresponding table entry for this bit string, and
follows the bucket pointer in the table entr;z

To insert a record with search-key value K;,the system follows the same procedure
for lookup as before, ending up in some bucket-say,7. If there is room in the bucket,
the system inserts the record in the bucket. If, on the other hand, the bucket is full, it
must split the bucket and redistribute the current records, plus the new one. To split
the bucket, the system must first determine from the hash value whether it needi to
increase the number of bits that it uses.

. I! i : i'i, only one entry in the bucket address table points to bucket i. There-
fore, the system needs to increase the size of the bucket address table so that
it can include pointers to the two buckets that result from splitting bucketi. It
does so by considering an additional bit of the hash value. It increments the
value of iby 7, thus doubling the size of the bucket address table. It replaces
each entry by two entries, both of which contain the same pointer as the orig-
inal entry. Now two entries in the bucket address table point to bucket 7. The
system allocates a new bucket (bucket z), and sets the second entrv to point
to the new bucket. It sets e7 and i" to l. Next, it rehashes each recordin bucket
j and, depending on the first I bits (remember the system has added I to i),
either keeps it in bucket 7 or allocates it to the newly created bucket.

The system now reattempts the insertion of the new record. Usually, the
attempt will succeed. However, if all the records in bucket i, as well as the
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new record, have the same hash-value prefix, it will be necessary to split a
bucket again, since all the records in bucket 7 and the new record are assigned
to the same bucket. If the hash function has been chosen carefully, it is unlikely
that a single insertion will require that a bucket be split more than once, unless
there are a large number of records with the same search key. If all the records
in bucketf have the same search-key value, no amount of splitting will help. In
such cases, overflow buckets are used to store the records, as in static hashing.

o I f i .
bucket i. Thus, the system can split bucket i without increasing the size of
the bucket address table. Observe that all the entries that point to bucket 7
correspond to hash prefixes that have the same value on the leftmost ii bits.
The system allocates a new bucket (bucket z), and sets ei and i', to the value
that results from adding 1 to the original 'ii value. Next, the system needs to
adjust the entries in the bucket address table that previously pointed to bucket

/. (Note that with the new value folii, not all the entries correspond to hash
prefixes that have the same value on the leftmost i1 bits.) The system leaves
the first half of the entries as they were (pointing to bucket j), and sets all the
remaining entries to point to the newly created bucket (bucket z). Next, as in
the previous case, the system rehashes each record in bucketf, and allocates it
either to bucket 7 or to the newly created bucket z'

The system then reattempts the insert. In the unlikely case that it again fails,
it applies one of the two cases, i : ii or i > ii,as appropriate.

Note that, in both cases, the system needs to recompute the hash function on only the
records in bucket l.

To delete a record with search-key value K1, the system follows the same proce-
dure for lookup as before, ending up in some bucket-say, i. It removes both the
search key from the bucket and the record from the file. The bucket too is removed
if it becomes empty. Note that, at this point, several buckets can be coalesced, and
the size of the bucket address table can be cut in half. The procedure for deciding on
which buckets can be coalesced and how to coalesce buckets is left to you to do as an

a-277'.
A-10J ,
a-T lO

Do.r,rrntown ,

:EqrDowntown

a-275, Mianus 700'
A-702 , Perryridge : 400
A-201.',#

reffyrl0ge

].t0g::A-218 Perryridge '

R"d-""ilA-222' rYmt
A-305 Round Hill : 350

Figure 12.25 Sample account file.
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branch_name h(branch_name)

Brighton 0010 1101 1111 1011 0010 1100 0011 0000
Downtown 1010 0011 1010 0000 1100 0110 1001 1111
Mianus 11000111111011011.01i.1.1.1.100111010
Perryridge 1111 0001 0010 0100 1001 0011 01101101
Redwood 0011 0101 1010 01i0 1100 1001 11101011
Round Hill 1101 10000011 1111 1001 1100 00000001

Figure 12.26 Hash function for branch:tame.

exercise. The conditions under which the bucket address table can be reduced in size
are also left to you as an exercise. Unlike coalescing of buckets, changing the size of
the bucket address table is a rather expensive operation if the table is lirge. Therefore
it may be worthwhile to reduce the bucket-address-table size only if thi number of
buckets reduces greatly.

Our exampl e account file in Figur e 1.2.25 illustrates the operation of insertion. The
32-bit hash values onbranch-name appear in Figure 12.26. Assume that, initially, the
file is empty, as in Figure 72.27.We insert the records one by one. To illustrate all
the features of extendable hashing in a small structure, we shall make the unrealistic
assumption that a bucket can hold only two records.

We insert the record (A-277, Brighton, 750). The bucket address table contains a
pointer to the one bucket, and the system inserts the record. Next, we insert the record
(4-101, Downtown,500). The system also places this record in the one bucket of our
structure.

when we attempt to insert the next record (A-110, Downtown, 600), we find that
the bucket is full. since z : ,is, wE need to increase the number of bits that we use
from the hash value. We now use 1 bit, allowing us 21 = 2 buckets. This increase in
the number of bits necessitates doubling the size of the bucket address table to two
entries. The system splits the bucket, placing in the new bucket those records whose
search key has a hash value beginning with 1, and leaving in the original bucket the
other records. Figure 12.28 shows the state of our structure after the split.

Next, we insert (4-215, Mianus, 200). Since the fust bit of h(Mianui) is 1, we must
insert this record into the bucket pointed to by the "1" entry in the bucket address
table. once again, we find the bucket fulI and z : 21. we increase the number of
bits that we use from the hash to 2. This increase in the number of bits necessitates
doubling the size of the bucket address table to four entries, as in Figure 12.29.Since

hash prefix

bucket 1

Figure 12.27 Initial extendable hash structure.

bucket address table
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Figure 12.28 Hash structure after three insertions.

the bucket of Figure 1.2.28 for hash prefix 0 was not split, the two entries of the bucket
address table of 00 and 01 both point to this bucket.

For each record in the bucket of Figure 12.28 for hash prefix 1 (the bucket being
split), the system examines the first 2 bits of the hash value to determine which bucket
of the new structure should hold it.

Next, we insert (A-102,Perryridge,400), which goes in the same bucket as Mianus.
The following insertion, of (A-207, Perryridge, g00), results in a bucket overflow,lead-
ing to an increase in the number of bits, and a doubling of the size of the bucket
address table. The insertion of the thild Perryridge record, (A-278, Perryridge, 700),
leads to another overflow. However, this overflow cannot be handled by increasing
the number of bits, since there are three records with exactly the same hash value.
Hence the system uses an overflow bucket, as in Figure 12.30.

We continue in this manner until we have inserted all the account records of Fig-
ure72.25. The resulting structure aPPears in Figure 12.31.

hash

bucket address table

refi
f ; l
l r l

hash p

prefi
ft
t - l

bucket address table

Figure 12.29 Hash structure after four insertions.
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Figure 12.30 Hash structure after seven insertions.

12.7.3 Stqtic Hoshing versus Dynomic Hashing
We now examine the advantages and disadvantages of extendable hashing, com-
pared with static hashing. The main advantage of extendable hashing is tiat per-
formance does not degrade as the file grows. Furthermore, there is minimal space
overhead. Although the bucket address table incurs additional overhead, it conLins
one pointer for each hash value for the current prefix length. This table is thus small.
The main space saving of extendable hashing over other forms of hashing is that
no buckets need to be reserved for future growth; rather, buckets can be allocated
dynamically.

. A disadvantage of extendable hashing is that lookup involves an additional level
of indirection, since the system must access the buckel address table before access-
ing the bucket itself. This extra reference has only a minor effect on performance.
Although the hash structures that we discussed in Section 72.6 do not^have this ex-
tra level of indirection, they lose their minor performance advantage as they become
tu11.

Thus, extendable hashing appears to be a highly attractive technique, provided
that-we are willing to accept the added complexity involved in its implementation.
The bibliographical notes reference more detailed descriptions of extendable hashins
implementation.

The bibliographical notes also provide references to another form of dynamic hash-
ing called linear hashing, which avoids the extra level of indirection associated with
extendable hashing, at the possible cost of more overflow buckets.

bucket address table
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Figure 12.31 Extendable hash structure for the nccount file.

12.8 Comporison of Ordered Indexing cnd Hoshing
We have seen several ordered-indexing schemes and several hashing schemes. We

can organize files of records as ordered files, by using index-sequential organization
or B+-tree organizations. Alternatively, we can organize the files by using hashing.

Finally, we can organizethem as heap files, where the records are not ordered in any

particular way.
Each scheme has advantages in certain situations. A database-system implemen-

tor could provide many schemes, leaving the final decision of which schemes to use

to the database designer. However, such an approach requires the implementor to

write more code, adding both to the cost of the system and to the space that the sys-

tem occupies. Most database systems support B+-trees and may additionally support
some form of hash file organization or hash indices.

To make a wise choice of file organization and indexing techniques for a relation,

the implementor or the database designer must consider the following issues:

o Is the cost of periodic reorganization of the index or hash organization accept-

able?

o What is the relative frequency of insertion and deletion?

o Is it desirable to optimize average access time at the expense of increasing the

worst-case access time?

o What types of queries are users likely to pose?

bucket address table
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We have already examined the first three of these issues, first in our review of the
relative merits of specific indexing techniques, and again in our discussion of hashing
techniques. The fourth issue, the expected type of query, is critical to the choice oI
ordered indexing or hashing.

If most queries are of the form

s e l e c t L l ,  A 2 , . . . , A n
from r
where Ai : ,

then, to process this query, the system will perform a lookup on an ordered index
or a hash structure for attribute Ai, for value c. For queries of this form, a hashing
scheme is preferable. An ordered-index lookup requires time proportional to the lo[
of the number of values in r for Ai.Inahash structure, however, ihe average lookui
time is a constant independent of the size of the database. The only advintage tt
an index over a hash structure for this form of query is that the woist-case lo6kup
time is proportional to the log of the number of values in r for Ae.By contrast, fdr
hashing, the worst-case lookup time is proportional to the number of values in r
for Ai. However, the worst-case lookup time is unlikely to occur with hashing, and
hashing is preferable in this case.

Ordered-index techniques are preferable to hashing in cases where the query spec-
ifies a range of values. Such a query takes the following form:

select -4i ,  Az, . . . ,  An
from r
where At I cz and Ai ) c1

In other words, the preceding query finds all the records with A.i values between c1
?-fro.. C2.

Let us consider how we process this query using an ordered index. First, we per-
form a lookup on value c1. once we have found the bucket for value c1, wE fottow
the pointer chain in the index to read the next bucket in order, and we continue in
this manner until we reach c2.

If, instead of an ordered index, we have a hash structure, we can perform a lookup
on c1 and can locate the corresponding bucket-but it is not easy, itr generaf to del
termine the next bucket that must be examined. The difficulty arises b-ecause a good
hash function assigns values randomly to buckets. Thus, theie is no simple noti6n of
"next bucket in sorted order." The reason we cannot chain buckets togetirer in sorted
order on,4i is that each bucket is assigned many search-key values. Since values are
scattered randomly by the hash function, the values in the specified range are likely
to be scattered across many or all of the buckets. Therefore, we have to read all th!
buckets to find the required search keys.

Usually the designer will choose ordered indexing unless it is known in advance
that range queries will be infrequent, in which case liashing would be chosen. Hash
organizations are particularly useful for temporary files created during query pro-
cessing, if,lookups based on a key value are required, but no rattge qneties will be
performed.
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12.9 Bitmop lndices
Bitmap indices are a specializedtype of index designed for easy querying on multiple

keys, although each bitmap index is built on a single key.

For bitmap indices to be used, records in a relation must be numbered sequen-

tially, starting from, say, 0. Given a number n, it must be easy to retrieve the record

numbered n. This is particularly easy to achieve if records are fixed insize, and allo-

cated on consecutive blocks of a file. The record number can then be translated easily

into a block number and a number that identifies the record within the block.

Consider a relation r, with an attribute Athat can take on only one of a small num-

ber (for example, 2 to 20) values. For instance, a relation customer-info may have an

attribute gender,which can take only values m (male) or f (female). Another example

would be an attribute income-leael, where income has been broken up into 5 levels:

t r l :  $0 -  9999,  L2: f i10,000 -  19,999,  L3:20,000 -  39,999,  L4:40,000 -74,999,  and

L5:75,000 - oo. Here, the raw data can take on many values, but a data analyst has

split the values into a small number of ranges to simplify analysis of the data.

12.9.1 Bitmop Index Structure
A bitmap is simply an array of bits. In its simplest form, a bitmap index on the

attribute A of relation r consists of one bitmap for each value that A can take. Each

bitmap has as many bits as the number of records in the relation. The ?th bit of the

bitmap for value r.ri is set to 1 if the record numbered z has the value u1 for attribute
A. All other bits of the bitmap are set to 0.

In our example, there is one bitmap for the value m and one for f. The zth bit of the

bitmap for m ii set to 1 if the gender value of the record numbered z is m. All other

bits of the bitmap for m are set to 0. Similarly, the bitmap for f has the value 1 for bits

corresponding to records with the value f for the gender attribute; all other bits have

the vaiue 0. Figure 12.32 shows an example of bitmap indices on a relation customer
-info.

We now consider when bitmaps are useful. The simplest way of retrieving all

records with value m (or value f) would be to simply read all records of the relation

record
number

o

1,

2

J

4

Bitmaps for gender

m F obTol
r  h l loT l

Bitmaps for
income leoel

Eolo t l
hlToo-l
moool- l
h  o  o i o l
mooo-ol

L1

L2

L3

L4

L5

Figure 12.32 Bitmap indices on relation customer-info.
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and select those records with value m (or f, respectively). The bitmap index doesn,t
really help to speed up such a selection.

In fact, bitmap indices are useful for selections mainly when there are selections
on multiple keys. Suppose we create a bitmap index on attribute income-leael,which
we described earlier, in addition to the bitmap index on gender.

Consider now a query that selects women with income in the range 10,000 -
19' 999. This query can be expressed ds osend.er:rAi.ncomzteuet:p(r). To &aluate this
selection, we fetch the bitmaps for gender value f and the bitmap for income-Iersel value
L2, and perform an intersection (logical-and) of the two bitmaps. In other words, we
compute a new bitmap where bit z has value I if the zth bit of the two bitmaps are
both 1, and has a value 0 otherwise. In the example in Figure 72.32, the intersection
of the bitmap for gender: f (01101) and the bitmap foyincome-leueL : 12 (01000)
gives the bitmap 01000.

since the first attribute can take 2 values, and the second can take 5 values, we
would expect only about 1 in 10 records, on an average, to satisfy a combined condi-
tion on the two attributes. If there are further conditions, the fraction of records sat-
isfying all the conditions is likely to be quite small. The system can then compute the
guery result by finding all bits with value 1 in the intersection bitmap and retrieving
the corresponding records. If the fraction is large, scanning the entire relation woulJ
remain the cheaper alternative.

Another important use of bitmaps is to count the number of tuples satisfying a
given selection. Such queries are important for data analysis. For insiance, if wL wlsh
to find out how many women have an income level L2, we compute the intersection
of the two bitmaps and then count the number of bits that are i in the intersection
bitmap. We can thus get the desired result from the bitmap index, without even ac-
cessing the relation.

Bitmap indices are generally quite small compared to the actual relation size. Rec-
ords are typically at least tens of bytes to hundreds of bytes long, whereas a single
bit represents the record in a bitmap. Thus the space oicupied Ly a single bitm"ap
is usually less than 1 percent of the space occupied by the relation. For instance, if
the record size for a given relation is 100 bytes, then the space occupied by a single
bltmap would be $ of 1 percent of the space occupied by the relation. If an uitribrltJ,A
of the relation can take on only one of 8 values, a bitmap index on attribute A would
consist of 8 bitmaps, which together occupy only 1 percent of the size of the relation.

Deletion of records creates gaps in the sequence of records, since shifting records
(or record numbers) to fill gaps would be extremely expensive. To recogniz6 deleted
records, we can store an existence bitmap, in which bitl is 0 if record ; does not exist
and 1 otherwise. We will see the need for existence bitmaps in Section 129.z.Insertion
of records should not affect the sequence numbering of bther records. Therefore, we
can do insertion either by appending records to the end of the file or by replacing
deleted records.

12.9.2 Efficient lmplementqtion of Bitmqp Operotions
we can compute the intersection of two bitmaps easily by using a for loop: the zth
iteration of the loop computes the and of the zth bits of the two bitmaps. We can
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speed up computation of the intersection greatly by using bit-wise and instructions
supported by most computer instruction sets. A word usually consists of 32 or 64
bits, depending on the architecture of the computer. A bit-wise and instruction takes
two words as input and outputs a word where each bit is the logical and of the bits in
corresponding positions of the input words. What is important to note is that a single
bit-wise and instruction can compute the intersection of 32 or 64 bits at once.

If a relation had 1 million records, each bitmap would contain 1 million bits, or
equivalently 128 kilobytes. Only 31.,250 instructions are needed to compute the inter-
section of two bitmaps for our relation, assuming a 32-bit word length. Thus, com-

' puting bitmap intersections is an extremely fast operation.

]ust as bitmap intersection is useful for computing the and of two conditions,
bitmap union is useful for computing the or of two conditions. The procedure for
bitmap union is exactly the same as for intersection, except we use bit-wise or in-
structions instead of bit-wise and instructions.

The complement operation can be used to compute a predicate involving the nega-
tion of a condition, such as not (income-leael = I1). The complement of a bitmap is

generated. by complementing every bit of the bitmap (the complement of 1 is 0 and
the complement of 0 is 1). It may appear that not (income-leael = tr1) can be imple-
mented 6y just computing the complement of the bitmap for income level .L1. If some
records have been deleted, however, just computing the complement of a bitmap is

not sufficient. Bits corresponding to such records would be 0 in the original bitmap,
but would become 1 in the complement, although the records don't exist. A similar
problem also arises when the value of an attribute is nuIL For instance, if the value of

income-leaelis null, the bit would be 0 in the original bitmap for value L7, and 1 in the

complement bitmap.
To make sure that the bits corresponding to deleted records are set to 0 in the result,

the complement bitmap must be intersected with the existence bitmap to turn off the
bits for deleted records. Similarly, to handle null values, the complement bitmap must
also be intersected with the complement of the bitmap for the value null.l

Counting the number of bits that are 1 in a bitmap can be done fast by a clever
technique. We catt maintain an array with 256 entries, where the zth entry stores the

numbei of bits that are 1 in the binary representation of z. Set the total count initially
to 0. We take each byte of the bitmap, use it to index into this array, and add the

stored count to the toial count. The number of addition operations would be $ of the
number of tuples, and thus the counting process is very efficient. A large array (using

216 :65,536 entries), indexed by pairs of bytes, would give even higher speedup, but

at a higher storage cost.

12.9.3 Bitmops qnd B+-Trees
Bitmaps can be combined with regular B*-tree indices for relations where a few at-
tribute values are extremely common, and other values also occur, but much less
frequently. In a B+-tree index leaf, for each value we would normally maintain a list

1. Handling predicates such as is unknown would cause further complications, which would in general

fequire use of an extra bitmap to track which operation results are unknown.
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of all records with that value for the indexed attribute. Each element of the list would
be a record identifier, consisting of at least 32bits, and usually more. For a value that
occurs in many records, we store a bitmap instead of a list of records.

, Suppose a particular value ua occurs in fr of the records of a relation. Let N be
the number of records in the relation, and asiume that a record has a 64-bit number
identifying it. The bitmap needs only 1 bit per record, or l/ bits in total. In contrast,
the list representation requires 64 bits per record where the value occurs, or 64 *
N f 16 : 4N bits. Thus, a bitmap is preferable for representing the list of records for
value'u;. In our example (with a 64-bit record identifier), if fewer than 1 in 64 records
have a particular value, the list representation is preferable for identifying records
with that value, since it uses fewer bits than the bitmap representation. If more than
7 in 64 records have that value, the bitmap representation is preferable.

Thus, bitmaps can be used as a compressed storage mechanism at the leaf nodes
of B+-trees, for those values that occur very frequently.

12.10 Index Definition in SQL
The SQL standard does not provide any way for the database user or administrator
to control what indices are created and maintained in the database system. Indices
are not required for correctness, since they are redundant data structures. However,
indices are important for efficient processing of transactions, including both update
transactions and queries. Indices are also important for efficient enfoicement bf in-
tegrity constraints. For example, typical implementations enforce a key declaration
(Chapter 4) by creating an index with the declared key as the search key of the index.

In principle, a database system can decide automatically what indices to create.
Flowever, because of the space cost of indices, as well as the effect of indices on up-
date processing, it is not easy to automatically make the right choices about what
indices to maintain. Therefore, most sel- implementations piovide the programmer
control over creation and removal of indices via data-definition,language commands.

We illustrate the syntax of these commands next. Although the syntax that we
show is widely used and supported by many database systems, it is not part of the
sQL:1999 standard. The sel- standards (up to seL:1999, at least) do not support con-
trol of the physical database schema, and have restricted themselves to ihe logical
database schema.

we create an index by the create index command, which takes the form
create index <index-name> on <relation-name> (<attribute-list>)

The attribute-list is the list of attributes of the relations that form the search key for
the index.

To define an index name brnnch-index on the branch relation wit]n branch,name as
the search key, we write

create ind,ex branch_index on brnnch (branch,nqme)

If we wish to declare that the search key is a candidate key, we add the attribute
unique to the index definition. Thus, the command

create unique index brsnchindex on branch (branch_nnme)
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declares branch-name to be a candidate key for branch. If, at the time we enter the

create unique index command, branch-name is not a candidate key, the system will

display an error message, and the attempt to create the index will fail. If the index-

creition attempt succeeds, any subsequent attempt to insert a tuple that violates the

key declaration will fail. Note that the unique feature is redundant if the database

system supports the unique declaration of the SQL standard'

Many database systems also provide a way to specify the type of index to be used

(such ai B+-tree or hashing). Some database systems also permit one of the indices

on a relation to be declared to be clustered; the system then stores the relation sorted

by the search-key of the clustered index.

The index name we specified for an index is required to drop an index. The drop

index command takes the form:

drop index <index-name)

12.11 Summory
o Many queries reference only a small proportion of the records in a file. To

reduce the overhead in searching for these records, we can construct indices

for the files that store the database.

o Index-sequential files are one of the oldest index schemes used in database
systems. To permit fast retrieval of records in search-key order, records are

stored sequentially, and out-of-order records are chained together. To allow
fast random access, we use an index structure.

o There are two types of indices that we can use: dense indices and spalse
indices. Dense indices contain entries for every search-key value, whereas

sparse indices contain entries only for some search-key values.

o If the sort order of a search key matches the sort order of a relation, an index

on the search key is called a clustering index.The other indices are called non-

clustering or secondary indices. Secondary indices improve the performance of

queries that use search keys other than the search key of the clustering index.

However, they impose an overhead on modification of the database.

o The primary disadvantage of the index-sequential file organization is that per-

formance degrades as the file grows. To overcome this deficiency/ we can use

aB+ -tree index.

o A B+-tree index takes the form of a balnnced tree, in which every path from

the root of the tree to a leaf of the tree is of the same length. The height of a

B+-tree is proportional to the logarithm to the base l/ of the number of records
in the relation, where each nonleaf node stores ly' pointers; the value of -l/ is

often around 50 or 100. B+-trees are much shorter than other balanced binary-

tree structures such as AVL trees, and therefore require fewer disk accesses to

locate records.
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o Lookup on B+-trees is straightforward and efficient. Insertion and deletion,
howevel, are somewhat more complicated, but still efficient. The number of
operations required for lookup, insertion, and deletion on B*-trees is propor-
tional to the logarithm to the base N of the number of records in the relation.
where each nonleaf node stores ly' pointers.

o we can use B*-trees for indexing a file containing records, as well as to orga-
nize records into a file.

o B-tree indices are similar to B+-tree indices. The primary advantage of a B-tree
is that the B-tree eliminates the redundant storige of iearch-key values. The
major disadvantages are overall complexity and reduced fanout for a given
node size. System designers almost universally prefer B+-tree indices orier B-
tree indices in practice.

o Sequential file organizations require an index structure to locate data. File or-
ganizations based on hashing, by contrast, allow us to find the address of a
data item directly by computing a function on the search-key value of the de-
sired record. since we do not know at design time precisely which search-key
values will be stored in the file, a good hash function to choose is one that as-
signs search-key values to buckets such that the distribution is both uniform
and random.

o Ststic hashing uses hash functions in which the set of bucket addresses is fixed.
such hash functions cannot easily accommodate databases that grow signifi-
c_antly larger over time. There are several dynamichashing techniqies that illow
the hash function to be modified. one example is extindable iashing, which
copes with changes in database sizeby splitting and coalescing buckJts as the
database grows and shrinks.

o we can also use hashing to create secondary indices; such indices are called
hash indices. For notational convenience, we assume hash file organizations
have an implicit hash index on the search key used for hashing.

o Ordered indices such as B+-trees and hash indices can be used for selections
based on equality conditions involving singre attributes. when multiple
attributes are involved in a selection condition, we can intersect record iden-
tifiers retrieved from multiple indices.

o Bitmap indices provide a very compact representation for indexing attributes
with very few distinct values. Intersection operations are extrem-ely fast on
bitmaps, making them ideal for supporting queries on multiple attributes.

Review Terms
o Access types

o Access time

o Insertion time

o Deletion time

. Space overhead

o Ordered index
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o Clustering index

o Primary index

o Nonclustering index

o Secondaryindex

o Index-sequential file

o Index record/entry

o Dense index

o Sparse index

o Multilevel index

o Composite key

o Sequential scan

o B+-tree index

o Balanced tree

o B+-tree file organization

o B-tree index

c Static hashing

o Hash file organization

o Hash index

r Bucket

o Hash function

o Bucket overflow

o Skew

o Closed hashing

o Dynamic hashing

o Extendable hashing

e Multiple-key access

o Indices on multiple keys

o Bitmap index

o Bitmap operations

n Intersection
f Union
I Complement
! Existence bitmap

Prqctice Exercises
12.1, Since indices speed query processing, why might they not be kept on several

search keys? List as many reasons as possible.

12.2 Isit possible in general to have two clustering indices on the same relation for

different search keys? Explain your answer.

12.3 Construct a B+-tree for the following set of key values:

12, 3, 5, 7, 77, 77, 79, 23, 29, 37)

Assume that the tree is initially empty and values are added in ascending or-

der. Construct B+-trees for the cases where the number of pointers that will fit

in one node is as follows:

a. Four
b. Six
c. Eight

12.4 For each B+-tree of Exercise72.3, show the form of the tree after each of the

following series of oPerations:

a. Insert 9.
b. Insert 10.
c. Insert 8.
d. Delete 23.
e. Delete 19.
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12.5 Consider the modified redistribution scheme for B+-trees described in page
499.What is the expected height of the tree as a function of n?

12.6 Repeat Practice Exercise 123 for a B-tree.

12.7 Suppose that we are using extendable hashing on a file that contains records
with the following search-key values:

2, 3, 5, 7, 7'1,, 17, 79, 23, 29, 31.

Show the extendable hash structure for this file if the hash functio n is h( r\ : r
mod B and buckets can hold three records.

12.8 Show how the extendable hash structure of Practice Exercise 12.2 changes as
the result of each of the following steps:
a. Delete 11.
b. Delete 31.
c. Insert 1.
d. Insert 15.

12.9 Give pseudocode for deletion of entries from an extendable hash structure,
including details of when and how to coalesce buckets. Do not bother about
reducing the size of the bucket address table.

12.10 Suggest an efficient way to test if the bucket address table in extendable hash-
ing can be reduced in size, by storing an extra count with the bucket address
table. Give details of how the count should be maintained when buckets are
split, coalesced, or deleted.

(Note: Reducing the size of the bucket address table is an expensive oper-
ation, and subsequent inserts may cause the table to grow again. Therefor^e, it
is best not to reduce the size as soon as it is possible to do so, but instead do
it only if the number of index entries becomes small compared to the bucket-
address-table size.)

12.11 Consider the nccount relation shown in Figure 12.25.
a. Construct a bitmap index on the attributesbranchname andbalance, divid-

ingbalance values into 4 ranges: below 2s0,2s0 to below 500, s00 to below
750, and750 and above.

b. Consider a query that requests all accounts in Downtown with a balance of
500 or more. outline the steps in answering the query, and show the final
and intermediate bitmaps constructed to answer the query.

12.12 suppose you have a relation with n. tuples on which a secondary B+-tree is to
be constructed.

a. Give a formula for the cost of building the B+-tree index by inserting one
record at a time. Assume each page will hotd an average of / entries, and
that all levels of the tree above the leaf are in memory.

b. Assuming a disk access time of 10 milliseconds, what is the cost of index
construction on a relation with 10 million records?
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c. Suggest a more efficient way of constructing the index bottom-up, by con-
structing the entire leaf level first, and then constructing higher levels one
level at a time. Assume that you have a function that can efficiently sort
a very large set of records, even if the set is large than can fit in memory.
(Such sorting algorithms are described later, in Section 73.4, and assuming
a reasonable amount of main memory they have a cost of about one I/O
operation per block.)

Exercises

L2.13 When is it preferable to use a dense index rather than a sparse index? Explain
your answer.

12.14 Whatis the difference between a clustering index and a secondary index?

12.15 For each B+-tree of Practice Exercise 12.3, show the steps involved in the fol-
lowing queries:

a. Find records with a search-key value of 11.
b. Find records with a search-key value between 7 and 17, inclusive.

12.16 The solution presented in Section 12.5.3 to deal with non-unique search keys
added an extra attribute to the search key. What effect does this change have
on the height of the B--tree?

12.17 Explain the distinction between closed and open hashing. Discuss the relative
merits of each technique in database applications.

12.18 What are the causes of bucket overflow in a hash file organization? What can
be done to reduce the occurrence of bucket overflows?

12.19 Why is a hash structure not the best choice for a search key on which range
queries are likely?

12.20 Suppose there is a relation R(A,B,C), with a B+-tree index with search key
(4, B).

a. what is the worst case cost of finding records satisfying I0 < A < 50 using
this index, in terms of the number of records retrieved n1 and the height h

of the tree?
b. What is the worst case cost of finding records satisfying 10 < ,4 < 50 A 5 <

B < 10 using this index, in terms of the number of records n2 that satisfy
this selection, as well as rl1 and h defined above'

c. Under what conditions on n1 ar.d n2 would the index be an efficient way
of findingrecords satisfying 10 <,4 < 50 n 5 < B < 10.

12.21 Sttppose you have to create a B+-tree index on a large number of names, where
the maximum size of a name may be quite large (say 40 characters) and the av-

erage name is itself large (say 10 characters). Explain how prefix compression
can be used to maximize the average fanout of internal nodes.
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12.22 Why might the leaf nodes of a B+-tree file organization lose sequentiality? Sug-
gest how the file organization may be reorganized to restore sequentiality.

12.23 Suppose a relation is stored in a B+-tree fiLe organization. Suppose secondary
indices stored record identifiers that are pointers to records or, disk.
a. what would be the effect on the secondary indices if a page split happens

in the file organization?
b. What would be the cost of updating all affected records in a secondary

index?
c. How does using the search key of the file organization as a logical record

identifier solve this problem?
d. What is the extra cost due to the use of such logical record identifiers?

12.24 Show how to compute existence bitmaps from other bitmaps. Make sure that
your technique 

-works even in the presence of null values, by using a bitmap
for the value null.

12.25 How does data encryption affect index schemes? In particulat how might it
affect schemes that attempt to store data in sorted order?

12.26 Our description of static hashing assumes that a large contiguous stretch of
disk blocks can be allocated to a static hash table. Suppose you can allocate
only C contiguous blocks. Suggest how to implement tne nain table, if it can
be much larger than c blocks. Access to a block should still be efficient.
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Query processing refers to the range of activities involved in extracting data from
a database. The activities include translation of queries in high-level ditabase lan-
guages into expressions that can be used at the physical level of the file system, a
variety of query-optimizing transformations and actual evaluation of queries.

13.1 Overview
The steps involved in processing a query appear in Figure 13.1. The basic steps are

X. Parsing and translation

2. Optimization

3. Evaluation

Before query processing can begin, the system must translate the query into a us-
able form. A language such as SQL is suitable for human use, but is ill iuited to be the
system's internal representation of a query. A more useful internal representation is
one based on the extended relational algebra.

Thus, the first action the system must take in query processing is to translate a
given query into its internal form. This translation process is similar to the work
performed by the parser of a compiler. In generating the internal form of the query,
the parser checks the syntax of the user's query, verifies that the relation ra-"r up-
pearing in the query are names of the relations in the database, and so on. The sys-
tem constructs a parse-tree representation of the query, which it then translates into
a relational-algebra expression. If the query was expressed in terms of a view, the

53r
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data

Figure 13.1 Steps in query processing.

statistics
about data

translation phase also replaces all uses of the view by the relational-algebra exPres-

sion that deiines the view.l Most compiler texts cover parsing (see the bibliographical

notes).
Given a qlrery, there are generally a variety of methods for computing the answer.

For example, we have seen that, in SQL, a query could be expressed in several differ-

ent ways. Each SQL query can itself be translated into a relational-algebra expression
in one of several ways. Furthermore, the relational-algebra representation of a query

specifies only partially how to evaluate a query; there are usually several ways to

evaluate relational-algebra expressions. As an illustration, consider the query

selectbqlance
from account
where balance < 2500

This query can be translated into either of the following relational-algebra expres-

sions:

o (r barance<2boo (lIboron"" (account))

c II6o6n"" (o batance <2bo6 (account))

Further, we can execute each relational-algebra operation by one of several dif-

ferent algorithms. For example, to implement the preceding selection, we can search

every tufle in account to find tuples with balance less than 2500. If a B+-tree index is

avaiiabte on the attribute balance, we can use the index instead to locate the tuples.
To specify fully how to evaluate a query, we need not only to provide the relational-

atgebri expression, but also to annotate it with instructions specifying how to eval-

1. For materialized views, the expression defining the view has already been evaluated and stored. There-

fore, the stored relation can be used, instead of uses of the view being replaced by the expression defining

the view. Recursive views are handled differently, via a fixed-point procedure, as discussed in Sections 4.7

and 5.4.6.
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la'n*'
6, bolonce < 2500; use index 1

I
account

Figure 13.2 A query-evaluation plan.

uate each operation. Annotations may state the algorithm to be used for a specific
operation, or the particular index or indices to use. A relational-algebra opeiation
annotated with instructions on how to evaluate it is called an evaluition primitive.
A sequence of primitive operations that can be used to evaluate a query ii a query-
execution plan or query-evaluation plan. Figure 13.2 illustrates un erralnation plan
f9r ou1 example query, in which a particular index (denoted in the figure as ..in-
dex 1") is specified for the selection operation. The query-execution 

"trlit 
u takes a

query-evaluation plan, executes that plan, and returns the answers to the query.
The different evaluation plans for a given query can have different costs. We do not

expect users to write their queries in a way that suggests the most efficient evaluation
plan' Rathel, it is the responsibility of the system to construct a query-evaluation
plan that minimizes the cost of query evaluation; this task is called qiery'optimization.
Chapter 14 describes query optimization in detail.

- Once the query plan is chosen, the query is evaluated with that pian, and the result
of the query is output.

The sequence of steps already described for processing a query is representa-
tive; not all databases exactly follow those steps. For instance, instead of using the
relational:algebra representation, several databases use an annotated parse-treJrep-
resentation based on the structure of the given sel- query. Howevel, the concepts that
we describe here form the basis of query processing in databases.

In order to optimize a q.oery, a query optimizer must know the cost of each oper-
ation. Although the exact cost is hard to compute, since it depends on many puru*-
eters such as actual memory available to the operation, it is possible to gei a rough
estimate of execution cost for each operation.

In this chapter we study how to Lvaluate individual operations in a query plary
and how to estimate their cost; we return to query optimization in Chapier i+. S""-
tion 13.2 outlines how we measure the cost of a query. Sections 13.3 t^hrough 13.6
cover the evaluation of individual relational-algebra operations. Several ope"rations
may be grouped together into a pipeline, in which each of the operations starts work-
1ng on its input tuples even as they are being generated by inother operation. In
Section 73.7, we examine how to coordinate the execution of multiple op6rations in a
query evaluation plan, in particular, how to use pipelined operations to ivoid writing
intermediate results to disk.

13.2 Meqsures of Query Cost
The cost of query evaluation can be measured in terms of a number of different re-
sources, including disk accesses, CPU time to execute a query, and, in a distributed
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or parallel database system, the cost of communication (which we discuss later, in

Chapters 21. and22).Theresponse time for a query-evaluation plan (that is, the clock

time required to execute the plan), assuming no other activity is going on on the com-

puter, would account for all these costs, and could be used as a good measure of the

cost of the plan.
In large database systems, however, the cost to access data from disk is usually

the most important cost, since disk accesses are slow compared to in-memory op-

erations. Moreover, CPU speeds have been improving much faster than have disk

speeds. Thus, it is likely that the time spent in disk activity will continue to dominate

the total time to execute a query. The CPU time taken for a task is harder to estimate

since it depends on low-level details of the execution code. Although real-life query

optimizers do take CPU costs into account, for simplicity we ignore CPU costs, and

use only disk-access costs to measure the cost of a query-evaluation plan.

We use the number of block transfers from disk and the number of disk seeks to measure

the cost of accessing data from disk. If the disk subsystem takes an average of t7

seconds to transfer a block of data, and has an average block-access time (disk seek

time plus rotational latency) of ls seconds, then an operation that transfers b blocks

and performs S seeks would take bxtTf Sxls seconds. Thevalues of tr andfs must

be cilibrated for the disk system used, but typical values for high-end disks today

would be ts - 4 milliseconds and tr : 0.7 milliseconds, assuming a 4-kilobyte block

size and a transfer rate of 40 megabytes per second'z

We can refine our cost estimates further by distinguishing block reads from block

writes, since block writes are typically about twice as expensive as reads (this is be-

cause disk systems read sectors back after they are written to verify that the write

was successful). For simplicity, we ignore this detail, and leave it to you to work out

more precise cost estimates for various operations.

The cost estimates we give do not include the cost of writing the final result of an

operation back to disk. These are taken into account separately where required. The

costs of all the algorithms that we consider depend on the size of the buffer in main

memory. In the best case, all data can be read into the buffers, and the disk does not

need to be accessed again. In the worst case, we assume that the buffer can hold only

a few blocks of data-approximately one block per relation. When presenting cost

estimates, we generally assume the worst case.

In addition, although we assume that data must be read from disk initially, it is

possible that a block that is accessed is already present in the in-memory buffer.

Again, for simplicity, we ignore this effect; as a result, the actual disk-access cost

during the execution of a plan may be less than the estimated cost.

13.3 Selection Operotion
In query processing, the file scan is the lowest-level operator to access data. File scans

at" seaich algorithms that locate and retrieve records that fulfill a selection condition.

2. Some database systems perform test seeks and block transfers to estimate average seek and block

transfer costs, as part of the software installation process.
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In relational systems, a file scan allows an entire relation to be read in those cases
where the relation is stored in a single, dedicated file.

13.3.1 Bqsic Algorithms
Consider a selection operation on a relation whose tuples are stored together in one
file. Two scan algorithms to implement the selection operation are:

o A1 (linear search). In a linear search, the system scans each file block and tests
all records to see whether they satisfy the selection condition. An initial seek
is required to access the first block of the file. In case blocks of the file are not
stored contiguously, extra seeks may be required, but we ignore this effect for
simplicity.

The cost of linear search, in terms of number of disk operations, is one seek
plus b' block transfers, where b" denotes the number of blocks in the file. or
equivalently, the time cost is ts I b, * tr.

For a selection on a key attribute, the system can terminate the scan if the
required record is found, without looking at the other records of the relation.
Selections on key attributes have an average transfer cost of b, f 2,but still have
a worst-case cost of b, block transfers, in addition to one seek.

Although it may be slower than other algorithms for implementing selec-
tion, the linear-search algorithm can be applied to any file, regardlesJ of the
ordering of the file, or the availability of indices, or the natur" of the selection
operation. The other algorithms that we shall study are not applicable in all
cases, but when applicable they are generally faster than lineai Jearch.

o A2 (binary search). If the file is ordered on an attribute, and the selection con-
dition is an equality comparison on the attribute, we can use a binary search to
locate records that satisfy the selection. The system performs the binary search
on the blocks of the file.

In the worst case, the number of blocks that need to be examined to find
a block containing the required records is flog2(b,)1, where b" denotes the
number of blocks in the file. Each of these block accesses requires a disk seek
in addition to a block transfer, and the time cost is thus ftoglA")l * (tT + ts).

If the selection is on a nonkey attribute, more than one block may contiin
required records, and the cost of reading the extra blocks has to be added
to the cost estimate. We can estimate this number by estimating the size of
the selection result (which we cover in section 14.3), and, dividLg it by the
average number of records that are stored per block of the relation. Thes"
blocks are assumed to be stored contiguously, so we only pay a transfer cost
t7 per extra block.

13.3.2 Selections Using Indices
Index structures are referred to as access paths, since they provide a path through
which data can be located and accessed. In Chapter 72,-wi pointed out that it is
efficient to read the records of a file in an order iorresponding closely to physical
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order. Recall that a primary index (also referred to as a clustering index) is an index that
allows the records of a file to be read in an order that corresponds to the physical
order in the file. An index that is not a primary index is called asecondary index.

Search algorithms that use an index are referred to as index scans. Ordered indices,
such as B+-trees, also permit access to tuples in a sorted ordet which is useful for
implementing range queries. Although indices can provide fast, direct, and ordered
access, they impose the overhead of access to those blocks containing the index. We
use the selection predicate to guide us in the choice of the index to use in processing
the query. Search algorithms that use an index are:

r A3 (primary index, equatity on key). For an equality comparison on a key

attribute with a primary index, we can use the index to retrieve a single record
that satisfies the corresponding equality condition.

If a B+-tree is used, the cost of the operation, in terms of I/O operations, is
equal to the height of the tree plus one I/O to fetch the recordr; each of these
I/O operations requires a seek and a block transfer. Thus the cost is (ht * 1) x
(tr + td,where ha denotes the height of the index'a

o A4 (primary index, equality on nonkey). We can retrieve multiple records

by using a primary index when the selection condition specifies an equality

comparison on a nonkey attribute, ,4. The only difference from the previous

case is that multiple records may need to be fetched. However, the records
would be stored consecutively in the file since the file is sorted on the search
key.

The cost of the operation depends on the height of the tree, plus the number
of blocks containing records with the specified search key. One seek is needed
for each level of the tree. In addition, one seek is needed to get to the first block

containing a desired record; the remaining blocks are stored consecutively and
do not require further seeks. Specifically the cost is hi * (t7 * rs) * ts I b * t7
where h; is the height of the tree and b is the number of blocks containins
records with the specified search key.

o A5 (secondary index, equality). Selections specifying an equality condition
can use a secondary index. This strategy can retrieve a single record if the

equality condition is on a key; multiple records may get retrieved if the index-
ing field is not a key.

In the first case, only one record is retrieved, which requires one I/O oper-

ation for each level of the tree plus one I/O operation to fetch the record. Each
I/O operation requires a seek and a block transfer. The time cost in this case is

the same as that for a primary index (case A3)'

J. If a Bt-tree fi1e organization is used, the extra I/O is not required since records are stored at the leaf

level of the tree. Similar adjustments should be made for some of the algorithms described later in this

section, if a B*-tree file organization is used.
4. Real-life optimizers usually assume that the root of the tree is present in the in-memory buffer since

it is frequently accessed. Some optimizers even assume that all but the leaf level of the tree is present in

rr1"*oty, since they are accessed relatively frequently, and usually less than 1 percent of the nodes of a

B*-tree are nonleaf nodes. The cost formulae can be modified appropriately.
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In the second case each record may be resident on a different bloc! which
may result in one I/O operation per retrieved record, with each I/O operation
requiring a seek and a block transfer. The cost could become even worse than
that of linear search if a large number of records are retrieved. The time cost
in this case is (ht + n) * (ts + 17) where n is the number of records fetched.s

As described in Section 12.5.5, when records are stored in a B+-tree file organi-
zation or other file organizations that may require_relocation of records, s""orr.-dury
indices usually do not store pointers to the records.6 Instead, secondary indices store
the values of the attributes used as the search key in a B+-tree file organization. Ac-
cessing a record through such a secondary index is then more expensive: First the
secondary index is searched to find the primary index search-key values, then the
primary index is looked up to find the records. The cost formulae described for sec-
ondary indices have to be modified appropriately if such indices are used.

13.3.3 Selections Involving Compqrisons
Consider a selection of the form oa<u(r). We can implement the selection either by
using a linear or binary search or by using indices in one of the following ways:

o 46 (primary index, comparison). A primary ordered index (for example, a
primary B+-tree index) can be used when the selection condition is a compar_
ison. For comparison conditions of the form A > u or A t o, a primary inidex
on ,4 can be used to direct the retrieval of tuples, as follows. For A ) u, we
look up the value o in the index to find the first tuple in the file that has a value
of A :'u. A file scan starting from that tuple up to the end of the file returns
all tuples that satisfy the condition. For A ) ,u, the file scan starts with the first
tuple such that A > u. The cost estimate for this case is identical to that for
case A4.

For comparisons of the form A < u or A 1 u, an index lookup is not re-
quired. For,4 < .1), we use a simple file scan starting from the beginning of
the file, and continuing up to (but not including) the iirst tupte with attribute
A : a. The case of A 1o is similar, except that the scan continues up to (but
not including) the first tuple with attribute A > u.In either case, the index is
not useful.

o A7 (secondary index, comparison). we can use a secondary ordered index to
guide retrieval for comparison conditions involving (, S, ), or ). The lowest-
level index blocks are scanned, either from the smillest value up to u (for <
and (), or from,u up to the maximum value (for > and )).

5. If the in-memory buffer is large, the block containing the record may already be in the buffer. It is
possible to construct an estimate of the aaerage or expected cost of the seleition by iaking into account the
probability of the block containing the record already being in the buffer. For large buffers, that estimate
will be much less than the worst case estimate.
6. Recall that if B*-tree fi1e organizations are used to store reiations, records may be moved between
blocks when leaf nodes are split or merged, and when records are redistributed.
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The secondary index provides pointers to the records, but to get the actual

records we have to fetch the recqrds by using the pointers. This step may

require anI/O operation for each record fetched, since consecutive records

may be on different disk blocks; as before, each I/O operation requires a disk

seek and a block transfer. If the number of retrieved records is large, using

the secondary index may be even more expensive than using linear search.

Therefore the secondary index should be used only if very few records are

selected.

13.3.4 lmplementqtion of Complex Selections

So far, we have considered only simple selection conditions of the form A op B, where
op is an equality or comparison operation. We now consider more complex selection
predicates. '

o Conjunction: A coniunctirte selection is a selection of the form

oe rne"n.. .ne*(r)

o Disjunction A disiunctioe selection is a selection of the form

oervezv . . .vo* \T  )

A disjunctive condition is satisfied by the union of all records satisfying the
individual, simple conditions 0i.

o Negation: The result of a selection o-e(r) is the set of tuples of r for which the

condition d evaluates to false. In the absence of nulls, this set is simply the set
of tuples that are not in oB (r).

We can implement a selection operation involving either a conjunction or a dis-
junction of simple conditions by using one of the following algorithms:

o A8 (conjunctive selection using one index). We first determine whether an

access path is available for an attribute in one of the simple conditions. If one
is, one of the selection algorithms A2 through .A7 can retrieve records satis-
fying that condition. we complete the operation by testing, in the memory

buffer, whether or not each retrieved record satisfies the remaining simple
conditions.

To reduce the cost, we choose a 0i andone of algorithms A1 through A7 for

which the combination results in the least cost for oe,(r). The cost of algorithm
A8 is given by the cost of the chosen algorithm'

r 49 (conjunctive selection using composite index). An approptiate compos-

ite index (that is, an index on multiple attributes) may be available for some

conjunctive selections. If the selection specifies an equality condition on-two
or more attributes, and a compssite index exists on these combined attribute
fields, then the index can be searched directly. The type of index determines

which of algorithms .L3, A4, or A5 will be used.



13.+ Sorting 539

o A10 (conjunctive selection by intersection of identifiers). Another alterna_
tive for implementing conjunctive selection operations involves the use of
record pointers or record identifiers. This aigorithm requires indices with
record pointers, on the fields involved in the individual conditions. The algo-
rithm scans each index for pointers to tuples that satisfy an individual condi-
tion. The intersection of all the retrieved pointers is the set of pointers to tuples
that satisfy the conjunctive condition. The algorithm then uses the pointeis to
retrieve the actual records. If indices are not available on all the lndividual
conditions, then the algorithm tests the retrieved records against the remain-
ing conditions.

The cost of algorithm A10 is the sum of the costs of the individual index
scans, plus the cost of retrieving the records in the intersection of the retrieved
lists of pointers. This cost can be reduced by sorting the list of pointers and
retrieving records in the sorted order. Thereby, (7) all pointers to records in a
block come together, hence all selected records in the block can be retrieved
using a single I/O operation, and (2) blocks are read in sorted order, minimiz-
ing disk-arm movement. section 13.4 describes sorting algorithms.

o A1"1 (disjunctive selection by union of identifiers). If access paths are avail-
able on all the conditions of a disjunctive selectiory each index is scanned for
pointers to tuples that satisfy the individual condition. The union of all the
retrieved pointers yields the set of pointers to all tuples that satisfy the dis-
junctive condition. We then use the pointers to retrieve the actual records.

However, if even one of the conditions does not have an access path, we
have to perform a linear scan of the relation to find tuples that satisfy the
condition. Therefore, if there is even one such condition in the disjunci, the
most efficient access method is a linear scan, with the disiunctive tondition
tested on each tuple during the scan.

The implementation of selections with negation conditions is left to you as an ex-
ercise (Practice Exercise 13.6).

13.4 Sorting
Sorting of data plays an important role in database systems for two reasons. First,
SQL queries can specify that the output be sorted. Second, and equally important for
query processing, several of the relational operations, such as joins, can be imple-
mented efficiently if the input relations are first sorted. Thus, we discuss sorting liere
before discussing the join operation in Section 13.5.

we can sort a relation by building an index on the sort key, and then using that
index to read the relation in sorted order. However, such a ptoi"m orders the reLtion
only logically, through an index, rather thanphysically.Hence, the reading of tuples
in the sorted order may lead to a disk access (disk seek plus block transfer) for eiach
record, which can be very expensive, since the number oi records can be much larger
than the number of blocks. For this reason, it may be desirable to order the recoids
physically.
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The problem of sorting has been studied extensively, both for relations that fit

entirely in main memory and for relations that are bigger than memory. In the first

case, slandard sorting techniques such as quick-sort can be used. Here, we discuss

how to handle the second case.
Sorting of relations that do not fit in memory is called external sorting. The most

commonly used technique for external sorting is the external sort-merge algorithm.

We describe the external sort-merge algorithm next. Let M denote the number of

page frames in the main-memory buffer (the number of disk blocks whose contents

can be buffered in main memorY).

1. In the first stage, a number of sorted runs are created; each run is sorted, but

contains only some of the records of the relation.

i = 0 ;
rePeat

read M blocks of the relation, or the rest of the relation,
whichever is smaller;

sort the in-memory part of the relation;
write the sorted data to run file Ra;
i : i + 1 ;

until the end of the relation

2. In the second stage, the runs are merged. Suppose, for now, that the total num-

ber of runs, N, is less than M, so that we can allocate one page frame to each

run and have space left to hold one page of output. The merge stage operates
as follows:

read one block of each of the l/ files fte into abuffer page in memory;
repeat

choose the first tuple (in sort order) among all buffer pages;
write the tuple to the output, and delete it from the buffer page;
if the buffer page of any run -ft is empty and not end-of-file(Rz)

then read the next block of Ez into the buffer page;
until all buffer Pages are emPty

The output of the merge stage is the sorted relation. The output file is buffered

to reduce the number of disk write operations. The preceding merge operation is a

generalization of the two-way merge used by the standard in-memory sort-merge

algorithm; it merges -|y' runs, so it is called an N-way merge.
In general, if the relation is much larger than memory, there may be M or more

.nns g"tr"tated in the first stage, and it is not possible to allocate apageframe for each

run during the merge stage. In this case, the merge operation proceeds in multiple

passes. Since there is enough memory for M - 1 input buffer Pages, each merge can

takeM- l runsas input .
The initial pass fuictions in this way: It merges the first M - 7 runs (as described

in item 2 above) to get a single run for the next pass. Then, it merges the next M - |

runs similarly, and so on, until it has processed all the initial runs. At this point, the
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number of runs has been reduced by a factor of M - 1. If this reduced number of runs
is still greater than or equal to M, another pass is made, with the runs created by the
first pass as input. Each pass reduces the number of runs by a factor of M - t. ttre
passes repeat as many times as required, until the number of runs is less than M; a
final pass then generates the sorted output.

Figure 13.3 illustrates the steps of the external sort-merge for an example relation.
For illustration purposes, we assume that only one tuple fits in a block (i : 1), and
we assume that memory holds at most three page frames. During the merge stage,
two page frames are used for input and one for output.

, We compute the disk-access cost for the external sort-merge in this way: Let b,
denote the number of blocks containing records of relation r. The first stage reads
every block of the relation and writes them out again, giving a total of zb" block
transfers. The initial number of runs 1s lb, I Ml. Since the number of runs decreases
by a factor of M - 1 in each merge pass, the total number of merge passes required
is flogla ,(b" lM)1. Each of these passes reads every block of the reiation once and
writes it out once, with two exceptions. First, the final pass can produce the sorted
output without writing its result to disk. Second, there may be runs that are not read
in or written out during a pass-for example, if there are M runs to be merged in
a pass, M - r are read in and merged, and one run is not accessed during the pass.
Ignoring the (relatively small) savings due to the latter effect, the total number of
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block transfers for external sorting of the relation is

b,(2l7og7a -r(b" I M)l + I)

Applying this equation to the example in Figure 13.3, we get a total of 12* (4+ 1) : 60
blbik transfers, as you can verify from the figure. Note that the above numbers do
not include the cost of writing out the final result.

We also need to add the disk-seek costs. Run generation requires seeks for reading
data for each of the runs and as well as for writing the runs. During the merge phase,
if data is read bo blocks at a time from each run (that is, b6 buffer blocks are allocated
to each run), then each merge pass would require around lb"lbul seeks for reading
data.7 Although the output is written sequentially, if it is on the same disk as the input
runs the head may have moved away between writes of consecutive blocks. Thus we
would have to add a total of 2lb,lbal seeks for each merge pass, except the final pass
(since we assume the final result is not written back to disk). The total number of

seeks is then

2lb, I Ml + fb, I bb1(2 [logM-' (b 
" I 

M)] - 1)

Applying this equation to the example in Figure 13.3, we get a total of 8 * 72 * (2 *

2 - 1) :44 disk seeks if we set the number of buffer blocks per run/ ba to 1.

13.5 foin Operotion
In this section, we study several algorithms for computing the join of relations, and

we analyze their respective costs.
we use the term equi-join to refer to a join of the form r xr.A:s.B s, where A and

B are attributes or sets of attributes of relations r antd s, respectively.

We use as a running example the expression

depositor X customer

using the same relation schemas that we used in Chapters 2 and 3. We assume the

following information about the two relations:

r Number of records of customer: rlcustomer : 10,000.

o Numberof blocks of customer:b.urto*", : 400.

o Number of records of depositor: rLd.eposi.tor : 5000.

o Numberof blocks of depositor;brteposito,: 100.

13.5.1 Nested-Looproin
Figure 13.4 shows a simple algorithm to compute the theta join, r Xe s, of two rela-

tions r and s. This algorithm is called the nested-loop join algorithm, since it basi-

cally consists of a pair of nested for loops. Relation r is called the outer relation and

7. To be more precise, since we read each run separately and may get fewer than b6 blocks when reading

the end of a run, we may require an extra seek for each run. We ignore this detail for simpiicity.
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for each tuple t, in r do begin
for each tuple t" in s do begin

test pair (t,,t") to see if they satisfy the join condition d
if they do, add t, .t" to the result.

Figure 13.4 Nested-loop join.

relation s the inner relation of the join, since the loop for r encloses the loop for s.
The algorithm uses the notation t, .t", where t, and l" are tuples ) t, .t" denotes the
tuple constructed by concatenating the attribute values of tuples t, and.t".

Like the linear file-scan algorithm for selection, the nested--loop join algorithm re-
quires no indices, and it can be used regardless of what the join conditionls. Extend-
ing the algorithm to compute the natural join is straightforward, since the natural
join can be expressed as a theta join followed by elimination of repeated attributes by
a projection. The only change required is an extra step of deleting repeated attributes
from the tuple t" . 1", before adding it to the result.

Th" nested-loop join algorithm is expensive, since it examines every pair of tuples
in the two relations. Consider the cost of the nested-loop join atgorithm: The number
of pairs of tuples to be considered is rlr * r'Ls,where n" denotes the number of tuples in
r, and n" denotes the number of tuples in s. For each record in r, we have to perform
a complete scan on s. In the wotst case, the buffer can hold only one block of each
relation, and a total of n, * bs + b, block transfers would be requiied, where b, and. b"
denote the number of blocks containing tuples of r and s, respectively. We need only
one seek for each scan on the inner relation s since it is read -equentially, and a total
of b"seekstoreadr, leadingtoatotal of n,*b,seeks. Inthebestcase,thereisenough
space for both relations to fit simultaneously in memory, so each block would havelo
be read only once; hence, only b, * b" block transfers would be required, along with
2 seeks.

If one of the relations fits entirely in main memory, it is beneficial to use that re-
lation as the inner relation, since the inner relation would then be read only once.
Therefore, if s is small enough to fit in main memory, our strategy requires only a
total b, i b" block transfers and 2 seeks-the same cost as that for the case whlre
both relations fit in memory.

Now consider the natural join of depositor and customer. Assume for now that we
have no indices whatsoever on either relation, and that we are not willing to create
any index. We can use the nested loops to compute the join; assume thit depositor
is the outer relation and customer is the inner relation in the foin. We will have to
examine 5000 x 10,000 : 50 x 106 pairs of tuples. In the worst case, the number
of block transfers is 5000 x 400 * 100 : 2,000,100, plus b000 + 100 : 5100 seeks. In
the best-case scenario, however, we can read both ielations only once, and perform
the computation. This computation requires at most 100 + 400 : 500 block tiansfers,
plus 2 seeks-a significant improvement over the worst-case scenario. If we had used
customer as the relation for the outer loop and depositor for the inner loop, the worst-
case cost of our final strategy would have been 10,000 x 100 * 400 : 1,0b0,400 block

end
end
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for each block B" of r do begin
for each block B" of s do begin

for each tuple t" in B' do begin
for each tuple l" in B, do begin

test pair (t,,t") to see if they satisfy the join condition
if they do, add t, 't" to the result.

end
end

end
end

Figure 13.5 Block nested-loop join.

transfers, plus 10,400 disk seeks. The number of block transfers is significantly less,
and although the number of seeks is higher, the overall cost is reduced, assuming
ts : 4 milliseconds and t7 : 0.1 milliseconds.

13.5.2 Block Nested-LooP Join
If the buffer is too small to hold either relation entirely in memory, we can still ob-

tain a major saving in block accesses if we process the relations on a per-block basis,
rather than on a per-tuple basis. Figure 13.5 shows block nested-loop join, which is

a variant of the nested-loop join where every block of the inner relation is paired with

every block of the outer relation. Within each pair of blocks, every tuple in one block

is paired with every tuple in the other block, to generate all pairs of tuples. As before,

all pairs of tuples that satisfy the join condition are added to the result.
the primary difference in cost between the block nested-loop join and the basic

nested-ioop join is that, in the worst case, each block in the inner relation s is read

only once for each block in the outer relation, instead of once for each tuple in the

outer relation. Thus, in the worst case, there will be a total of b, * b" + b" block
transfers, where b, and b" denote the number of blocks containing records of r and

s respectively. Each scan of the inner relation requires one seek, and the scan of the

outer relation requires one seek per block, leading to a total of 2 * b, seeks. Clearly,
it is more efficient to use the smaller relation as the outer relation, in case neither of
the relations fits in memory. In the best case, where the inner relation fits in memory,
there will be b, + b" block transfers and just 2 seeks (we would choose the smaller

relation as the inner relation in this case).
Now return to our example of computing depositor X custlmer, using the block

nested-loop join algorithm. In the worst case we have to read each block of customer

once for each block of depositor. Thus, in the worst case, a total of 100 * 400 * 100 :

40,100 block transfers plus 2 x 100 : 200 seeks are required. This cost is a significant
improvement over the 5000 x 400 * 100 : 2,000,100 block transfers plus 5100 seeks
tr"eded in the worst case for the basic nested-loop join. The best-case cost remains the

same-namely, 100 + 400 : 500 block transfers and 2 seeks.
The performance of the nested-loop and block nested-loop procedures can be fur-

ther improved:
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o If the join attributes in a natural join or an equi-join form a key on the inner
relation, then for each outer relation tuple the inner loop can terminate as soon
as the first match is found.

o In the block nested-loop algorithm, instead of using disk blocks as the block-
ing unit for the outer relation, we can use the biggest size that can fit in mem-
ory, while leaving enough space for the buffers of the inner relation and the
output. In other words, if memory has M blocks, we read in M - 2 blocks
of the outer relation at a time, and when we read each block of the inner re-
lation we join it with all the M - 2 blocks of the outer relation, This change
reduces the number of scans of the inner relation from b, to lb,l(M - 2il,
where b' is the number of blocks of the outer relation. The total cost is then
lb" l(M -2) l  *  b"tb,blocktransfersand 2lb" l(M -2) l  seeks.

o we can scan the inner loop alternately forward and backward. This scanning
method orders the requests for disk blocks so that the data remaining in th!
buffer from the previous scan can be reused, thus reducing the numbeiof disk
accesses needed.

o If an index is available on the inner loop's join attribute, we can replace file
scans with more efficient index lookups. Section 13.5.3 describes this optimiza-
tion.

13.5.3 Indexed Nested-Loop Join
In a_nested-loop join (Figure 18.4), if an index is available on the inner loop,s join
attribute, index lookups can replace file scans. For each tuple l" in the outer ielaiion
r, the index is used to look up tuples in s that will satisfy the join condition with
tuple f".

This join method is called an indexed nested-loop ioin; it can be used with existing
indices, as well as with temporary indices created for the sole purpose of evaluatin[
the join.

Looking up tuples in s that will satisfy the join conditions with a given tuple f" is
essentially a selection on s. For example, consider depositor X customir. Supplse that
we have a depositor tuple with customer-name'John." Then, the relevant tupies in s are
those that satisfy the selection "customer_na1ns : John.',

The cost of an indexed nested-loop join can be computed as follows. For each tuple
in the outer relation r, a lookup is performed on the index for s, and the relevint
tuples are retrieved. In the worst case, there is space in the buffer for only one page
of_randonePageof theindex.Then, b, I/oopeiationsareneededtoreadrehtitn"r,
where b' denotes the number of blocks containing records of r; eachl/o requires a
seek and a block transfer, since the disk head may have moved in between 

"u"h 
I/o.

For each tuple in r, we perform an index lookup on s. Then, the time cost of the join
can be computed as br(t7 f ,s) * n, * c, where n" is the number of records in relaiion
r, and c is the cost of a single selection on s using the join condition. We have seen in
Section 13.3 how to estimate the cost of a single selection algorithm (possibly using
indices); that estimate gives us the value of c.
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The cost formula indicates that, if indices are available on both relations r and s, it
is generally most efficient to use the one with fewer tuples as the outer relation.

For example, consider an indexed nested-loop join of depositor x customer, wit}l.
depositor as the outer relation. Suppose also that customer has a primary B+-tree index
on the join attribute customer:name, which contains 20 entries on average in each index
node. Since customerhas 10,000 tuples, the height of the tree is 4, and one more access
is needed to find the actual data. Since fr4eposi.tor is 5000, the total cost is 100*5000*5 :

25,700 disk accesses, each of which requires a seek and a block transfer. In contrast, as

pr i= address of first tuple of r;
ps := address of first tuple of s;
while (ps lnullandpr I null) do

begin
l" := tuple to which ps points;
S" := {t"};
set ps to point to next tuPle of s;
6ong = false)
while (not done and ps I null) do

begin
f"/ := tuple to which ps points;
if (t 

"' lJoinAttrs] : t 
"lloinAttrs])then begin

,9" := S" U {r"/h
set ps to point to next tuPle of s;

end
else done:= true;

end
t, := tuple to which pr points;
while (pr lnuLlandt,lJoinAttrsl < t"lJoinAttrsl) do

begin
setpr to point to next tuple of r;
f, := tuple to which pr points;

end
while (pr lnullandt,lJoinAttrsl : t"lJoinAttrs)) do

begin
for each f" in S" do

begin
add t" x ,r to result;

end
setpr to point to next tuple of r;
f, := tuple to which pr points;

end
end.

Figure 13.5 Merge join.
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we saw before, 40,100 block transfers plus 200 seeks were needed for a block nested-
loop join. Although the number of block transfers has reduced, the seek cost has
actually increased, increasing the total cost since a seek is considerably more expen-
sive than a block transfer. However, if we had a selection on the depositor relationihat
reduces the number of rows significantly, indexed nested-loop join could be signifi-
cantly faster than block nestedJoop join.

13.5.4 Merge Join
The merge-join algorithm (also called the sort-merge-join algorithm) can be used
to compute natural joins and equi-joins. Let r(ft) and s(^9) be the relations whose
natural join is to be computed, and let i? n ^9 denote their common attributes. Suppose
that both reiations are sorted on the attributes .R n ,S. Then, their join can be .o*blt"d
by a process much like the merge stage in the merge-sort algorithm

Figure 13'6 shows the merge-join algorithm. In the algorithm, /o inAttrsrefers to the
attributes in -R o ,9, and t, x t", where t, and f" are tuples that have the same values
for loinAttrs, denotes the concatenation of the attributes of the tuples, followed bv
projecting out repeated attributes. The merge-join algorith- asroiiat"s one pointer
with each relation. These pointers point initially to the first tuple of the res^pective
relations. As the algorithm ptoceeds, the pointers move through ihe relatiot . A gro,rp
of tuples of one relation with the same value on the join attiibutes is read inio ^9".
The algorithm in Figure 73.6 requires that every set of tuples s" fit in main memory;
we shall look at extensions of the algorithm to avoid tliis requirement later in this
section' Thery the corresponding tuples (if any) of the other relation are read in, and
are processed as they are read.

Figure 13.7 shows two relations that are sorted on their ioin attribute a1. It is in-
structive to go through the steps of the merge-join algorithm on the relations shown
in the figure.

Since the relations are in sorted ordeq, tuples with the same value on the join at-
tributes are in consecutive order. Thereby, each tuple in the sorted order needs to be
read only once, and, as a result, each block is also read only once. Since it makes only

UJa2a7

Figure 13.7 Sorted relations for merge join.
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a single pass through both files, the merge-join method is efficient; the number of
block transfers is equal to the sum of the number of blocks in both frles, b, + b".

Assuming that ba buffer blocks are allocated to each relation, the number of disk
seeks required would be lb,lb6] + lb" lbb] disk seeks. Since seeks are much more ex-

pensive ihan data transfer, it makes sense to allocate multiple buffer blocks to each
ielation, provided extra memory is available. For example, with 17 : 0.1 millisec-
onds per 4 kilobyte block, and ts : 4 milliseconds, the buffer size is 400 blocks (or

1.6 megabytes), the seek time would be 4 milliseconds for every 40 milliseconds of
transfei time, in other words, seek time would be just 10 percent of the transfer time.

If either of the input relations r and s is not sorted on the join attributes, they

can be sorted first, and then the merge-join algorithm can be used. The merge-join
algorithm can also be easily extended from natural joins to the more general case of

equi-joins.
As mentioned earlier, the merge-join algorithm of Figure 13.6 requires that the set

S" of all tuples with the same value for the join attributes must fit in main memory'

This requirement can usually be met, even if the relation s is large. If it cannot be,m9t,

a block nested-loop join must be performed between S" and the tuples in r with the

same values for the join attributes. The overall cost of the merge join increases as a

result.
It is also possible to perform a variation of the merge-join operation on unsorted

tuples, if secondary indices exist on both join attributes. The algorithm scans the

records through the indices, resulting in their being retrieved in sorted order. This

variation presents a significant drawback, however, since records may be scattered

throughout the file blocks. Hence, each tuple access could involve accessing a disk

block, and that is costly.
To avoid this cost, we can use a hybrid merge-join technique that combines indices

with merge join. Suppose that one of the relations is sorted; the other is unsorted, but

has a secondary B+-tree index on the join attributes. The hybrid merge-join algo-

rithm merges the sorted relation with the leaf entries of the secondary B+-tree index.

The result file contains tuples from the sorted relation and addresses for tuples of

the unsorted relation. The result file is then sorted on the addresses of tuples of the

unsorted relation, allowing efficient retrieval of the corresponding tuples, in phys-

ical storage order, to complete the join. Extensions of the technique to handle two

unsorted relations are left as an exercise for you.
Suppose the merge-join scheme is applied to our example of depositor X customer.

The join attribute here is customer-name. Suppose that the relations are already sorted

on the join attribute customer-name.In this case, the merge join takes a total of 400 *

100 : b00 block transfers. If we assume that in the worst case only one buffer block

is allocated to each input relation (that is, b6 : 1), a total of 400 * 100 : 500 seeks

would also be required; in reality b6 can be set much higher since we need to buffer

biocks for only two relations, and the seek cost would be significantly less.

Suppose the relations are not sorted, and the memory size is the worst case, only

three blocks. The cost is as follows:

1. Using the formulae we developed in Section 13.4, sorting relation customer

requiies flog3_1(400/3)l : e merge passes. Sorting of relation customer then
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takes 400 * (2[log3-1(400l})l * 1), or 6800, block transfers, with 400 more
transfers to write out the result. The number of seeks required is 2 * f 00/31 +
400 * (2 x 8 - 1) or 6268 seeks for sorting, and 400 seeks for writing the output,
for a total of 6668 seeks, since only one buffer block is available for each run.

2. Similarly, sorting depositor takes [logr_1(100/3).l : 6 merge passes and 100 *
(2[1og3-r(100i3)l + 1), or 1300, block transfers, with 100 more transfers to
write it out. The number of seeks required for sorting depositor is 2 * f100/31 +
100'r (2 * 6 - 1) : 7764, and 100 seeks are required for writing the output, for
a total of1264 seeks.

3. Finally, merging the two relations takes 400 + 100 : 500 block transfers and
500 seeks.

Thus, the total cost is 9100 block transfers plus 8932 seeks if the relations are not
sorted, and the memory size is just 3 blocks.

With a memory size of 25 blocks, and the relations not sorted, the cost of sorting
followed by merge join would be as follows.

1. Sorting the relation customer can be done with just one merge step, and takes
a total of just 400 x (2f1og24e00pb)1+ 1) = 1200 block transfers. Similarlv
sorting depositor takes 300 block transfers. Writing the sorted output to disk
requires 400 + 100 : 500 block transfers, and the merge step requires 500
block transfers to read the data back. Adding up these costs gives Jtotal cost
of 2500 block transfers.

2. If we assume that only one buffer block is allocated for each run, the number
of seeks required in this case is 2 * | a00 l25l + 400 + 400 : 832 seeks for sorting
customer and writing the sorted output to disk, and similarly 2 * l100l21] i
100 + 100 : 208 for depositor, plus 400 * 100 seeks for reading the sorted data
in the merge-join step. Adding up these costs gives a total cost of 1640 seeks.

The number of seeks can be significantly reduced by setting aside more
buffer blocks for each run. For example, if 5 buffer blocks are ailoCated for each
run and for the output from merging the 4 runs of depositor,the cost is reduced
to2*lI00l25l + [100/5.l + f 100/51 : 48 seeks, from 208 seeks. If the merge-join
step sets aside 12 blocks each for buffering customer and depositor, the number
of seeks for the merge-join step goes down to 1400lt2l + frc}lI2l : 43, frorn
500. The total number of seeks is then 251.

Thus, the total cost is 2500 block transfers plus 251 seeks if the relations are not sorted,
and the memory size is 25 blocks.

13.5.5 Hosh foin
Like the merge-join algorithm, the hash-join algorithm can be used to implement
natural joins and equi-joins. In the hash-join algorithm, a hash function ft is used to
partition tuples of both relations. The basic idea is to partition the tuples of each of
the relations into sets that have the same hash value on the join attributes.
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Figure 13.8 Hash partitioning of relations.

We assume that

o his ahash function mapping/oinAttrs values to {0, 1, - . . ,nn},wheteloinAttrs
denotes the common attributes of r and s used in the natural join.

. H,o, H,,, . . . , H,-^ denote Partitions of r tuples, each initially emPty. Each tu-

ple l" € r is put in partition f1"0, where i' : h(t,VoinAttrs]).

. H"o,H"r,...,f1",. denotepartitionsofstuples,eachinitiallyempty.Eachtuple
,s e s is put in pirtition f1"0, where i' : h(t"VoinAttrs]).

The hash function ft should have the "goodness" properties of randomness and uni-
formity that we discussed in Chapter 12. Figure 13.8 depicts the partitioning of the

relations.

13.5.5.1 Bqsics
The idea behind the hash-join algorithm is this: Suppose that an r tuple and an s tuple

satisfy the join condition; then, they will have the same value for the join attributes.
If that value is hashed to some value 'i, the r tuple has to be in H,o and the s tuple in
fl"n. Therefore, r tuples in H,, need only to be compared with s tuples in H 

"u; 
they

do not need to be compared with s tuples in any other partition.
For exampl e, lf d is a tuple in depositor, c a tuple in customer, and h a hash func-

tion on the iustomer-name attributes of the tuples, then d and c must be tested only if

h(") : h(d) . If h(") I h(d) , then c and d must have different values for customername.
However, If h(c) : h(d), we must test c and d to see whether the values in their join

attributes are the same, since it is possible that c and dhave different customer-names
that have the same hash value.
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/"Partltions"/
for each tuple f" in s do begin

i, := h(t"VoinAttrs]);
H " . : =  H " u U  { t " } ;

end
/*Partitionr*/
for each tuple I, in r do begin

i:= h(t,VoinAttrs]);
Hru i= Hrn U {tr};

end

/* Perform join on each partition */

for' i := 0 to n6 do begin
read H"o and build an in-memory hash index on it
for each tuple t, in H,u do begin

probe the hash index on I1"u to locate all tuples l"
such that t"lJoinAttrs] : t,VoinAttrsl

for each matching tuple l" irt H"n do begin
add t, X fs to the result

end
end

end

Figure 13.9 Hash join.

Figure 13.9 shows the details of the hash-join algorithm to compute the natural
join of relations r and s. As in the merge-join algorithm, t, x t" denotes the concate-
nation of the attributes of tuples t, and t,, followed by projecting out repeated at-
tributes. After the partitioning of the relations, the rest of the hash-join code performs
a separate indexed nested-loop join on each of the partition pairs'i, foyi : 0, . . . ,rrh.
To do so, it first builds a hash index on each H"o, and then probes (that is, looks
up r1",) with tuples from H,u. The relation s is the build input, and, r is the probe
input.

The hash index on 11"u is built in memory, so there is no need to access the disk to
retrieve the tuples. The hash function used to build this hash index must be different
from the hash function h used earliel, but is still applied to only the join attributes. In
the course of the indexed nested-loop join, the system uses this hash index to retrieve
records that match records in the probe input.

The build and probe phases require only a single pass through both the build
and probe inputs. It is straightforward to extend the hash-join algorithm to compute
general equi-joins.

The value rz7, must be chosen to be large enough such tha! for each z, the tuples in
the partition H"o of the build relation, along with the hash index on the partition, fit
in memory. It is not necessary for the partitions of the probe relation to fit in memory.
Clearly, it is best to use the smaller input relation as the build relation. If the size of
the build relation is b" blocks, then, for each of the n7, partitions to be of size less
than or equal to M,r'Lh must be at least lb"lM1. More precisely stated, we have to
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account for the extra space occupied by the hash index on the partition as well, so
n6 should be correspondingly larger. For simplicity, we sometimes ignore the space
requirement of the hash index in our analysis.

13.5:.5.2 Recursive Portitioning
If the value of n6 is greater than or equal to the number of page frames of memory,
the relations cannot be partitioned in one pass, since there will not be enough buffer
pages. Instead, partitioning has to be done in repeated passes. In one pass, the input
can be split into at most as many partitions as there are page frames available for
use as output buffers. Each bucket generated by one pass is separately read in and
partitioned again in the next pass, to create smaller partitions. The hash function used
in a pass is, of course, different from the one used in the previous pass. The system
repeats this splitting of the input until each partition of the build input fits in memory.
Such partitioning is called recursive partitioning.

A relation does not need recursive partitioninglf M ) nn*I, or equivalently M >
(b"lM) + 1, which simplifies (approximately) to M > \/8. For example, consider a
memory size ol12 megabytes, divided into 4-kilobyte blocksi it would contain a total
of 3K (3072) blocks. We can use a memory of this size to partition relations of size
up to 3K * 3K blocks, which is 36 gigabytes. Similarly, a relation of size 1 gigabyte
requires just over '/r56K blocks, or 2 megabytes, to avoid recursive partitioning.

13.5.5.3 Hondling of Overflows
Hash-table overflow occurs in partition z of the build relation s if the hash index on
11"0 is larger than main memory. Hash-table overflow can occul if there ale many
tuples in the build relation with the same values for the join attributes, or if the hash
function does not have the properties of randomness and uniformity. In either case,
some of the partitions will have more tuples than the average, whereas others will
have fewer; partitioning is then said to be skewed.

We can handle a small amount of skew by increasing the number of partitions so
that the expected size of each partition (including the hash index on the partition)
is somewhat less than the size of memory. The number of partitions is therefore in-
creased by a small value, called the fudge factor, that is usually about 20 percent of
the number of hash partitions computed as described in Section 13.5.5.

Even if, by using a fudge factor, we are conservative on the sizes of the partitions,
overflows can still occur. Hash-table overflows can be handled by either oaerflow reso-
Iution or oaerflow aaoidsnce. Overflow resolution is performed during the build phase,
if a hash-index overflow is detected. Overflow resolution proceeds in this way:If H"o,
for any z, is found to be too large, it is further partitioned into smaller partitions by
using a different hash function. Similarly, f1,, is also partitioned using the new hash
function, and only tuples in the matching partitions need to be joined.

In contrast, overflow avoidance performs the partitioning carefully, so that over-
flows never occur during the build phase. In overflow avoidance, the build relation s
is initially partitioned into many small partitions, and then some partitions are com-
bined in such a way that each combined partition fits in memory. The probe relation
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r is partitioned in the same way as the combined partitions on s, but the sizes of H,,
do not matter.

If a large number of tuples in s have the same value for the join attributes, the res-
olution and avoidance techniques may fail on some partitions. In that case, instead of
creating an in-memory hash index and using a nested-loop join to join the partitions,
we can use other join techniques, such as block nested-loop join, on those partitions.

13.5.5.4 Cost of Hosh Join
We now consider the cost of a hash join. Our analysis assumes that there is no hash-
table overflow. First, consider the case where recursive partitioning is not required.

o The partitioning of the two relations r and s calls for a complete reading of
both relations, and a subsequent writing back of them. This operation tequit"s
2(b, + b") block transfers, where b, and b" denote the number of blocks con-
taining records of relations r antd s, respectively. The build and probe phases
read each of the partitions once, calling for further b, + b" block transfers. The
number of blocks occupied by partitions could be slightly more than b, + b",
as a result of partially filled blocks. Accessing such partially filled blocks can
add an overhead of at most 2n6 for each of the relations, since each of the n6
partitions could have a partially filled block that has to be written and read
back. Thus, a hash join is estimated to require

3 ( b ' + b " ) + 4 n 6

block transfers. The overhead 4n6 is usually quite small compared to b, + b",
and can be ignored.

o Assuming b6 blocks are allocated for the input buffer and each output buffer,
partitioning requires a total of 2(lb,lb6l + lb" lbbl) seeks. The build and probe
phases require only one seek for each of the na partitions of each relation, since
each partition can be read sequentially. The hash join thus require s 20b, lb6) +
lb"lb,'1) * 2n7' seeks.

Now consider the case where recursive partitioning is required. Each pass reduces
the size of each of the partitions by an expected factor of M - r; and passes are
repeated until each partition is of size at most M blocks. The expected number of
passes required for partitioning s is therefore flogla_, (b") - 11.

o Since, in each pass, every block of s is read in and written out, the total block
transfers for partitioning of s is 2b"[log^,r_r(b") - 11. The number of passes
for partitioning of r is the same as the number of passes for partitioning of s,
therefore the join is estimated to require

2(b" + b")lrosy-t(b") - 1l + b, + b"

block transfers.

o Again assuming b6 blocks are allocated for buffering each partition, and ig-
noring the relatively small number of seeks during the build and probe phase,
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2(lb, lbbl  + lb" lbbl) logy r(b") -  1l

disk seeks.

Consider, for example, the join customer X depositor. With a memory size of 20
blocks, depositor can be partitioned into five partitions, each of size 20 blocks, which
size will fit into memory. OnIy one pass is required for the partitioning. The relation
customer is similarly partitioned into five partitions, each of size 80. Ignoring the cost
of writing partially filled blocks, the cost is 3(100 + 400) : 1500 block transfers. There
is enough memory to allocate 3 buffers for the input and each of the 5 outputs during
partitioning, leading to 2([100/31 + f400/3]) : 336 seeks.

The hash join can be improved if the main memory size is large. When the en-
tire build input can be kept in main memory, nh can be set to 0; then, the hash-join
algorithm executes quickly, without partitioning the relations into temporary files,
regardless of the probe input's size. The cost estimate goes down to b, + b" block
transfers and two seeks.

13.5.5.5 Hybrid Hosh Join
The hybrid hash-join algorithm performs another optimization; it is useful when
memory sizes are relatively large, but not all of the build relation fits in memory. The
partitioning phase of the hash-join algorithm needs one block of memory as a buffer
for each partition that is created, and one block of memory as an input buffer. Hence,
a total of nn + 1 blocks of memory are needed for partitioning the two relations. If
memory is larger than n6 * 1, we can use the rest of memory (M - nn - 1 blocks)
to buffer the first partition of the build input (that is, 11,0), so that it will not need
to be written out and read back in. Further, the hash function is designed in such a
way that the hash index on ff"o fits in M ^ nn - L blocks, in order that, at the end of
partitioning of s, H"o is completely in memory and a hash index can be built on f1,0.

When the system partitions r it again does not write tuples in H,o to disk; instead,
as it generates them, the system uses them to probe the memory-resident hash index
on H"o, and to generate output tuples of the join. After they are used for probing,
the tuples can be discarded, so the partition I1,o does not occupy any memoly space.
Thus, a write and a read access have been saved for each block of both H,o and H"o.
The system writes out tuples in the other partitions as usuaf and joins them later.
The savings of hybrid hash join can be significant if the build input is only slightly
bigger than memory.

If the size of the build relation is b", nh is approximately equal to b"f M.Thus,
hybrid hash join is most useful if M >> b"lM, ot M >> 1fi4,where the nota-
tion >> denotes muchlnrger than.For example, suppose the block size is 4 kilobytes,
and the build relation size is 1 gigabyte. Then, the hybrid hash-join algorithm is use-
fut if the size of memory is significantly more than 2 megabytes; memory sizes of
100 megabytes or more are common on computers today.

Consider the join customer X depositor again. With a memory size of 25 blocks, de-
positor can be partitioned into five partitions, each of size 20 blocks, and the first of
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the partitions of the build relation can be kept in memory. It occupies 20 blocks of
memory; one block is for input and one block each is for buffering the other four par-
titions. The relation customer can be similarly partitioned into five partitions each of
size 80, the first of which the system uses right away for probing, instead of writing
it out and reading it back in. Ignoring the cost of writing partially filled blocks, the
cost is 3(80 + 320) + 20 + 80 : 1300 block transfers, instead of 1500 block transfers
without the hybrid hashing optimization. Howevel, in this case the buffer size for the
input and for each partition written to disk decreases to 1 block, increasing the num-
ber of seeks to close to the number of block accesses, and thus the total iost. Thus,
in this case it is better to plain hash join with a larger buffer size b6 than to use hy-
brid hash join. However, with much larger memory sizes, increasing b6 beyond some
point gives decreasing benefit, and the remaining memory can be used to implement
hybrid hash join.

13.5.6 Complex foins
Nested-loop and block nested-loop joins can be used regardless of the join condi-
tions. The other join techniques are more efficient than the nested-loop join and its
variants, but can handle only simple join conditions, such as natural joins or equi-
joins. We can implement joins with complex join conditions, such as conjunctions
and disjunctions, by using the efficient join techniques, if we apply the techniques
developed in Section 13.3.4for handling complex selections.

Consider the following join with a conjunctive condition:

T  X l t n l zn . . . n0^  S

One or more of the join techniques described earlier may be applicable for joins on
the individual conditions r x6, s, r xs, s, r xs, s, and so on. we can compute the
overall join by first computing the result of one of these simpler joins r Xeo s; each
pair of tuples in the intermediate result consists of one tuple from r and one from s.
The result of the complete join consists of those tuples in the intermediate result that
satisfy the remaining conditions

0 t  A . . .  A ? t  t  A ? , . + t  A . . .  A e n

These conditions can be tested as tuples in r X.s. s are being generated.
A join whose condition is disjunctive can be computed in this way: consider

T  Xg ryg ry . . . yg *  E

The join can be computed as the union of the records in individual joins r xs, si

( r  X e ,  s )  U  ( r  X 6 "  s ) U . . . U  ( r  X e .  s )

section 13.6 describes algorithms for computing the union of relations.

13.6 Other Operctions
Other relational operations and extended relational operations-such as duplicate
elimination, projection, set operations, outer join, and aggregation-can be imple-
mented as outlined in Sections 13.6.1 throueh 13.6.5.
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13.6.1 Duplicote Eliminqtion
We can implement duplicate elimination easily by sorting. Identical tuples will ap-

pear adjacent to each other during sorting, and all but one copy can be removed. With

external sort-merge, duplicates found while a run is being created can be removed

before the run is written to disk, thereby reducing the number of block transfers. The

remaining duplicates can be eliminated during merging, and the final sorted run has

no duplicates. The worst-case cost estimate for duplicate elimination is the same as

the worst-case cost estimate for sorting of the relation.
We can also implement duplicate elimination by hashing, as in the hash-join algo-

rithm. First, the relation is partitioned on the basis of a hash function on the whole

tuple. Then, each partition is read in, and an in-memory hash index is constructec-.

While constructing the hash index, a tuple is inserted only if it is not already present.

Otherwise, the tuple is discarded. After all tuples in the partition have been pro-

cessed, the tuples in the hash index are written to the result. The cost estimate is the

same as that for the cost of processing (partitioning and reading each partition) of the

build relation in a hash join.

Because of the relatively high cost of duplicate elimination, SQL requires an explicit

request by the user to remove duplicates; otherwise, the duplicates are retained.

13.6.2 Projection
We can implement projection easily by performing projection on each tuple, which
gives a relation that could have duplicate records, and then removing duplicate rec-
ords. Duplicates can be eliminated by the methods described in Section 13.6.1. If the
attributes in the projection list include a key of the relation, no duplicates wiII ex-
ist; hence, duplicate elimination is not required. Generalized projection (which was
discussed in Section 2.4.L) canbe implemented in the same way as projection.

13.6.3 Set Operqtions
We can implement the union, intersection, and set-difference operations by first sorting
both relations, and then scanning once through each of the sorted relations to produce
the result. In r U s, when a concurrent scan of both relations reveals the same tuple in
both files, only one of the tuples is retained. The result of r |.) s will contain only those
tuples that appear in both relations. We implement set difference, r - s, similarly,by
retaining tuples in r only if they are absent in s.

For all these operations, only one scan of the two input relations is required, so the
cost is b, +b" block transfers if the relations are sorted in the same order. Assuming a
worst case of one block buffer for each relation, a total of b, + b" disk seeks would be
required in addition to b, + b" block transfers. The number of seeks can be reduced
by allocating extra buffer blocks.

If the relations are not sorted initially, the cost of sorting has to be included. Any
sort order can be used in evaluation of set operations, provided that both inputs have
that same sort order.

Hashing provides another way to implement these set operations. The first step
in each case is to partition the two relations by the same hash function, and thereby



13.6.4 Outer Join
Recall the outer-ioin operations described in Section 2.4.3.For example, the natural left
outer join customer )4 depositor contains the join of customer and depositor, antd., in
addition, for each customer tuple I that has no matching tuple in depositor (that is,
where customer-name is not in depositor), the following tuple t1 is added to the result.
For all attributes in the schema of customer, tuple ti haJthe same values as tuple l.
Th,e remaining attributes (from the schema of depositor) of tuple 11 contain the value
null.

we can implement the outer-join operations by using one of two strategies:

1. Compute the corresponding join, and then add further tuples to the join re-
sult to get the outer-join result. Consider the left outer-join operation and two
relations: r(R) and s(s). To evaluate r Ms s, we first compute r xe s, alnd.
save that result as temporary relation q1. Next, we compute 

" 
- n"(Sr) to ob-

tain those tuples in r that do not participate in the theta join. we can use any
of the algorithms for computing the joins, projection, and set difference de-
scribed earlier to compute the outer joins. We pad each of these tuples with
null values for attributes from s, and add it to qy to get the result of the outer
join.

The right outer-join operation r D{ 6 s is equivalent to s }e r, and can
therefore be implemented in a symmetric fashion to the left outer join. We
can implement the full outer-join operation r ){ s s by computing the join
r x s, and then adding the extra tuples of both the left and iight outer-join
operations, as before.

2. Modify the join algorithms. It is easy to extend the nested-loop join algorithms
to compute the left outer join: Tuples in the outer relation that do not match
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crea te  the  par t i t ion t  H,o .H, t . .  .1Hr"h  and H"0 .H" , . . . . .H"^^ .  Depend ing  on  the
operation, the system then takes these 6teps on eich partition iL O. f. . . . ,ni:

.  T U S

1. Build an in-memory hash index on.I1,,.
2. Add the tuples in I1"o to the hash index only if they are not already present.
3. Add the tuples in the hash index to the result.

r  r f - l s

1. Build an in-memory hash index on 11,u.
2. For each tuple in H"n, probe the hash index and output the tuple to the

result only if it is already present in the hash index.

.  r - s

1. Build an in-memorv hash index on.EI- .
2. For each tuple in ri"o,probe the hash index, and, if the tupre is present in

the hash index, delete it from the hash index.
3. Add the tuples remaining in the hash index to the result.
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any tuple in the inner relation are written to the output after being padded
with null values. However, it is hard to extend the nested-loop join to compute
the full outer join.

Natural outer joins and outer joins with an equi-join condition can be com-
puted by extensions of the merge-join and hash-join algorithms. Merge join
can be extended to compute the full outer join as follows: When the merge of
the two relations is being done, tuples in either relation that do not match any
tuple in the other relation can be padded with nulls and written to the output.
Similarly, we can extend merge join to compute the left and right outer joins
by writing out nonmatching tuples (padded with nulls) from only one of the
relations. Since the relations ale sorted, it is easy to detect whether or not a
tuple matches any tuples from the other relation. For example, when a merge
joinof customer and depositor is done, the tuples are read in sorted order of cus-
tomer:name, and it is easy to check, for each tuple, whether there is a matching
tuple in the other.

The cost estimates for implementing outer joins using the merge-join algo-
rithm are the same as are those for the corresponding join. The only difference
lies in size of the result, and therefore in the block transfers for writing it out,
which we did not count in our earlier cost estimates.

The extension of the hash-join algorithm to compute outer joins is left for
you to do as an exercise (Exercise 13.13).

13.6.5 Aggregotion
Recall the aggregation operator 9, discussed in Section 2.4.2.For example, the oper-
ation 

bron"h-na-.9,u lbalancellaccount)

groups account tuples by branch, and computes the total balance of all the accounts
at each branch.

The aggregation operation can be implemented in the same way as duplicate elim-

ination. We use either sorting or hashing, just as we did for duplicate elimination,
but based on the grouping attributes (branch-name in the preceding example). How-
ever, instead of eliminating tuples with the same value for the grouping attribute, we
gather them into groups, and apply the aggregation operations on each group to get
the result.

The cost estimate for implementing the aggregation operation is the same as the
cost of duplicate elimination, for aggregate functions such as min, max, sum/ count/
and avg.

Instead of gathering all the tuples in a group and then applying the aggregation
operations, we can implement the aggregation operations sum, min, max, count, and

a-rg otr the fly as the gloups are being constructed. For the case of sum, min, and
max, when two tuples in the same group are found, the system replaces them by

a single tuple containing the sum, min, or max, respectively, of the columns being

aggregated. For the count operation, it maintains a running count for each group for
which a tuple has been found. Finally, we implement the avg operation by computing
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the sum and the count values on the fly, and finally dividing the sum by the count to
get the average.

If all tuples of the result fit in memory, both the sort-based and the hash-based
implementations do not need to write any tuples to disk. As the tuples are read iry
they can be inserted in a sorted tree structure or in a hash index. When we use on-the-
fly aggtegation techniques, only one tuple needs to be stored for each of the groups.
Hence, the sorted tree structure or hash index fits in memory, and the aggregation
can be processed with just b, block transfers (and 1 seek) instead of the 3b,lransfers
(and a worst case of up to 2b. seeks) that would be required otherwise.

13.7 Evqluqtion of Expressions
So fa1, we have studied how individual relational operations are carried out. Now
we consider how to evaluate an expression containing multiple operations. The ob-
vious way to evaluate an expression is simply to evaluate one operation at a time,
in an appropriate order. The result of each evaluation is materialized in a temporarv
relation for subsequent use. A disadvantage to this approach is the need to construct
the temporary relations, which (unless they are small) must be written to disk. An
alternative approach is to evaluate several operations simultaneously in a pipeline,
with the results of one operation passed on to the next, without the need toitote a
temporary relation.

In Sections 13.7.7 and 13.7.2, we consider both the materialization approach and
the pipelining approach. We shall see that the costs of these approachei can differ
substantially, but also that there are cases where only the materialization approach is
feasible.

13.7.1 Mqteriqlizqtion
It is easiest to understand intuitively how to evaluate an expression by looking at a
pictorial representation of the expression in an operator tree. Consider the expreision

fl.usto-ur_no-" (o 6o1on..a25gg (account) X customer)

in Figure 13.10.
If we apply the materiali zatronapproach, we start from the lowest-level operations

in the expression (at the bottom of the tree). In our example, there is only one such op-
eration: the selection operation otraccount. The inputs tb the lowest-level operations
are relations in the database. We execute these operations by the algorithms that we
studied earlier, and we store the results in temporary relations. We can use these tem-
porary relations to execute the operations at the next level up in the tree, where the
inputs now are either temporary relations or relations stored in the database. In our
example, the inputs to the join are the customer relation and the temporary relation
created by the selection on account. The join can now be evaluated, cieating another
temporary relation.

_ By repeating the Process, we will eventually evaluate the operation at the root of
the tree, giving the final result of the expression. In our example, we get the final
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Figure 13.1O Pictorial representation of an expression.

result by executing the projection operation at the root of the tree, using as input the
temporary relation created by the join.

Evaluation as just described is called materialized evaluation, since the results of
each intermediate operation are created (materialized) and then are used for evalua-
tion of the next-level operations.

The cost of a materialized evaluation is not simply the sum of the costs of the oper-
ations involved. When we computed the cost estimates of algorithms, we ignored the
cost of writing the result of the operation to disk. To compute the cost of evaluating
an expression as done here, we have to add the costs of all the operations, as well
as the cost of writing the intermediate results to disk. We assume that the records
of the result accumulate in a buffer, and, when the buffer is full, they are written to
disk.Thenumberof blockswritten oLrt,b,canbeestimated asn,f f,,wheren"isthe
estimated number of tuples in the result relation r, and /" is the blocking factor of the
result relation. that is, the number of records of r that will fit in a block. In addition
to the transfer time, some disk seeks may be required, since the disk head may have
moved between successive writes. The number of seeks can be estimated as lb, lb6l
where bo is the size of the output buffer (measured in blocks).

Double buffering (using two buffers, with one continuing execution of the al-
gorithm while the other is being written out) allows the algorithm to execute more
quickly by performing CPU activity in parallel with I/O activity. The number of seeks
can be reduced by allocating extra blocks to the output buffer, and writing out mul-
tiple blocks at once.

13.7.2 Pipelining
We can improve query-evaluation efficiency by reducing the number of temporary
files that are produced. We achieve this reduction by combining several relational op-
erations into apipeline of operations, in which the results of one operation are passed
along to the next operation in the pipeline. Evaluation as just described is called
pipelined evaluation. Combining operations into a pipeline eliminates the cost of
reading and writing temporary relations.

For example, consider the expression (llo1,o2(r X s)). If materialization were ap-
plied, evaluation would involve creating a temporary relation to hold the result of the
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join, and then reading back in the result to perform the projection. These operations
can be combined: When the join operation generates a tuple of its result, it pisses that
tuple immediately to the project operation for processing. By combining the join and
the projection, we avoid creating the intermediate result, and instead cieate ihe final
result directly.

13.7.2.1 lmplementqtion of Pipelining
\z\.b can implement a pipeline by constructing a single, complex operation that com-
bines the operations that constitute the pipeline. Although this approach may be fea-
sible for various frequently occurring situations, it is desirable in general to reuse the
code for individual operations in the construction of a pipeline. Therefore, each oper-
ation in the pipeline is modeled as a separate process or thread within the system ihat
takes a stream of tuples from its pipelined inputs and generates a stream oi tuples for
its output. For each pair of adjacent operations in the pipeline, the system cieates a
buffer to hold tuples being passed from one operation io the next.

,In the example of Figure 13.10, all three operations can be placed in a pipeline,
which passes the results of the selection to the join as they are generated. Ii trrrrr,
it passes the results of the join to the projection as they are generated. The memory
requirements are low, since results of an operation are not stored for long. However,
as a result of pipelining, the inputs to the operations are not available ali at once for
processing.

Pipelines can be executed in either of two ways:

1. Demand driven

2. Producer driven

In a demand-driven pipeline, the system makes repeated requests for tuples from
the operation at the top of the pipeline. Each time thatin operation receives^a request
for tuples, it computes the next tuple (or tuples) to be returned, and then retlrns
that tup1e. lf the inputs of the opeiation are not pipelined, the next tuple(s) to be
returned can be computed from the input relations, while the system keeps track of
what has been returned so far. If it has some pipelined inputs, the opeiation also
makes requests for tuples from its pipelined inputs. Using the tuples received from
its pipelined inputs, the operation computes tuples for its output, and passes them
up to its parent.

In a producer-driven pipeline, operations do not wait for requests to produce
tuples, but instead generate the tuples eagerly. Each operation at the bottom of a
gipeline continually generates output tuples, and puts them in its output buffel, until
the buffer is full. An operation at any other level of a pipeline generates output tuples
when^it gets input tuples from lower down in the pipeline, ulntil its output buffer is
full. Once the operation uses a tuple from a pipeiined input, it removes the tuple
from its input buffer. In either case, once the output buffer is full, the operation *iit,
until its parent operation removes tuples from the buffer, so that the buffer has space
for more tuples. At this point, the operation generates more tuples, until the buffer
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is full again. The operation repeats this process until all the output tuples have been
generated.

It is necessary for the system to switch between operations only when an output
buffer is full, or an input buffer is empty and more input tuples are needed to gener-
ate any more output tuples. In a parallel-processing system, operations in a pipeline
may be run concurrently on distinct Processors (see Chapter 21)'

Using producer-driven pipelining can be thought of as pushing data up an oper-
ation tree from below, whereas using demand-driven pipelining can be thought of as
pulling data up an operation tree from the top. Whereas tuples are generated eagerly
in producer-driven pipelining, they are generated lazily, on demand, in demand-
driven pipelining.

Each operation in a demand-driven pipeline can be implemented as an iterator
that provides the following functions: open), next), and close). After a call to open},
each call to next0 returns the next output tuple of the operation. The implementation
of the operation in turn calls open} and next} on its inputs, to get its input tuples
when required. The function close0 tells an iterator that no more tuples are required.
The iterator maintains the state of its execution in between calls, so that successive
next0 requests receive successive result tuples.

For example, for an iterator implementing the select operation using linear search,
the open0 operation starts a file scan, and the iterator's state records the point to
which the file has been scanned. When the nextj function is called, the file scan con-
tinues from after the previous point; when the next tuple satisfying the selection is

found by scanning the file, the tuple is returned after storing the point where it was
found in the iterator state. A merge-join iterator's open) operation would open its
inputs, and if they are not already sorted, it would also sort the inputs. On calls to

next0,it would return the next pair of matching tuples. The state information would
consist of up to where each input had been scanned.

Details of the implementation of iterators are left for you to complete in Prac-
tice Exercise 13.7. Demand-driven pipelining is used more commonly than producer-
driven pipelining, because it is easier to implement.

13.7.2.2 Evqluqtion Algorithms for Pipelining

Consider a join operation whose left-hand-side input is pipelined. Since it is pipe-
lined, the input is not available all at once for processing by the join operation. This
unavailability limits the choice of join algorithm to be used. Merge join, for example,
cannot be used if the inputs are not sorted, since it is not possible to sort a relation
until all the tuples are available-thus, in effect, turning pipelining into materializa-
tion. However, indexed nested-loop join can be used: As tuples are received for the

left-hand side of the join, they can be used to index the right-hand-side relation, and
to generate tuples in the join result. This example illustrates that choices regarding
the atgorithm used for an operation and choices regarding pipelining are not inde-
pendent.

The restrictions on the evaluation algorithms that are eligible for use are a limiting
factor for pipelining. As a result, despite the apparent advantages of pipelining, there

are cases ,rhete materializatioir achieves lower overall cost. Suppose that the join of
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r and s is required, and input r is pipelined. If indexed nested-loop join is used to
support pipelining, one access to disk may be needed for every tuple in the pipelined
input relation. The cost of this technique is n, x HTa * ( t s -tt7) , where HTl is tt-r" h"igftt
of the index on s. With materialization, the cost of writing out r would be b, xt7. Wlth
a join technique such as hash join, it is possible to perform the join with a cost of about
3(b" + b") block transfers plus 2(lb,lba] + lb" lb7,]) seeks (assuming sufficient memory
to avoid recursive partitioning). For large n,, materialization would be cheaper.

The effective use of pipelining requires the use of evaluation algorithmrihut ca1
generate output tuples even as tuples are received for the inputs to the operation. We
can distinguish between two cases:

1. Only one of the inputs to a join is pipelined.

2. Both inputs to the join are pipelined.

If only one of the inputs to a join is pipetined, indexed nested-loop join is a natural
choice. If the pipelined input tuples are sorted on the join attribules, and the join
condition is an equi-join, merge join can also be used. Hybrid hash join can be used
too, with the pipelined input as the probe relation. However, tuples that are not in the
first partition will be output only after the entire pipelined input relation is received.
Hybrid hash join is useful if the nonpipelined input fits entiiely in memory, or if at
least most of that input fits in memory.

If both inputs are pipelined, the choice of join algorithms is more restricted. If both
inputs are sorted on the join attribute, and the join condition is an equi-join, merge
join can be used. Another alternative is the pipelined-join technique, shown in Fig-
ure 13.11. The algorithm assumes that the input tuples for both input relatior.,r, 

" 
unld

s, are pipelined. Tuples made available for both relations are queued for processing
in a single queue. Special queue entries, called End, and End", which seive as end"-
of-file markers, are inserted_in the queue after all tuples from r and s (respectively)
have been generated. For efficient evaluation, appropriate indices should fe Uuitt on
the relations r and s. As tuples are added to r and s, the indices must be kept up to
date.

13.8 Summory
o The first action that the system must perform on a query is to translate the

query into its internal form, which (for relational database systems) is usually
based on the relational algebra. In the process of generating the internal form
of the query, the parser checks the syntax of the user's queiy, verifies that the
relation names appearing in the query are names of relations in the database,
and so on. If the query was expressed in terms of a view, the parser replaces all
references to the view name with the relational-algebra expression toiompute
the view.

o Given a query, there are generally a variety of methods for computing the
answer. It is the responsibility of the query optimizer to transform the query
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done, '.= 
fnlse;

done" ;= false;
r : = a ;
S : = A ;
result := 0;
while not done, or not done" d,o

begin
if queue is empty, then wait until queue is not empty;
t := top entry in queue;
if t = EneI, then d'one, := trLte

else if t = End" then done" := true
else if f is from input r

then
begin

r : = r u { t } ;
result i= result U ({f} x s);

end
else /* f is from input s */

begin
s : = s u { f } ;
result i= result | (r x {t});

end
end

Figure13.11 Pipelined-joinalgorithm.

as entered by the user into an equivalent query that can be computed more
efficiently. Chapter 14 covers query optimization.

o We can process simple selection operations by performing a linear scan, by
doing a binary search, or by making use of indices. We can handle complex
selections by computing unions and intersections of the results of simple se-
lections.

o We can sort relations larger than memory by the external sort-merge algo-
rithm.

o Queries involving a natural join may be processed in several ways, depending
on the availability of indices and the form of physical storage for the relations.

n If the join result is almost as large as the Cartesian product of the two
relations, a block nested-loop join strategy may be advantageous.

n If indices are available, tlrre indexed nested-loop join can be used.
n If the relations are sorted, a merge ioin may be desirable. It may be advan-

tageous to sort a relation prior to join computation (so as to allow use of
the merge-join stra tegy).

! The hnsh-join algorithm partitions the relations into several pieces, such
that each piece of one of the relations fits in memory. The partitioning is
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carried out with a hash function on the join attributes, so that correspond-
ing pairs of partitions can be joined independently.

o Duplicate elimination, projection, set operations (union, intersection and dif-
ference), and aggregation can be done by sorting or by hashing.

o outer-join operations can be implemented by simple extensions of join algo-
rithms.

o Hashing and sorting are dual, in the sense that any operation such as du-
plicate elimination, projection, aggregation, join, and outer join that can be
implemented by hashing can also be implemented by sorting, and vice versa;
that is, any operation that can be implemented by sorting can also be imple-
mented by hashing.

o An expression can be evaluated by means of materialization, where the sys-
tem computes the result of each subexpression and stores it on disk, and then
uses it to compute the result of the parent expression.

o Pipelining helps to avoid writing the results of many subexpressions to disk,
by using the results in the parent expression even as they are being generated.

Review Terms
o Query processing

o Evaluation primitive

o Query-execution plan

o Query-evaluationplan
o Query-execution engine

o Measures of query cost

o Sequentiall/O

o Randoml/O

o File scan

o Linear search

o Binary search

r Selections using indices

o Access paths

o Index scans

r Conjunctive selection

o Disjunctive selection

r Composite index

r Intersection of identifiers

o External sorting

o External sort-merge

o Runs

o N-waI merge

o Equi-join

o Nested-loop join

o Block nested-loop join

o Indexed nested-loop join

r Merge join

o Sort-merge join

o Hybrid merge join

o Hash join

n Build
I Probe
tr Build input
n Probe input
n Recursive partitioning
n Hash-table overflow
n Skew
n Fudge factor
tr Overflow resolution
n Overflow avoidance
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Hybrid hash join

Operator tree

Materialized evaluation

Double buffering

Pipelined evaluation

n Demand-drivenpipeline
(lazy, pulling)

n Producer-driven pipeline
(eager, pushing)

n Iterator
o Pipelined join

Prqctice Exercises
13.1 Consider the following SQL query for our bank database:

select T.brnnchtrame
from branch T, branch S
where T.assets ) S.assets and S.branchtity = "3rooy1tn"

Write an efficient relational-algebra expression that is equivalent to this query.

Justify your choice.

13.2 Assume (for simplicity in this exercise) that only one tuple fits in a block and
memory holds at most 3 page frames. Show the runs created on each pass of
the sort-merge algorithm, when applied to sort the following tuples on the first
attribute: (kangaroo, 17), (wallaby,27), (emu, 1), (wombat, 13), (platypus, 3),
(lion,8), (warthog, 4), (zebra,11), (meerkat,6), (hyena,9), (hornbill ,2), ft6boon,
72).

13.3 Let relations r1(A, B,C) and r2(C, D,E) have the following properties: 11 has
20,000 tuples, r2has 45,000 tuples, 25 tuples of 11 fit on one block, and 30 tu-
ples of 12 ffi on one block. Estimate the number of block transfers and seeks
required, using each of the following join strategies fot 11 x 12:

a. Nested-loop join
b. Block nested-Ioop join
c. Merge join
d. Hash join

13.4 The indexed nested-loop join algorithm described in Section 13.5.3 can be inef-
ficient if the index is a secondary index, and there are multiple tuples with the
same value for the join attributes. Why is it inefficient? Describe a way, using
sorting, to reduce the cost of retrieving tuples of the inner relation. Under what
conditions would this algorithm be more efficient than hybrid merge join?

L3.5 Let r and s be relations with no indices, and assume that the relations are not
sorted. Assuming infinite memory, what is the lowest-cost way (in terms oIl/O
operations) to compute r X s? What is the amount of memory required for this
algorithm?

13.6 Suppose that a B+-tree index on branchdty is available on relation branch, and
that no other index is available. List different ways to handle the following
selections that involve negation:

a

o

a

a

a
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r. o -(branch_cr;s(,.Brooktyn, 1 (branch)

b, o - (bron"h-ci.ta :.Brooktw,'1 (br anch)
c' o -1bran"h-citsr("Brooklyn" v assets<boogl(branch)

13.7 Write pseudocode for an iterator that implements indexed nested-loop join,
where the outer relation is pipelined. Your pseudocode must define the stan-
dard iterator functions open), next), and closej. Show what state information
the iterator must maintain between calls.

13.8 Design sort-based and hash-based algorithms for computing the division op-
eration.

13.9 What is the effect on the cost of merging runs if the number of buffer blocks per
run is increased, while keeping overall memory available for buffering runs
fixed.

Exercises

13.10 Why is it not desirable to force users to make an explicit choice of a query-
processing strategy? Are there cases in which it ls desirable for users to be
aware of the costs of competing query-processing strategies? Explain your an-
SWCT.

13.11 Design a variant of the hybrid merge-join algorithm for the case where both
relations are not physically sorted, but both have a sorted secondary index on
the join attributes.

13.12 Estimate the number of block transfers and seeks required by your solution to
Exercise 13.11 for 11 x 12,where 11 and 12 a;tc as defined in Practice Exer-
cise 13.3.

13.13 The hash-join algorithm as described in Section 13.5.5 computes the natural
join of two relations. Describe how to extend the hash-join algorithm to com-
pute the natural left outer join, the natural right outer join and the natural full
outer join. (Hint: Keep extra information with each tuple in the hash index, to
detect whether any tuple in the probe relation matches the tuple in the hash
index.) Try out your algorithm on the customer and depositor relations.

13.14 Write pseudocode for an iterator that implements a version of the sort-merge
algorithm where the result of the final merge is pipelined to its consumers.
Your pseudocode must define the standard iterator func tions openj, nextj , and
closej. Show what state information the iterator must maintain between calls.

13.15 Pipelining is used to avoid writing intermediate results to disk. Suppose you
need to sort relation r using sort-merge and merge-join the result with an
already sorted relation s.
a. Describe how the output of the sort of r can be pipelined to the merge join

without being written back to disk.
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b. The same idea is applicable even if both inputs to the merge-join are the
outputs of sort-merge operations. However, the available memory has to
be shared between the two merge operations (the merge-join algorithm
itself needs very little memory). What is the effect of having to share mem-
ory on the cost of each sort-merge operation.

13.15 Suppose you have to compute eQ 
"u*gy(r) 

as well ds A,sQ 
"u-(c; 

(r). Describe
how to compute these together using a single sorting of r.

Bibliogrophicol Notes
A query processor must parse statements in the query language, and must translate
them into an internal form. Parsing of query languages differs little from parsing of
traditional programming languages. Most compiler texts, such as Aho et al. [1986]
and Tremblay and Sorenson [1985], cover the main parsing techniques, and present
optimization from a programming-language point of view.

Graefe [1993] presents an excellent suruey of query-evaluation techniques.
Knuth 179731 presents an excellent description of external sorting algorithms,

including an optimization called replacement selection, which can create initial runs
that are (on the average) twice the size ol memory. More recent studies Nyberg et al.
[1995] have shown that due to poor processor-cache behavior, replacement-selection
performs worse than in-memory quicksort for run generation, negating the benefits
of generating longer runs. Nyberg et al. [1995] presents an efficient external sorting aI-
gorithm that takes processor cache effects into account. Query evaluation algorithms
that take cache effects into account have been extensively studied; see, for example,
Harizopoulos and Ailamaki [2004].

According to performance studies conducted in the mid-1970s, database systems
of that period used only nested-loop join and merge join. These studies, which were
related to the development of System R, determined that either the nested-loop join
or merge join nearly always provided the optimal join method (Blasgen and Eswaran
It976l); hence, these two were the only join algorithms implemented in System R. The
System R study, however, did not include an analysis of hash-join algorithms. Today,
hash joins are considered to be highly efficient and widely used.

Hash-join algorithms were initially developed for parallel database systems. Hash-
join techniques are described in Kitsuregawa et al. 179831, and extensions including
hybrid hash join are described in Shapiro 119861. Zeller and Gray [1990] and Davison
and Graefe [1994] describe hash-join techniques that can adapt to the available mem-
ory, which is important in systems where multiple queries may be running at the
same time. Graefe et al. [1998] describe the use of hash joins and hash teams, which
allow pipelining of hash joins by using the same partitioning for all hash joins in a
pipeline sequence, in the Microsoft SQL Server.



Query optimization is the process of selecting the most efficient query-evaluation
plan from among the many strategies usually possible for processing a given query,
especially if the query is complex. We do not expect users to write their queries so
that they can be processed efficiently. Rather, we expect the system to construct a
query-evaluation plan that minimizes the cost of query evaluation. This is where
query optimization comes into play.

One aspect of optimization occurs at the relational-algebra level, where the system
attempts to find an expression that is equivalent to the given expression, but more
efficient to execute. Another aspect is selecting a detailed strategy for processing the
query, such as choosing the algorithm to use for executing an operation, choosing the
specific indices to use, and so on.

The difference in cost (in terms of evaluation time) between a good strategy and a
bad strategy is often substantial, and may be several orders of magnitude. Hence, it
is worthwhile for the system to spend a substantial amount of time on the selection
of a good strategy for processing a query, even if the query is executed only once.

14.1 Overview
Consider the relational-algebra expression for the query "Find the names of all cus-
tomers who have an account at any branch located in Brooklyn."

fI.ust o-.r_r,o"n", (c bron rh_"irs : ..g1oo11r.,' (br anch X (account x d e1l ositor)))

This expression constructs a large intermediate relation, branch X account X depositor.
However, we are interested in only a few tuples of this relation (those pertaining to
branches located in Brooklyn), and in only one of the six attributes of this relation.
Since we are concerned with only those tuples in tine brqnclz relation that pertain to
branches located in Brooklyn, we do not need to consider those tuples that do not

569
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Figurel4.l Equivalentexpressions.

have branch-city : "Brooklyn." By reducing the number of tuples of the brsnch rela-
tion that we need to access, we reduce the size of the intermediate result. Our query
is now represented by the relational-algebra expression

TI.u"tomer-na-" ( (o6,on.1r-c;tE:,,Brookry'1' (branch)) X (account >< depositor))

which is equivalent to our original algebra expressiory but which generates smaller
intermediate relations. Figure 14.1 depicts the initial and transformed expressions.

Given a relational-algebra expression, it is the job of the query optimizer to come
up with a query-evaluation plan that computes the same result as the given expres-
sion, and is the least-costly way of generating the result (or, at least, is not much
costlier than the least-costly way).

To find the least-costly query-evaluation plan, the optimizer needs to generate al-
ternative plans that produce the same result as the given expression, and to choose
the least-costly one. Generation of query-evaluation plans involves three steps: (1)

generating expressions that are logically equivalent to the given expression, (2) esti-
mating the cost of each evaluation plan, and (3) annotating the resultant expressions
in alternative ways to generate alternative query-evaluation plans. Steps (1) and (3)

are interleaved in the query optimizer-some expressions are generated and anno-
tated, then further expressions are generated and annotated, and so on. Step (2) is
done in the background by collecting statistical information about the relations, such
as relation sizes and index depths, to make a good estimate of the cost of a plan.

To implement the first step, the query optimizer must generate expressions equiv-
alent to a given expression. It does so by means of equioalence rules that specify how
to transform an expression into a logically equivalent one. We describe these rules in
Section 14.2.

In Section 1.4.3 we describe how to estimate statistics of the results of each opera-
tion in a query plan. Using these statistics with the cost formulae in Chapter 13 allows
us to estimate the costs of individual operations. The individual costs are combined
to determine the estimated cost of evaluating a given relational-algebra expression,
as outlined earlier in Section 13.7.

;,,account;rpr\rir'
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In Section 74.4,we describe how to choose a query-evaluation plan. We can choose
one based on the estimated cost of the plans. Since the cost is an estimate, the selected
plan is not necessarily the least-costly plan; however, as long as the estimates are
good, the plan is likely to be the least-cost$ one, or not much more costly than it.
Such optimizatiorr, called cost-based optimization, is described in Section 14.4.2.

Finally, materialized views help to speed up processing of certain queries. In Sec-
tion 14.5, we study how to "maintain" materialized views-that is, to keep them up
to date-and how to perform query optimizationwith materializedviews.

14.2 Tkqnsformqtion of Relqtionql Expressions
A query can be expressed in several different ways, with different costs of evalua-
tion. In this section, rather than take the relational expression as given, we consider
alternative, equivalent expressions.

TWo relational-algebra expressions are said to be equivalent if, on every legal data-
base instance, the two expressions generate the same set of tuples. (Recall that a legal
database instance is one that satisfies all the integrity constraints specified in the data-
base schema.) Note that the order of the tuples is irrelevan! the two expressions may
generate the tuples in different orders, but would be considered equivalent as long
as the set of tuples is the same.

In SQL, the inputs and outputs are multisets of tuples, and a multiset version of the
relational algebra is used for evaluating SQL queries. TWo expressions inthe multiset
version of the relational algebra are said to be equivalent if on every legal database
the two expressions generate the same multiset of tuples. The discussion in this chap-
ter is based on the relational algebra. We leave extensions to the multiset version of
the relational algebra to you as exercises.

14.2.1 Equivolence Rules
An equivalence rule says that expressions of two forms are equivalent. We can re-
place an expression of the first form by an expression of the second form, or vice
versa-that is we can replace an expression of the second form by an expression
of the first form-since the two expressions would generate the same result on any
valid database. The optimizer uses equivalence rules to transform expressions into
other logically equivalent expressions.

We now list a number of general equivalence rules on relational-algebra expres-
sions. Some of the equivalences listed appear in Figure 74.2.We use d,01,02, and,
so on to denote predicates, Lr, Lz, r'r, iid, so on to denote lists of attributes, and
E,Et-,82, and so on to denote relational-algebra expressions. A relation name r is
simply a special case of a relational-algebra expression, and can be used wherever E
aPPears.

1. Conjunctive selection operations can be deconstructed into a sequence of in-
dividual selections. This transformation is referred to as a cascade of o.

oe, ner(E) : osr(os"(E))
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Figurel4.2 Pictorial representation of equivalences.

Selection operations are commutative.

o e, (o ez(-E))  :  o  sr(o s, (E))

Only the final operations in a sequence of projection operations are needed/

the others can be omitted. This transformation can also be referred to as a

cascade of fI.

r r r , (Trr"(  . .  ( I1r . ( r ) ) . . . ) )  :  r r r , (E)

Selections can be combined with Cartesian products and theta joins.

a. os(81 x E2) : El Xs E2
This expression is just the definition of the theta join.

b. oor(Er Xe, Ez) : E1 Xsrns, E2

Theta-join operations are commutative.

E 1 X 6  E 2 :  E z X e  E r

Actually, the order of attributes differs between the left-hand side and right-

hand side, so the equivalence does not hold if the order of attributes is taken

into account. A projection operation can be added to one of the sides of the

equivalence to appropriately reorder attributes, but for simplicity we omit the

projection and ignore the attribute order in most of our examPles.

Recall that the natural-join operator is simply a special case of the theta-join

operator; hence, natural joins are also commutative.

L 1

o^

I

E 1

2.

3.

4.

5.
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6. a. Natural-join operations are associative.

( E t > <  E 2 )  X  E 3  :  E > <  ( E 2 X  E s )

b. Theta joins are associative in the following manner:

(Er Xe, Ez) X'r,"ne" Ez : Et X1tn1s (82 X0, h)

where d2 involves attributes from only E2 and Es. Any of these conditions
may be empty; hence, it follows that the Cartesian product (x) operation
is also associative. The commutativity and associativity of join operations
are important for join reordering in query optimization.

7. The selection operation distributes over the theta-join operation under the fol-
lowing two conditions:

a. It distributes when all the attributes in selection condition de involve only
the attributes of one of the expressions (say, E) being joined.

oeo(Et xe Ez) : (os"(81)) xs E2

b. It distributes when selection condition 01 involves only the attributes of
E1 ar.d d2 involves only the attributes of E2.

oe ,ne , (E rX 'e  Ez ) :  ( oe , (E r ) )  Xo  (oe " (E r ) )

8. The projection operation distributes over the theta-join operation under the
following conditions.

a. Let L1 and L2be attributes of E1 and 82, respectively. Suppose that the
join condition g involves only attributes in tr1 | L2.Then,

f IL,uL"(Et  xe E) :  (n ' , (Er) )  xa (nu@z))

b. Consider a join E1 Xe Ez.Let L1 and L2 be sets of attributes from E1
and E2, respectively. Let Ls be attributes of E1 that are involved in join
condition 0,but are not in L1 U L2, and let Labe attributes of E2 that are
involved in join condition 0,but are not in Lr U L2.Then,

fIL,uL"(Et Xe Ez) : fIL,uL"((i lr,rr, (Er)) xe (I7uur^(Ez)))

9. The set operations union and intersection are commutative.

E 1 U E 2 :  E 2 U E y

E 1 O E 2 :  E z i E t

Set difference is not commutative.

10. Set union and intersection are associative.

( h u E 2 ) u E t -  E r u ( 8 2  u E s )

( E r  n  E z )  )  E z  :  E r .  ( E z n  E a )
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11. The selection operation distributes over the union, intersection, and set-
difference operations.

op(Et  -  Ez)  :  oe(Er)  -  op(Ez)

Similarly, the preceding equivalence, with - replaced with either U or i, also
holds. Further,

oP(E t  -  E2 ) :oP(Er )  -  Ez

The preceding equivalence, with - replaced by i, also holds, but does not

hold if - is replaced by U.

12. The projection operation distributes over the union operation.

rh(hu E2) : (rrr,(rr)) u (rrL(82))

This is only a partial list of equivalences. More equivalences involving extended
relational operators, such as the outer join and aggregation, are discussed in the ex-

ercises.

14.2.2 Exomples of Ti'qnsformqtions
We now illustrate the use of the equivalence rules. We use our bank example with the
relation schemas:

Branch_schemt : (branch-name, branch-city, assets)
Account-schema : (acc0unt-number, branch-nnme, balance)
D eposit or -sch€Tfla : (customer-name, accountstumb er)

The relationsbranch, account, and depositor are instances of these schemas.
In our example in Section 14.1, the expression

ncusto-.r-no*"(o6ron.r-. ts:,,Brook1yn,,(branch X (nccount x d.epositor)))

was transformed into the following expression,

n.u"to*.,-no*.((o6ron"n-.r7s :..p.oop1r.,'(branch)) X (account x depositor))

which is equivalent to our original algebra expression, but generates smaller inter-
mediate relations. We can carry out this transformation by using rule7.a. Remember
that the rule merely says that the two expressions are equivalent; it does not say that
one is better than the other.

Multiple equivalence rules can be used, one after the other, on a query or on parts
of the query. As an illustration, suppose that we modify our original query to restrict
attention to customers who have a balance over $1000. The new relational-algebra
query is

n 
"urto*.r-no*" 

(o 6ror.O-.ritgr : "61so11^" A baiance ) !oO0

(branch X (account x depositor)))

We cannot apply the selection predicate directly tothebranch relation, since the pred-
icate involves attributes of both thebranch and account relation. However, we can first
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apply rule 6.a (associativity of natural join) to transform the join branch x (account x
depositor) into (branch x account) x depositor:

Tlcusto-er-na . (o6ron.n-.ilg: "316oL1rrl" A batance ) IOOO
((branch X account) x depositor))

Then, using rule7.a, we can rewrite our query as

fI custom"r-na*" ((O 6ro, 
"n-critz 

: "Brooklvn " A balan ce ) l0O0

lbranch x account)) x depositor)

Let us examine the selection subexpression within this expression. Using rule 1, we
can break the selection into two selections, to get the following subexpression:

o branch_ci,ts :,.Brooklyn,, (o bolon.", 1 g g 0 (br anch X account))

Both of the preceding expressions select tuples with branch^city : "Brooklyn,, and
balance > 1000. Howevel, the latter form of the expression provides a new opportu-
nity to apply Rule 7.a ("perform selections early"), resulting in the subexpression

obranch_city:..Brook1yn,, (branch) X oboton"", > tooo (account)

Figure 14.3 depicts the initial expression and the final expression after all these
transformations. We could equally well have used rule7.b to get the final expression
directly, without using rule 1 to break the selection into two selections. In fact, ruleT.b
can itself be derived from rules 7 and7.a.

A set of equivalence rules is said to be minimal if no rule can be derived from any
combination of the others. The preceding example illustrates that the set of equiva-
lence rules in Section 14.2.7 is not minimal. An expression equivalent to the original
expression may be generated in different ways; the number of different ways of gen-
erating an expression increases when we use a nonminimal set of equivalence rules.
Query optimizers therefore use minimal sets of equivalence rules.

il rurto*"r-no*"

I
O branch-city =Brooklyn

I 

A batance <1,000

X

il customer-name

I
I

X

depositorX

, / \
O branch-city=Brooklyn 6batance < 1000

branch account

(a) Initial expression tree (b) Tree after multiple transformations

depositor

/ \
uronit X

/
account

Figure 14.3 Multiple transformations.
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Now consider the following form of our example query:

il.r"to-.r-na-. ((o6ron"n-cita :"Broony"- (branch) x account) x depositor)

When we compute the subexpression

(obranch-citE :,.Brooklyn,' (branch) X account)

we obtain a relation whose schema is

(branch:name, branch-city, nssets, account-number, bslance)

We can eliminate several attributes from the schema, by pushing projections based

on equivalence rules 8.a and 8.b. The only attributes that we must retain are those

that either appear in the result of the query or are needed to process subsequent
operations. By eliminating unneeded attributes, we reduce the number of columns
of the intermediate result. Thus, we reduce the size of the intermediate result. In our
example, the only attribute we need from the join of branch and account is account
-number. Therefore, we can modify the expression to

n.u"to*"r-no 
" 

(

(fIo..ount-nu*b., ((o6,on.h-citE:"Brookry"- (branch)) x account)) x depositor)

The projectionllo,"ounl-number redl;ces the size of the intermediate join results.

14.2.3 Join Ordering
A good ordering of join operations is important for reducing the size of temporary

results; hence, most query optimizers pay a lot of attention to the join order. As men-

tioned in Chapter 2 and in equivalence rule 6.a, the natural-join operation is associa-
tive. Thus, for all relations rr, 12, antd 13,

( r yx  12 )  X  13  :  r 1X  ( r2X  13 )

Although these expressions are equivalent, the costs of computing them may differ.

Consider again the expression

il"u"to-"r-none \\obranch-c'itE -*g1oogrn" (branch)) X gccount X depositor)

We could choose to compute account X depositor first, and then to join the result with

o branch-ci.tE -,,Brook1yn,, (branch)

However, account X d.epositor is likely to be a large relation, since it contains one tuple
for every account. In contrast,

obranch-ci.ta :"Brooklyn" (branch) X account

is probably a small relation. To see that it is, we note that, since the bank has a large

number of widely distributed branches, it is likely that only a small fraction of the

bank's customers have accounts in branches located in Brooklyn. Thus, the preced-

ing expression results in one tuple for each account held by a resident of Brooklyn.

Therefore, the temporary relation that we must store is smaller than it would have

been had we computed account X depositor hrst.
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There are other options to consider for evaluating our query.We do not care about
the order in which attributes appear in a join, since it is easy to change the order
before displaying the result. Thus, for all relations 11 aLnd 12,

r 1 X  1 2  :  r z X  r r

That is, natural join is commutative (equivalence rule 5).
using the associativity and commutativity of the natural join (rules 5 and 6), we

can consider rewriting our relational-algebra expression as

flcusto^e,_na . (((o6ron.n-ci,tu:,,Brookty"- (branch)) X depositor) X account)

That is, we could compute

(obranch-c.its:"Brook1yn" (branch)) X depositor

first, and, after that, join the result with account. Note, howevel, that there are no
attributes in common between Branch-schema and Depositor-schema, so the join is just
a Cartesian product. If there are b branches in Brooklyn and d tuples in the depositor
relation, this Cartesian product generates b x d tuples, one for every possible pair of
depositor tuple and branches (without regard for whether the account in depositor is
maintained at the branch). Thus, it appears that this Cartesian product will produce
a large temporary relation. As a result, we would reject this strategy. However, if
the user had entered the preceding expression, we could use the associativity and
commutativity of the natural join to transform this expression to the more efficient
expression that we used earlier.

14.2.4 Enumerqtion of Equivolent Expressions
Query optimizers use equivalence rules to systematically generate expressions equiv-
alent to the given query expression. Conceptually, the process proceeds as follows.
Given an expression, if any subexpression matches one side of an equivalence rule,
the optimizer generates a new expression where the subexpression is transformed to
match the other side of the rule. This process continues until no more new expres-
sions can be generated

The preceding process is costly both in space and in time. Here is how the space
requirement can be reduced: If we generate an expression E1 from an expression
Ez by using an equivalence rule, then E1 and E2 are similar in structure, and have
subexpressions that are identical. Expression-representation techniques that allow
both expressions to point to shared subexpressions can reduce the space requirement
significantly, and many query optimizers use them.

Moreovel, it is not always necessary to generate every expression that can be gen-
erated with the equivalence rules. If an optimizer takes cost estimates of evalualion
into account, it may be able to avoid examining some of the expressions, as we shall
see in Section14.4. We can reduce the time required for optimization by using tech-
niques such as these.



578 Chapter 14 Query Optimization

14.3 Estimqting Stotistics of Expression Results
The cost of an operation depends on the size and other statistics of its inputs. Given
an expression such as a x (b x c) to estimate the cost of joining a with (b X c), we
need to have estimates of statistics such as the size of b X c.

In this section we first list some statistics about database relations that are stored in
database-system catalogs, and then show how to use the statistics to estimate statis-
tics on the results of various relational operations.

One thing that will become clear later in this section is that the estimates are not
very accurate, since they are based on assumptions that may not hold exactly. A
query-evaluation plan that has the lowest estimated execution cost may therefore
not actually have the lowest actual execution cost. However, real-world experience
has shown that even if estimates are not precise, the plans with the lowest estimated
costs usually have actual execution costs that are either the lowest actual execution
costs, or are close to the lowest actual execution costs.

14.3.1 Cotclog Informqtion
The DBMS catalog stores the following statistical information about database rela-
tions:

. rL, the number of tuples in the relation r.

o b,, the number of blocks containing tuples of relation r.

o 1,, the size of a tuple of relation r in bytes.

o f ,, the blocking factor of relation r-that is, the number of tuples of relation r
that fit into one block.

o V (A,r), the number of distinct values that appear in the relation r for attribute
A. This value is the same as the size of tln (r). If A is a key for relation r,V (4, r)
is nr.

The last statistic, V(A,r), can also be maintained for sets of attributes, if desired,
instead of just for individual attributes. Thus, given a set of attributes, A, V(A,r) is
the size of IIa(r).

If we assume that the tuples of relation r are stored together physically in a file,
the following equation holds:

.  ln"1
" ' - l f " l

Statistics about indices, such as the heights of B+-tree indices and number of leaf
pages in the indices, are also maintained in the catalog.

If we wish to maintain accurate statistics, then, every time a relation is modified,
we must also update the statistics. This update incurs a substantial amount of over-
head. Therefore, most systems do not update the statistics on every modification. In-
stead, they update the statistics during periods of light system load. As a result, the
statistics used for choosing a quely-plocessing strategy may not be completely accu-
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Figure14.4 Example of histogram.

rate. Howevel, if not too many updates occur in the intervals between the updates of
the statistics, the statistics will be sufficiently accurate to provide a good eJtimation
of the relative costs of the different plans.

The statistical information noted here is simplified. Real-world optimizers often
maintain further statistical information to improve the accuracy of their cost esti-
mates of evaluation plans. For instance, most databases store the distribution of val-
ues for each attribute as a histogram: in a histogram the values for the attribute are
divided into a number of ranges, and with each range the histogram associates the
number of tuples whose attribute value lies in that range. Figure 14.4 shows an ex-
ample of a histogram for an integer-valued attribute that takes values in the range 1
to 25.

Histograms used in database systems usually record the number of distinct values
in each range, in addition to the number of tuples with attribute values in that range.

As an example of a histogram, the range of values for an attribute age of arelation
person could be divided into 0-9, 10-19, . . ., g0-gg (assuming a maximum age of 99).
With each range we store a count of the number of person tuples whose age values
lie in that range, and the number of distinct age values that lie in that range. Without
such histogram information, an optimizer would have to assume that the distribution
of values is uniform; that is, each range has the same count.

A histogram takes up only a little space, so histograms on several different at-
tributes can be stored in the system catalog. There are several types of histograms
used in database systems. For example, an equi-width histogram divides the range
of values into equal sized ranges, whereas an equi-depth histogram adjusts the bound-
aries of the ranges such that each range has the same number of values.

14.3.2 Selection Size Estimqtion
The size estimate of the result of a selection operation depends on the selection predi-
cate. We first consider a single equality predicate, then a single comparison predicate,
and finally combinations of predicates.
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c oa:o(r); If we assume uniform distribution of values (that is, each value ap-
pears with equal probability), the selection result can be estimated to have
n"lV(A,r) tuples, assuming that the value a appears in attribute ,4 of some
record of r. The assumption that the value o in the selection appears in some
record is generally true, and cost estimates often make it implicitly. However,
it is often not realistic to assume that each value appears with equal proba-
bility. The brqnch-name attribute in the account relation is an example where
the assumption is not valid. There is one tuple in the account relation for
each account. It is reasonable to expect that the large branches have more ac-
counts than smaller branches. Therefore, certain branch-name values appear
with greater probability than do others. Despite the fact that the uniform-
distribution assumption is often not correct, it is a reasonable approximation
of reality in many cases, and it helps us to keep our presentation relatively
simple.

If a histogram is available on attribute A, we can locate the range that con-
tains the value a, and modify the above-mentioned estimate n, lV(A,r) by

using the frequency count for that range instead of n, and the number of
distinct values that occurs in that range instea d of V (A, r) .

o oaau(r): Consider a selection of the form aa<,(r). If the actual value used

in the comparison (u) is available at the time of cost estimation, a more ac-

curate estimate can be made. The lowest and highest values (min(A, r) and

max(, , r)) for the attribute can be stored in the catalog. Assuming that values

are uniformly distributed, we can estimate the number of records that will

satisfy the condition A I u as 0 if o < min(A, r), as n, if 'u ) max(, , r), and

t r  -  m in ( ,4 ,  r )
r l r '

max(A, r) - min(A, r)

otherwise.
If a histogram is available on attribute A, we can get a more accurate esti-

mate; we leave the details as an exercise for you.
In some cases, such as when the query is part of a stored procedure, the

value o may not be available when the query is optimized. In such cases/ we
will assume that approximately one-half the records will satisfy the compari-
son condition. That is, we assume the result has n,f 2 tuples; the estimate may
be very inaccurate, but is the best we can do without any further information.

o Complex selections:

n Conjunction: A conjunctiae selection is a selection of the form

oornozn. . .no^\r  )

We can estimate the result size of such a selection: For each 0;, we esti-
mate the size of the selection oeo(r), denoted by s.;, as described previ-
ously. Thus, the probability that a tuple in the relation satisfies selection
condition 0a is sif n,.

The preceding probability is called the selectivity of the selection oyt(r).

Assuming that the conditions are independent of each other, the probabil-



74.3 Estimating Statistics of Expression Results 581

ity that a tuple satisfies all the conditions is simply the product of all these
probabilities. Thus, we estimate the number of tuples in the full selection
AS

, r * #

! Disjunction: A disjunctiae selection is a selection of the form

o0 tv7zv . . . v0n \T  )

A disjunctive condition is satisfied by the union of all records satisfying
the individual, simple conditions d1.

As before, let sif n, denote the probability that a tuple satisfies condi-
tion 0a. The probability that the tuple will satisfy the disjunction is then 1
minus the probability that it will satisfy none of the conditions:

1  -  ( 1  -  1 )  *  ( r -  3 )  * . . .  x  ( r  -  1 ;'  n r '  '  r l r '  '  ' n ,

Multiplying this value by n, gives us the estimated number of tuples that
satisfy the selection.

n Negation: In the absence of nulls, the result of a selection o_e(r) is simply
the tuples of r that are not in os(r). we already know how to estimate
the number of tuples in os(r). The number of tuples in o-s(r) is therefore
estimated to be n(r) minus the estimated number of tuples in oB(r).

We can account for nulls by estimating the number of tuples for which
the condition 0 would evaluate to unknown, and subtracting that number
from the above estimate ignoring nulls. Estimating that number would
require extra statistics to be maintained in the catalog.

14.3.3 Join Size Estimotion
In this section, we see how to estimate the size of the result of a join.

The Cartesian product r x s contains rrr * n" tuples. Each tuple of r x s occupies
l, + l" bytes, from which we can calculate the size of the Cartesian product.

Estimating the size of a natural join is somewhat more complicated than estimat-
ing the size of a selection or of a Cartesian product. Let r(R) and s(,9) be relations.

o If fi n ^9 : 0-that is, the relations have no attribute in common-then r X s
is the same as r x s, and we can use our estimation technique for Cartesian
products.

o rf R n ,s is a key for fi, then we know that a tuple of s will join with at most
one tuple from r. Therefore, the number of tuples in r X s is no greater than
the number of tuples in s. The case where R n ,s is a key for ^9 is symmetric
to the case just described.If R rl ,S forms a foreign key of ,S, referencing E, the
number of tuples in r X s is exactly the same as the number of tuples in s.

o The most difficult case is when -R n ,s is a key for neither € nor s. In this
case/ we assume, as we did for selections, that each value appears with equal
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probability. Consider a tuple t of r, and assume fi n ,9 : {A}. We estimate
that tuple f produces

rLs

v(Ar)
tuples in r x s, since this number is the average number of tuples in s with a
given value for the attributes A. Considering all the tuples in r, we estimate
that there are

n r * n s

W*)
tuples in r X s. Observe that, if we reverse the roles of r and s in the preceding
estimate, we obtain an estimate of

:!:!a
V ( A , r )

tuples in r X s. These two estimates differ if V (A,r) I V (A, s). If this situation
occurs, there are likely to be dangling tuples that do not participate in the join.
Thus, the lower of the two estimates is probably the more accurate one.

The preceding estimate of join size may be too high if the V (A, r) values
for attribute A in r have few values in common with the V (A, s) values for
attribute A in s. Howeveq, this situation is unlikely to happen in the real world,
since dangling tuples either do not exist or constitute only a small fraction of
the tuples, in most real-world relations.

More important, the preceding estimate depends on the assumption that
each value appears with equal probability. More sophisticated techniques for
size estimation have to be used if this assumption does not hold. For exam-
ple, if we had histograms on the join attributes of both relations, and both
histograms had the same ranges, then we can use the above estimation tech-
nique within each range, using the number of rows with values in the range
instead of n, or n", artd the number of distinct values in that range, instead of
V (A, r) or V (A, s). We then add up the size estimates obtained for each range
to get the overall size estimate. We leave the case where both relations have
histograms on the join attribute, but the histograms have different ranges, as
an exercise for you.

We can estimate the size of a theta join r xe s by rewriting the join as os(r x s),
and using the size estimates for Cartesian products along with the size estimates for
selections, which we saw in Section 1'4.3.2.

To illustrate all these ways of estimating join sizes, consider the expression

depositor x customer

Assume the following catalog information about the two relations:

o tucustomer : 10000'

o f .urto^., : 25, which implies thatb"r"To*.' : 10000/25 : 400.

| frd'eposi'tor : 5000'
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. fd.eposi.tor: 5O,whichimpliesthatb4"ro"ilo, : 5000/50 : 100.

o V(customer-name, depositor) : 2500, which implies that, on average, each cus-
tomer has two accounts.

AIso assum e that customer-nnme in depositor is a foreign key on custlmer.
In our example of depositor X customer, customer-name in dEositor is a foreign key

referencing custlmer; hence, the size of the result is exactly nd,epos,itort which is 5000.
Let us now compute the size estimates for depositor X customer without using infor-

mation about foreign keys. SinceV(customerrtame, depositor) : 2500 andV(customer
-nnmq customer) : 10000, the two estimates we get are 5000 * 10000/2500 : 20000
and 5000 x 10000/10000 : 5000, and we choose the lower one. In this case, the lower
of these estimates is the same as that which we computed earlier from information
about foreign keys.

14.3.4 Size Estimqtion for Other Operotions
We outline below how to estimate the sizes of the results of other relational algebra
operations.

o Projection: The estimated size (number of records or number of tuples) of a
projection of the form tla(r) is V(A,r), since projection eliminates duplicates.

o Aggregation: The size of a]r(r) is simply V(A,r), since there is one tuple in
aQ p(r) for each distinct value of ,4. o

o Set operations: If the two inputs to a set operation are selections on the same
relation, we can rewrite the set operation as disjunctions, conjunctions, or
negations. For example , oe,(r)U os,(r) can be rewritten ds os,y6"(r). Similarly,
we can rewrite intersections as coniunctions, and we can rewrite set difference
by using negation, so long as the iwo relations participating in the set oper-
ations are selections on the same relation. We can then use the estimates for
selections involving conjunctions, disjunctions, and negation in Section 74.3.2.

If the inputs are not selections on the same relation, we estimate the sizes
this way: The estimated size of r U s is the sum of the sizes of r and s. The
estimated size of r t^t s is the minimum of the sizes of r and s. The estimated
size of r - s is the same size as r. All three estimates may be inaccurate, but
provide upper bounds on the sizes.

o Outer join: The estimated size of r }( s is the size of r X s plus the size of
r; thatof r DC s is symmetric, while that of r )C s is the size of r X s plus
the sizes of r and s. All three estimates may be inaccurate, but provide ,rppe.
bounds on the sizes.

14.3.5 Estimqtion of Number of Distinct Vqlues
For selections, the number of distinct values of an attribute (or set of attributes) ,4 in
the result of a selection,V(A,oe(r)), can be estimated in these ways:

583



584 Chapter 14 Query Optimization

o If the selection condition d forces ,4 to take on a specified value (e.g., A : 3),
V ( A , o s ( r ) )  : 1 .

o If d forces A to take on one of a specified set of values (e.g., (A : \V A :

3 v A :4)), then V (A, os(r)) is set to the number of specified values.

o If the selection condition 0 is of the form A oy,, u, where opis a comparison
operatol, V (A, os(r)) is estimated to be V (A, r) x s, where s is the selectivity
of the selection.

o In all other cases of selections, we assume that the distribution of ,4 values
is independent of the distribution of the values on which selection conditions
are specified, and use an approximate estimate of min(V (A, r) , noe1)). A more
accurate estimate can be derived for this case using probability theory, but the
above approximation works fairly well.

For joins, the number of distinct values of an attribute (or set of attributes) A in the
result of a join, V (A,r x s), can be estimated in these ways:

o If all attributes in A arefrom r, V (A, r X s) is estimated as min(V(A, r), n,x"),
and similarly if all attributes in A are from s, V(A,r x s) is estimated to be
min(V(A.  s) ,  n ,x") .

o If Acontains attributes ,41 from r and A2 ftom s, then V(A, r X s) is estimated
AS

min(V (A1, r)  *  V (A2 - A7, s),  V (Al -  A2, r)  *  V (A2,s),  n,x" )
Note that some attributes may be in ,41 as well as in A2, and A1 * A2 and
A2- AL denote, respectively, attributes in A that are only from r and attributes
in,4 that are only from s. Again, more accurate estimates can be derived by
using probability theory, but the above approximations work fairly well.

The estimates of distinct values are straightforward for projections: They are the
same in IIa(r) as in r. The same holds for grouping attributes of aggregation. For
results of sum, count, and average, we can assume, for simplicity, that all aggregate
values are distinct. For min(A) and max(A), the number of distinct values can be es-
timated as min(V(A,r),V(G,r)), where G denotes the grouping attributes. We omit
details of estimating distinct values for other operations.

14.4 Choice of Evqluqtion Plqns
Generation of expressions is only part of the query-optimization process, since each
operation in the expression can be implemented with different algorithms. An eval-
uation plan is therefore needed to define exactly what algorithm should be used for
each operation, and how the execution of the operations should be coordinated. Fig-
ure 14.5 illustrates one possible evaluation plan for the expression from Figure 14.3.
As we have seen, several different algorithms can be used for each relational opera-
tion, giving rise to alternative evaluation plans. Further, decisions about pipelining
have to be made. In the figure, the edges from the selection operations to the merge



}( (mergejoin)

14.4 Choice of Evaluation Plans

il customer_na1n, (sort to remove duplicates)

(hash join)

depositor

X

p|pet2,/// 
\eeline

6 branch-city = Brookiyn 6 balance < 1.000
(use index 1) (use linear scan)

brqnch account

Figure 14.5 An evaluation plan.

join operation are marked as pipelined; pipelining is feasible if the selection oper-
ations generate their output sorted on the join attributes. They would do so if the
indices onbranch and account store records with equal values for the index attributes
sorted by branch-name.

14.4.1 Interoction of Evqluqtion Techniques
One way to choose an evaluation plan for a query expression is simply to choose for
each operation the cheapest algorithm for evaluating it. We can choose any ordering
of the operations that ensures that operations lower in the tree are executed before
operations higher in the tree.

However, choosing the cheapest algorithm for each operation independently is not
necessarily a good idea. Although a merge join at a given level may be costlier than
a hash join, it may provide a sorted output that makes evaluating a later operation
(such as duplicate elimination, intersection, or another merge join) cheaper. Similarly,
a nested-loop join with indexing may provide opportunities for pipelining the results
to the next operation, and thus may be useful even if it is not the cheapest way of
performing the join. To choose the best overall algorithm, we must consider even
nonoptimal algorithms for individual operations.

Thus, in addition to considering alternative expressions for a query, we must also
consider alternative algorithms for each operation in an expression. We can use rules
much like the equivalence rules to define what algorithms can be used for each op-
eration, and whether its result can be pipelined or must be materialized. We can use
these rules to generate all the query-evaluation plans for a given expression.

Given an evaluation plan, we can estimate its cost using statistics estimated by
the techniques in Section 14.3 coupled with cost estimates for various algorithms and
evaluation methods described in Chapter 13. Depending upon the indices available,
certain selection operations can be evaluated using only an index without accessing
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the relation itself. That still leaves the problem of choosing the best evaluation plan
for a query. There are two broad approaches: The first searches all the plans, and
chooses the best plan in a cost-based fashion. The second uses heuristics to choose a
plan. We discuss these approaches next. Practical query optimizers incorporate ele-
ments of both approaches.

14.4.2 Cost-Bqsed Optimizqtion

A cost-based optimizer generates a range of query-evaluation plans from the given
query by using the equivalence rules, and chooses the one with the least cost. For
a complex query, the number of different query plans that are equivalent to a given
plan can be large. As an illustratiory consider the expression

1 1 } < 1 2 X . . . X r ,

where the joins are expressed without any ordering. With n : 3, there are 12 different
join orderings:

r y x ( 1 2 0 4 r y )  1 1  x ( r 3 x 1 2 )  ( r 2 x 1 3 )  x 1 1  ( " 3 x 1 2 ) x 1 1
1 2  X  ( r 1  X 1 3 )  1 2  X ( r 3 X 1 1 )  ( r 1  X 1 3 )  x 1 2  ( r y X 1 1 ) x 1 2
r s X ( r 1 X ' 1 2 )  r s X . ( r 2 l ( 1 1 )  ( r 1  X 1 2 ) x 1 3  ( r 2 X 1 1 ) l ( 1 3

In general, with n relations, there are (2(" - t))ll(n - 1)l different join orders. (We

leave the computation of this expression for you to do in Exercise 14.7.) For joins

involving small numbers of relations, this number is acceptable; for example, with
n : 5, the number is 1680. However, as n increases, this number rises quickly. With
n : 7, the number is 665,280; with n : 10, the number is greater than 17.6 billion!

Luckily, it is not necessary to generate all the expressions equivalent to a given
expression. For example, suppose we want to find the best join order of the form

( r 1 X - 1 2  X  1 3 )  X  1 4 X r 5

which represents all join orders where r1,r2, drrd 13 are joined first (in some order),
and the result is joined (in some order) with ra and r5. There are 12 different join

orders for computing 11 X rz X rB, and 12 orders for computing the join of this result
with ra and r5. Thus, there appear tobe I44join orders to examine. However, once
we have found the best join order for the subset of relations {rt,rz,r3}, we can use
that order for further joins with ra and 15, alfld can ignore all costlier join orders of
11 x 12 x 13. Thus, instead of. I44 choices to examine, we need to examine only
12 + 12 choices.

Using this idea, we can develop a dynamic-programming algorithm for finding op-
timal join orders. Dynamic-programming algorithms store results of computations
and reuse them, a procedurethat can reduce execution time greatly. A recursive pro-
cedure implementing the dynamic-programming algorithm appears in Figure 14.6.

The procedure stores the evaluation plans it computes in an associative array
bestplan, which is indexed by sets of relations. Each element of the associative ar-
ray contains two components: the cost of the best plan of ,S, and the plan itself. The
value of bestplanlSl.cosf is assumed to be initialized to oo if bestplanlSl has not yet
been comouted.
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procedure FindBestPlan(,S)
if (bestplanlSl.cost I q) /* bestplanlSl already computed */

return bestplanlSl
if (,S contains only 1 relation)

set bestplanfSl.plan and bestplanlSl.cost based on best way of accessing ,5
else for each non-empty subset ̂ 91 of ^9 such that SI + S

P1 = FindBestPlan(Sl)
P2 = FindBestPlan(S - ^91)
A = best algorithm for joining results of PI and P2
cost = Pl.cost + P2.cost + cost of ,4
if cost < bestplanlS).cost

be stpl anlSl. cos, = cost
bestplanlSl.plan = "execyte Pl.plan; execute P2.pLan;

join results of P1 and P2 using A"
return bestplanlSl

Figure14.6 Dynamic-programming algorithm for join order optimization.

The procedure first checks if the best plan for computing the join of the given set of
relations ,9 has been computed already (and stored in the associative array bestplan);
if so, it returns the already computed plan.

If S contains only one relation, the best way of accessing S (taking selections on
S , rt any, into account) is recorde d in bestplan. This may involve using an index to
identify tuples, and then fetching the tuples (often referred to as an index scan), or
scanning the entire relation (often referred to as arelqtion scan).l

Otherwise, the procedure tries every way of dividing ,9 into two disjoint subsets.
For each division, the procedure recursively finds the best plans for each of the two
subsets, and then computes the cost of the overall plan by using that division. The
procedure picks the cheapest plan from among all the alternatives for dividing S into
two sets. The cheapest plan and its cost are stored in the array bestplan, and returned
by the procedure. The time complexity of the procedure can be shown to be O(3.)
(see Practice Exercise 14.8).

Actually, the order in which tuples are generated by the join of a set of relations
is also important for finding the best overall;'oin order, since it can affect the cost of
further joins (for instance, if merge join is used). A particular sort order of the tuples
is said to be an interesting sort order if it could be useful for a later operation. For
instance, generating the result of 11 X 12 X 13 sorted on the attributes common with
14 or 15 may be useful, but generating it sorted on the attributes common to only 11
and 12 is not useful. using merge join for computin g rt x 12 x 13 may be costlier than
using some other join technique, but may provide an output sorted in an interesting
sort order.

1. If an index contains all the attributes of a relation that are used in a query, it is possible to perform
an index-only scan, which retrieves the required attribute values from the index, without fetchinq actual
tuples.
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Hence, it is not sufficient to find the best join order for each subset of the set of
n given relations. Instead, we have to find the best join order for each subset, for
each interesting sort order of the join result for that subset. The number of subsets of
n relations is 2'. The number of interesting sort orders is generally not large. Thus,
about 2n join expressions need to be stored. The dynamic-programming algorithm
for finding the best join order can be easily extended to handle sort orders. The cost of
the extended algorithm depends on the number of interesting orders for each subset
of relations; since this number has been found to be small in practice, the cost remains
at O(3"). With n : 10, this number is around 59,000, which is much better than the
17.6 billion different join orders. More important, the storage required is much less
than before, since we need to store only one join order for each interesting sort order
of each of 1024 subsets of 11, . . . ,rlo.Although both numbers still increase rapidly
wlth n, commonly occurring joins usually have less than 10 relations, and can be
handled easily.

We can use several techniques to reduce further the cost of searching through a
large number of plans. For instance, when examining the plans for an expression, we
can terminate after we examine only a part of the expression, if we determine that
the cheapest plan for that part is already costlier than the cheapest evaluation plan
for a full expression examined earlier. Similarly, suppose that we determine that the
cheapest way of evaluating a subexpression is costlier than the cheapest evaluation
plan for a full expression examined earlier. Then, no full expression involving that
subexpression needs to be examined. We can further reduce the number of evaluation
plans that need to be considered fully by first making a heuristic guess of a good plan,
and estimating that plan's cost. Then, only a few competing plans will require a full
analysis of cost. These optimizations can reduce the overhead of query optimization
significantly.

The intricacies of SQL introduce a good deal of complexity into query optimizers.
We briefly outline how to handle nested subqueries in Section 74.4.4.

The approach to optimization described above concentrates on join-order opti-
mization. In contrast, the optimizers used in some other systems, notably Microsoft
SQL Server, are based on equivalence rules. The benefit of using equivalence rules is
that it is easy to extend the optimizer with new rules. For example, nested queries can
be represented using extended relational-algebra constructs, and transformations of
nested queries can be expressed as equivalence rules. To make the approach work ef-
ficiently requires efficient techniques for detecting duplicate derivations, and a form
of dynamic programming to avoid reoptimizing the same subexpressions. This ap-
proach was pioneered by the Volcano research project. See the bibliographic notes for
references containing further information.

14.4.3 Heuristics in Optimizqtion
A drawback of cost-based optimization is the cost of optimization itself. Although
the cost of query optimization can be reduced by clever algorithms, the number of
different evaluation plans for a query can be very large, and finding the optimal plan
from this set requires a lot of computational effort. Hence, optimizers use heuristics
to reduce the cost of optimization.
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An example of a heuristic rule is the following rule for transforming relational-
algebra queries:

o Perform selection operations as early as possible.

A heuristic optimizer would use this rule without finding out whether the cost is
reduced by this transformation. In the first transformation example in Section 14.2,
the selection operation was pushed into a join.

We say that the preceding rule is a heuristic because it usually, but not always,
helps to reduce the cost. For an example of where it can result in an increase in cost,
consider an expression os(r X s), where the condition d refers to only attributes in s.
The selection can certainly be performed before the join. However, if r is extremely
small compared to s, and if there is an index on the join attributes of s, but no index
on the attributes used by d, then it is probably a bad idea to perform the selection
early. Performing the selection early-that is, directly on s-would require doing a
scan of all tuples in s. It is probably cheaper, in this case, to compute the join by using
the index, and then to reject tuples that fail the selection.

The projection operatiory like the selection operation, reduces the size of relations.
Thus, whenever we need to generate a temporary relation, it is advantageous to ap-
ply immediately any projections that are possible. This advantage suggests u 

"o--panion to the "perform selections early" heuristic:

o Perform projections early.

It is usually better to perform selections earlier than projections, since selections have
the potential to reduce the sizes of relations greatly, and selections enable the use of
indices to access tuples. An example similar to the one used for the selection heuristic
should convince you that this heuristic does not always reduce the cost.

Most practical query optimizers have further heuristics to reduce the cost of op-
timization. For example, many query optimizers, such as the System R optimizer,
do not consider all join orders, but rather restrict the search to particular kinds of
join orders. The System R optimizer considers only those join orders where the right
operand of each join is one of the initial relations ,rrt . . . ,r,. Such join orders are called
left-deep join orders. Left-deep join orders are particularly convenient for pipelined
evaluation, since the right operand is a stored relation, and thus only one input to
each join is pipelined.

Figure 74.7 ilhstrates the difference between left-deep join trees and non-left-deep
join trees. The time it takes to consider all left-deep join orders is O(n !), which is much
less than the time to consider all join orders. With the use of dynamic-programming
optimizations, the System R optimizer can find the best join order in time o(n2^).
Contrast this cost with the O(3") time required to find the best overall ioin order.
The System R optimizer uses heuristics to push selections and projections down the
query tree.

A heuristic approach to reduce the cost of join-order selection, which was origi-
nally used in some versions of oracle, works roughly this way: For an n-way join,
it considers n evaluation plans. Each plan uses a left-deep join orde1, starting with
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(a) Left-deep join tree (b) Non-left-deep join tree

Figure14.7 Left-deep join trees.

a different one of the n relations. The heuristic constructs the join order for each of
the n evaluation plans by repeatedly selecting the "best" relation to join next, on the
basis of a ranking of the available access paths. Either nested-loop or sort-merge join
is chosen for each of the joins, depending on the available access paths. Finally, the
heuristic chooses one of the n evaluation plans in a heuristic manner, on the basis of
minimizing the number of nested-loop joins that do not have an index available on
the inner relation and on the number of sort-merge joins.

Query-optimization approaches that integrate heuristic selection and the genera-
tion of alternative access plans have been adopted in several systems. The approach
used in System R and in its successor/ the Starburst project, is a hierarchical procedure
based on the nested-block concept of SQL. The cost-based optimization techniques
described here are used for each block of the query separately. The optimizers in sev-
eral database products, such as IBM DB2 and Oracle, are based on the above approach,
with extensions to handle other operations such as aggregation. For compound SQL
queries (using the U, t), or - operation), the optimizer processes each component
separately, and combines the evaluation plans to form the overall evaluation plan.

Many applications execute the same query repeatedly, but with different values
for the constants. For example, a bank application may execute a query to find re-
cent transactions on an account repeatedly, but with different values for the account
number. As a heuristic, many optimizers optimize a query once, with what ever val-
ues were provided for the constants when the query was first submitted, and cache
the query plan. Whenever the query is executed again, perhaps with new values for
constants, the cached query plan is reused (using new values for the constants, of
course). The optimal plan for the new constants may differ from the optimal plan for
the initial values, but as a heuristic the cached plan is reused.

Even with the use of heuristics, cost-based query optimization imposes a substan-
tial overhead on query processing. However, the added cost of cost-based query op-
timization is usually more than offset by the saving at query-execution time, which
is dominated by slow disk accesses. The difference in execution time between a good
plan and a bad one may be huge, making query optimization essential. The achieved
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saving is magnified in those applications that run on a regular basis, where a query
can be optimized once, and the selected query plan can be used each time the query
is executed. Therefore, most commercial systems include relatively sophisticated op-
timizers. The bibliographical notes give references to descriptions of the qn"ty opii-
mizers of actual database systems.

14.4.4 Optirnizing Nested Subqueriesx*
SQL conceptually treats nested subqueries in the where clause as functions that take
parameters and return either a single value or a set of values (possibly an empty set).
The parameters are the variables from outer level query that are used in the nested
subquery (these variables are called correlation variables). For instance, suppose we
have the following query.

select customer-name
fromborrower
where ",,*o,i.:ff , )rr*uo,

where depositor.cust omer-nnme : borrower.customer:name)

Conceptually, the subquery can be viewed as a function that takes a parameter (here,
borrower.customerstame) and returns the set of all depositors with the same name.

SQL evaluates the overall query (conceptually) by computing the Cartesian prod-
uct of the relations in the outer from clause and then testing the predicates in the
where clause for each tuple in the product. In the preceding example, the predicate
tests if the result of the subquery evaluation is empty.

This technique for evaluating a query with a nested subquery is called correlated
evaluation. Correlated evaluation is not very efficient, since the subquery is sepa-
rately evaluated for each tuple in the outer level query. A large number of random
disk I/O operations may result.

SQL optimizers therefore attempt to transform nested subqueries into joins, where
possible. Efficient join algorithms help avoid expensive random I/O. Where the trans-
formation is not possible, the optimizer keeps the subqueries as separate expressions,
optimizes them separately, and then evaluates them by correlated evaluation.

As an example of transforming a nested subquery into a join, the query in the
preceding example can be rewritten as

select customer_name
from b orrow er, depositor
where depositor.customerstame : b orrow er.customer stame

(To properly reflect SQL semantics, the number of duplicate derivations should not
change because of the rewriting; the rewritten query can be modified to ensure this
property, as we will see shortly.)

In the example, the nested subquery was very simple. In general, it may not be
possible to directly move the nested subquery relations into the from clause of the
outer query. Instead, we create a temporary relation that contains the results of the
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nested query without the selections using correlation variables from the outer query,
and join the temporary table with the outer level query. For instance, a query of the
form

select . . .
ftom Ly
where Pr and exists (select *

from L2
where Pz)

where P2 is a conjunction of simpler predicates, can be rewritten as

create table t1 as
select distinct V

from L2
where Prl

select . . .
from L1,t1
where Pr and

where Prr contains predicates in Pz without selections involving correlation variables,
and P] reintroduces the selections involving correlation variables (with relations ref-
erenced in the predicate appropriately renamed). Here, V contains all attributes that
are used in selections with correlation variables in the nested subquery.

In our example, the original query would have been transformed to

create table fr as
select distin ct customer:nqme
from depositor

select customer-nfrme
fromborrower,tl
where h.cust 0m er t1 ame : b or r ow er. cust omer stame

The query we rewrote to illustrate creation of a temporary relation can be obtained
by simplifying the above transformed query, assuming the number of duplicates of
each tuple does not matter.

The process of replacing a nested query by a query with a join (possibly with a
temporary relation) is called decorrelation.

Decorrelation is more complicated when the nested subquery uses aggregation,
or when the result of the nested subquery is used to test for equality, or when the
condition linking the nested subquery to the outer query is not exists, and so on.
We do not attempt to give algorithms for the general case, and instead refer you to
relevant items in the bibliographical notes.

Optimization of complex nested subqueries is a difficult task, as you can infer from
the above discussion, and many optimizers do only a limited amount of decorrela-
tion. It is best to avoid using complex nested subqueries, where possible, since we
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cannot be sure that the query optimizer will succeed in converting them to a form
that can be evaluated efficiently.

14.5 Mqteriqlized Viewsxx
when a view is defined, normally the database stores only the query defining the
view In contrast, a materialized view is a view whose contents are computed and
stored. Materialized views constitute redundant data, in that their contents can be
inferred from the view definition and the rest of the database contents. However, it
is much cheaper in many cases to read the contents of a materialized view than to
compute the contents of the view by executing the query defining the view.

Materialized views are important for improving performance in some applica-
tions. Consider this view, which gives the total loan amount at each branch:

create view branch_total_loan(brsnch-name, total_loan) as
s ele ct b r an ch-n am e, sum(am o unt)
fromloan
group by brnnch_name

Suppose the total loan amount at the branch is required frequently (before making
a new loan, for example). Computing the view requires reading every loan tuple
pertaining to the branch, and summing up the loan amounts, which can be time-
consuming.

In contrast, if the view definition of the total loan amount were materialized, the
total loan amount could be found by looking up a single tuple in the materialized
view.

14.5.1 View Mqintenqnce
A problem with materialized views is that they must be kept up-to-date when the
data used in the view definition changes. For instance, if the amount value of a loan
is updated, the materialized view would become inconsistent with the underlying
data, and must be updated. The task of keeping a materialized view up-to-date witl
the underlying data is known as view maintenance.

views can be maintained by manually written code: That is, every piece of code
that updates t}:re amount value of a loan can be modified to also update the total loan
amount for the corresponding branch.

Another option for maintaining materialized views is to define triggers on insert,
delete, and update of each relation in the view definition. The triggers must modify
the contents of the materialized view, to take into account the change that caused the
trigger to fire. A simplistic way of doing so is to completely recompute the material-
ized view on every update.

A better option is to modify only the affected parts of the materialized view, which
is known as incremental view maintenance. We describe how to perform incremen-
tal view maintenance in Section 74.5.2.
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Modern database systerns provide more direct support for incremental view main-
tenance. Database-system programmers no longer need to define triggers for view
maintenance. Instead, once a view is declared to be materialized, the database sys-
tem computes the contents of the view, and incrementally updates the contents when
the underlying data change.

Most database systems perform immediate view maintenance; that is, incremen-
tal view maintenance is performed as soon as an update occurs, as part of the updat-
ing transaction. Some database systems also support deferred view maintenance/
where view maintenance is deferred to a later time; for example, updates may be col-
lected throughout a day, and materialized views may be updated at night. This ap-
proach reduces the overhead on update transactions. However, materialized views
with deferred view maintenance may not be consistent with the underlying relations
on which they are defined.

14.5.2 Incrementql View Mointenqnce
To understand how to incrementally maintain materialized views, we start off by
considering individual operations, and then see how to handle a complete expres-
sion.

The changes to a relation that can cause a materialized view to become out-of-date
are inserts, deletes, and updates. To simplify our description, we replace updates to
a tuple by deletion of the tuple followed by insertion of the updated tuple. Thus,
we need to consider only inserts and deletes. The changes (inserts and deletes) to a
relation or expression are referred to as its differential.

14.5.2.1 Join Operqtion
Consider the materialized view u : r x s. Suppose we modify r by inserting a set of

tuples denoted by i,.If the old value of r is denoted by ro'o, and the new value of r

byrn"- , rn"-  : io td\ - ) ' i r .Now,theoldvalueof  theview, 'uold isg ivenAyr i ' .d  x  s ,and

the new valtre un"- is given by ,"i? X s. We can rewrite rneu x s as (r"Ld U z") X s,

which we can again rewrite as (roLd x s) U (?" x s). In other words,

,t)nt- : uold L) ( ' i , x s)

Thus, to update the materialized view u, we simply need to add the tuples 'i, X s

to the old contents of the materialized view. Inserts to s are handled in an exactly

s)rmmetric fashion.
Now suppose r is modified by deleting a set of tuples denoted by d,. Using the

same reasoning as above, we get

' n n " - : u o ' " - ( d r x s )

Deletes on s are handled in an exactlv symmetric fashion.
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14.5.2.2 Selection qnd Proiection Operotions
Consider a view u : oe(r).If we modify r by inserting a set of tuples i,, the new
value of u can be computed as

' u n t * : u o ' o U o g ( ' i r )

Similarly, if r is modified by deleting a set of tuples d,, the new value of ,u can be
comPuted as 

,un.- : uord - os1d,,7
Projection is a more difficult operation with which to deal. Consider a materialized

view o : na(r). Suppose the relation r is on the schema R : (A,B), and r contains
two tuples (a,2) and (a, 3). Then, IIa(r) has a single tuple (a). If we delete the tuple
(a,2) fromr, we cannot delete the tuple (a) from lra(r): If we did so, the result would
be an empty relation, whereas in reality fla(r) still has a single tuple (a). The reason is
that the same tuple (a) is derived in two ways, and deleting one tuple fromr removes
only one of the ways of deriving (a); the other is still present.

This reason also gives us the intuition for solution: For each tuple in a projection
such as fla(r), we will keep a count of how many times it was derived.

When a set of tuples d" is deleted from r, for each tuple f in d, we do the following.
Lett.A denote the projection of t on the attribute ,4. We find (f.A) in the materialized
view, and decrease the count stored with it by l. rf the count becomes 0, (t.,4) is
deleted from the materialized view.

Handling insertions is relatively straightforward. When a set of tuples i" is in-
serted into r, for each tuple I in z" we do the following. rf (t.A) is already present in
the materialized view, we increase the count stored with it by t.rf not, we add (t.A)
to the materialized view, with the count set to 1.

14.5.2.3 Aggregation Operstions
Aggregation operations proceed somewhat like projections. The aggregate opera-
tions in SQL are count, sum/ avg/ min, and max:

o count: Consider a materialized view 'D : Ag.ount6l(r), which computes the
count of the attribute B, after grouping rby attrlbwte A.

When a set of tuples z" is inserted into r, for each tuple t in e, we do the fol-
lowing. We look for the group t.,4 in the materialized view. If it is not present,
we add (t.A,I) to the materialized view. If the group f .,4 is present, we add 1
to the count of the group.

When a set of tuples d, is deleted frorn r, for each tuple I in d" we do the
following. We look for the group t.Ainthe materialized view, and subtract 1
from the count for the group. If the count becomes 0, we delete the tuple for
the group t.Afrornthe materialized view.

. sum: Consider a materialized view a : ,q,Q"u*tg(r).
When a set of tuples z" is inserted into r, for each tuple t in z" we do the fol-

lowing. We look for the group f.A in the materialized view. If it is not present,
we add (t.A,t.B) to the materialized view; in addition, we store a count of
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1 associated with (t.,4., t.B), ltst as we did for projection. If the group t.A is
present, we add the value of t.B to the aggregate value for the group, and add
1 to the count of the group.

When a set of tuples d, is deleted from r, for each tuple t in d" we do the
following. \ /e look for the group t.A in the materialized view, and subtract
t.B fuom the aggregate value for the group. We also subtract 1 from the count
for the group, and if the count becomes 0, we delete the tuple for the group
t.A from the materialized view.

Without keeping the extra count value, we would not be able to distinguish
a case where the sum for a group is 0 from the case where the last tuple in a
group is deleted.

avg: Consider a materialized view a : eQoos@)(r).
Directly updating the average on an insert or delete is not possible, since

it depends not only on the old average and the tuple being inserted/deleted,
but also on the number of tuples in the group.

Instead, to handle the case o{ avg, we maintain the sum and count aggre-

gate values as described earlier, and compute the average as the sum divided
by the count.

min, max: Consider arnaterialized view u : ag*rn(By (r). (The case of max is

exactly equivalent.)
Handling insertions on r is straightforward. Maintaining the aggregate val-

ues min and max on deletions may be more expensive. For example, if the

tuple corresponding to the minimum value for a group is deleted from r, we

have to look at the other tuples of r that are in the same group to find the new

minimumvalue.

14.5.2.4 Other Operotions
The set operation intersection is maintained as follows. Given materialized view o :

r i s, when a tuple is inserted in r we check if it is present in s, and if so we add
it to o. If a tuple is deleted from r, we delete it from the intersection if it is present.
The other set operations, union and set difference, are handled in a similar fashion; we
leave details to you.

Outer joins are handled in much the same way as joins, but with some extra work.
In the case of deletion from r we have to handle tuples in s that no longer match any
tuple in r. In the case of insertion to r,we have to handle tuples in s that did not
match any tuple in r. Again we leave details to you.

14.5.2.5 Hondling Expressions
So far we have seen how to update incrementally the result of a single operation. To
handle an entire expression, we can derive expressions for computing the incremen-
tal change to the result of each subexpressiory starting from the smallest subexpres-
sions.
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For example, suPpose we wish to incrementally update a materialized view E1 X
E2 when a set of tuples z, is inserted into relation r. Let us assume r is used in .81
alone. suppose the set of tuples to be inserted into E1 is given by expression D1. Then
the expression D1 X E2 gives the set of tuples to be insertedinto E1 X E2.

See the bibliographical notes for further details on incremental view maintenance
with expressions.

14.5.3 Query Optimizotion qnd Mqteriqlized Views
Query optimization can be performed by treating materialized views just like regular
relations. However, materialized views offer further opportunities for optimization:

o Rewriting queries to use materialized views:
Suppose a materialized view u : r X s is available, and a user submits a

queryr  x  s  x  t .Rewr i t ingthequeryasu x tmay provideamoreef f ic ient
query plan than optimizing the query as submitted. Thus, it is the job of the
query optimizer to recognize when a materialized view can be used to speed
up a query.

o Replacing a use of a materialized view by the view definition:
Suppose a materialized view a : r X s is available, but without any index

on it, and a user submits a query oa-ro(u). Suppose also that s has an index
on the common attribute B, and r has an index on attribute ,4. The best plan
for this query may be to replace u by r X s, which can lead to the query plan
oa:to(r) x s; the selection and join can be performed efficiently by using
the indices on r.A and s.B, respectively. In contrast, evaluating the selection
directly on o may require a full scan of u, which may be more expensive.

The bibliographical notes give pointers to research showing how to efficiently per-
form query optimization with materi alizedviews.

Another related optimization problem is that of materialized view selection,
namely, "what is the best set of views to materialize?" This decision must be made
on the basis of the system workload, which is a sequence of queries and updates that
reflects the typical load on the system. One simple criterion would be to select a set
of materialized views that minimizes the overall execution time of the workload of
queries and updates, including the time taken to maintain the materialized views.
Database administrators usually modify this criterion to take into account the im-
portance of different queries and updates: Fast response may be required for some
queries and updates,but a slow response may be acceptable for others.

Indices are just like materialized views, in that they too are derived data, can speed
up queries, and may slow down updates. Thus, the problem of index selection is
closely related, to that of materialized view selection, although it is simpler.

We examine these issues in more detail in Sections 23.1.5 and 23.1,.6.
Most database systems provide tools to help the database administrator with in-

dex and materialized view selection. These tools examine the history of queries and
updates, and suggest indices and views to be materialized. The Microsoft SQL Server
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Database Tuning Assistant, the IBM DB2 Design Advisor, and the Oracle SQL Tuning
Wizard are examples of such tools.

14.6 Summory
o Given a query, there are generally a variety of methods for computing the

answer. It is the responsibility of the system to transform the query as entered
by the user into an equivalent query that can be computed more efficiently.
The process of finding a good strategy for processing a query is caIled query
optimizntion.

r The evaluation of complex queries involves many accesses to disk. Since the
transfer of data from disk is slow relative to the speed of main memory and
the CPU of the computer system, it is worthwhile to allocate a considerable
amount of processing to choose a method that minimizes disk accesses.

o There are a number of equivalence rules that we can use to transform an ex-
pression into an equivalent one. We use these rules to generate systematically
all expressions equivalent to the given query.

o Each relational-algebra expression represents a particular sequence of opera-
tions. The first step in selecting a query-processing strategy is to find a relatio-
nal-algebra expression that is equivalent to the given expression and is esti-
mated to cost less to execute.

o The strategy that the database system chooses for evaluating an operation de-
pends on the size of each relation and on the distribution of values within
columns. So that they can base the strategy choice on reliable information,
database systems may store statistics for each relation r. These statistics in-
clude

n The number of tuples in the relation r
I The size of a record (tuple) of relation r in bytes
I The number of distinct values that appear in the relation r for a particular

attribute

o Most database systems use histograms to store the number of values for an
attribute within each of several ranges of values'

o These statistics allow us to estimate the sizes of the results of various oper-
ations, as well as the cost of executing the operations. Statistical information
about relations is particularly useful when several indices are available to as-
sist in the processing of a query. The presence of these structures has a signif-
icant influence on the choice of a query-processing strategy.

o Alternative evaluation plans for each expression can be generated by equiva-
lence rules, and the cheapest plan across all expressions can be chosen. Several
optimization techniques are available to reduce the number of alternative ex-
pressions and plans that need to be generated.
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o we use heuristics to reduce the number of plans considered, and thereby to
reduce the cost of optimization. Heuristic rules for transforming relational-
algebra queries include "Perform selection operations as early as possible,',
"Perform projections early," and "Avoid Cartesian products.,'

o Materialized views can be used to speed up query processing. Incremental
view maintenance is needed to efficiently update materialized views when
the underlying relations are modified. Th-e differential of an operation can be
computed by means of algebraic expressions involving differentials of the in-
puts of the operation. Other issues related to materialized views include how
to optimize queries by making use of available materialized views, and how
to select views to be materialized.

Review Terms
o Query optimization
o Transformation of expressions
o Equivalence of expressions
r Equivalence rules

n Join commutativity
n Join associativity

o Minimal set of equivalence rules
o Enumeration of equivalent

expressions
o Statistics estimation
r Catalog information
o Size estimation

X Selection
n Selectivity
n Join

r Histograms
o Distinct value estimation
o Choice of evaluation plans
r Interaction of evaluation

techniques

o Cost-based optimization

o Join-order optimization

n Dynamic-programming
algorithm

! Left-deep join order

o Heuristic optimization

o Access-plan selection

o Correlated evaluation

o Decorrelation

o Materialized views

o Materialized view maintenance

E Recomputation
E Incremental maintenance
! Insertion
! Deletion
tr Updates

o Query optimization with
materialized views

o Index selection

o Materialized view selection

Prqctice Exercises
14.1 show that the following equivalences hold. Explain how you can apply them

to improve the efficiency of certain queries:
a. Ey xs (Ez - E) : (8, xe Ez _ Er xe Es).
6. oe( agp(E)) : e8r(oe(E)), where d uses only attributes from,4.
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c. oe(El1a Ez) : oe(Et) )'4 82, where 0 uses only attributes from Er.

1,4.2 For each of the following pairs of expressions, give instances of relations that

show the expressions are not equivalent.

a. IIn(fi - ,9) and IIa(i?) - na(S).
b.  oB<s( A]nar(n)  

" "  
r (R))  a lnd 4Q-o"14;  ' "  r (oa<+(R)) .

c. In the preceding expressions, if both occurrences of mar were replaced by

mi,n would the expressions be equivalent?
d' (fi )< '9) tr< 7 and R }( ('s tr( 7)

In other words, the natural left outer join is not associative.
(Hint: Assume that the schemas of the three relations are -R(ri, b7), S(a,b2),

and T (a, b3), respectively.)
e. os(81 -ya Ez) and E1 -M os(82), where 0 uses only attributes from tz.

14.3 SQL allows relations with duplicates (Chapter 3).

a. Define versions of the basic relational-algebra operations o, II, x, x, -, U,

and n that work on relations with duplicates, in a way consistent with SQL.

b. Check which of the equivalence rules 1 through 7.b hold for the multiset

version of the relational-algebra defined in part a.

14.4 Consider the relations 11 (,4, B , C) , r2(C , D , E) , and ry(E , F),wlth primary keys

A, C, and E, respectively. Assume that 11 has 1000 tuples, 12 has 1500 tuples,

and 13 has 750 tuples. Estimate the size of 11 X 12 X 13, and give an efficient

strategy for computing the join.

14.5 Consider the relations 11(y', B, C), r2(C, D, E), and 4(E, F) of Practice Exer-

cise 14.4. Assume that there are no primary keys, except the entire schema. Let

V(C,r)  be 900,  V(C,r2)  be 1100,  V(E,r2)  be 50,  and V(E,ry)  be 100.  Assume

that rr has 1000 tuples, 12has 1500 tuples, and 13 has 750 tuples. Estimate the

size of 11X. 12 X 13 and give an efficient strategy for computing the join.

14.6 Suppose that a B+-tree index on branchdty is available on relation branch, and

that no other index is available. What would be the best way to handle the

following selections that involve negation?

a. o -(branch-czt3r (,.Brooklyn" 1 (branch)

b. o -(bron.h-czrs:,,g1oop1^' 1 (brnnch)

c. o - (b ran ch -citg ( "Brooklyn" V ass ets { 5 00 o1 (br an ch)

14.7 Show that, with n relations, there are (2(" - t))ll(n - 1)! different join orders.
Hint: A complete binary tree is one where every internal node has exactly

two children. Use the fact that the number of different complete binary trees
with n leaf nodes is

if you wish, you can derive the formula for the number of complete binary
trees with n nodes from the formula for the number of binary trees with n

* (if ,?)
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nodes. The number of binary trees with n nodes is

I (2n\

" + 1 \ " /
This number is known as the Catalan number, and its derivation can be found
in any standard textbook on data structures or algorithms.

14.8 show that the lowest-cost join order can be computed in time o(s"). Assume
that you can store and look up information about a set of relations (such as
the optimal join order for the set, and the cost of that join order) in constant
time. (If you find this exercise difficult, at least show the looser time bound of
o(22.).)

14.9 show that, if only left-deep join trees are considered, as in the system R opti-
mizet, the time taken to find the most efficient join order is around n2'. Assume
that there is only one interesting sort order.

14.10 Decorrelation:

a. Write a nested query on the relation account to find, for each branch with
name starting with B, all accounts with the maximum balance at the branch.

b. Rewrite the preceding query, without using a nested subquery; in other
words, decorrelate the query.

c. Give a procedure (similar to that described in Section 14.4.4) for decorre-
lating such queries.

Exercises

14.11 Suppose that a B+-tree index on (branch-name,branch-city) is available on rela-
tionbranch. What would be the best way to handle the following selection?

o (branch-citgl"Brookl1ar") A (assets<500 0)A(branch-name:,,Downtow n-;@f AnCh)

14.12 Show how to derive the following equivalences by a sequence of transforma-
tions using the equivalence rules in Section 1,4.2.1.

a.  oet1ez noz(E) :  oe,(o s"(o6,(E)))
b. o7,n1"(Er ><02 E2) - oyt(Et Xe" (oe"(Ez))), where d2 involves only at-

tributes from E2

14.13 A set of equivalence rules is said to be complete if, whenever two expressions
are equivalent, one can be derived from the other by a sequence of uies of the
equivalence rules. Is the set of equivalence rules that we considered in Sec-
tion74.2.7 complete? Hint: Consider the equivalence ou:r(") : { }.

14.14 Explain how to use a histogram to estimate the size of a selection of the form
oA<uV ) .

14.15 Suppose two relations r and s have histograms on attributes r.A and. s.A, re-
spectively, but with different ranges, suggest how to use the histograms to
estimate the size of r x s. Hint: split the ranges of each histogram further.
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14.16 Describe how to incrementally maintain the results of the following operations,

on both insertions and deletions.

a. Union and set difference
b. Left outer join

1,4.17 Give an example of an expression defining a materialized view and two situ-

ations (sets of statistics for the input relations and the differentials) such that

incremental view maintenance is better than recomputation in one situation,

and recomputation is better in the other situation.

14.18 Suppose you want to get answers to r X s sorted on an attribute of r, antd

want only the top 1f answers for some relatively small 1(. Give a good way of

evaluating the query

a. When the join is on a foreign key of r referencing s.

b. When the join is not on a foreign key.

14.19 Consider a relationr(A,B,C),with an index on attribute A. Give an example

of a query that canbe answered by using the index only, without looking at the

tuples in the relation. (Query plans that use only the index, without accessing

the actual relation, are called index-only plans.)
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includes Pal et al. [2004] and Kaushik et al. [04]. if data is shredded and stored in rela-



Bibliographical Notes

tions,_evaluating a path expression maps to computation of a join. Several techniques
have been proposed for efficiently computing such joins, in particular when the path
expression specifies any descendant (ll). Several techniques for numbering of nodes
in XML data have been proposed which can be used to efficiently check if i node is a
descendant of another; see, for example, o'Neil et al. [2004]. work on optimization of
XML queries include McHugh and widom [1.9991, wu et al. 12003] and Krishnaprasad
et al. [2004].









Often, a collection of several operations on the database appears to be a single unit
from the point of view of the database user. For example, i transfer of funds from
a checking account to a savings account is a single operation {rom the customer,s
standpoint; within the database system, however, it consists of several operations.
Clearly, it is essential that all these operations occur, or that, in case of a failure, none
occur. It would be unacceptable if the checking account were debited, but the savings
account were not credited.

Collections of operations that form a single logical unit of work are called transac-
tions. A database system must ensure proper execution of transactions despite fail-
ures-either the entire transaction executes, or none of it does. Furthermore, it must
manage concurrent execution of transactions in a way that avoids the introduction of
inconsistency. In our funds-transfer example, a transaction computing the customer,s
total money might see the checking-account balance before it is debited by the funds-
transfer transaction, but see the savings balance after it is credited. As a result, it
would obtain an incorrect result.

This chapter introduces the basic concepts of transaction processing. Details on
concurrent transaction processing and recovery from failures are in Chapters 16 and
77, respectively. Further topics in transaction processing are discussed inChapter 25.

15.1 Ti'qnsqction Concept
A transaction is a unit of program execution that accesses and possibly updates var-
ious data items. Usually, a transaction is init iated by a user program written in a
highJevel data-manipulation language or programming languige (for example, sel-,
C++, or Java), where it is delimited by statements (or function calls) of the form begin
transaction and end transaction. The transaction consists of all operations execuied
between the begin transaction and end transaction.

To ensure integrity of the data, we require that the database system maintain the
following properties of the transactions:

609
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o Atomicity. Either all operations of the transaction are reflected properly in the
database, or none are.

o Consistency. Execution of a transaction in isolation (that is, with no other
transaction executing concurrently) preserves the consistency of the database.

o Isolation. Even though multiple transactions may execute concurrently, the
system guarantees that, for every pair of transactions fr and Ti, it appeats
to 4 that either 7, finished execution before 4 started or Q started execu-
tion after 4 finished. Thus, each transaction is unaware of other transactions
executing concurrently in the system'

o Durability. After a transaction completes successfully, the changes it has made
to the database persist, even if there are system failures.

These properties are often called the ACID properties; the acronym is derived from
the first letter of each of the four properties.

To gain a better understanding of the ACID properties and the need for them, con-
sider a simplified banking system consisting of several accounts and a set of trans-
actions that access and update those accounts. For the time being, we assume that
the database permanently resides on disk, but that some portion of it is temporarily
residing in main memory.

Tiansactions access data using two operations:

. read(X), which transfers the data item X from the database to a local buffer
belonging to the transaction that executed the read operation.

o write(D, which transfers the data item X from the the local buffer of the trans-
action that executed the write back to the database.

In a real database system, the write operation does not necessarily result in the imme-
diate update of the data on the disk; the write operation may be temporarily stored
in memory and executed on the disk later. For now, however, we shall assume that
the write operation updates the database immediately. We shall return to this subject
in Chapter 17.

Let Tabe a transaction that transfers $50 from account A to account B. This trans-
action can be defined as

Ti: read(A);
A :=  A -  50 ;
write(A);
read(B);
B : = B + 5 0 ;
write(B).

Let us now consider each of the ACID properties. (For ease of presentation, we con-
sider them in an order different from the order A-C-I-D.)

o Consistency: The consistency requirement here is that the sum of A and B

be unchanged by the execution of the transaction. Without the consistency
requirement, money could be created or destroyed by the transaction! It can
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be verified easily that, if the database is consistent before an execution of the
transaction, the database remains consistent after the execution of the transac-
tion.

Ensuring consistency for an individual transaction is the responsibility of
the application programmer who codes the transaction. This taik may be fa-
cilitated by automatic testing of integrity constraints, as we discussed in Sec-
tron4.2.

o Atomicity: suppose that, just before the execution of transactionTi,the values
of accounts A and B are $1000 and 92000, respectively. Now suppose that, dur-
ing the execution of transactionTi, a failure occurs that prevents fr from com-
pleting its execution successfully. Examples of such failures include power
failures, hardware failures, and software errors. Further, suppose that the fail-
ure happened after the write(A) operation but before the write(B) operation. In
this case, the values of accounts A andB reflected in the database are $950 and
$2000. The system destroyed $50 as a result of this failure. In particular, we
note that the sum A + B is no longer preserved.

Thus, because of the failure, the state of the system no longer reflects a real
state of the world that the database is supposed to capture. we term such a
state an inconsistent state. We must ensure that such inconsistencies are not
visible in a database system. Note, howevel, that the system must at some
point be in an inconsistent state. Even if transaction fr is executed to comple-
tion, there exists a point at which the value of account A is $950 and the vilue
of account B is $2000, which is clearly an inconsistent state. This state, how-
eve1, is eventually replaced by the consistent state where the value of account
A is $950, and the value of account B is $2050. Thus, if the transaction never
started or was guaranteed to complete, such an inconsistent state would not
be visible except during the execution of the transaction. That is the reason for
the atomicity requirement: If the atomicity property is present, all actions of
the transaction are reflected in the database, or none are.

The basic idea behind ensuring atomicity is this: The database system keeps
track (on disk) of the old values of any data on which a transaction performs a
write, and, if the transaction does not complete its execution, the dalabase sys-
tem restores the old values to make it appear as though the transaction never
executed. we discuss these ideas further in section 15.2. Ensuring atomicity
is the responsibility of the database system itself; specifi cally, it is handled by
a component called the transaction-management component, which we de-
scribe in detail in Chapter 17.

o Durability: Once the execution of the transaction completes successfully, and
the user who initiated the transaction has been notified that the transfer of
funds has taken place, it must be the case that no system failure will result in
a loss of data corresponding to this transfer of funds.

The durability property guarantees that, once a transaction completes suc-
cessfully, all the updates that it carried out on the database persist, even if
there is a system failure after the transaction completes execution.
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We assume for now that a failure of the computer system may result in

loss of data in main memory, but data written to disk are never lost. We can

guarantee durability by ensuring that either

1. The updates carried out by the transaction have been written to disk be-

fore the transaction completes.
2. Information about the updates carried out by the transaction and written

to disk is sufficient to enable the database to reconstruct the updates when

the database system is restarted after the failure.

Ensuring durability is the responsibility of a software component of the data-

base system called the recovery-management component. The transaction-

management component and the recovery-management component are closely

related, and we describe them in Chapter 17.

o Isolation: Even if the consistency and atomicity properties are ensured for

each transaction, if several transactions are executed concurrently, their oper-

ations may interleave in some undesirable way, resulting in an inconsistent

state.
For example, as we saw earlier, the database is temporarily inconsistent

while the transaction to transfer funds from A to B is executing, with the de-

ducted total written to ,4 and the increased total yet to be written to B. If a

second concurrently running transaction reads ,4 and B at this intermediate

point and computes A+ B, it will observe an inconsistent value. Furthermore,

if this second transaction then performs updates on A and B based on the in-

consistent values that it read, the database may be left in an inconsistent state

even after both transactions have completed.
A way to avoid the problem of concurrently executing transactions is to

execute transactions serially-that is, one after the other. However/ concur-

rent execution of transactions provides significant performance benefits, as

we shall see in Section 15.4. Other solutions have therefore been developed;

they allow multiple transactions to execute concurrently.

We discuss the problems caused by concurrently executing transactions in

Section 15.4. The isolation property of a transaction ensures that the concur-

rent execution of transactions results in a system state that is equivalent to a

state that could have been obtained had these transactions executed one at a

time in some order. We shall discuss the principles of isolation further in Sec-

tion 15.5. Ensuring the isolation property is the responsibility of a component

of the database system called the concurrency-control component, which we

discuss later, in Chapter 16.

15.2 Trqnsqction Stqte
In the absence of failures, all transactions complete successfully. However, as we
noted earlier, a transaction may not always complete its execution successfully. Such
a transaction is termed aborted. If we are to ensure the atomicity property, an aborted
transaction must have no effect on the state of the database. Thus, any changes that
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the aborted transaction made to the database must be undone. Once the changes
caused by an aborted transaction have been undone, we say that the transaction has
been rolled back. It is part of the responsibility of the recovery scheme to manage
transaction aborts.

A transaction that completes its execution successfully is said to be committed.
A committed transaction that has performed updates transforms the database into a
new consistent state, which must persist even if there is a system failure.

Once a transaction has committed, we cannot undo its effects by aborting it. The
only way to undo the effects of a committed transaction is to execute a compensating
transaction. For instance, if a transaction added $20 to an account, the compensating
transaction would subtract $20 from the account. Howevel, it is not always possible
to create such a compensating transaction. Therefore, the responsibility of writing
and executing a compensating transaction is left to the user, and is not handled by
the database system. Chapter 25 includes a discussion of compensating transactioni.

We need to be more precise about what we mean by successful completion of a trans-
action. We therefore establish a simple abstract transaction model. A transaction must
be in one of the following states:

o Active, the initial state; the transaction stays in this state while it is executing

o Partially committed, after the final statement has been executed

o Failed, after the discovery that normal execution can no longer proceed

o Aborted, after the transaction has been rolled back and the database has been
restored to its state prior to the start of the transaction

o Committed, after successful completion

The state diagram corresponding to a transaction appears in Figure 15.1. we say
that a transaction has committed only if it has entered the committed state. Simi-
larly, we say that a transaction has aborted only if it has entered the aborted state. A
transaction is said to have terminated if it has either committed or aborted.

A transaction starts in the active state. When it finishes its final statement, it enters
the partially committed state. At this point, the transaction has completed its exe-
cution, but it is still possible that it may have to be aborted, since the actual output
may still be temporarily residing in main memory, and thus a hardware failure may
preclude its successful completion

The database system then writes out enough information to disk that, even in the
event of a failure, the updates performed by the transaction can be re-created when
the system restarts after the failure. When the last of this information is written out,
the transaction enters the committed state.

As mentioned earlier, we assume for now that failures do not result in loss of data
on disk. Chapter 17 discusses techniques to deal with loss of data on disk.

A transaction enters the failed state after the system determines that the transac-
tion can no longer proceed with its normal execution (for example, because of hard-
ware or logical errors). Such a transaction must be rolled back. Then, it enters the
aborted state. At this point, the system has two options:
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Figure 15.1 State diagram of a transaction.

It can restart the transaction, but only if the transaction was aborted as a result
of some hardware or software error that was not created through the inter-
nal logic of the transaction. A restarted transaction is considered to be a new
transaction.

It can kill the transaction. It usually does so because of some internal logical
error that can be corrected only by rewriting the application program, or be-
cause the input was bad, or because the desired data were not found in the
database.

We must be cautious when dealing with observable external writes, such as writes
to a terminal or printer. Once such a write has occurred, it cannot be erased, since it

may have been seen external to the database system. Most systems allow such writes
to take place only after the transaction has entered the committed state. One way to
implement such a scheme is for the'database system to store any value associated
with such external writes temporarily in nonvolatile storage, and to perform the ac-
tual writes only after the transaction enters the committed state. If the system should
fail after the transaction has entered the committed state, but before it could complete
the external writes, the database system will carry out the external writes (using the
data in nonvolatile storage) when the system is restarted.

Handling externalwrites canbe more complicated in some situations. For example
suppose the external action is that of dispensing cash at an automated teller machine,
and the system fails just before the cash is actually dispensed (we assume that cash
can be dispensed atomically). It makes no sense to dispense cash when the system
is restarted, since the user may have left the machine. In such a case a compensat-
ing transaction, such as depositing the cash back in the user's account, needs to be
executed when the system is restarted.
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For certain applications, it may be desirable to allow active transactions to dis-
play data to usets, particularly for long-duration transactions that run for minutes
or hours. Unfortunately, we cannot allow such output of observable data unless we
are willing to compromise transaction atomicity. Most current transaction systems
ensure atomicity and, therefore, forbid this form of interaction with users. In Chapter
25,we discuss alternative transaction models that support long-duration, interactive
transactions.

15.3 lmplementqtion of Atomicity snd Durobility
The recovery-management component of a database system can support atomicity
and durability by a variety of schemes. We first consider a simple, but extremely in-
efficient, scheme called the shadow copy scheme. This scheme, which is based on
making copies of the database, called shadow copies, assumes that only one transac-
tion is active at a time. The scheme also assumes that the database is simpty a file on
disk. A pointer called db-pointer is maintained on disk; it points to the current copy
of the database.

In the shadow-copy scheme, a transaction that wants to update the database first
creates a complete copy of the database. All updates are done on the new database
copy, Ieaving the original copy, the shadow copy, untouched. If at any point the trans-
action has to be aborted, the system merely deletes the new copy. The old copy of the
database has not been affected.

If the transaction completes, it is committed as follows. First, the operating system
is asked to make sure that all pages of the new copy of the database have been written
out to disk. (Unix systems use the fsync command for this purpose.) After the operat-
ing system has written all the pages to disk, the database system updates the pointer
db-pointer to point to the new copy of the database; the new copy then becomes
the current copy of the database. The old copy of the database is then deleted. Fig-
ure 15.2 depicts the scheme, showing the database state before and after the update.

db-pointer

(a) Before update (b) After update

db-pointer

Figure 15.2 Shadow-copy technique for atomicity and durability.
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The transaction is said to have been committed at the point where the updated db-
pointer is written to disk.

We now consider how the technique handles transaction and system failures. First,
consider transaction failure. If the transaction fails at any time before db-pointer is
updated, the old contents of the database are not affected. We can abort the trans-
action by just deleting the new copy of the database. Once the transaction has been
committed, all the updates that it performed are in the database pointed to by db-
pointer. Thus, either all updates of the transaction are reflected, or none of the effects
are reflected, regardless of transaction failure.

Now consider the issue of system failure. Suppose that the system fails at any time
before the updated db-pointer is written to disk. Then, when the system restarts, it
will read db-pointer and will thus see the original contents of the database, and none
of the effects of the transaction will be visible on the database. Next, suppose that the
system fails after db-pointer has been updated on disk. Before the pointer is updated,
all updated pages of the new copy of the database were written to disk. Again, we
assume that, once a file is written to disk, its contents will not be damaged even if
there is a system failure. Therefore, when the system restarts, it will read db-pointer
and will thus see the contents of the database after all the updates performed by the
transaction.

The implementation actually depends on the write to db-pointer being atomic;
that is, either all its bytes are written or none of its bytes are written. If some of the
bytes of the pointer were updated by the write, but others were not, the pointer is
meaningless, and neither old nor new versions of the database may be found when
the system restarts. Luckily, disk systems provide atomic updates to entire blocks, or
at least to a disk sector. In other words, the disk system guarantees that it will update
db-pointer atomically, as long as we make sure that db-pointer lies entirely in a single
sector, which we can ensule by storing db-pointer at the beginning of a block.

Thus, the atomicity and durability properties of transactions are ensured by the
shadow-copy implementation of the recovery-management component.

As a simple example of a transaction outside the database domain, consider a text-
editing session. An entire editing session can be modeled as a transaction. The actions
executed by the transaction are reading and updating the file. Saving the file at the
end of editing corresponds to a commit of the editing transaction; quitting the editing
session without saving the file corresponds to an abort of the editing transaction.

Many text editors use essentially the implementation just described, to ensure that
an editing session is transactional. A new file is used to store the updated file. At the
end of the editing session, if the updated file is to be saved, the text editor uses a file
rename command to rename the new file to have the actual file name. The rename,
assumed to be implemented as an atomic operation by the underlying file system,
deletes the old file as well.

Unfortunately, this implementation is extremely inefficient in the context of large
databases, since executing a single transaction requires copying the entire database.
Furthermore, the implementation does not allow transactions to execute concurrently
with one another. There are practical ways of implementing atomicity and durability
that are much less expensive and more powerful. We study these recovery techniques
in Chapter 17.
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15.4 Concurrent Executions
Transaction-processing systems usually allow multiple transactions to run concur-
rently. Allowing multiple transactions to update data concurrently causes several
complications with consistency of the data, as we saw earlier. Ensuring consistency
in spite of concurrent execution of transactions requires extra work; it is far easier to
insist that transactions run serially-that is, one at a time, each starting only after
the previous one has completed. However, there are two good reasons for allowing
concurrency:

o Improved throughput and resource utilization. A transaction consists of many
steps. Some involve I/O activity; others involve CPU activity. The CPU and the
disks in a computer system can operate in parallel. Therefore, I/O activity can
be done in parallel with processing at the CPU. The parallelism of the CpU
and the I/O system can therefore be exploited to run multiple transactions in
parallel. While a read or write on behalf of one transaction is in progress on
one disk, another transaction can be running in the CPU, while another disk
may be executing a read or write on behalf of a third transaction. All of this
increases the throughput of the system-that is, the number of transactions
executed in a given amount of time. Correspondingly, the processor and disk
utilization also increase; in other words, the processor and disk spend less
time idle, or not performing any useful work.

o Reduced waiting time. There may be a mix of transactions running on a sys-
tem, some short and some long. If transactions run serially, a short transaction
may have to wait for a preceding long transaction to complete, which can lead
to unpredictable delays in running a transaction. If the transactions are oper-
ating on different parts of the database, it is better to let them run concurrently,
sharing the CPU cycles and disk accesses among them. Concurrent execution
reduces the unpredictable delays in running transactions. Moreover, it also
reduces the average response time: the average time for a transaction to be
completed after it has been submitted.

The motivation for using concurrent execution in a database is essentially the same
as the motivation for using multiprogramming in an operating system.

When several transactions run concurrently, database consistency can be destroyed
despite the correctness of each individual transaction. In this section, we present the
concept of schedules to help identify those executions that are guaranteed to ensure
consistency.

The database system must control the interaction among the concurrent trans-
actions to prevent them from destroying the consistency of the database. It does
so through a variety of mechanisms called concurrency-control schemes. We study
concurrency-control schemes in Chapter L6; for now we focus on the concept of cor-
rect concurrent execution.

Consider again the simplified banking system of Section 15.1, which has several
accounts, and a set oftransactions that access and update those accounts. Let ?' and
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T2 be two transactions that transfer funds from one account to another. Transaction fi
transfers $50 from account A to account B. It is defined as

Tr: read(A);
A :=  A  -  50 ;
write(A);
read(B);
B : =  B  +  5 0 ;
write(B).

Transaction ?z transfers 10 percent of the balance from account A to account B. It is
defined as

T2: read(A);
temp:= A* 0.1,;
A:= A - temp;
write(A);
read(B);
B : = B + t e m p ;
write(B).

Suppose the current values of accounts A and B are $1000 and $2000, respectively.
Suppose also that the two transactions are executed one at a time in the order ft
followed by Tr.This execution sequence apPears in Figure 15.3. In the figure, the
sequence of instruction steps is in chronological order from top to bottom, with in-
structions of T1 appearing in the left column and instructions of T2 appearing in the
right column. The final values of accounts A and B, after the execution in Figure 15.3
takes place, are $855 and fi2745, respectively. Thus, the total amount of money in

read(A)
A : = A - 5 0
write (A)
read (B)
B : = B + 5 0
write (B)

read(A)
temp:=A*0 .1
A :=  A -  t emp
write (,4)
read (B)
B : = B + t e m p
write (B)

Figure 15.3 Schedule 1-a serial schedule in which ?r is followedby 72.
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accounts A and B-that is, the sum A + B-is preserved after the execution of both
transactions.

Similarly, if the transactions are executed one at a time in the order T2 followed
by Tt, then the corresponding execution sequence is that of Figure 15.4. Agairg as
expected, the sum A + B is preserved, and the final values of accounts A and B are
$850 and $21,50, respectively.

The execution sequences just described are called schedules. They represent the
chronological order in which instructions are executed in the system. Clearly, a sched-
ule for a set of transactions must consist of all instructions of those transactions, and
must preserve the order in which the instructions appear in each individual transac-
tion. For example, in transaction ft, the instruction write(A) must appear before the
instruction read(B), in any valid schedule. In the following discussion, we shall refer
to the first execution sequence (7r followed by T) as schedule 1, and to the second
execution sequence (72 followed by T) as schedule 2.

These schedules are serial: Each serial schedule consists of a sequence of instruc-
tions from various transactions, where the instructions belonging to one single trans-
action appear together in that schedule. Thus, for a set of n transactions, there exist
n! different valid serial schedules.

When the database system executes several transactions concurrently, the corre-
sponding schedule no longer needs to be serial. If two transactions are running con-
currently, the operating system may execute one transaction for a little while, then
perform a context switch, execute the second transaction for some time, and then
switch back to the first transaction for some time, and so on. With multiple transac-
tions, the CPU time is shared among all the transactions.

Several execution sequences are possible, since the various instructions from both
transactions may now be interleaved. In general, it is not possible to predict exactly
how many instructions of a transaction will be executed before the CPU switches to

read(A)
temp := A" 0.7
A:= A - temp
write (A)
read(B)
R'=  R - t -  lpmn"  ' " " ' r

write (B)
read(A)
A : = A - 5 0
write (4)
read(B)
B : = B + 5 0
write (B)

Figure 15.4 Schedule 2-a serial schedule in which ?2 is followedby Tr.
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read(A)
A : = A - 5 0
write(A)

read(A)
temp:=  A"  0 .7
A:=A-  temp
write(A)

read(B)
B : = B + 5 0
write(B)

read(B)
B : = B + t e m p
write(B)

Figure 15.5 Schedule 3-a concurrent schedule equivalent to schedule 1.

another transaction. Thus, the number of possible schedules for a set of n transactions
is much larger than n!.

Returning to our previous example, suppose that the two transactions are exe-
cuted concurrently. One possible schedule appears in Figure 15.5. After this execu-
tion takes place, we arrive at the same state as the one in which the transactions are
executed serially in the order ?r followed by Tr. The sum A + B is indeed preserved.

Not all concurrent executions result in a correct state. To illustrate, consider the

schedule of Figure 15.6. After the execution of this schedule, we arrive at a state
where the final values of accounts A and B are $950 and $2100, respectively. This final
state is an inconsistent stnte, since we have gained $50 in the process of the concur-
rent execution. Indeed, the sum A + B is not preserved by the execution of the two
transactions.

If control of concurrent execution is left entirely to the operating system, many
possible schedules, including ones that leave the database in an inconsistent state,
such as the one just described, are possible. It is the job of the database system to
ensure that any schedule that gets executed will leave the database in a consistent
state. The concurrency-control component of the database system carries out this
task.

We can ensure consistency of the database under concurrent execution by making

sure that any schedule that is executed has the same effect as a schedule that could
have occurred without any concurrent execution. That is, the schedule should, in

some sense, be equivalent to a serial schedule. We examine this idea in Section 15.5.

15.5 Seriqlizobility
The database system must control concurrent execution of transactions, to ensure
that the database state remains consistent. Before we examine how the database
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read(A)
A : = A - 5 0

read(A)
temp:=  A*  0 .7
A:= A - temp
write(A)
read(B)

write(A)
read(B)
B : = B + 5 0
write(B)

B : = B + t e m p
write(B)

Figure 15.6 Schedule 4-a concurrent schedule.

system can carry out this task, we must first understand which schedules will en-
sure consistency, and which schedules will not.

Since transactions are programs, it is computationally difficult to determine ex-
actly what operations a transaction performs and how operations of various trans-
actions interact. For this reason, we shall not interpret the type of operations that a
transaction can perform on a data item. Instead, we consider only two operations:
read and write. We thus assume that, between a read(Q) instruction and i write(Q)
instruction on a data item Q, a transaction may perform an arbitrary sequence of op-
erations on the copy of Q that is residing in the local buffer of the transaction. Thus,
the only significant operations of a transaction, from a scheduling point of view, are
its read and write instructions. We shall therefore usually show only read and write
instructions in schedules, as we do in schedule 3 in Figure 15.2.

In this section, we discuss different forms of schedule equivalence; they lead to the
notions of conflict serializability and view serializabilitv.

rcad(A)
write(A)

read(B)
write(B)

read(A)
write(A)

read(B)
write(B)

Figure 15.7 Schedule 3-showing only the read and write instructions.
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15.5.1 Conflict SeriqlizqbilitY
Let us consider a schedule S in which there are two consecutive instructions, Ii and
Ii, of transactions Ti and Q, respectively (i' I i).If I'i and Ii refer to different data

items, then we can swap Ia and 1r. without affecting the results of any instruction in

the schedule. However, if It and Ii refer to the same data item Q, then the order of

the two steps may matter. Since we are dealing with only read and write instructions,
there are four cases that we need to consider:

1. Ii = read(Q), It = read(Q). The order of Ii and /i does not matter, since the

same value of Q is read by Ti and Ti , regardless of the order.

2. I i = read(Q), 4 = write(Q). If I comes b efore I i,then 4 does not read the value
of Q that is wiitten by Ti ininstruction Ij. If Ij comes before 1i, then Ti reads
the value of Q that is written by Ti. Thus, the order of Ii and Ij mattels.

3. I4 = write(Q), Ii = read(Q). The order of Ii and 13 matters for reasons similar
to those of the previous case.

4. Ii = write(Q), 1t = write(Q). Since both instructions are write oPerations, the

order of these instructions does not affect either 4 or Q. However, the value

obtained by the next read(Q) instruction of S is affected, since the result of

only the latter of the two write instructions is preserved in the database. If

theie is no other write(Q) instruction after Ii and Ii in S, then the order of /i

and Ii directly affects the final value of Q in the database state that results
from schedule S.

Thus, only in the case where both /1 and Ii are read instructions does the relative
order of their execution not matter.

We say thal Ia and Ii conflict if they are operations by different transactions on the

same data item, and at least one of these instructions is a write operation.
To illustrate the concept of conflicting instructions, we consider schedule 3, in Fig-

ure 757. The write(A) instruction of Tr conflicts with the read(A) instruction of ?2.

However, the write(A) instruction of ?z does not conflict with the read(B) instruction

of ft, because the two instructions access different data items.
Let Ii and t be consecutive instructions of a schedule S.If It and Ij are instructions-

of different transactions and Ia and Ii do not conflict, then we can swap the order of

Ii and 17 to produce a new schedule S'. We expect S to be equivalent to ,5', since all

instructions appear in the same order in both schedules except for 1a and 1i, whose
order does not matter.

Since the write(A) instruction of T2 in schedule 3 of Figure 15.7 does not conflict
with the read(B) instruction of 71, we can swap these instructions to generate an

equivalent schedule, schedule 5, in Figure 15.8. Regardless of the initial system state,

schedules 3 and 5 both produce the same final system state.
We continue to swap nonconflicting instructions:

o Swap the read(B) instruction of ?r with the read(A) instruction of 72.

e Swap the write(B) instruction of ?r with the write(A) instruction of ?2.

o Swap the write(B) instruction of ?r with the read(A) instruction of 72.
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read(A)
write(A)

read(B)

write(B)

read(A)

write(A)

read(B)
write(B)

Figure 15.8 schedule S-schedule 3 after swapping of a pair of instructions.

The final result of these swaps, schedule 6 of Figure 15.9, is a serial schedule. Thus,
we have shown that schedule 3 is equivalent to a serial schedule. This equivalence
implies that, regardless of the initial system state, schedule 3 will produce the same
final state as will some serial schedule.

If a schedule S can be transformed into a schedule S'by aseries of swaps of non-
conflicting instructions, we say that S and ^9/ are conflict equivalent.

In our previous examples, schedule 1 is not conflict equivalent to schedule 2. How-
ever, schedule 1 is conflict equivalent to schedule 3, because the read(B) and write(B)
instruction of Ty can be swapped with the read(A) and write(A) instruction of ?2.

The concept of conflict equivalence leads to the concept of conflict serializability.
We say that a schedule S is conflict serializable if it is conflict equivalent to a seriil
schedule. Thus, schedule 3 is conflict serializable, since it is confliit equivalent to the
serial schedule 1.

Finally, consider schedule 7 of Figure 15.10; it consists of only the significant op-
erations (that is, the read and write) of transactions ?3 and ?a. This schedule is nbt
conflict serializable, since it is not equivalent to either the serial schedule 1Ts,Ta) or
the serial schedule 1Ta,Ts).

It is possible to have two schedules that produce the same outcome, but that are
not conflict equivalent. For example, consider transaction ?5, which transfers $10
from account B to account A. Let schedule 8 be as defined in Figure 15.11. We claim

Figure 15.9 schedule 6-a serial schedule that is equivalent to schedule 3.
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Figure 15.10 Schedule 7.

that schedule 8 is not conflict equivalent to the serial schedule <T1,Ts>, since, in
schedule 8, the write(B) instruction of T5 conflicts with the read(B) instruction of ?r.
Thus, we cannot move all the instructions of fi before those of T5 by swapping con-
secutive nonconflicting instructions. Flowever, the final values of accounts A and B
after the execution of either schedule 8 or the serial schedule <71,Td> are the same
-$960 and $2040, respectively.

We can see from this example that there are less-stringent definitions of schedule
equivalence than conflict equivalence. For the system to determine that schedule 8

produces the same outcome as the serial schedule .--T.1,T5), it must analyze the com-
putation performed by T1 and T]5, rather than just the read and write operations. In

general, such analysis is hard to implement and is computationally expensive. How-
ever, there are other definitions of schedule equivalence based purely on the re?d and
write operations. We will consider one such definition in the next section.

15.5.2 View Seriqlizqbilityxx
In this section, we consider a form of equivalence that is less stringent than conflict
equivalence, but that, like conflict equivalence, is based on only the read and write
ooerations of transactions.

Consider two schedules S and ,S', where the same set of transactions participates
in both schedules. The schedules S and ,S' are said to be view equivalent if three
conditions are met:

read(Q)
write(Q)

read(A)
A : = A - 5 0
write(A)

read(B)
B : = B + 5 0
write(B)

read(B)
B : = B  -
write(B)

read(A)
A : = A + 7 0
write(A)

Figure 15.11 Schedule 8.
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For each data item Q, if transaction I reads the initial value of e in schedule
S, then transaction fr must, in schedule ,9,, also read the initial value of e.

For each data item Q, if transactionTi executes read(e) in schedule s, and if
that value was produced by a write(Q) operation executed by transacti on Ti,
then the read(Q) operation of transaction I must, in schedule ,S/, also read the
value of Q that was produced by the same write(Q) operation of transaction e.

For each data item Q, the transaction (if any) that performs the final write(e)
operation in schedule s must perform the final write(e) operation in sched-
ule S'.

Conditions 1 and 2 ensure that each transaction reads the same values in both
schedules and, therefore, performs the same computation. Condition 3, coupled with
conditions 1' and2, ensures that both schedules result in the same final system state.

In our previous examples, schedule 1 is not view equivalent to schedule 2, since,
in schedule 1, the value of account A read by transaciion ?2 was produced by Tr,
whereas this case does not hold in schedule 2. However, schedule 1 is view equivalent
to schedule 3, because the values of account A and B read by transaction ?2 were
produced by Tl inboth schedules.

The concept of view equivalence leads to the concept of view serializability. We
say that a schedule S is view serializable if it is view equivalent to a serial schedule.

As an illustration, suppose that we augment schedule 7 with transaction 7]6, a11d
obtain schedule 9 in Figure 15.12. Schedule 9 is view serializable. Indeed, it is view
equivalent to the serial schedule 1Ts,Ta,T6>, since the one read(e) instruction reads
the initial value of Q in both schedules andT6 performs the final write of Q in both
schedules.

Every conflict-serializable schedule is also view serializable, but there are view-
serializable schedules that are not conflict serializable. Indeed, schedule 9 is not con-
flict serializable, since every pair of consecutive instructions conflicts, and, thus, no
swapping of instructions is possible.

Observe that, in schedule 9, transactions ?a and ?o perform write(e) operations
without having performed a read(Q) operation. Writes of this sort are calfud b1nd
writes. Blind writes appear in any view-serializable schedule that is not conflict seri-
alizable.

read(Q)

write(Q)
write(Q)

write(Q)

Figure 15.12 Schedule 9-a view-serializable schedule.
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15.6 Recoverobility
So far, we have studied what schedules are acceptable from the viewpoint of consis-
tency of the database, assuming implicitly that there are no transaction failures. We
now address the effect of transaction failures during conculrent execution.

If a transactionTa fails, for whatever reason, we need to undo the effect of this
transaction to ensure the atomicity property of the transaction. In a system that allows
concurrent execution, it is necessary also to ensure that any transaction Q that is

dependent on 4 (that is, T, has read data written by T,) is also aborted. To achieve
this surety, we need to place restrictions on the type of schedules permitted in the

system.
In the following two subsections, we address the issue of what schedules are

acceptable from the viewpoint of recovery from transaction failure. We describe in
Chapter 16 how to ensure that only such acceptable schedules are generated.

15.6.1 Recoverqble Schedules

Consider schedule 10 in Figure 15.13, in which 7e is a transaction that performs only

one instruction: read(A). Suppose that the system allows ?g to commit immediately
after executing the read(A) instruction. Thus, 7e commits before ?s does. Now sup-
pose that ?s fails before it commits. Since 7g has read the value of data item A rwit-
ien by ?i, we must abort ?e to ensure transaction atomicity. However, ?e has already
committed and cannot be aborted. Thus, we have a situation where it is impossible
to recover correctly from the failure of 7a.

Schedule 10, with the commit happening immediately after the read(A) instruc-
tion, is an example of a nonrecooerable schedule, which should not be allowed. Most

database systems require that all schedules be recoaerable. A recoverable schedule is

one where, for each pair of transactions fr and Q such that Q reads a data item previ-
ously writtenby Ti, the commit operation of T,i aPPears before the commit operation
of Ti.

15.6.2 Csscqdeless Schedules
Even if a schedule is recoverable, to recover correctly from the failure of a transac-

tionTi, we may have to roll back several transactions. Such situations occur if trans-

actions have read data written by T;. As an illustration, consider the partial schedule

of Figure 15.14. Transaction ?10 writes a value of A that is read by transaction Tir.

Transaction ?rr writes a value of A that is read by transaction Ty2. Suppose that,

Figure 15.13 Schedule 10.
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Figure 15.14 Schedule 11.

at this point, fie fails. Trs must be rolled back. since fii is dependent on Trc, Ttt
must be rolled back. Since ft2 is dependent on Tn, Tn must 6e rolled back. This
phenomenon, in which a single transaction failure leads to a series of transaction
rollbacks, is called cascading rollback.

Cascading rollback is undesirable, since it leads to the undoing of a significant
amount of work. It is desirable to restrict the schedules to those where ciscading
rollbacks cannot occur. Such schedules are called cnscadeless schedules. Formalv I
cascadeless schedule is one where, for each pair of transactions T.i and. e such ihat
Ti reads a data item previously written by Tn, the commit operation of Ti appears
before the read operation ofTi.Itis easy to verify that every iascadeless schedlle is
also recoverable.

15.7 lmplementqtion of lsolqtion
So far, we have seen what properties a schedule must have if it is to leave the database
in a consistent state and allow transaction failures to be handled in a safe manner.
Specifically, schedules that are conflict or view serializable and cascadeless satisfv
these requirements.

There are various concurrency-control schemes that we can use to ensure that,
even when multiple transactions are executed concurrently, only acceptable sched-
ules are generated, regardless of how the operating system time-shaies resources
(such as CPU time) among the transactions.

As a trivial example of a concurrency-control scheme, consider this scheme: A
transaction acquires a lock on the entire database before it starts and releases the
lock after it has committed. While a transaction holds a lock, no other transaction is
allowed to acquire the lock, and all must therefore wait for the lock to be released. As
a result of the locking policy, only one transaction can execute at a time. Therefore,
only serial schedules are generated. These are trivially serializable, and it is easy to
verify that they are cascadeless as well.

, A concurrency-control scheme such as this one leads to poor performance, since it
forces transactions to wait for preceding transactions to finGh beiore they can start. In
other words, it provides a poor degree of concurrency. As explained in Section 15.4,
concurrent execution has several performance benefits.

read(A)
write(A)
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The goal of concurrency-control schemes is to provide a high degree of concur-

rency, while ensuring that all schedules that can be generated are conflict or view

serializable and are cascadeless.
We study a number of concurrency-control schemes in Chapter 16. The schemes

have different trade-offs in terms of the amount of concurrency they allow and the

amount of overhead that they incur. Some of them allow only conflict-serializable

schedules to be generated; others allow certain view-serializable schedules that are

not conflict serializable to be generated.

15.8 Testing for Seriolizobility
When designing conculrency-control schemes, we must show that schedules gen-
erated by the scheme are serializable. To do that, we must first understand how to

determine, given a particular schedule S, whether the schedule is serializable.
We now present a simple and efficient method for determining conflict serializ-

ability of a schedule. Consider a schedule S. We construct a directed graph, called a

precedence graph, from S. This graph consists of a pair G = (V, E), where V is a set

of vertices and E is a set of edges. The set of vertices consists of all the transactions
participating in the schedule. The set of edges consists of all edges Ti ---+ Ti for which

one of three conditions holds:

1. I executes write(Q) before Q executes read(Q).

2. Ti executes read(Q) before ?, executes write(Q).

3. f executes write(Q) before Q executes write(Q)'

If an edge Ti ---+ Ti exists in the precedence graph, then, in any serial schedule S'

equivalent to S,Ti must appeatbeforcTi.
For example, the precedence graph for schedule 1 in Figure 15.15a contains the

single edge T1 , + T2, since all the instructions of T1 are executed before the first in-

struction-of ?z is executed. Similarly, Figure 15.15b shows the precedence graph for
schedule 2 with the single edge T2 -+ ft, since all the instructions of T2 are executed
before the first instruction of ?r is executed.

The precedence graph for schedule 4 appears in Figure 15.16. It contains the edge

T1 -+ T2,because fi executes read(A) before ?2 executes write(A). It also contains the

edgeT2 -+ Tl,because ?2 executes read(B) before ?r executes write(B).
if the precedence graph for S has a cycle, then schedule S is not conflict serializable.

If the graph contains no cycles, then the schedule S is conflict serializable.
A seriilizability order of the transactions can be obtained through topological

sorting, which determines a linear order consistent with the partial order of the

@-@ @-@
(a) ft)

Figure 15.15 Precedence graph for (a) schedule 1 and (b) schedule 2.
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Figure 15.16 precedence graph for schedule 4.

precedence graph. There are, in general, several possible linear orders that can be
obtained through a topological sorting. For example, the graph of Figure 15.17a has
the two acceptable linear orderings shown in Figures 1.s.1.7b ind 15.17c.

Thus, to test for conflict serializability, we need to construct the precedence graph
and to invoke a cycle-detection algorithm. Cycle-detection algorithms can be io"1a
in standard textbooks on algorithms. Cycle-detection algorithms, such as those based
on depth-first search, require on the order of n2 operations, where n is the number of
vertices in the graph (that is, the number of transactions). Thus, we have a practical
scheme for determining conflict serializability.

- Returning to our previous examples, note that the precedence graphs for sched-
ules 1 and 2 (Figure 15.15) indeed do not contain cycles. The precedence graph for
schedule 4 (Figure 75.76), on the other hand, contains a cycle, indicatinglthit this
schedule is not conflict serializable.

Figure 15.17 Illustration of topological sorting.
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Testing for view serializability is rather complicated. In fact, it has been shown

that the problem of testing for view serializability is itself NP-complete. Thus, almost

certainly there exists no efficient algorithm to test for view serializability.

See the bibliographical notes for references on testing for view serializability. How-

ever, concurrency-cbntrol schemes can still use sufficient conditions for view serializ-

ability. That is, if the sufficient conditions are satisfied, the schedule is view serializ-

able, but there may be view-serializable schedules that do not satisfy the sufficient

conditions.

15.9 Summory
o Atrnnsnctionis aunit of program execution that accesses and possibly updates

various data items. Understanding the concept of a transaction is critical for

understanding and implementing updates of data in a database in such a way

that concurrent executions and failures of various forms do not result in the

database becoming inconsistent'

o Transactions are required to have the ACID properties: atomicity, consistency,
isolation, and durabilitY.

D Atomicity ensures that either all the effects of a transaction are reflected
in the database, or none are; a failure cannot leave the database in a state

where a transaction is partially executed.

E Consistency ensures that, if the database is initially consistent, the execu-

tion of the transaction (by itself) leaves the database in a consistent state.
I Isolation ensures that concurrently executing transactions are isolated

from one another, so that each has the impression that no other transaction

is executing concurrently with it.

tr Durability ensures that, once a transaction has been committed, that trans-
action's updates do not get lost, even if there is a system failure.

r Concurrent execution of transactions improves throughput of transactions and

system utilization, and also reduces waiting time of transactions.

o When several transactions execute concurrently in the database, the consis-
tency of data may no longer be preserved. It is therefore necessary for the

system to control the interaction among the concurrent transactions.

! Since a transaction is a unit that preserves consistency, a serial execution
of transactions guarantees that consistency is preserved.

J A schedule captures the key actions of transactions that affect concurrent
execution, such as read and write operations, while abstracting away in-
ternal details of the execution of the transaction.

I We require that any schedule produced by concurrent processing of a

set of tiansactions will have an effect equivalent to a schedule produced
when these transactions are run serially in some order.

I A system that guarantees this property is said to ensure serializability.



Review Terms

tr There are several different notions of equivalence leading to the concepts
of conflict serializability and aiew serializability.

o Serializability of schedules generated by concurrently executing transactions
can be ensured through one of a variety of mechanisms called concurrencv-
control schemes.

o Schedules must be recoverable, to make sure that if transaction o sees the ef-
fects of transaction b, andb then aborts, then o also gets aborted.

o Schedules should preferably be cascadeless, so that the abort of a transaction
does not result in cascading aborts of other transactions. Cascadelessness is
ensured by allowing transactions to only read committed data.

o The concurrency-control-management component of the database is respon-
sible for handling the concurrency-control schemes. Chapter 16 describes
concurrency-control schemes.

o The recovery-management component of a database is responsible for ensur-
ing the atomicity and durability properties of transactions.

The shadow-copy scheme is used for ensuring atomicity and durability in
text editors; howevel, it has extremely high overheads when used for database
systems, and, moreover, it does not support concurrent execution. Chapter 17
covers better schemes.

o We can test a given schedule for conflict serializability by constru cting a prece-
dence graph for the schedule, and by searching for absence of cycles in the
graph. Howevel, there are more efficient concurrency-control schemes for en-
suring serializability.

Review Terms
o Transaction

o ACID properties

n Atomicity
n Consistency
I Isolation
n Durability

o Inconsistent state

o Transaction state

n Active
n Partially committed
n Failed
n Aborted
n Committed
n Terminated

o Transaction

n Restart
n Kill

o Observable external writes

o Shadow-copy scheme

o Concurrentexecutions

o Serial execution

o Schedules

o Conflict of operations

o Conflict equivalence

o Conflict serializability

o View equivalence

o View serializability

r Blind writes
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Recoverability

Recoverable schedules

Cascading rollback

Cascadeless schedules

Concurrency-control scheme

o Lock

Serializability testing

Precedence graph

Serializability order

a

o

a

a

a

Prqctice Exercises
15.1 Suppose that there is a database system that never fails. Is a recovery manager

required for this system?

15.2 Consider a file system such as the one on your favorite operating system.

a. What are the steps involved in creation and deletion of files, and in writing
data to a file?

b. Explain how the issues of atomicity and durability are relevant to the cre-
ation and deletion of files and to writing data to files.

L5.3 Database-system implementers have paid much more attention to the ACID
properties than have file-system implementers. Why might this be the case?

15.4 ]ustify the following statement Concurrent execution of transactions is more
important when data must be fetched from (slow) disk or when transactions
ur" long, and is less important when data is in memory and transactions are
very short.

15.5 Since every conflict-serializable schedule is view serializable, why do we em-
phasize conflict serializability rather than view serializability?

1,5.6 Consider the precedence graph of Figure 15.18. Is the corresponding schedule
conflict serializable? Explain your answer.

15.7 What is a cascadeless schedule? Why is cascadelessness of schedules desir-
able? Are there any circumstances under which it would be desirable to allow
noncascadeless schedules? Explain your answer.

Figure 15.18 Precedence graph for Practice Exercise 15.6.
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Exercises

15.8 List the ACID properties. Explain the usefulness of each.

15.9 During its execution, a transaction passes through several states, until it finalty
commits or aborts. List all possible sequences of states through which a trans-
action may pass. Explain why each state transition may occur.

15.10 Explain the distinction between the terms serial schedule and serializable schedule.

15.11 Consider the following two transactions:

Tr: read(A);
read(B);
i t A : 0 t h e n B : = B + 7 ;
write(B).

T2: read(B);
read(A);
i f  B : 0 t h e n A : = A + L :
write(A).

LettheconsistencyrequirementbeA: 0 V B :  0,with,4 :  B :  0the
initial values.

a. Show that every serial execution involving these two transactions pre-
serves the consistency of the database.

b. Show a concurrent execution of T1 and T2 that produces a nonserializable
schedule.

c. Is there a concurrent execution of 7r and T2 that produces a serializable
schedule?

15.12 What is a recoverable schedule? Why is recoverability of schedules desirable?
Are there any circumstances under which it would be desirable to allow non-
recoverable schedules? Explain your answer.

15.13 Why do database systems support concurrent execution of transactions, in
spite of the extra programming effort needed to ensure that concurrent exe-
cution does not cause anv problems?

Bibliogrophicol Notes
Gray and Reuter [1993] provide detailed textbook coverage of transaction-processing
concepts, techniques and implementation details, including concurrency control and
recovery issues. Bernstein and Newcomer [79971provide textbook coverage of vari-
ous aspects of transaction processing.

Early textbook discussions of concurrency control and recovery included Papadim-
itriou [1986] and Bernstein et aI. 119871. An early survey paper on implementation
issues in concurrency control and recovery is presentedby Gray t19781.

The concept of serializability was formalized by Eswaran et al.11,9761in connection
to work on concurrency control for System R. The results concerning serializability
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, testing and NP-completeness of testing for view serializability are from Papadim-
I itriou et al.l1977l and PapadimitrioullgTgl. Cycle-detection algorithms as well as an

introduction to NP-completeness can be found in standard algorithm textbooks such
, as Cormen et al. [1990].

References covering specific aspects of transaction processing, such as concurrency
i control and recovery, are cited in Chapters L6,17, and 25.



We saw in Chapter 15 that one of the fundamental properties of a transaction is iso-
lation. When several transactions execute concurrently in the database, however, the
isolation property may no longer be preserved. To ensure that it is, the system must
control the interaction among the concurrent transactions; this control is achieved
through one of a variety of mechanisms called concurrency-control schemes.

The concurrency-control schemes that we discuss in this chapter are all based on
the serializability property. That is, all the schemes presented here ensure that the
schedules are serializable. In Chapter 25, we discuss concurrency-control schemes
that admit nonserializable schedules. In this chaptel, we consider the management of
concurrently executing transactions, and we ignore failures. In Chapter 17, we shall
see how the system can recover from failures.

16.1 Lock-Bqsed Protocols
One way to ensure serializability is to require that data items be accessed in a mutu-
ally exclusive manner; that is, while one transaction is accessing adataitem, no other
transaction can modify that data item. The most common method used to implement
this requirement is to allow a transaction to access a data item only if it is clrrently
holding a lock on that item.

16.1.1 Locks
There are various modes in which a data item may be locked. In this section, we
restrict our attention to two modes:

1. Shared. If a transaction Ti has obtained a shared-mode lock (denoted by S)
on item Q, then Ti can read, but cannot write, Q.

2. Exclusive. If a transaction I has obtained an exclusive-mode lock (denoted
by X) on item Q, then Q can both read and write Q.

635
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true false
false false

Figure 15.1 Lock-compatibility matrix comp.

We require that every transaction request a lock in an appropriate mode on data
item Q, depending on the types of operations that it will perform on Q. The trans-
action makes the request to the concurrency-control manager. The transaction can
proceed with the operation only after the concurrency-control manager grants the
lock to the transaction.

Given a set of lock modes, we can define a compatibility function on them as
follows. Let A and B represent arbltrary lock modes. Suppose that a transaction I
requests a lock of mode A on item Q on which transaction ?, (:fi + af) currently holds
a lock of mode B. If transaction Ti can be granted a lock on Q immediately, in spite
of the presence of the mode B lock, then we say mode A is compatible with mode
B. Such a function can be represented conveniently by a matrix. The compatibility
relation between the two modes of locking discussed in this section appears in the
matrix comp of Figure 16.1. An element comp(A, B) of the matrix has the value trueif
and only if mode A is compatible with mode B.

Note that shared mode is compatible with shared mode, but not with exclusive
mode. At any time, several shared-mode locks can be held simultaneously (by differ-
ent transactions) on a particular data item. A subsequent exclusive-mode lock request
has to wait until the currently held shared-mode locks are released.

A transaction requests a shared lock on data item Q by executing the lock-S(Q)
instruction. Similarly, a transaction requests an exclusive lock through the lock-X(Q)
instruction. A transaction can unlock a data item Q by the unlock(Q) instruction.

To access a data item, transaction 4 must first lock that item. If the data item is
already locked by another transaction in an incompatible mode, the concurrency-
control manager will not grant the lock until all incompatible locks held by other
transactions have been released. Thus, 4 is made to wait until all incompatible locks
held by other transactions have been released.

7r: lock-X(B);
read(B);
B : = B - 5 0 ;
write(B);
unlock(B);
lock-X(A);
read(A),
A:= A + 50;
write(A);
unlock(A).

Figure 16.2 Transaction 71.
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72: lock-S(A);
read(A);
unlock(A);
tock-S(B);
read(B);
unlock(B);
display(A + B).

Figure 16.3 Tiansaction 72.

Lock-Based Protocols 637

tansaction Ti may unlock a data item that it had locked at some earlier point.
Note that a transaction must hold a lock on a data item as long as it accesses thaf item.
Moreovel, for a transaction to unlock a data item immediately after its final access of
that data item is not always desirable, since serializablllty may not be ensured.

As an illustration, consider again the simplified banking system that we intro-
duced in Chapter 15. Let A and B be two accounts that are accessed by transactions
?i and 72. Transaction ?r transfers $50 from account B to account A (Figure 16.2).
Transaction 72 displays the total amount of money in accounts A and B-that is, the
sumA + B (Figure 16.3).

lock-x(B)

read(B)
B :: B-50
write(B)
unlock(B)

grant-X(B,Tr)

lock-s(A)

read(A)
unlock(A)
lock-S(B)

read(B)
unlock(B)
display(A + B)

grant-S(,4,72)

grant-s(8,T2)

lock-x(A)

read(A)
A : =  A + 5 0
write(A)
unlock(A)

grant-x(14,71)

Figure 16.4 Schedule 1.
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Ts: lock-X(B);
read(B);
B : = B - 5 0 ;
write(B);
tock-X(A);
read(A);
A : =  A +  5 0 )
write(A);
untock(B);
unlock(A).

Figure 16.5 Transaction 73.

Suppose that the values of accounts A and B are $100 and $200, respectively. If these
two transactions are executed serially, either in the order 71, T2 or the order Tz, Tt,
then transaction T2 will display the value $300. E however, these transactions are
executed concurrently, then schedule 1, in Figure 16.4,is possible. In this case, trans-
action T2 displays $250, which is incorrect. The reason for this mistake is that the
transaction 71 unlocked data item B too early, as a result of which T2 saw an incon-
sistent state.

The schedule shows the actions executed by the transactions, as well as the points
at which the concurrency-control manager grants the locks. The transaction mak-
ing a lock request cannot execute its next action until the concurrency-control man-
ager grants the lock. Hence, the lock must be granted in the interval of time between
the lock-request operation and the following action of the transaction. Exactly when
within this interval the lock is granted is not important; we can safely assume that the
lock is granted just before the following action of the transaction. We shall therefore
drop the column depicting the actions of the concurrency-control manager from all
schedules depicted in the rest of the chapter. We let you infer when locks are granted.

Suppose now that unlocking is delayed to the end of the transaction. Transac-
tion 7s corresponds to ?r with unlocking delayed (Figure 16.5). Transaction Ta corre-
sponds to 7z with unlocking delayed (Figure 16.6).

You should verify that the sequence of reads and writes in schedule 1, which lead
to an incorrect total of $250 being displayed, is no longer possible with ?3 and Ta.

fn: lock-S(A);
read(A);
lock-S(B);
read(B);
display(A + B);
unlock(A);
unlock(B).

Figure 16.6 tansaction Ta.
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Other schedules are possible. Ta will not print out an inconsistent result in any of
them; we shall see why later.

Unfortunately, locking can lead to an undesirable situation. Consider the partial
schedule of Figure 16.7 for Ts and 7a. Since ?3 is holding an exclusive-mode lock
on B and 7a is requesting a shared-mode lock onB,Ta is waiting for 7: to unlock
B. Similarly, since 7a is holding a shared-mode lock on A and ?3 is requesting an
exclusive-mode lock on A, T3 is waiting for Ta to unlock A. Thus, we have arrived at
a state where neither of these transactions can ever proceed with its normal execution.
This situation is called deadlock. When deadlock occurs, the system must roll back
one of the two transactions. Once a transaction has been rolled back, the data items
that were locked by that transaction are unlocked. These data items are then available
to the other transaction, which can continue with its execution. We shall return to the
issue of deadlock handling in Section 16.6.

If we do not use locking, or if we unlock data items as soon as possible after read-
ing or writing them, we may get inconsistent states. On the otheihand, if we do not
unlock a data item before requesting a lock on another data item, deadlocks may
occur. There are ways to avoid deadlock in some situations, as we shall see in Sec-
tion 16.1.5. However, in general, deadlocks are a necessary evil associated with lock-
ing, if we want to avoid inconsistent states. Deadlocks are definitely preferable to
inconsistent states, since they can be handled by rolling back transactions, whereas
inconsistent states may lead to real-world problems that cannot be handled by the
database system.

We shall require that each transaction in the system follow a set of rules, called a
locking protocol, indicating when a transaction may lock and unlock each of the data
items. Locking protocols restrict the number of possible schedules. The set of all such
schedules is a proper subset of all possible serializable schedules. We shall present
several locking protocols that allow only conflict-serializable schedules. Before doing
so, we need a few definitions.

Let {Ts, Ti., . . .,7-} be a set of transactions participating in a schedule S. We say
thatTi precedes Ti in S, written V ---+ Ti, if there exists a data item Q such thatTi
has held lock mode A on Q, andTi has held lock mode B on Q later, and comp(A,B)
= false. If Ta -"+ Ti, then that precedence implies that in any equivalent serial sched-
ule, T6 must appear before Q. Observe that this graph is similar to the precedence

lock-x(B)
read(B)
B : = B - 5 0
write(B)

lock-s(A)
read(A)
lock-S(B)

Figure 16.7 Schedule 2.
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graph that we used in Section 15.8 to test for conflict serializability. Conflicts between

instructions correspond to noncompatibility of lock modes.
We say that a schedule S is legal under a given locking protocol if S is a possi-

ble schedule for a set of transactions that follows the rules of the locking protocol. We

say that a locking protocol ensures conflict serializability if and only if all legal sched-

ules are conflict serializable; in other words, for all legal schedules the associated -->

relation is acyclic.

15.1.2 Gronting of Locks
When a transaction requests a lock on a data item in a particular mode, and no other
transaction has a lock on the same data item in a conflicting mode, the lock can be
granted. However, care must be taken to avoid the following scenario. Suppose a
transaction T2 has a shared-mode lock on a data item, and another transaction ft
requests an exclusive-mode lock on the data item. Clearly, 7r has to wait for T2 to re-
lease the shared-rnode lock. Meanwhile, a transaction 73 may request a shared-mode
lock on the same data item. The lock request is compatible with the lock granted to
T2, so T3 may be granted the shared-mode lock. At this pointT2 may release the lock,
but still fi has to wait for Ts to finish. But again, there may be a new transaction
Ta that requests a shared-mode lock on the same data item, and is granted the lock
before 73 releases it. In fact, it is possible that there is a sequence of transactions that
each requests a shared-mode lock on the data item, and each transaction releases the
lock a short while after it is granted,butTl never gets the exclusive-mode lock on the
data item. The transaction Tr may never make progress, and is said to be starved.

We can avoid starvation of transactions by granting locks in the following manner:
When a transaction ?l requests a lock on a data item Q in a particular mode M, the
concurrency-control manager grants the lock provided that

1. There is no other transaction holding a lock on Q in a mode that conflicts with
M.

2. There is no other transaction that is waiting for a lock on Q and that made its
lock request beforeTi.

Thus, a lock request will never get blocked by a lock request that is made later.

15.1.3 The Two-Phqse Locking Protocol
One protocol that ensures serializability is the two-phase locking protocol. This pro-
tocol requires that each transaction issue lock and unlock requests in two phases:

1. Growing phase. A transaction may obtain locks, but may not release any lock.

2. Shrinking phase. A transaction may release locks, but may not obtain any
new locks.
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Initially, a transaction is in the growing phase. The transaction acquires locks as
needed. Once the transaction releases a lock, it enters the shrinking phase, and it
can issue no more lock requests.

For example, transactions ?3 and Ta aretwo phase. On the other hand, transactions
7r and T2 are not two phase. Note that the unlock instructions do not need to appear
at the end of the transaction. For example, in the case of transaction 73, we could
move the unlock(B) instruction to just after the lock-X(A) instruction, and still retain
the two-phase locking property.

We can show that the two-phase locking protocol ensures conflict serializability.
Consider any transaction. The point in the schedule where the transaction has ob-
tained its final lock (the end of its growing phase) is called the lock point of the
transaction. Now, transactions can be ordered according to their lock points-this or-
dering is, in fact, a serializability ordering for the transactions. We leave the proof as
an exercise for you to do (see Practice Exercise 16.1).

TWo-phase locking does not ensure freedom from deadlock. Observe that transac-
tions 73 andra are two phase, but, in schedule 2 (Figure L6.7), they are deadlocked.

Recall from Section 75.6.2 that, in addition to being serializable, schedules should
be cascadeless. Cascading rollback may occur under two-phase locking. As an illus-
tration, consider the partial schedule of Figure 16.8. Each transaction observes the
two-phase locking protocol, but the failure of Ts after the read(A) step of ft leads to
cascading rollback of T6 andT7.

Cascading rollbacks can be avoided by a modification of two-phase locking called
the strict two-phase locking protocol. This protocol requires not only that locking
be two phase, but also that all exclusive-mode locks taken by a transaction be held
until that transaction commits. This requirement ensures that any data written by an
uncommitted transaction are locked in exclusive mode until the transaction commits,
preventing any other transaction from reading the data.

Another variant of two-phase locking is the rigorous two-phase locking proto-
col, which requires that all locks be held until the transaction commits. We can easily

lock-x(A)
read(4)
lock-s(B)
read(B)
write(A)
unlock(A)

lock-x(A)
read(A)
write(A)
unlock(A)

lock-s(A)
read(A)

Figure 16.8 Partial schedule under two-phase locking.
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verify that, with rigorous two-phase locking, transactions can be serialized in the or-
der in which they commit. Most database systems implement either strict or rigorous
two-phase locking.

Consider the following two transactions, for which we have shown only some of
the significant read and write operations:

Ts: read(a);
read(az);

read(a^))
write(01).

Ts: read(a);
read(a);
display(a1 * a).

If we employ the two-phase locking protocol, then ?s must lock a1 in exclusive
mode. Therefore, any concurrent execution of both transactions amounts to a serial
execution. Notice, however, that 7s needs an exclusive lock on a1 only at the end of
its execution, when it writes a1. Thus, if 7e could initially lock ar in shared mode, and
then could later change the lock to exclusive mode, we could get more concurrency/
since 73 and ?e could access or and o,2 simultaneously.

This observation leads us to a refinement of the basic two-phase locking protocoi,
in which lock conversions are allowed. We shall provide a mechanism for upgrading
a shared lock to an exclusive lock, and downgrading an exclusive lock to a shared
lock. We denote conversion from shared to exclusive modes by upgrade, and from
exclusive to shared by downgrade. Lock conversion cannot be allowed arbitrarily.
Rather, upgrading can take place in only the growing phase, whereas downgrading
can take place in only the shrinking phase.

Returning to our example, transactions 7s and 7e can run concurrently under
the refined two-phase locking protocol, as shown in the incomplete schedule of Fig-
ure1.6.9, where only some of the locking instructions are shown.

lock-S (ar )

lock-S (az)

lock-S (as)
lock-S (a+)

lock-s (an )
upgrade (41)

lock-s (ar )

lock-S(az)

unlock(r 1)
unlock(az)

Figure 15.9 Incomplete schedule with a lock conversion.
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Note that a transaction attempting to upgrade a lock on an item Q may be forced
to wait. This enforced wait occurs if Q is currently locked by another transaction in
shared mode.

Just like the basic two-phase locking protocol, two-phase locking with lock conver-
sion generates only conflict-serializable schedules, and transactions can be serialized
by their lock points. Furthel, if exclusive locks are held until the end of the transac-
tion, the schedules are cascadeless.

For a set of transactions, there may be conflict-serializable schedules that cannot
be obtained through the two-phase locking protocol. Howeveq, to obtain conflict-
serializable schedules through non-two-phase locking protocols, we need either to
have additional information about the transactions or to impose some structure or
ordering on the set of data items in the database. In the absence of such informatiory
two-phase locking is necessary for conflict serializability-if Tr is a non-two-phase
transaction, it is always possible to find another transaction Ti that is two phase so
that there is a schedule possible for Ti andri that is not conflict serializable.

Strict two-phase locking and rigorous two-phase locking (with lock conversions)
are used extensively in commercial database systems.

A simple but widely used scheme automatically generates the appropriate lock
and unlock instructions for a transactiory on the basis of read and write requests
from the transaction:

o When a transaction fr issues a read(Q) operation, the system issues a lock-
S(Q) instruction followed by the read(Q) instruction.

o When fr issues a write(Q) operation, the system checks to see whether I
already hoids a shared lock on 8. If it does, then the system issues an up-
grade(Q) instruction, followed by the write(Q) instruction. Otherwise, the sys-
tem issues a lock-X(Q) instruction, followed by the write(e) instruction.

o All locks obtained by a transaction are unlocked after that transaction commits
or aborts.

16.1.4 lmplementqtion of Lockingxx
A lock manager can be implemented as a process that receives messages from trans-
actions and sends messages in reply. The lock-manager process replies to lock-request
messages with lock-grant messages, or with messages requesting rollback of the trans-
action (in case of deadlocks). Unlock messages require only an acknowledgment in
response, but may result in a grant message to another waiting transaction.

The lock manager uses this data structure: For each data item that is currently
locked, it maintains a linked list of records, one for each request, in the order in which
the requests arrived. It uses a hash table, indexed on the name of a data item, to
find the linked list (if any) for a data item; this table is called the lock table. Each
record of the linked list for a data item notes which transaction made the request,
and what lock mode it requested. The record also notes if the request has currently
been granted.
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f waiting

Figure 16.10 Lock table.

Figure 16.10 shows an example of a lock table. The table contains locks for five
different data items, 14,17,I23,I44, and191.2.The lock table uses overflow chaining,
so there is a linked list of data items for each entry in the lock table. There is also a list
of transactions that have been granted locks, or are waiting for locks, for each of the
data items. Granted locks are the filled-in (black) rectangles, while waiting requests
are the empty rectangles. We have omitted the lock mode to keep the figure simple.
It can be seen, for example, that T23 has been granted locks on 1972 and 17, and is
waiting for a lock on 14.

Although the figure does not show it, the lock table should also maintain an index
on transaction identifiers, so that it is possible to determine efficiently the set of locks
held by a given transaction.

The lock manager processes requests this way:

o When a lock request message arrives, it adds a record to the end of the linked
list for the data item, if the linked list is present. Otherwise it creates a new
linked list, containing only the record for the request.

It always grants the first lock request on a data item. But if the transaction
requests a lock on an item on which a lock has already been granted, the lock
manager grants the request only if it is compatible with all earlier requests/
and all earlier requests have been granted already. Otherwise the request has
to wait.

T8
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when the lock manager receives an unlock message from a transaction, it
deletes the record for that data item in the linked list corresponding to that
transaction. It tests the record that follows , if any, as described in the previous
paragraph, to see if that request can now be granted. If it can, the lock man-
ager grants that request, and processes the record following it, if any, similarly,
and so on.

If a transaction aborts, the lock manager deletes any waiting request made
by the transaction. once the database system has taken appropriate actions to
undo the transaction (see section 17.3), it releases all locks held by the aborted
transaction.

This algorithm guarantees freedom from starvation for lock requests, since a re-
quest can never be granted while a request received earlier is waiting to be granted.
We study how to detect and handle deadlocks lateq, in Section 76.6.3. Section 20.2.1
describes an alternative implementation-one that uses shared memory instead of
message passing for lock request/grant.

16.1.5 Groph-Bosed Protocols
As noted in Section 76.7.3, the two-phase locking protocol is both necessary and suf-
ficient for ensuring serializability in the absence of information concerning the man-
ner in which data items are accessed. But, if we wish to develop protocols that are
not two phase, we need additional information on how each transaction will access
the database. There are various models that can give us the additional information,
each differing in the amount of information provided. The simplest model requires
that we have prior knowledge about the order in which the database items will be
accessed. Given such information, it is possible to construct locking protocols that are
not two phase, but that, nevertheless, ensure conflict serializability.

To acquire such prior knowledge, we impose a partial ordering -+ on the set
D = {dt, d2, . . ., d6} of all data items. If di ---+ di , then any transaction accessing both
d'i and d7 must access dibefore accessing d7. This partial ordering may be the result
of either the logical or the physical organization of the data, or it may be imposed
solely for the purpose of concurrency control.

The partial ordering implies that the set D may now be viewed as a directed acyclic
graph, called a database graph. In this section, for the sake of simplicity, we will
restrict our attention to only those graphs that are rooted trees. We will present a
simple protocof called the tree protocol, which is restricted to employ only exclusiae
locks. References to othe1, more complex, graph-based locking protocols are in the
bibliographical notes.

In the tree protocol, the only lock instruction allowed is lock-X. Each transaction
Ti canlock a data item at most once, and must observe the following rules:

1. The first lock by Ti may be on any data item.

2. Subsequently, a data item Q can be locked by Ti only if the parent of e is
currently locked by 4.
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3. Data items may be unlocked at any time.

4. A data item that has been locked and unlockedby Ti cannot subsequently be

relocked by 4.

All schedules that are legal under the tree protocol are conflict serializable.
To illustrate this protocol, consider the database graph of Figure 16.11. The follow-

ing four transactions follow the tree protocol on this graph. We show only the lock

and unlock instructions:

r'o: lock-X(B); lock-x(E); lock-X(D); unlock(B); unlock(E); lock-X(G);
unlock(D); unlock(G).

Tr1 : lock-X(D); lock-x(Fl); unlock(D); unlock(Fl).
?rz: lock-X(B); lock-x(E); unlock(E); unlock(B).
7r3 : lock-X(D); lock-X(FI); unlock(D); unlock(Fl).

One possible schedule in which these four transactions participated appears in
Figure 16.12. Note that, during its execution, transaction fts holds locks on two dis-
joint subtrees.

Observe that the schedule of Figure 16.12 is conflict serializable. It can be shown
not only that the tree protocol ensures conflict serializability, but also that this proto-
col ensures freedom from deadlock.

The tree protocol in Figure 16.12 does not ensure recoverability and cascadeless-
ness. To ensure recoverability and cascadelessness, the protocol can be modified to
not permit release of exclusive locks until the end of the transaction. Holding exclu-
sive locks until the end of the transaction reduces concurrency. Here is an alterna-
tive that improves concurrency, but ensures only recoverability: For each data item
with an uncommitted write we record which transaction performed the last write to
the data item. Whenever a transaction 4 performs a read of an uncommitted data
item, we record a commit dependency of 4 on the transaction that performed the

Figure 16.11 Tiee-structured database graph.
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lock-x(B)
lock-x(D)
lock-x(FI)
unlock(D)

lock-x(E)
lock-x(D)
unlock(B)
unlock(E)

lock-x(B)
lock-x(E)

unlock(FI)
lock-x(G)
unlock(D)

lock-x(D)
lock-x (tf
unlock(D)
unlock(FI)

unlock(E)
unlock(B)

unlock (G)

Figure 16.12 Serializable schedule under the tree protocol.

last write to the data item. Transaction I is then not permitted to commit until the
commit of all transactions on which it has a commit dependency. If any of these trans-
actions aborts, 4 must also be aborted.

The tree-locking protocol has an advantage over the two-phase locking protocol in
that, unlike two-phase locking, it is deadlock-free, so no rollbacks are required. The
tree-locking protocol has another advantage over the two-phase locking protocol in
that unlocking may occur earlier. Earlier unlocking may lead to shorter waiting times,
and to an increase in concurrency.

However, the protocol has thedisadvantage that, in some cases, a transaction may
have to lock data items that it does not access. For example, a transaction that needs
to access data items A and/ in the database graph of Figure 16.11 must lock not only
A andf but also data items B, D, andH. This additional locking results in increased
locking overhead, the possibility of additional waiting time, and a potential decrease
in concurrency. Furthel, without prior knowledge of what data items will need to
be locked, transactions will have to lock the root of the tree, and that can reduce
concurrency greatly.

For a set of transactions, there may be conflict-seri alizable schedules that cannot
be obtained through the tree protocol. Indeed, there are schedules possible under the
two-phase locking protocol that are not possible under the tree protocol, and vice
versa. Examples of such schedules are explored in the exercises.
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16.2 Timestqmp-Bqsed Protocols
The locking protocols that we have described thus far determine the order between
every pair of conflicting transactions at execution time by the first lock that both
members of the pair request that involves incompatible modes. Another method
for determining the serializability order is to select an ordering among transactions
in advance. The most common method for doing so is to use a timestamp-ordering
scheme.

16.2.1 Timestqmps
With each transaction fr in the system, we associate a unique fixed timestamp, de-
noted by TS(4). This timestamp is assigned by the database system before the trans-
action fr starts execution. If a transaction I has been assigned timestamp TS(?,), and
a new transaction Q enters the system, then TS(4) < TS(4). There are two simple
methods for implementing this scheme:

L. Use the value of the system clock as the timestamp; that is, a transaction's time-
stamp is equal to the value of the clock when the transaction enters the system.

2. Use a logical counter that is incremented after a new timestamp has been
assigned; that is, a transaction's timestamp is equal to the value of the counter
when the transaction enters the system.

The timestamps of the transactions determine the serializability order. Thus, if
TS(4) <TS(T), then the system must ensure that the produced schedule is equiva-
lent to a serial schedule in which transaction Ti appears before transaction Q.

To implement this scheme, we associate with each data item Q two timestamp
values:

o W-timestamp(Q) denotes the largest timestamp of any transaction that exe-
cuted write(Q) successfully.

o R-timestamp(8) denotes the largest timestamp of any transaction that exe-
cuted read(Q) successfully.

These timestamps are updated whenever a new read(Q) or write(Q) instruction is
executed.

16.2.2 The Timestomp-Ordering Protocol
The timestamp-ordering protocol ensures that any conflicting read and write opera-
tions are executed in timestamp order. This protocol operates as follows:

1. Suppose that transactionTi issues read(Q).

a. If TS(4) < W-timestamp(Q), then I needs to read a value of Q that was
already overwritten. Hence, the read operation is rejected, andTa is rolled
back.
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b. If TS(4) ) W-timestamp(Q), then the read operation is executed, and R-
timestamp(Q) is set to the maximum of R-timestamp(e) and TS(4).

2. Suppose that transactionTi issues write(Q).

a. If TS(4) < R-timestamp(8), then the value of Q that fr is producing was
needed previously, and the system assumed that that value would never
be produced. Hence, the system rejects the write operation and rolls f
back.

b. If TS(4) < W-timestamp(Q), then I is attempting to write an obsolete
value of Q. Hence, the system rejects this write operation and rolls Tiback.

c. otherwise, the system executes the write operation and sets w-time-
stamp(Q) to TS(Z).

If a transaction Ti is rolled back by the concurrency-control scheme as result of is-
suance of either a read or write operation, the system assigns it a new timestamp and
restarts it.

To illustrate this protocol, we consider transactions Tya and fi5. Transaction fta
displays the contents of accounts A and B:

Tt+: read(B);
read(A);
display(A + B).

Transaction 7i5 transfers 950 from account B to account A, and then displays the
contents of both:

Trs: read(B);
B : = B - 5 0 ;
write(B);
read(A):
A :=  A +  50 ;
write(At;
display(A + B).

In presenting schedules under the timestamp protocol, we shall assume that a trans-
action is assigned a timestamp immediately before its first instruction. Thus, in sched-
ule 3 of Figure 76.13,T5(TID < TS(Trs), and the schedule is possible under the time-
stamp protocol.

We note that the preceding execution can also be produced by the two-phase lock-
ing protocol. There are, however, schedules that are possible under the two-phase
Iocking protocol, but are not possible under the timestamp protocol, and vice versa
(see Exercise 16.25).

The timestamp-ordering protocol ensures conflict serializability. This is because
conflicting operations are processed in timestamp order.

The protocol ensures freedom from deadlock, since no transaction ever waits.
However, there is a possibility of starvation of long transactions if a sequence of
conflicting short transactions causes repeated restarting of the long transaction. If
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read (B)

read (A)

display(A + B)

read (B)
B : = B  - 5 0
write(B)

read (A)

A : = A + 5 0
write(A)
display(A + B)

Figure 16.13 Schedule 3.

a transaction is found to be getting restarted repeatedly, conflicting transactions need
to be temporarily blocked to enable the transaction to finish.

The protocol can generate schedules that are not recoverable. However, it can be
extended to make the schedules recoverable, in one of several ways:

o Recoverability and cascadelessness can be ensured by performing all writes
together at the end of the transaction. The writes must be atomic in the fol-
lowing sense: While the writes are in progress, no transaction is permitted to
access any of the data items that have been written.

o Recoverability and cascadelessness can also be guaranteed by using a limited
form of locking, whereby reads of uncommitted items are postponed until the
transaction that updated the item commits (see Exercise 16.26).

o Recoverability alone can be ensured by tracking uncommitted writes, and al-
lowing a transaction fr to commit only after the commit of any transaction that
wrote a value that Ti read. Commit dependencies, outlined in Section 1.6.1..5,
can be used for this purpose.

16.2.3 Thomqs' Write Rule
We now present a modification to the timestamp-ordering protocol that allows greater
potential concurrency than does the protocol of Section 76.2.2. Let us consider sched-
ule 4 of Figure 16.14, and apply the timestamp-ordering protocol Since fi6 starts
before Ty,wE shall assume that TS(?ro) < TS("rz). The read(Q) operation of 716 suc-
ceeds, as does the write(Q) operation of 717. When fi6 attempts its write(Q) operation,
we find that TS(4a) < W-timestamp(Q), since W-timestamp(Q) = TS(Trz).Thus, the
write(Q) by Tra is rejected and transaction 7ro must be rolled back.

Although the rollback of 716 is required by the timestamp-ordering protocol, it
is unnecessary. Since 717 has already written Q, the value that ft6 is attempting to
write is one that will never need to be read. Any transaction 4 with TS(4) < TS("rz)
that attempts a read(Q) will be rolled back, since TS(4) < W-timestamp(Q). Any
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read(8)

write(Q)
write(Q)

Figure 16.14 Schedule 4.

transaction Ti with TS(4) > TS("rz) must read the value of Q written by Tt , rather
than the value writtenby ?6.

This observation leads to a modified version of the timestamp-ordering protocol
in which obsolete write operations can be ignored under certain circumstances. The
protocol rules for read operations remain unchanged. The protocol rules for write
operations, however, are slightly different from the timestamp-ordering protocol of
Section 1,6.2.2.

The modification to the timestamp-ordering protocol, called Thomas' write rule,
is this: Suppose that transaction 4 issues write(Q).

1. If TS(4) < R-timestamp(Q), then the value of Q that fr is producing was pre-
viously needed, and it had been assumed that the value would never be pro-
duced. Hence, the system rejects the write operation and rolls Tiback.

2. If TS(T) < W-timestamp(Q), then 4 is attempting to write an obsolete value
of Q. Hence, this write operation can be ignored.

3. Otherwise, the system executes the write operation and sets W-timestamp(Q)
to TS(Z).

The difference between these rules and those of Section 76.2.2 lies in the second
rule. The timestamp-ordering protocol requires that T.i be rolled back if ?l issues
write(Q) and TS(4) < W-timestamp(Q).However, here, in those cases where TS(4)
) R-timestamp(8), we ignore the obsolete write.

Thomas' write rule makes use of view serializability by, in effect, deleting obsolete
write operations from the transactions that issue them. This modification of transac-
tions makes it possible to generate serializable schedules that would not be possible
under the other protocols presented in this chapter. For example, schedule 4 of Figure
76.L4is not conflict serializable and, thus, is not possible under the two-phase locking
protocol, the tree protocol, or the timestamp-ordering protocol. Under Thomas' write
rule, the write(Q) operation of 7i6 would be ignored. The result is a schedule that is
view equivalent to the serial schedule .--716, Ty7).

16.3 Vqlidqtion-Bqsed Protocols
In cases where a majority of transactions are read-only transactions, the rate of con-
flicts among transactions may be low. Thus, many of these transactions, if executed
without the supervision of a concurrency-control scheme, would nevertheless leave
the system in a consistent state. A concurrency-control scheme imposes overhead of
code execution and possible delay of transactions. It may be better to use an alterna-
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tive scheme that imposes less overhead. A difficulty in reducing the overhead is that
we do not know in advance which transactions will be involved in a conflict. To gain
that knowledge, we need a scheme for monitoring the system.

We assume that each transaction ft executes in two or three different phases in its
lifetime, depending on whether it is a read-only or an update transaction. The phases
are, in order,

1. Read phase. During this phase, the system executes transaction fr. It reads
the values of the various data items and stores them in variables local to [.
It performs all write operations on temporary local variables, without updates
of the actual database.

2. Validation phase. Transaction 4 performs a validation test to determine whe-
ther it can copy to the database the temporary local variables that hold the
results of write operations without causing a violation of serializability.

3. Write phase. If transaction fr succeeds in validation (step 2), then the system
applies the actual updates to the database. Otherwise, the system rolls back
Ti.

Each transaction must go through the three phases in the order shown. However, all
three phases of concurrently executing transactions can be interleaved.

To perform the validation test, we need to know when the various phases of trans-
actions 4 took place. We shall, therefore, associate three different timestamps with
transaction Z:

1. Staft(T), the time when I started its execution.

2. Validation(4), the time when 4 finished its read phase and started its vali-
dation phase.

3. Finish(4), the time when fr finished its write phase.

We determine the serializability order by the timestamp-ordering technique, using
the value of the timestamp Validation(4). Thus, the value TS(4) = Validation(4)
and, if TS(4) < TS(Tp), then any produced schedule must be equivalent to a serial
schedule in which transaction Ti appears before transaction 7r. The reason we have
chosen Validation(4), rather than Start([), as the timestamp of transaction 4 is that
we can expect faster response time provided that conflict rates among transactions
are indeed low.

The validation test for transaction Ti requires that, for all transactions fr with
TS(4) < TS(4), one of the following two conditions must hold:

1. Finish(4) < Start(Q). Since I completes its execution before Q started, the
serializability order is indeed maintained.

2. The set of data items writtenby Ti does not intersect with the set of data items
read by Ti, and fr completes its write phase before Ti starts its validation
phase (Start(Ti) < Finish(fl) < Validation(7r)). This condition ensures that
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Figure 16.15 Schedule 5, a schedule produced by using validation.

the writes of Ti and Q do not overlap. Since the writes of Ti do not affect the
read of Ti, and since f cannot affect the read of Ti, the serializability order is
indeed maintained.

As an illustration, consider again transactions T1a and ft5. Suppose that TS(\a)
< TS("is). Then, the validation phase succeeds in the schedule 5 in Figure 16.15. Note
that the writes to the actual variables are performed only after the validation phase
of Ts. Thus, fia reads the old values of B and A, and this schedule is serializable.

The validation scheme automatically guards against cascading rollbacks, since the
actual writes take place only after the transaction issuing the write has committed.
However, there is a possibility of starvation of long transactions, due to a sequence
of conflicting short transactions that cause repeated restarts of the long transaction.
To avoid starvation, conflicting transactions must be temporarily blocked, to enable
the long transaction to finish.

This validation scheme is called the optimistic concurrency-control scheme since
transactions execute optimistically, assuming they will be able to finish execution
and validate at the end. In contrast, locking and timestamp ordering are pessimistic
in that they force a wait or a rollback whenever a conflict is detected, even though
there is a chance that the schedule may be conflict serializable.

16.4 Multiple Grqnulority
In the concurrency-control schemes described thus far, we have used each individual
data item as the unit on which synchronization is performed.

There are circumstances, however, where it would be advantageous to group sev-
eral data items, and to treat them as one individual synchronization unit. For exam-
ple, if a transaction fr needs to access the entire database, and a locking protocol is
used, then I must lock each item in the database. Clearly, executing these locks is
time-consuming. It would be better if 4 could issue a single lock request to lock the
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Figure 16.15 Granularity hierarchy.

entire database. On the other hand, if transaction Q needs to access only a few data
items, it should not be required to lock the entire database, since otherwise concur-
rency is lost.

What is needed is a mechanism to allow the system to define multiple levels of
granularity. We can make one by allowing data items to be of various sizes and defin-
ing a hierarchy of data granularities, where the small granularities are nested within
larger ones. Such a hierarchy can be represented graphically as a tree. Note that the
tree that we describe here is significantly different from that used by the tree protocol
(Section 16.1.5). A nonleaf node of the multiple-granularity tree represents the data
associated with its descendants. In the tree protocol, each node is an independent
data item.

As an illustration, consider the tree of Figure 16.16, which consists of four levels
of nodes. The highest level represents the entire database. Below it are nodes of type
area; the database consists of exactly these areas. Each area in turn has nodes of type

file as lts children. Each area contains exactly those files that are its child nodes. No
file is in more than one area. Finally, each file has nodes of type record. As before, the
file consists of exactly those records that are its child nodes, and no record can be
present in more than one file.

Each node in the tree can be locked individually. As we did in the two-phase lock-
ing protocol, we shall use shared and exclusive lock modes. When a transaction locks
a node, in either shared or exclusive mode, the transaction also has implicitly locked
all the descendants of that node in the same lock mode. For example, if transaction
Ti gets an explicit lock on file f'" of Figure 76.76, in exclusive mode, then it has an
implicit lock in exclusive mode on all the records belonging to that file. It does not
need to lock the individual records of F" explicitly.

Suppose that transactionTi wishes to lock record r6u of file F6. Since Q has locked
F6 explicitly, it follows that r6u is also locked (implicitly). But, when Q issues a lock
request for r6u, r6u is not explicitly locked! How does the system determine whether
Ti can lock r6u ? Q must traverse the tree from the root to record r6u.If any node in
that path is locked in an incompatible mode, then Q must be delayed.
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Figure16.17 Compatibilitymatrix.

Suppose now that transaction 76 wishes to lock the entire database. To do so, it
simply must lock the root of the hierarchy. Note, however, that ?r should not suc-
ceed in locking the root node, since fr is currently holding a lock on part of the tree
(specifically, on file Fa). But how does the system determine if the root node can be
locked? One possibility is for it to search the entire tree. This solution, however, de-
feats the whole purpose of the multiple-granularity locking scheme. A more efficient
way to gain this knowledge is to introduce a new class of lock modes, called inten-
tion lock modes. If a node is locked in an intention mode, explicit locking is being
done at a lower level of the tree (that is, at a finer granularity). Intention locks are put
on all the ancestors of a node before that node is locked explicitly. Thus, a transaction
does not need to search the entire tree to determine whether it can lock a node suc-
cessfully. A transaction wishing to lock a node-say, Q-must traverse a path in the
tree from the root to Q. While traversing the tree, the transaction locks the various
nodes in an intention mode.

There is an intention mode associated with shared mode, and there is one with
exclusive mode. If a node is locked in intention-shared (IS) mode, explicit locking is
being done at a lower level of the tree, but with only shared-mode locks. Similarly,
if a node is locked in intention-exclusive (IX) mode, then explicit locking is being
done at a lower level, with exclusive-mode or shared-mode locks. Finally, if a node
is locked in shared and intention-exclusive (SIX) mode, the subtree rooted by that
node is locked explicitly in shared mode, and that explicit locking is being done at
a lower level with exclusive-mode locks. The compatibility function for these lock
modes is in Figure 16.17.

The multiple-granularity locking protocol, which ensures serializability, is this:
Each transactionTi can lock a node Q by following these rules:

1. It must observe the lock-compatibility function of Figure 16.17.

2. It must lock the root of the tree first, and can lock it in any mode.

3. It can lock a node Q in S or IS mode only if it currently has the parent of Q
Iocked in either IX or IS mode.

4. It can lock a node Q in X, SIX, or IX mode only if it currently has the parent of
Q locked in either IX or SIX mode.

5. It can lock a node only if it has not previously unlocked any node (that is, 4
is two phase).

6. It can unlock a node Q only if it currently has none of the children of Q locked.
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Observe that the multiple-granularity protocol requires that locks be acquired in top-

down (root-to-leaf) order, whereas locks must be released in bottom-up (leaf-to-root)

order.
As an illustration of the protocol, consider the tree of Figure 76.76 and these trans-

actions:

o Suppose that transaction Trs reads record ro, in file ?i. Then, ?rs needs to

lock the database, area A1, and Fo in IS mode (and in that order), and finally

to lock ro, inS mode.

o Suppose that transaction 7rg modifies record ron in file fL. Then, Trg needs to

lock the database, area A1, and file trL in IX mode, and finally to lock ron in X

mode.

o Suppose that transaction ?zo reads all the records in fiie fL. Then, 72s needs

to lock the database and area ,4r (in that order) in IS mode, and finally to lock

fi in S mode.

o Suppose that transactionT2l reads the entire database. It can do so after lock-

ing the database in S mode.

We note that transactions fts, T2g, and 721 can access the database concurrently.

tansaction ?rg can execute concurrently with ?is, but not with either T2s or T2y.

This protocol enhances concurrency and reduces lock overhead. It is particularly

useful in applications that include a mix of

r Short transactions that access only a few data items

o Long transactions that produce reports from an entire file or set of files

There is a similar locking protocol that is applicable to database systems in which

data granularities are organized in the form of a directed acyclic graph. See the bib-

liographical notes for additional references. Deadlock is possible in the protocol that

we have, as it is in the two-phase locking protocol. There are techniques to reduce

deadlock frequency in the multiple-granularity protocol, and also to eliminate dead-

Iock entirely. These techniques are referenced in the bibliographical notes.

16.5 Multiversion Schemes
The concurrency-control schemes discussed thus far ensure serializability by either
delaying an operation or aborting the transaction that issued the operation. For ex-
ample, a read operation may be delayed because the appropriate value has not been
written yet; or it may be rejected (that is, the issuing transaction must be aborted)
because the value that it was supposed to read has already been overwritten. These
difficulties could be avoided if old copies of each data item were kept in a system.

In multiversion concurrency-control schemes, each write(Q) operation creates a
new version of Q. When a transaction issues a read(Q) operation, the concurrency-
control manager selects one of the versions of Q to be read. The concurrency-control
scheme must ensure that the version to be read is selected in a manner that ensures
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serializability. It is also crucial, for performance reasons, that a transaction be able to
determine easily and quickly which version of the data item should be read.

16.5.1 Multiversion Timestqmp Ordering
The most common transaction-ordering technique used by multiversion schemes is
timestamping. With each transaction 4 in the system, we associate a unique static
timestamp, denoted by TS(4). The database system assigns this timestamp before
the transaction starts execution, as described in Section 16.2.

With each data item Q, a sequence of versions (Qt, Q2,...,Q*> is associated.
Each version Q6 contains three data fields:

o Content is the value of version Qp.

o W-timestamp(Qr ) is the timestamp of the transaction that created version Qa.
o R-timestamp(Qr) is the largest timestamp of any transaction that successfully

read version Qp.

A transaction-say, fr-creates a new version Qn of data item Q by issuing a
write(Q) operation. The content field of the version holds the value writtenby Ti.
The system initializes the W-timestamp and R-timestamp to TS(4). It updates the
R-timestamp value of Q6 whenever a transaction Ti rcads the content of Qp, and
R-timestamp(Q ) < TS(4).

The multiversion timestamp-ordering scheme presented next ensures serializ-
ability. The scheme operates as follows. Suppose that transaclionTi issues a read(Q)
or write(Q) operation. Let Qn denote the version of Q whose write timestamp is the
largest write timestamp less than or equal to TS(lj.).

1. If transaction fr issues a read(Q), then the value returned is the content of
version Qa.

2. IftransactionTiissueswrite(Q),andifrs(?,)<R-timestarnp(Q),thenthesys-
tem rolls back transaction Ti. On the other hand, if TS(?,) : W-timesta mp(Q ),
the system overwrites the contents of Qn; otherwise it creates a new version
of Q.

The justification for rule 1 is clear. A transaction reads the most recent version that
comes before it in time. The second rule forces a transaction to abort if it is "too late"
in doing a write. More precisely, if Ti attempts to write a version that some other
transaction would have read, then we cannot allow that write to succeed.

Versions that are no longer needed are removed according to the following rule.
Suppose that there are two versions, Q* and Q i, of a data item, and that both versions
have a W-timestamp less than the timestamp of the oldest transaction in the system.
Then, the older of the two versions Qn and Qi wlll not be used again, and can be
deleted.

The multiversion timestamp-ordering scheme has the desirable property that a
read request never fails and is never made to wait. In typical database systems, where



Chapter 16 Concurrency Control

reading is a more frequent operation than is writing, this advantage may be of major

practical significance.
The scheme, howevel, suffers from two undesirable properties. First, the reading

of a data item also requires the updating of the R-timestamp field, resulting in two

potential disk accesses, rather than one. Second, the conflicts between transactions

are resolved through rollbacks, rather than through waits. This alternative may be

expensive. Section 16.5.2 describes an algorithm to alleviate this problem.
This multiversion timestamp-ordering scheme does not ensure recoverability and

cascadelessness. It can be extended in the same manner as the basic timestamp-

ordering scheme, to make it recoverable and cascadeless.

16.5.2 Multiversion Two-Phose Locking
The multiversion two-phase locking protocol attempts to combine the advantages
of multiversion concurrency control with the advantages of two-phase locking. This
protocol differentiates between read-only transactions and update transactions.

Update transactions perform rigorous two-phase locking; that is, they hold all
locks up to the end of the transaction. Thus, they can be serialized according to their
commit order. Each version of a data item has a single timestamp. The timestamp in
this case is not a real clock-based timestamp, but rather is a counter, which we will
call the ts-counter, that is incremented during commit processing.

The database system assigns read-only transactions a timestamp by reading the
current value of ts-counter before they start execution; they follow the multiversion
timestamp-ordering protocol for performing reads. Thus, when a read-only trans-
action I issues a read(Q), the value returned is the contents of the version whose
timestamp is the largest timestamp less than or equal to TS(4).

When an update transaction reads an item, it gets a shared lock on the item, and
reads the latest version of that item. When an update transaction wants to write an
item, it first gets an exclusive lock on the item, and then creates a new version of
the data item. The write is performed on the new version, and the timestamp of the
new version is initially set to a value oo, a value greater than that of any possible
timestamp.

When the update transaction fr completes its actions, it carries out commit pro-
cessing: First,Ta sets the timestamp on every version it has created to 1 more than the
value of ts-counter; then,Ti increments ts-counter by 1. Only one update transaction
is allowed to perform commit processing at a time.

As a result, read-only transactions that start after Ti increments ts-counter will see
the values updated by 4, whereas those that startbeforeT6 increments ts-counter will
see the value before the updates by Tn.In either case, read-only transactions never
need to wait for locks. Multiversion two-phase locking also ensures that schedules
are recoverable and cascadeless.

Versions are deleted in a manner like that of multiversion timestamp ordering.
Suppose there are two versions, Qp and Qi, of a data item, and that both versions
have a timestamp less than or equal to the timestamp of the oldest read-only trans-
action in the system. Then, the older of the two versions Qp and Q1 will not be used
again and can be deleted.
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Snapshot isolation is a multiversion concurrency control protocol based on vali-
dation, which, unlike multiversion two-phase locking, does not require transactions
to be declared as read-only or update. Snapshot isolation does not guarantee serializ-
ability, but is nevertheless supported by many database systems. See the bibliograph-
ical notes for more information.

15.5 Deqdlock Hqndling
A system is in a deadlock state if there exists a set of transactions such that every
transaction in the set is waiting for another transaction in the set. More precisely,
there exists a set of waiting transactions {Tr, Tr, . . .,7-} such that ?6 is waiting for a
data item that 7r holds, and ft is waiting for a data item that T2holds, and . . . , and
Tn-1 is waiting for a data item that Tn holds, and Tn is waiting for a data item that
7e holds. None of the transactions can make progress in such a situation.

The only remedy to this undesirable situation is for the system to invoke some
drastic action, such as rolling back some of the transactions involved in the deadlock.
Rollback of a transaction may be partial: That is, a transaction may be rolled back to
the point where it obtained a lock whose release resolves the deadlock.

There are two principal methods for dealing with the deadlock problem. We can
use a deadlock prevention protocol to ensure that the system willneaer enter a dead-
lock state. Alternatively, we can allow the system to enter a deadlock state, and then
try to recover by using a deadlock detection and deadlock recovery scheme. As we
shall see, both methods may result in transaction rollback. Prevention is commonly
used if the probability that the system would enter a deadlock state is relatively high;
otherwise, detection and recovery are more efficient.

Note that a detection and recovery scheme requires overhead that includes not
only the run-time cost of maintaining the necessary information and of executing the
detection algorithm, but also the potential losses inherent in recovery from a dead-
lock.

16.5.1 Deqdlock Prevention
There are two approaches to deadlock prevention. One approach ensures that no
cyclic waits can occur by ordering the requests for locks, or requiring all locks to be
acquired together. The other approach is closer to deadlock recovery, and performs
transaction rollback instead of waiting for a lock, whenever the wait could potentially
result in a deadlock.

The simplest scheme under the first approach requires that each transaction locks
aII its data items before it begins execution. Moreover, either all are locked in one step
or none are locked. There are two main disadvantages to this protocol: (1) it is often
hard to predict, before the transaction begins, what data items need to be locked;
(2) data-item utilization may be very low, since many of the data items may be locked
but unused for a long time.

Another approach for preventing deadlocks is to impose an ordering of all data
items, and to require that a transaction lock data items only in a sequence consistent
with the ordering. We have seen one such scheme in the tree protocol, which uses a
partial ordering of data items.
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A variation of this approach is to use a total order of data items, in conjunction

with two-phase locking. Once a transaction has locked a particular item, it cannot

request locks on items that precede that item in the ordering. This scheme is easy

to implement, as long as the set of data items accessed by a transaction is known

when the transaction starts execution. There is no need to change the underlying

concurrency-control system if two-phase locking is used: All that is needed is to en-

sure that locks are requested in the right order.
The second approach for preventing deadlocks is to use preemption and transac-

tion rollbacks. In preemption, when a transaction 72 requests a lock that transaction

fi holds, the lock granted to ft may be preempted by rolling backof 71, and granting

of the lock to Tz. To control the preemption, we assign a unique timestamp to each

transaction. The system uses these timestamps only to decide whether a transaction

should wait or roll back. Locking is still used for concurrency control. If a transaction

is rolled back, it retains lts old timestamp when restarted. TWo different deadlock-

prevention schemes using timestamps have been proposed:

1. The wait-die scheme is a nonpreemptive technique. When transaction fr re-

quests a data item currently held by Ti,fr is allowed to wait only if it has a

timestamp smaller than that of Q (that is,Ti is older than Q). Otherwise, 4 is

rolled back (dies).

For example, suppose that transac tions 722, T2s, and T2a hav e timestamps

5,L0, and 15, respectively.If T!2 requests a data item held by Trt, then ?zz will

wait. If ?2a re{uests a data item held by Trs, thenT2a will be rolled back.

2. The wound-wait scheme is a preemptive technique. It is a counterpart to the

wait-die scheme. When transaction Q requests a data item currently held by

Ti, Ti is allowed to wait only if it has a timestamp larger than that of Ti (that

is,Tais younger than Q). Otherwise, Q is rolled back (Q iswoundedby T).

Returning to our example, with transactions Tl22, Tp, ar.d T2a, lf ?:22 re-

quests a data item held by Trt, then the data item willbe preempted ftomTz:.,

and T4 will be rolled back. If 72a reQuests a data item held by Trt, thenT2a

will wait.

Whenever the system rolls back transactions, it is important to ensure that there

is no starvation-that is, no transaction gets rolled back repeatedly and is never al-

lowed to make progress.
Both the wound-wait and the wait-die schemes avoid starvation: At any time,

there is a transaction with the smallest timestamp. This transactioncsnnotbe required

to roll back in either scheme. Since timestamps always increase, and since transac-

tions are not assigned new timestamps when they are rolled back, a transaction that

is rolled back repeatedly will eventually have the smallest timestamp, at which point

it will not be rolled back again.
There are, however, significant differences in the way that the two schemes oper-

ate.
o In the wait-die scheme, an older transaction must wait for a younger one to

release its data item. Thus, the older the transaction gets, the more it tends to

wait. By contrast, in the wound-wait scheme, an older transaction never waits

for a Younqer transaction.
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o In the wait-die scheme, if a transaction Ti dies and is rolled back because it
requested a data item held by transactionTi, then fr may reissue the same
sequence of requests when it is restarted. If the data item is still held by Ti,
then I will die again. Thus, fr may die several times before acquiring the
needed data item. Contrast this series of events with what happens in the
wound-wait scheme. Transaction Q is wounded and rolled back because Q
requested a data item that it holds. When fr is restarted and requests the data
item now being held by Ti , Ti waits. Thus, there may be fewer rollbacks in the
wound-wait scheme.

The major problem with both of these schemes is that unnecessary rollbacks may
occur.

16.6.2 Timeout-Bqsed Schemes
Another simple approach to deadlock handling is based on lock timeouts. In this ap-
proach, a transaction that has requested a lock waits for at most a specified amount of
time. If the lock has not been granted within that time, the transaction is said to time
out, and it rolls itself back and restarts. If there was in fact a deadlock, one or more
transactions involved in the deadlock will time out and roll back, allowing the oth-
ers to proceed. This scheme falls somewhere between deadlock prevention, where a
deadlock will never occur, and deadlock detection and recovery, which Section 16.6.3
discusses.

The timeout scheme is particularly easy to implement, and works well if transac-
tions are short and if long waits are likely to be due to deadlocks. Flowever, in general
it is hard to decide how long a transaction must wait before timing out. Too long a
wait results in unnecessary delays once a deadlock has occurred. Too short a wait
results in transaction rollback even when there is no deadlock, leading to wasted re-
sources. Starvation is also a possibility with this scheme. Hence, the timeout-based
scheme has limited applicability.

15.6.3 Deqdlock Detection qnd Recovery
If a system does not employ some protocol that ensures deadlock freedom, then a
detection and recovery scheme must be used. An algorithm that examines the state
of the system is invoked periodically to determine whether a deadlock has occurred.
If one has, then the system must attempt to recover from the deadlock. To do so, the
system must:

o Maintain information about the current allocation of data items to transac-
tions, as well as any outstanding data item requests.

o Provide an algorithm that uses this information to determine whether the sys-
tem has entered a deadlock state.

o Recover from the deadlock when the detection algorithm determines that a
deadlock exists.

In this section, we elaborate on these issues.
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Figure 15.18 Wait-for graph with no cycle.

15.5.3.1 Deqdlock Detection
Deadlocks can be described precisely in terms of a directed graph called a wait-for
graph. This graph consists of a pair G = (V, E), where V is a set of vertices and E is
a set of edges. The set of vertices consists of all the transactions in the system. Each
elementinthesetEof edgesisanorderedpairTi ---+ Tj.IfTi ---, Tr'isinE,thenthere
is a directed edge from transaction Ti to Ti, implying that transaction 4 is waiting
for transaction Q to release a data item that it needs.

When transaction f requests a data item currently being held by transaction Q,
then the edgeTi -'-+ Ti is inserted in the wait-for graph. This edge is removed only
when transaction Q is no longer holding a data item needed by transaction fr.

A deadlock exists in the system if and only if the wait-for graph contains a cycle.
Each transaction involved in the cycle is said to be deadlocked. To detect deadlocks,
the system needs to maintain the wait-for graph, and periodically to invoke an algo-
rithm that searches for a cycle in the graph.

To illustrate these concepts, consider the wait-for graph in Figure 16.18, which
depicts the following situation:

o Transaction Tzs is waiting for transactions 7zo andT27.

o TransactionT2T is waiting for transactionT26.

o Transaction Tzo is waiting for transaction Tzs.

Since the graph has no cycle, the system is not in a deadlock state.
Suppose now that transaction 72s is requesting an item held by Trr. The edge

Tza - 727 is added to the wait-for graph" resulting in the new system state in Fig-
ure 16.19. This time, the graph contains the cycle

Tza -Tze -727 "->726

implying that transactionsT26,T2T, arndT2s are all deadlocked.
Consequently, the question arises: When should we invoke the detection algo-

rithm? The answer depends on two factors:

1. How often does a deadlock occur?

2. How many transactions will be affected by the deadiock?
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Figure 16.19 Wait-for graph with a cycle.

If deadlocks occur frequently, then the detection algorithm should be invoked
more frequently than usual. Data items allocated to deadlocked transactions will be
unavailable to other transactions until the deadlock can be broken. In addition, the
number of cycles in the graph may also grow. In the worst case, we would invoke the
detection algorithm every time a request for allocation could not be granted immedi-
ately.

16.5.3.2 Recovery from Deqdlock
When a detection algorithm determines that a deadlock exists, the system must re-
cover from the deadlock. The most common solution is to roll back one or more trans-
actions to break the deadlock. Three actions need to be taken:

1. Selection of a victim. Given a set of deadlocked transactions, we must deter-
mine which transaction (or transactions) to roll back to break the deadlock. We
should roll back those transactions that will incur the minimum cost. Unfortu-
nately, the termminimum costisnot a precise one. Many factors may determine
the cost of a rollback, including

a. How long the transaction has computed, and how much longer the trans-
action will compute before it completes its designated task.

b. How many data items the transaction has used.
c. How many more data items the transaction needs for it to complete.
d. How many transactions will be involved in the rollback.

2. Rollback. Once we have decided that a particular transaction must be rolled
back, we must determine how far this transaction should be rolled back.

The simplest solution is a total rollback: Abort the transaction and then
restart it. However, it is more effective to roll back the transaction only as far
as necessary to break the deadlock. Such partial rollback requires the system
to maintain additional information about the state of all the running trans-
actions. specifically, the sequence of lock requests/grants and updates per-
formed by the transaction needs to be recorded. The deadlock detection mech-
anism should decide which locks the selected transaction needs to release in
order to break the deadlock. The selected transaction must be rolled back to
the point where it obtained the first of these locks, undoing all actions it took
after that point. The recovery mechanism must be capable of performing such



Chapter 16 Concurrency Control

partial rollbacks. Furthermore, the transactions must be capable of resuming

execution after a partial rollback. See the bibliographical notes for relevant

references.

3. Starvation. In a system where the selection of victims is based primarily on

cost factors, it may happen that the same transaction is always picked as a

victim. As a result, this transaction never completes its designated task, thus

there is starvation. We must ensure that a transaction can be picked as a victim

only a (small) finite number of times. The most common solution is to include

the number of rollbacks in the cost factor.

16.7 Insert qnd Delete OPerotions
Until now we have restricted our attention to read and write operations. This re-
striction limits transactions to data items already in the database. Some transactions
require not only access to existing data items, but also the ability to create new data
items. Others require the abitity to delete data items. To examine how such transac-
tions affect concurrency control, we introduce these additional operations:

o delete(Q) deletes data item Q from the database.

o insert(Q) inserts a new data item Q into the database and assigns Q an initial
value.

An attempt by a transaction fr to perform a read(Q) operation after Q has been
deleted results in a logical error in fr. Likewise, an attemptby a transaction 4 to

perform a read(Q) operation before Q has been inserted results in a logical error in

fr. It is also a logical error to attempt to delete a nonexistent data item.

15.7.1 Deletion
To understand how the presence of delete instructions affects concurrency control,
we must decide when a delete instruction conflicts with another instruction. Let Ia

and 13 be instructions of 4 andTi, respectively, that appear in schedule S in consec-
utive order. Let Ii = delete(Q). We consider several instructions 17.

o Ii = read(Q). Ia and 17 conflict. If Ia comes before Ii,Ti will have a logical

error. If I comes before Ii, Ti car. execute the read operation successfully.

o Ii = write(Q). Ii and 13 conflict. If 1a comes before Ii,Ti will have a logical
error. If 13 comes before Ii, Ti carr execute the write operation successfully.

o Ii = delete(Q). Ii and Ii conflict. If 1i comes before Ii, Ta will have a logical
error. If l, comes before Ii, Ti willhave a logical error.

. I j = insert(Q). Ii and 17 conflict. Suppose that data item Q did not exist prior
to the execution of Ii and -1. Then, if Ia comes before 11, alogical error results
for Ti.If fi comes before Ii, then no logical error results. Likewise, if Q existed
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prior to the execution of I and 17, then a logical error results if I comes before
Ii,but not otherwise.

We can conclude the following:

o Under the two-phase locking protocol, an exclusive lock is required on a data
item before that item can be deleted.

o Under the timestamp-ordering protocol, a test similar to that for a write must
be performed. Suppose that transactionTi issues delete(Q).
n If TS(4) < R-timestamp(Q), then the value of Q that Ti was to delete has

already been read by a transactionTi with TS(7r) > TS(4). Hence, the
delete operation is rejected, andTi is rolled back.

! If TS(4) < W-timestamp(Q), then a transaction Q with TS(4) > TS(Z)
has written Q. Hence, this delete operation is rejected, and Ti is rolled
back.

I Otherwise, the delete is executed.

16.7.2 Insertion
We have already seen that an insert(Q) operation conflicts with a delete(Q) operation.
Similarly, insert(Q) conflicts with a read(Q) operation or a write(Q) operation; no read
or write can be performed on a data item before it exists.

Since an insert(Q) assigns a value to data item Q, an insert is treated similarly to a
write for concurrency-control purposes:

r Under the two-phase locking protocol, if fr performs an insert(Q) operation,
fr is given an exclusive lock on the newly created data item Q.

o under the timestamp-ordering protocol,if Ti performs an insert(Q) operation,
the values R-timestamp(Q) and W-timestamp(Q) are set to TS(?,).

16.7.3 The Phontom Phenomenon
Consider transaction T2s that executes the following SQL query on the bank database:

select sum(bslance)
from account
where brsnchttame ='Perryridge'

Transaction 72e requires access to all tuples of the accounf relation pertaining to the
Perryridge branch.

Let 73e be a transaction that executes the following SQL insertion:

insert into account
values (A-201,'Perryridge', 900)

Let S be a schedule involving T2s and Zso.We expect there to be potential for a
conflict for the following reasons:
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If ?2e uses the tuple newly inserted by Tso in computing sam(balance), t}lrer.

T2s reads a value written by 73s. Thus, in a serial schedule equivalent to S,T3s

must come befoteT2s.

If Tzg does not use the tuple newly inserted by Tso in computin g sum(balnnce) ,
then in a serial schedule equivalent to S,Tzg must come before 73s.

The second of these two cases is curious. T2s and 7:o do not access any tuple in com-

mon, yet they conflict with each other! In effect, T2s and ?:o conflict on a phantom

tuple. If concurrency control is performed at the tuple granularity, this conflict would

go undetected. As a result, the system could fail to prevent a nonserializable sched-

ule. This problem is called the phantom phenomenon.

To prevent the phantom phenomenon, we allow transaction T2s to prevent other

transactions from creating new tuples in the nccounf relation withbranch-naTne = "Per-

ryridge."
To find all account tuples wlth branch-name = "Perryridge ," T2s rn:rust search either

the whole account relation, or at least an index on the relation. Up to now, we have as-
sumed implicitly that the only data items accessed by a transaction are tuples. How-
eyat,T2s is an example of a transaction that reads information about what tuples are
in a relation, and ?3s is an example of a transaction that updates that information.

Clearly, it is not sufficient merely to lock the tuples that are accessed; the informa-
tion used to find the tuples that are accessed by the transaction must also be locked.

The simplest solution to this problem is to associate a data item with the relation;
the data item represents the information used to find the tuples in the relation. Tians-
actions, such as T2s,that read the information about what tuples are in a relation
would then have to lock the data item corresponding to the relation in shared mode.
Transactions, such as Tss, that update the information about what tuples are in a re-
lation would have to lock the data item in exclusive mode. Thus, Tzg and 7go would
conflict on a real data item, rather than on a phantom.

Do not confuse the locking of an entire relation, as in multiple-granularity lock-
ing, with the locking of the data item corresponding to the relation. By locking the
data item, a transaction only prevents other transactions from updating information
about what tuples are in the relation. Locking is still required on tuples. A transaction
that directly accesses a tuple can be granted a lock on the tuples even when another
transaction has an exclusive lock on the data item corresponding to the relation itself.

The major disadvantage of locking a data item corresponding to the relation is
the low degree of concurrency- two transactions that insert different tuples into a
relation are prevented from executing concurrently.

A better solution is the index-locking technique. Any transaction that inserts a
tuple into a relation must insert information into every index maintained on the re-
lation. We eliminate the phantom phenomenon by imposing a locking protocol for
indices. For simplicity we shall consider only B+-tree indices.

As we saw in Chapter 12, every search-key value is associated with an index leaf
node. A query will usually use one or more indices to access a relation. An insert
must insert the new tuple in all indices on the relation. In our example, we assume
that there is an index on account for branch-name. Then, ?36 must modify the leaf
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containing the key Perryridge. If 72e reads the same leaf node to locate all tuples
pertaining to the Perryridge branch, then 7zg and 73s conflict on that leaf node.

The index-locking protocol takes advantage of the availability of indices on a re-
lation, by turning instances of the phantom phenomenon into conflicts on locks on
index leaf nodes. The protocol operates as follows:

o Every relation must have at least one index.
o A transaction ?l can access tuples of a relation only after first finding them

through one or more of the indices on the relation.
o A transaction fr that performs a lookup (whether a range lookup or a point

lookup) must acquire a shared lock on all the index leaf nodes that it accesses.
o A transactionTr may not insert, delete, or update a tuple taina relation r

without updating all indices on r. The transaction must obtain exclusive locks
on all index leaf nodes that are affected by the insertion, deletion, or update.
For insertion and deletion, the leaf nodes affected are those that contain (after
insertion) or contained (before deletion) the search-key value of the tuple. For
updates, the leaf nodes affected are those that (before the modification) con-
tained the old value of the search key, and nodes that (after the modification)
contain the new value of the search key.

r The rules of the two-phase locking protocol must be observed.

variants of the index-locking technique exist for eliminating the phantom phe-
nomenon under the other concurrency-control protocols presented in this chapter.

15.8 Weqk Levels of Consistency
Serializability is a useful concept because it allows progranuners to ignore issues
related to concurrency when they code transactions. If every transaction has the
property that it maintains database consistency if executed alone, then serializabil-
ity ensures that concurrent executions maintain consistency. Howevel, the protocols
required to ensure serializability may allow too little concurrency for certain applica-
tions. In these cases, weaker levels of consistency are used. The use of weaker levels
of consistency places additional burdens on programmers for ensuring database cor-
rectness.

15.8.1 DegreeJfwo Consistency
The purpose of degree-two consistency is to avoid cascading aborts without neces-
sarily ensuring serializability. The locking protocol for degree-two consistency uses
the same two lock modes that we used for the two-phase locking protocol: shared
(S) and exclusive (X). A transaction must hold the appropriate lock mode when it
accesses a data item.

In contrast to the situation in two-phase locking, S-locks may be released at any
time, and locks may be acquired at any time. Exclusive locks cannot be released until
the transaction either commits or aborts. Serializability is not ensured by this pro-
tocol. Indeed, a transaction may read the same data item twice and obtain different
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Figure 16.20 Nonserializable schedule with degree-two consistency.

results. In Figure 1,6.20, Tz reads the value of Q before and after that value is written
bY Tn'

The potential for inconsistency due to nonserializable schedules under degree-two
consistency makes this approach undesirable for many applications.

16.8.2 Cursor Stobility
Cursor stability is a form of degree-two consistency designed for programs written
in host languages, which iterate over tuples of a relation by using cursors. Instead of
locking the entire relation, cursor stability ensures that

o The tuple that is culrently being processed by the iteration is locked in shared
mode.

o Any modified tuples are locked in exclusive mode until the transaction com-
mits.

These rules ensure that degree-two consistency is obtained. TWo-phase locking
is not required. Serializability is not guaranteed. Cursor stability is used in practice
on heavily accessed relations as a means of increasing concurrency and improving
syStem performance. Applications that use cursor stability must be coded in a way
that ensures database consistency despite the possibility of nonserializable sched-
ules. Thus, the use of cursor stability is limited to specialized situations with simple
consistency constraints.

16.8.3 Weqk Levels of Consistency in SQL

The SQL standard also allows a transaction to specify that it may be executed in such a
way that it becomes nonserializable with respect to other transactions. For instance, a
transaction may operate at the level of read uncommitted, which permits the transac-
tion to read records even if they have not been committed. SQL provides such features
for long transactions whose results do not need to be precise. For instance/ approx-
imate information is usually sufficient for statistics used for query optimization. If
these transactions were to execute in a serializable fashion, they could interfere with
other transactions, causing the others' execution to be delayed.
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The levels of consistency specified by SQL-92 are as follows:

o Serializable is the default.

o Repeatable read allows only committed records to be read and further re-
quires that, between two reads of a record by a transaction, no other trans-
action is allowed to update the record. However, the transaction may not be
serializable with respect to other transactions. For instance, when it is search-
ing for records satisfying some conditions, a transaction may find some of the
records inserted by a committed transaction, but may not find others.

o Read committed allows only committed records to be read, but does not re-
quire even repeatable reads. For instance, between two reads of a record by the
transaction, the records may have been updated by other committed transac-
tions. This is basically the same as degree-two consistency; most systems sup-
porting this level of consistency would actually implement cursor stability,
which is a special case of degree-two consistency.

r Read uncommitted allows even uncommitted records to be read. It is the low-
est level of consistency allowed by SQL-92.

Many database systems run, by default, at the read-committed level of consisten-
cy, although they allow the consistency level to be changed. Even if the consistency
level is explicitly set to serializable, the PostgreSQl and Oracle database systems
use a concurrency control protocol called snapshot isolation, which does not ensure
serializability. See Section76.5.2 and the bibliographic notes for details.

16.9 Concurrency in Index Structuresx*
It is possible to treat access to index structures like any other database structure, and
to apply the concurrency-control techniques discussed earlier. Howevel, since indices
are accessed frequently, they would become a point of great lock contention, leading
to a low degree of concurrency. Luckily, indices do not have to be treated like other
database structures. It is perfectly acceptable for a transaction to perform a lookup
on an index twice, and to find that the structure of the index has changed in between,
as long as the index lookup returns the correct set of tuples. Thus, it is acceptable
to have nonserializable concurrent access to an index, as long as the accuracy of the
index is maintained.

We outline two techniques for managing concurrent access to B+-trees. The bib-
liographical notes reference other techniques for B+-trees, as well as techniques for
other index structures.

The techniques that we present for concurrency control on B*-trees are based on
locking, but neither two-phase locking nor the tree protocol is employed. The algo-
rithms for lookup, insertion, and deletion are those used in Chapter 12, with only
minor modifications.

The first technique is called the crabbing protocol:

o When searching for a key value, the crabbing protocol first locks the root node
in shared mode. When traversing down the tree, it acquires a shared lock on



670 Chapter 16 Concurrency Control

the child node to be traversed further. After acquiring the lock on the child
node, it releases the lock on the parent node. It repeats this process until it
reaches a leaf node.

o When inserting or deleting a key value, the crabbing protocol takes these ac-
tions:

n It follows the same protocol as for searching until it reaches the desired
leaf node. Up to this point, it obtains (and releases) only shared locks.

n It locks the leaf node in exclusive mode and inserts or deletes the key
value.

n If it needs to split a node or coalesce it with its siblings, or redistribute
key values between siblings, the crabbing protocol locks the parent of the
node in exclusive mode. After performing these actions, it releases the
locks on the node and siblings.

If the parent requires splitting, coalescing, or redistribution of key val-
ues, the protocol retains the lock on the parent, and splitting, coalescing,
or redistribution propagates further in the same manner. Otherwise, it re-
leases the lock on the Parent.

The protocol gets its name from the way in which crabs advance by moving side-
ways, moving the legs on one side, then the legs on the other, and so on alternately.
The progress of locking while the protocol both goes down the tree and goes back up
(in case of splits, coalescing, or redistribution) proceeds in a similar crab-like manner'

Once a particular operation releases a lock on a node, other operations can ac-
cess that node. There is a possibility of deadlocks between search operations coming
down the tree, and splits, coalescing, or redistribution propagating up the tree. The
system can easily handle such deadlocks by restarting the search operation from the
root, after releasing the locks held by the operation.

The second technique achieves even more concurrency, avoiding even holding the
lock on one node while acquiring the lock on another node, by using a modified ver-
sion of B+-trees called B-link trees; B-link trees require that every node (including in-
ternal nodes, not just the leaves) maintain a pointer to its right sibling. This pointer is
required because a lookup that occurs while a node is being split may have to search
not only that node but also that node's right sibling (if one exists). We shall illustrate
this technique with an example later, but we first present the modified procedures of
the B-link-tree locking protocol.

o Lookup. Each node of the B+-tree must be locked in shared mode before it is
accessed. A lock on a nonleaf node is released before any lock on any other
node in the B+-tree is requested. If a split occurs concurrently with a lookup,
the desired search-key value may no longer appear within the range of values
represented by a node accessed during lookup. In such a case, the search-key
value is in the range represented by a sibling node, which the system locates
by following the pointer to the right sibling. However, the system locks leaf
nodes following the two-phase locking protocol, as Section 16.7.3 describes,
to avoid the phantom Phenomenon.
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o Insertion and deletion. The system follows the rules for lookup to locate the
leaf node into which it wilt make the insertion or deletion. It upgrades the
shared-mode lock on this node to exclusive mode, and performs the insertion
or deletion. It locks leaf nodes affected by insertion or deletion following the
two-phase locking protocol, as section 16.2.3 describes, to avoid the phantom
phenomenon.

o Split. If the transaction splits a node, it creates a new node according to the
algorithm of Section 12.3 and makes it the right sibling of the original node.
The right-sibling pointers of both the original node and the new node are set.
Following this, the transaction releases the exclusive lock on the original node
(provided it is an internal node; leaf nodes are locked in two-phase manner),
and then requests an exclusive lock on the parent, so that it can insert a pointer
to the new node. (There is no need to lock or unlock the new node.)

o Coalescence. If a node has too few search-key values after a deletion, the node
with which it will be coalesced must be locked in exclusive mode. Once the
transaction has coalesced these two nodes, it requests an exclusive lock on the
parent so that the deleted node can be removed. At this point, the transaction
releases the locks on the coalesced nodes. Unless the parent node must be
coalesced also, its lock is released.

Observe this important fact An insertion or deletion may lock a node, unlock it, and
subsequently relock it. Furthermore, a lookup that runs concurrently with a split or
coalescence operation may find that the desired search key has been moved to the
right-sibling node by the split or coalescence operation.

As an illustratiory consider the B+-tree in Figure 16.21. Assume that there are two
concurrent operations on this B+-tree:

1. Insert "Clearview"

2. Lookup "Downtown"

Let us assume that the insertion operation begins first. It does a lookup on "Clear-
view," and finds that the node into which "Clearview" should be inserted is full.
lt therefore converts its shared lock on the node to exclusive mode, and creates a

Figure16.21 B+-tree for account filewith n : 3.
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Figure 16.22 Insertion of "Clearview" into the B+-tree of Figute 76.21.

new node. The original node now contains the search-key values "Brighton" and
"Clearview." The new node contains the search-key value "Downtown."

Now assume that a context switch occurs that results in control passing to the
iookup operation. This lookup operation accesses the root, and follows the pointer
to the tefl child of the root. It then accesses that node, and obtains a pointer to the

left chitd. This left-child node originally contained the search-key values "Brighton"

and "Downtown." Since this node is currently locked by the insertion operation in

exclusive mode, the lookup operation must wait. Note that, at this point, the lookup

operation holds no locks at all!
The insertion operation now unlocks the leaf node and relocks its parent, this time

in exclusive mode. It completes the insertion, leaving the B+-tree as in Figure 16.22.

The lookup operation proceeds. However, it is holding a pointer to an incorrect leaf

node. It therefore follows the right-sibling pointer to locate the next node. If this node,

too, turns out to be incorrect, the lookup follows that node's right-sibling pointer. It

can be shown that, if a lookup holds a pointer to an incorrect node, then, by following
right-sibling pointers, the lookup must eventually reach the correct node.

Lookup and insertion operations cannot lead to deadlock. Coalescing of nodes
during deletion can cause inconsistencies, since a lookup may have read a pointer
to a deleted node from its parent, before the parent node was updated, and may
then try to access the deleted node. The lookup would then have to restart from the

root. Leaving nodes uncoalesced avoids such inconsistencies. This solution results

in nodes that contain too few search-key values and that violate some proPerties of

B+-trees. In most databases, however, insertions are more frequent than deletions, so

it is likely that nodes that have too few search-key values will gain additional values
relatively quickly.

Instead of locking index leaf nodes in a two-phase manner, some index concurrency-
control schemes use key-value locking on individual key values, allowing other key
values to be inserted or deleted from the same leaf. Key-value locking thus provides
increased concurrency. Using key-value locking naively, however, would allow the
phantom phenomenon to occur; to prevent the phantom phenomenon, the next-key
iocking technique is used. In this technique, every index lookup must lock not only

the keys found within the range (or the single key, in case of a point lookup) but

also the next-key value-that is, the key value just greater than the last key value

that was within the range. Also, every insert must lock not only the value that is in-

serted, but also the next-key value. Thus, if a transaction attempts to insert a value
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that was within the range of the index lookup of another transaction, the two transac-
tions would conflict on the key value next to the inserted key value. Similarly, deletes
must also lock the next-key value to the value being deleted, to ensure that conflicts
with subsequent range lookups of other queries are detected.

16.10 Summory
o When several transactions execute concurrently in the database, the consis-

tency of data may no longer be preserved. It is necessary for the system to
control the interaction among the concurrent transactions, and this control is
achieved through one of a variety of mechanisms called concurrencv-control
schemes.

o To ensure serializability/ we can use various concurrency-control schemes.
All these schemes either delay an operation or abort the iransaction that is-
sued the operation. The most common ones are locking protocols, timestamp-
ordering schemes, validation techniques, and multiversion schemes.

o A locking protocol is a set of rules that state when a transaction may lock and
unlock each of the data items in the database.

o The two-phase locking protocol allows a transaction to lock a new data item
only if that transaction has not yet unlocked any data item. The protocol en-
sures serializability, but not deadlock freedom. In the absence of information
concerning the manner in which data items are accessed, the two-phase lock-
ing protocol is both necessary and sufficient for ensuring serializability.

o The strict two-phase locking protocol permits release of exclusive locks only
at the end of transaction, in order to ensure recoverability and cascadelessness
of the resulting schedules. The rigorous two-phase locking protocol releases
all locks only at the end of the transaction.

o Graph-based locking protocols impose restrictions on the order in which items
are accessed, and can thereby ensure serializability without requiring the use
of two-phase locking, and can additionally ensure deadlock freedom.

o A timestamp-ordering scheme ensures serializability by selecting an ordering
in advance between every pair of transactions. A unique fixed timestamp is
associated with each transaction in the system. The timestamps of the transac-
tions determine the serializability order. Thus, if the timestamp of transaction
fr is smaller than the timestamp of transactionTi, then the scheme ensures
that the produced schedule is equivalent to a serial schedule in which trans-
action Ti appears before transaction Q. It does so by rolling back a transaction
whenever such an order is violated.

o A validation scheme is an appropriate concurrency-control method in cases
where a majority of transactions are read-only transactions, and thus the rate
of conflicts among these transactions is low. A unique fixed timestamp is as-
sociated with each transaction in the system. The serializability order is de-
termined by the timestamp of the transaction. A transaction in this scheme is
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never delayed. It must, however, pass a validation test to complete. If it does
not pass the validation test, the system rolls it back to its initial state.

o There are circumstances where it would be advantageous to group several
data items, and to treat them as one aggtegate data item for purposes of work-
ing, resulting in multiple levels of granularity. W" allow data items of various
sizes, and define a hierarchy of data items, where the small items are nested
within larger ones. Such a hierarchy can be represented graphically as a tree.
Locks are acquired in root-to-leaf order; they are released in leaf-to-root order.
The protocol ensures serializability, but not freedom from deadlock.

o A multiversion concurrency-control scheme is based on the creation of a new
version of a data item for each transaction that writes that item. When a read
operation is issued, the system selects one of the versions to be read. The
concurrency-control scheme ensures that the version to be read is selected in

a manner that ensures serializability, by using timestamps. A read operation
always succeeds.

! In multiversion timestamp ordering, a write operation may result in the
rollback of the transaction.

n In multiversion two-phase locking, write operations may result in a lock
wait or, possibly, in deadlock.

o Various locking protocols do not guard against deadlocks. One way to prevent
deadlock is to use an ordering of data items, and to request locks in a sequence
consistent with the ordering.

o Another way to prevent deadlock is to use preemption and transaction roll-
backs. To control the preemption, we assign a unique timestamp to each trans-
action. The system uses these timestamps to decide whether a transaction
should wait or roll back. If a transaction is rolled back, it retains its old time-
stamp when restarted. The wound-wait scheme is a preemptive scheme.

o If deadlocks are not prevented, the system must deal with them by using a
deadlock detection and recovery scheme. To do so, the system constructs a

wait-for graph. A system is in a deadlock state if and only if the wait-for SIaPh
contains a cycle. When the deadlock detection algorithm determines that a
deadlock exists, the system must Iecover from the deadlock. It does so by
rolling back one or more transactions to break the deadlock.

o A delete operation may be performed only if the transaction deleting the tuple
has an exclusive lock on the tuple to be deleted. A transaction that inserts a
new tuple into the database is given an exclusive lock on the tuple.

o Insertions can lead to the phantom phenomenon, in which an insertion logi-
cally conflicts with a quely even though the two transactions may access no
tuple in common. Such conflict cannot be detected if locking is done only on
tuples accessed by the transactions. Locking is required on the data used to
find the tuples in the relation. The index-locking technique solves this prob-
lem by requiring locks on certain index buckets. These locks ensure that all
conflicting transactions conflict on a real data item, rather than on a phantom.
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o weak levels of consistency are used in some applications where consistency
of query results is not critical, and using serializability would result in querie!
adversely affecting transaction processing. Degree-two consistency is one such
weaker level of consistency; cursor stability is a special case of degree-two
consistency, and is widely used. sQL:1999 allows queries to specify the level of
consistency that they require.

o special concurrency-control techniques can be developed for special data
structures. often, special techniques are applied in B+-trees to allow greater
concurrency. These techniques allow nonserializable access to the B+-tree, but
they ensure that the B+-tree structure is correct, and ensure that accesses to
the database itself are serializable.

Review Terms
o Concurrency control

o Lock types

n Shared-mode (S) lock
n Exclusive-mode (X) lock

o Lock

! Compatibility
tr Request
tr Wait
n Grant

o Deadlock

o Starvation

o Locking protocol

o Legal schedule

o TWo-phase locking protocol
n Growing phase
! Shrinking phase
tr Lock point
n Strict two-phase locking
n Rigorous two-phase locking

o Lockconversion

n Upgrade
n Downgrade

. Graph-based protocols
n Tree protocol
n Commit dependency

o Timestamp-based protocols
o Timestamp

n System clock
n Logical counter
n W-timestamp(e)
n R-timestamp(Q)

o Timestamp-orderingprotocol

n Thomas'write rule
o Validation-based protocols

n Readphase
n Validation phase
tr Write phase
n Vatdation test

o Multiple granularity

n Explicit locks
n Implicit locks
n Intention locks

r Intention lock modes

n Intention-shared (IS)
! Intention-exclusive (IX)
I Shared and intention-

exclusive (SIX)

o Multiple-granularity locking
protocol

o Multiversion concurrency control

o Versions

o Multiversion timestamp ordering

o Multiversion two-phase locking
n Read-only transactions
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n Update transactions

o Deadlock handling

E Prevention
I Detection
n Recovery

o Deadlock prevention

I Ordered locking
n Preemption of locks
n Wait-die scheme
tr Wound-wait scheme
n Timeout-based schemes

o Deadlock detection

n Wait-for graph

o Deadlock recovery

n Total rollback

n Partial rollback

o Insert and delete operations

o Phantom phenomenon

I Index-lockingprotocol

o Weak levels of consistency

X Degree-two consistency
! Cursor stability
n Repeatable read
I Read committed
n Read uncommitted

o Concurrency in indices

n Crabbing
n B-hnk trees
n B-Iink-tree locking protocol
n Next-key locking

Prqctice Exercises
16.1 Show that the two-phase locking protocol ensures conflict serializability, and

that transactions can be serialized according to their lock points.

L5.2 Consider the following two transactions:

Tst: read(A);
read(B);
i f  A : 0 t h e n B : = B + 7 ;
write(B).

T32: read(B);
read(A);
i f  B : 0 t h e n A : = A + 1 ;
write(A).

Add lock and unlock instructions to transactions 7:r andT32, so that they ob-

serve the two-phase locking protocol. Can the execution of these transactions
result in a deadlock?

16.3 What benefit does rigorous two-phase locking provide? How does it compare
with other forms of two-phase locking?

L5.4 Consider a database organized in the form of a rooted tree. Suppose that we
insert a dummy vertex between each pair of vertices. Show that, if we follow
the tree protocol on the new tree, we get better concurrency than if we follow
the tree protocol on the original tree.

16.5 Show by example that there are schedules possible under the tree protocol that

are not possible under the two-phase locking protocol, and vice versa.
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16.5 Consider the following extension to the tree-locking protocol, which allows
both shared and exclusive locks:

o A transaction can be either a read-only transactiory in which case it can
request only shared locks, or an update transaction, in which case it can
request only exclusive locks.

r Each transaction must follow the rules of the tree protocol. Read-only trans-
actions may lock any data item first, whereas update transactions must
lock the root first.

Show that the protocol ensures serializability and deadlock freedom.

16.7 Consider the following graph-based locking protocol, which allows only ex-
clusive lock modes, and which operates on data graphs that are in the form of
a rooted directed acyclic graph.

r A transaction can lock any vertex first.
o To lock any other vertex, the transaction must be holding a lock on the

majority of the parents of that vertex.

Show that the protocol ensures serializability and deadlock freedom.

16.8 Consider the following graph-based locking protocol, which allows only ex-
clusive lock modes and which operates on data graphs that are in the form of
a rooted directed acyclic graph.

o A transaction can lock any vertex first.
o To lock any other vertex, the transaction must have visited all the parents of

that vertex and must be holding a lock on one of the parents of the vertex.

Show that the protocol ensures serializability and deadlock freedom.

15.9 Locking is not done explicitly in persistent programming languages. Rather,
objects (or the corresponding pages) must be locked when the objects are
accessed. Most modern operating systems allow the user to set access pro-
tections (no access, read, write) on pages/ and memory access that violate the
access protections result in a protection violation (see the Unix mprotect com-
mand, for example). Describe how the access-protection mechanism can be
used for page-level locking in a persistent programming language.

15.10 Consider a database system that includes an atomic increment operation, in
addition to the read and write operations. Let V be the value of data item X.
The operation

increment(X)by C

sets the value of X to V + C in an atomic step. The value of X is not available to
the transaction unless the latter executes a read(X). Figure 16.23 shows a lock-
compatibility matrix for three lock modes: share mode, exclusive mode, and
incrementation mode.

a. Show that, if all transactions lock the data that they access in the corre-
sponding mode, then two-phase locking ensures serializability.
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Figure 15.23 Lock-compatibility matrix.

b. Show that the inclusion of increment mode locks allows for increased con-
currency. (Hint: Consider check-clearing transactions in our bank exam-
ple.)

L6.L1 In timestamp ordering, W-timestamp(Q) denotes the largest timestamp of any
transaction that executed write(Q) successfuIly. Suppose that, instead, we de-
fined it to be the timestamp of the most recent transaction to execute write(Q)
successfully. Would this change in wording make any difference? Explain your
answer.

16.12 Use of multiple-granularity locking may require more or fewer locks than an
equivalerLt system with a single lock granularity. Provide examples of both sit-
uations, and compare the relative amount of concurrency allowed.

L6.L3 Consider the validation-based concurrency-control scheme of Section 16.3.

show that by choosing validation(4), rather than start(T), as the timestamp of
transaction Ti, we can expect better response time, provided that conflict rates
among transactions are indeed low

16.14 For each of the following protocols, describe aspects of practical applications
that would lead you to suggest using the protocol, and aspects that would
suggest not using the Protocol:

o TWo-phase locking
o TWo-phase locking with multiple-granularity locking
o The tree protocol
o Timestamp ordering
o Validation
o Multiversion timestamp ordering
o Multiversion two-phase locking

16.15 Explain why the following technique for transaction execution may provide
better performance than just using strict two-phase locking: First execute the
transaction without acquiring any locks and without performing any writes to
the database as in the validation-based techniques, but unlike the validation
techniques do not perform either validation or writes on the database. Instead,
rerun the transaction using strict two-phase locking. (Hint: Consider waits for
disk I/o.)

16.16 Consider the timestamp-ordering protocol, and two transactions, one that
writes two data items p and 14, and another that reads the same two data items.
Give a schedule whereby the timestamp test for a write operation fails and
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causes the first transaction to be restarted, in turn causing a cascading abort of
the other transaction. Show how this could result in starvation of both transac-
tions. (Such a situatiory where two or more processes carry out actions, but are
unable to complete their task because of interaction with the other processes,
is called a livelock.)

16.17 Devise a timestamp-based protocol that avoids the phantom phenomenon.

16.18 Suppose that we use the tree protocol of Section 16.1.5 to manage concurrent
access to a B+-tree. Since a split may occur on an insert that affects the root, it
appears that an insert operation cannot release any locks until it has completed
the entire operation. Under what circumstances is it possible to release a lock
earlier?

Exercises

16.19 What benefit does strict two-phase locking provide? What disadvantages re-
sult?

16.20 Most implementations of database systems use strict two-phase locking. Sug-
gest three reasons for the popularity of this protocol.

16.21 Consider a variant of the tree protocol called the t'orest protocol. The database
is organized as a forest of rooted trees. Each transaction fr must follow the
following rules:

o The first lock in each tree may be on any data item.
o The second, and all subsequent, locks in a tree may be requested only if

the parent of the requested node is currently locked.
o Data items may be unlocked at any time.
o A data item may not be relocked by Ti after it has been unlocked by 4.

Show that the forest protocol does not ensure serializability.

16,22 when a transaction is rolled back under timestamp ordering, it is assigned a
new timestamp. Why can it not simply keep its old timestamp?

16.23 In multiple-granularity locking, what is the difference between implicit and
explicit locking?

16.24 Although SIX mode is useful in multiple-granularity locking, an exclusive and
intention-shared (XIS) mode is of no use. Why is it useless?

16.25 Show that there are schedules that are possible under the two-phase locking
protocol, but are not possible under the timestamp protocol, and vice versa.

16.26 Under a modified version of the timestamp protocol, we require that a commit
bit be tested to see whether a read request must wait. Explain how the com-
mit bit can prevent cascading abort. Why is this test not necessary for write
requests?
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15.27 rJnder what conditions is it less expensive to avoid deadlock than to allow
deadlocks to occur and then to detect them?

1,6.28 If deadlock is avoided by deadlock-avoidance schemes, is starvation still pos-
sible? Explain your answer.

1,6.29 Explain the phantom phenomenon. Why may this phenomenon lead to an in-
correct concurrent execution despite the use of the two-phase locking protocol?

15.30 Explain the reason for the use of degree-two consistency. What disadvantages
does this approach have?

16.31 Give example schedules to show that with key-value locking, if any of lookup,
insert, or delete do not lock the next-key value, the phantom phenomenon
could go undetected.

15.32 If many transactions update a common item (e.g., the cash balance at a branch),
and private items (e.g., individual account balances). Explain how you can in-
crease concurrency (and throughput) by ordering the operations of the trans-
action.

16.33 Consider the following locking protocol: All items are numbered, and once an
item is unlocked, only higher numbered items may be locked. Locks may be
released at any time. Only X-locks are used.

Show by an example that this protocol does not guarantee serializability.
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A computer system, like any other device, is subject to failure from a variety of
causes: disk crash, power outage, software error/ a fire in the machine room, even
sabotage. In any failure, information may be lost. Therefore, the database system
must take actions in advance to ensure that the atomicity and durability properties of
transactions, introduced in Chapter 15, are preserved. An integral part of a database
system is a recovery scheme that can restore the database to the consistent state that
existed before the failure. The recovery scheme must also provide high availability;
that is, it must minimize the time for which the database is not usable after a crash.

17.1 Fqilure Clqssificqtion
There are various types of failure that may occur in a system, each of which needs to
be dealt with in a different manner. The simplest type of failure is one that does not
result in the loss of information in the system. The failures that are more difficult to
deal with are those that result in loss of information. In this chapter, we shall consider
only the following types of failure:

r Tiansaction failure. There are two types of errors that may cause a transaction
to fail:

n Logical error. The transaction can no longer continue with its normal ex-
ecution because of some internal condition, such as bad input, data not
found, overflow, or resource limit exceeded.

I System error. The system has entered an undesirable state (for example,
deadlock), as a result of which a transaction cannot continue with its nor-
mal execution. The transaction, however, can be reexecuted at a later time.

o System crash. There is a hardware malfunction, or a bug in the database soft-
ware or the operating system, that causes the loss of the content of volatile
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storage, and brings transaction processing to a halt. The content of nonvolatile

storage remains intact, and is not corrupted.

The assumption that hardware errors and bugs in the software bring the

system to a halt, but do not corrupt the nonvolatile storage contents, is known

as the fail-stop assumption. Well-designed systems have numerous internal

checks, at the hardware and the software level, that bring the system to a halt

when there is an error. F{ence, the fail-stop assumption is a reasonable one.

o Disk failure. A disk block loses its content as a result of either a head crash

or failure during a data-transfer operation. Copies of the data on other disks,

or archival backups on tertiary media, such as tapes, are used to recover from

the failure.

To determine how the system should recover from failures, we need to identify

the failure modes of those devices used for storing data. Next, we must consider

how these failure modes affect the contents of the database. We can then propose

algorithms to ensure database consistency and transaction atomicity despite failures.

These algorithms, known as recovery algorithms, have two parts:

1. Actions taken during normal transaction processing to ensure that enough

information exists to allow recovery from failures.

2. Actions taken after a failure to recover the database contents to a state that

ensures database consistency, transaction atomicity, and durability.

17.2 Storoge Structure
As we saw in Chapter 11, the various data items in the database may be stored and

accessed in a number of different storage media. To understand how to ensure the

atomicity and durability properties of a transaction, we must gain a better under-
standing of these storage media and their access methods.

17.2.1 Storoge Types
In Chapter 11 we saw that storage media canbe distinguished by their relative speed,
capacity, and resilience to failure, and classified as volatile storage or nonvolatile stor-
age. We review these terms, and introduce another class of storage, called stable stor-
age.

o Volatile storage. Information residing in volatile storage does not usually sur-
vive system crashes. Examples of such storage are main memory and cache
memory. Access to volatile storage is extremely fast, both because of the speed
of the memory access itself, and because it is possible to access any data item
in volatile storage directlY.

o Nonvolatile storage. Information residing in nonvolatile storage survives sys-
tem crashes. Examples of such storage are disk and magnetic tapes, Disks are
used for on line storage, whereas tapes are used for archival storage. Both,
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howevel, are subject to failure (for example, head crash), which may result
in loss of information. At the current state of technology, nonvolatile stor-
age is slower than volatile storage by several orders of magnitude. This is
because disk and tape devices are electromechanical, rather than based en-
tirely on chips, as is volatile storage. In database systems, disks are used for
most nonvolatile storage. Other nonvolatile media are normally used only for
backup data. Flash storage (see Section 11.1), though nonvolatile, has insuffi-
cient capacity for most database systems.

o Stablestorage. Informationresidinginstablestorageisneaerlost(neaershould
be taken with a grain of salt, since theoretically neaer carrrrot be guaranteed-
for example, it is possible, although extremelyunlikely, that a biick hole may
envelop the earth and permanently destroy all datal). Although stable stoi-
age is theoretically impossible to obtain, it can be closely approximated by
techniques that make data loss extremely unlikely. Section 17.2.2 discusses
stable-storage implementation.

The distinctions among the various storage types are often less clear in practice than
in our presentation. Certain systems provide battery backup, so thai some main
memory can survive system crashes and power failures. Alternative forms of non-
volatile storage, such as optical media, provide an even higher degree of reliability
than do disks.

17.2.2 Stqble-Storoge lmplementqtion
To implement stable storage, we need to replicate the needed information in sev-
eral nonvolatile storage media (usually disk) with independent failure modes, and
to update the information in a controlled manner to ensure that failure during data
transfer does not damage the needed information.

- 
Recall (from Chapter 11) that RAID systems guarantee that the failure of a single

disk (even during data transfer) will not result in loss of data. The simplest and fastist
form of RAID is the mirrored disk, which keeps two copies of each block, on separate
disks. Other forms of RAID offer lower costs, but at the expense of lower performance.

RAID systems, however, cannot guard against data loss due to disasters such as
fires or flooding. Many systems store archival backups of tapes off site to guard
against such disasters. However, since tapes cannot be carried off site continually,
updates since the most recent time that tapes were carried off site could be lost in
such a disaster. More secure systems keep a copy of each block of stable storage at a
remote site, writing it out over a computer network, in addition to storing the block
on a local disk system. Since the blocks are output to a remote system as and when
they are output to local storage, once an output operation is complete, the output is
not lost, even in the event of a disaster such as a fire or flood. We study such iemote
backup systems in Section 17.9.

In the remainder of this section, we discuss how storage media can be protected
from failure during data transfer. Block transfer between memory and disi storage
can result in
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o Successful completion. The transferred information arrived safely at its des-
tination.

o Partial failure. A failure occurred in the midst of transfer, and the destination
block has incorrect information.

o Total failure. The failure occurred sufficiently early during the transfer that
the destination block remains intact.

We require that, if a data-transfer failure occurs, the system detects it and invokes
a recovery procedure to restore the block to a consistent state. To do so, the system
must maintain two physical blocks for each logical database block; in the case of
mirrored disks, both blocks are at the same location; in the case of remote backup,
one of the blocks is local, whereas the other is at a remote site. An output operation
is executed as follows:

1. Write the information onto the first physical block.

2. When the first write completes successfully, write the same information onto
the second physical block.

3. The output is completed only after the second write completes successfully.

During recovery, the system examines each pair of physical blocks. If both are the

same and no detectable error exists, then no further actions are necessary. (Recall that

errors in a disk block, such as a partial write to the block, are detected by storing a

checksum with each block.) If the system detects an error in one block, then it replaces
its content with the content of the other block. If both blocks contain no detectable
error, but they differ in content, then the system replaces the content of the first block
with the value of the second. This recovery procedure ensures that a write to stable
storage either succeeds completely (that is, updates all copies) or results in no change.

The requirement of comparing every corresponding pair of blocks during recovery
is expensive to meet. We can reduce the cost greatly by keeping track of block writes
that ire in progress, using a small amount of nonvolatile RAM. On recovery, only
blocks for which writes were in progress need to be compared.

The protocols for writing out a block to a remote site are similar to the protocols
for wriiing blocks to a mirrored disk system, which we examined in Chapter L7, and
particularly in Practice Exercise 11.2'

We can extend this procedure easily to allow the use of an arbitrarily large number
of copies of each block of stable storage. Although a large number of copies reduces
the probability of a failure to even lower than two copies do, it is usually reasonable
to simulate stable storage with only two copies.

17.2.3 Dqtq Access
As we saw in Chapter 11, the database system resides permanently on nonvolatile
storage (usually disks), and is partitioned into fixed-length storage units called blocks.
Blocks are the units of data transfer to and from disk, and may contain several data
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Figure17.1 Block storage operations.

items. We shall assume that no data item spans two or more blocks. This assumption
is realistic for most data-processing applications, such as our banking example.

tansactions input information from the disk to main memory, andthen output the
information back onto the disk. The input and output operations are done in Ulock
units. The blocks residing on the disk are referred to as physical blocks; the blocks
residing temporarily in main memory are referred to as buffer blocks. The area of
memory where blocks reside temporarily is called the disk buffer.

Block movements between disk and main memory are initiated through the fol-
lowing two operations:

L. input(B) transfers the physical block B to main memory.

2. output(B) transfers the buffer block B to the disk, and replaces the appropriate
physical block there.

Figure 17.1 illustrates this scheme.
Each transaction fr has a private work area in which copies of all the data items

accessed and updatedby T6 are kept. The system creates this work area when the
transaction is initiated; the system removes it when the transaction either commits
or aborts. Each data item X kept in the work area of transaction fr is denotedby ri.
Transaction fr interacts with the database system by transferring data to and from its
work area to the system buffer. we transfer data by these two operations:

1. read(X) assigns the value of data item X to the local variable ra. It executes
this operation as follows:

a. If block Bzs on which X resides is not in main memory, it issues input(Bx).
b. It assigns to zi the value of X from the buffer block.

2. write(X) assigns the value of local variable ri to dataitem X in the buffer block.
It executes this operation as follows:
a. If block B; on which x resides is not in main memory, it issues input(Blg).
b. It assigns the value of ra to X in buffer B7g.

mainmemorv
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Note that both operations may require the transfer of a block from disk to main mem-
ory. They do not, howevel, specifically require the transfer of a block from main mem-
ory to disk.

A buffer block is eventually written out to the disk either because the buffer man-
ager needs the memory space for other purposes or because the database system
wishes to reflect the change to B on the disk. We shall say that the database system
performs a force-output of buffer B if it issues an output(B).

When a transaction needs to access a data item X for the first time, it must execute
read(X). The system then performs all updates to X on ri. After the transaction ac-
cesses X for the final time, it must execute write(X) to reflect the change to X in the
database itself.

The output(B;g) operation for the buffer block Bx on which X resides does not
need to take effect immediately after write(D is executed, since the block B; may
contain other data items that are still being accessed. Thus, the actual output may
take place later. Notice that, if the system crashes after the write(X) operation was

executed but before output(Bx) was executed, the new value of X is never written to

disk and, thus, is lost.

17.3 Recovery qnd Atomicity
Consider again our simplified banking system and transaction Ti that transfers $50
from account A to account B, with initial values of A and B being $1000 and $2000,
respectively. Suppose that a system crash has occurred during the execution of Ta,

after output(Ba) has taken place, but before output(Br) was executed, where Ba and

Bs denote the buffer blocks on which A and B reside. Since the memory contents
were lost, we do not know the fate of the transaction; thus, we could invoke one of
two possible recovery procedures:

o Reexecute 4. This procedure will result in the value of A becoming $900,
rather than $950. Thus, the system enters an inconsistent state.

o Do not reexecute Ti. The current system state has values of $950 and $2000
for A and B, respectively. Thus, the system enters an inconsistent state.

In either case, the database is left in an inconsistent state, and thus this simple re-

covery scheme does not work. The reason for this difficulty is that we have modified
the database without having assurance that the transaction will indeed commit. Our
goal is to perform either all or no database modifications made by [. However, if

4 performed multiple database modifications, several output operations may be re-

quired, and a failure may occur after some of these modifications have been made,
but before all of them are made.

To achieve our goal of atomicity, we must first output information describing the

modifications to stable storage, without modifying the database itself. As we shall
see, this procedure will allow us to output all the modifications made by a committed
transactibn, despite failures. We shall assume that transactions are executed serially; in
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other words, only a single transaction is active at a time. We shall describe how
handle concurrently executing transactions late1, in Section 12.5.

17.4 Log-Bcsed Recovery
The most widely used structure for recording database modifications is the 1og. The
log is a sequence of log recotds, recording all the update activities in the datibase.
There are several types of log records. An update log record describes a single data-
base write. It has these fields:

Transaction identifier is the unique identifier of the transaction that performed
the write operation.

Data-item identifier is the unique identifier of the data item written. Typically,
it is the location on disk of the data item.

o Old value is the'value of the data item prior to the write.

o New value is the value that the data item will have after the write.

Other special log records exist to record significant events during transaction pro-
cessing, such as the start of a transaction and the commit or abort of a transaction.
We denote the various types of log records as:

o .7Tt. start>. Transaction Tihas started.

1 {Tt, Xi, Vr, V2>. Transaction fr has performed a write on data item Xi. Xi
had value I{ before the write, and will have value v2 after the write.

o lTt commit>. Transaction Tihas committed.

o lTt abort>. Transaction T, has aborted.

Whenever a transaction performs a write, it is essential that the log record for that
write be created before the database is modified. Once a log record exists, we can
output the modification to the database if that is desirable. Also, we have the ability
to undo a modification that has already been output to the database. We undo it by
using the old-value field in log records.

For log records to be useful for recovery from system and disk failures, the log
must reside in stable storage. For now, we assume that every log record is written to
the end of the log on stable storage as soon as it is created. In Section 17.6, we shall
see when it is safe to relax this requirement so as to reduce the overhead imposed by
logging. In Sections 17 .4.7 and 17 .4.2, we shall introduce two techniques for using the
log to ensure transaction atomicity despite failures. Observe that the log contains a
complete record of all database activity. As a result, the volume of data stored in the
log may become unreasonably large. In Section 77.4.3, we shall show when it is safe
to erase log information.
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17.4.1 Deferred Dqtqbqse Modificotion

The deferred-modification technique ensures transaction atomicity by recording all

database modifications in the log, but deferring the execution of all write operations
of a transaction until the transaction partially commits. Recall that a transaction is

said to be partially committed once the final action of the transaction has been ex-

ecuted. The version of the deferred-modification technique that we describe in this

section assumes that transactions are executed serially.
When a transaction partially commits, the information on the log associated with

the transaction is used in executing the deferred writes. If the system crashes before

the transaction completes its execution, or if the transaction aborts, then the informa-
tion on the log is simplY ignored.

The execution of transaction 4 proceeds as follows. Before 4 starts its executiorL
a record <4 start> is written to the 1og. A write(D operation by 4 results in the

writing of a new record to the log. Finally, when 4 partially commits, a record <fr
commit> is written to the log.

When transaction Tipartially commits, the records associated with it in the log are

used in executing the deferred writes. Since a failure may occur while this updating is

taking place, we must ensure that, before the start of these updates, all the log records

are written out to stable storage. Once they have been written, the actual updating

takes place, and the transaction enters the committed state.
Obierve that only the new value of the data item is required by the deferred-

modification technique. Thus, we can simplify the general update-log record struc-

ture that we saw in the previous section, by omitting the old-value field.
To illustrate, reconsider our simplified banking system. LetTs be a transaction that

transfers $50 from account A to account B:

Ts: read(A);
A :=  A -  50 ;
write(A);
read(B);
B : = B + 5 0 ;
write(B).

Let Tr be a transaction that withdraws $100 from account C:

ft: read(C);
C:=  C -  100;
write(O.

Suppose that these transactions are executed serially, in the order ?o followed by Tt,

and that the values of accounts A, B, and C before the execution took place were

$1000, $2000, and $700, respectively. The portion of the log containing the relevant
information on these two transactions appears in Figure 17.2.

There are various orders in which the actual outputs can take place to both the

database system and the log as a result of the execution of 7o and ft. One such order
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<Ts start>
<To, A, g50t
<To,8 ,2050>
<Ts commit>
<71 staft>
<71 , C, 600>
<71 commit>
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Figurel7.2 Portion of the database log corresponding to ?s and ft.

appears in Figure 17.3. Note that the value of A is changed in the database only after
the record <Ts, A, 950> has been placed in thq log.

Using the log, the system can handle any failure that results in the loss of informa-
tion on volatile storage. The recovery scheme uses the following recovery procedure:

r redo(4) sets the value of all data items updated by transaction I to the new
values.

The set of data items updatedby Ti and their respective new values can be found in
the log.

Theredo operation must be idempotent; that is, executing it several times must be
equivalent to executing it once. This characteristic is required if we are to guarantee
correct behavior even if a failure occurs during the recovery process.

After a failure, the recovery subsystem consults the log to determine which trans-
actions need to be redone. Transaction I needs to be redone if and only if the log
contains both the record <[ start> and the recqrd <fr commit>. Thus, if the systeri
crashes after the transaction completes its execgtion, the recovery scheme usls the
information in the log to restore the system to a previous consistent state after the
transaction had completed.

As an illustration, let us return to our banking example with transactions ?s and
7i executed one after the other in the order ?6 followed by Tr. Figure 12.2 shows the
log that results from the complete execution of ?s and ir. Let ns rnppore that the

Database

A = 9 5 0
B = 2050

C = 6 0 0

Log
<To stat't>
<To, A, 950>
<.To,  8 ,2050>
<76 commit>

<7, start>
<T1 , C, 600>
<71 commit>

Figure 17.3 State of the log and databade corresponding to Ts and.T1.
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<Ts starb <76 start> <Ts start>
<To, A, 950> <To] A, 950> <To, A, 950>
< T s ,  8 , 2 0 5 0 >  . T o l  8 , 2 0 5 0 >  < T g ,  8 , 2 0 5 0 >

<76 commib <76 commit>
<71 staft> <ft start>
<T1l C, 600> <TL, c, 600>

<71 commit>
(a) (b) (c)

Figure17.4 The same log as that if Figure 17.3, shown at three different times.

system crashes before the completion pf the transactions, so that we can see how the

t".o.r"ty technique restores the datab{se to a consistent state. Assume that the crash

occurs just after the log record for the ptep

1rurite(B)

of transaction 7o has been written to $table storage. The log at the time of the crash

appears in Figure 77.4a.When the syptem comesbackup, no redo actions need to

bL taken, since no commit record app{ars in the log. The values of accounts A andB

remain $1000 and 92000, respectively. The log records of the incomplete transaction

7o can be deleted from the log'
Now,let us assume the crash come$ just after the log record for the step

[rurite(C)

of transaction ?r has been written to ltable storage. In this case, the log at the time

of the crash is as in Figure 17.4b. W{ren the system comes back up, the operation
redo("0) is performed, since the recor<fl

<?fo commit>

appears in the log on the disk. After tljis operation is executed, the values of accounts

A and B are $950 and $2050, respecti'{,rely- The value of account C remains $700. As

before, the log records of the incompl{te transaction 7r can be deleted from the log.

Finally, assume that a crash occurs iust after the log record

<Tr commit>

is written to stable storage. The log at {he time of this crash is as in Figure 17.4c. When
the system comes back up, two com{nit records are in the log: one for Ts and one

for 71. Therefore, the system must pelform operations redo(Tg) and redo(?r), in the

order in which their commit records afpear in the log. After the system executes these

operations, the values of accounts A,il, and C are $950, $2050, and $600, respectively.
Finally, let us consider a case in lrlhich a second system crash occurs during re-

covery fiom the first crash. Some chafrges may have been made to the database as a
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result of the redo operations, but all changes may not have been made. When the sys-
tem comes up after the second crash, recovery proceeds exactly as in the preceding
examples. For each commit record

{Tt commit>

found in the log, the the system performs the operation redo(4). In other words,
it restarts the recovery actions from the beginning. Since redo writes values to the
database independent of the values currently in the database, the result of a success-
ful second attempt at redo is the same as though redo had succeeded the first time.

17.4.2 lmmediqte Dqtqbqse Modificqtion
The immediate-modification technique allows database modifications to be output
to the database while the transaction is still in the active state. Data modificatibns
written by active transactions are called uncommitted modifications. In the event
of a crash or a transaction failure, the system must use the old-value field of the
log records described in Section 77.4 to restore the modified data items to the value
they had prior to the start of the transaction. The undo operation, described next,
accomplishes this restoration.

Before a transaction I starts its execution, the system writes the record <71 start>
to the log. During its execution, any write(X) operation by Ta is precededby the writ_
ing of the appropriate new update record to the log. when Ti partially commits, the
system writes the record <[ commit> to the log.

Since the information in the log is used in reconstructing the state of the database,
we cannot allow the actual update to the database to take place before the corre-
sponding log record is written out to stable storage. We therefore require that, before
execution of an output(B) operation, the log records correspondir-rg to f be written
onto stable storage. We shall return to this issue in Section 17.6.

As an illustration, let us reconsider our simplified banking system, with transac-
tions 7s and ft executed one after the other in the order ?6 followed by Tr. The por-
tion of the log containing the relevant information concerning these two transactions
appears in Figure 17.5.

Figure 17.6 shows one possible order in which the actual outputs took place in both
the database system and the log as a result of the execution of ?e and fi. Notice that

<To start>
<To, A, 1000, 950>
.To, 8,2000, 2050>
<Ts commit>
<T1 start>
171., C, 700, 600>
<ft commit>

Figure 17.5 Portion of the system log corresponding to ?e and ?i.
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Log Database
<Ts start>
<Ts,  A ,1000,  950>
<To, 8,2000, 2050>

A =950
B =2050

<76 commit>
<71 start>
< T t ,  C , 7 0 0 , 6 0 0 >  

C = 6 0 0

<71 commit>

Figure 17.6 State of system 1og and database corresponding to ?e and fi'

this order could not be obtained in the deferred-modification technique of Section
17.4.7.

Using the log, the system can handle any failure that does not result in the loss

of information in nonvolatile storage. The recovery scheme uses two recovery proce-

dures:

o undo(4) restores the value of all data items updated by transaction I to the

old values.

o redo(4) sets the value of all data items updated by transaction fr to the new

values.

The set of data items updatedby Ti and their respective old and new values can be

found in the log.
The undo and redo operations must be idempotent to guarantee correct behavior

even if a failure occurs during the recovery process.
After a failure has occurred, the recovery scheme consults the log to determine

which transactions need to be redone, and which need to be undone:

r Transaction ?, needs to be undone if the log contains the record <4 start>,

but does not contain the record <?, commit>.

o Tiansaction ?, needs to be redone if the log contains both the record <4 start>

and the record <4 commit>.

As an illustration, return to our banking example, with transaction ?o and ft ex-

ecuted one after the other in the order ?s followed by Tt. Suppose that the system

crashes before the completion of the transactions. We shall consider three cases. The

state of the logs for each of these cases aPPeats inFigure 77.7.
First, Iet us assume that the crash occurs just after the log record for the step

write(B)



<76 start>
<To, A, 1000, 950>
1To, 8,2000, 2050>

<Ts stan>
<To,  A ,1000,  950>
<To, 8,2000, 2050>
<Ts commit>
<71 start>
<Tt,  C,700, 600>

(b)

17.4 Log-Based Recovery

<76 start>
1To, A, 1000, 950>
<Tg, B, 2000,2050>
<Ts commit>
<T1 start>
<Tt,  C,700, 600>
<71 commit>

(c)(a)

Figure17.7 The same log, shown at three different times.

of transaction 7e has been written to stable storage (Figure 77.7a). When the system
comes back up, it finds the record <70 start> in the log, but no corresponding <?0
commit> record. Thus, transaction 7s must be undone, so an undo(?e) is performed.
As a result, the values in accounts A and B (on the disk) are restored to $1000 and
$2000, respectively.

Next, let us assume that the crash comes just after the log record for the step

write(C)

of transaction ft has been written to stable storage (Figure 77.7b). When the system
comes back up, two recovery actions need to be taken. The operation undo(?r) must
be performed, since the record <?r start> appears in the log, but there is no record
<7r commit>. The operation redo("0) must be performed, since the log contains both
the record <70 start> and the record <70 commit). At the end of the entire recovery
procedure, the values of accounts A, B, and C are $950, $2050, and $700, respectively.
Note that the undo(Tr) operation is performed before the redo(To). In this example,
the same outcome would result if the order were reversed. Howevel, the ordei of
doing undo operations first, and then redo operations, is important for the recovery
algorithm that we shall see in Section 17.5.

Finally, let us assume that the crash occurs just after the log record

<fi commit>

has been written to stable storage (Figure 77.7c). when the system comes back up,
both 76 and T1 need to be redone, since the records <?0 Start> and <?s cOmmit>
appear in the 1og, as do the records <ft start> and <?r commit>. After the system
performs the recovery procedures redo(?o) and redo(?r), the values in accounts A, B,
and C are $950, $2050, and 9600, respectively.

17.4.3 Checkpoints
When a system failure occurs, we must consult the log to determine those transac-
tions that need to be redone and those that need to be undone. In principle, we need
to search the entire log to determine this information. There are two major difficulties
with this approach:
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1. The search process is time-consuming.

2. Most of the transactions that, according to our algorithm, need to be redone
have already written their updates into the database. Although redoing them
will cause no harm, it will nevertheless cause recovery to take longer.

To reduce these types of overhead, we introduce checkpoints. During execution, the
system maintains the log, using one of the two techniques described in Sections 17.4.1
and.17.4.2.In addition, the system periodicaliy performs checkpoints, which require
the following sequence of actions to take place:

1. Output onto stable storage all log records currently residing in main memory.

2. Output to the disk all modified buffer blocks.

3. Output onto stable storage a log record <checkpoint>.

Transactions are not allowed to perform any update actions, such as writing to a

buffer block or writing a log record, while a checkpoint is in progress.
The presence of a <checkpoint> record in the log allows the system to streamline

its recovery procedure. Consider a transaction Ta that committed prior to the check-

point. For such a transaction, the <Ti commit> record appears in the log before the

<checkpoint> record. Any database modifications made by I must have been writ-

ten to the database either prior to the checkpoint or as part of the checkpoint itself-

Thus, at recovery time, there is no need to perform a redo operation on fr.
This observation allows us to refine our previous recovery schemes. (We continue

to assume that transactions are run serially.) After a failure has occurred, the recov-
ery scheme examines the log to determine the most recent transaction Ti that started
executing before the most recent checkpoint took place. It can find such a transac-
tion by searching the log backward, from the end of the log, until it finds the first

<checkpoint> record (since we are searching backward, the record found is the final
<checkpoint> record in the log); then it continues the search backward until it finds

the next <fr start> record. This record identifies a transaction fr.
Once the system has identified transactionTi, the redo and undo operations need

to be applied to only transaction Ta and all transactions Q that started executing
after trinsaction 4. Let us denote these transactions by the set T. The remainder
(earlier part) of the log can be ignored, and can be erased whenever desired. The
exact recovery operations to be performed depend on the modification technique
being used. For the immediate-modification technique, the recovery operations are:

o For all transactions Tp inT that have no <T1" commit> record in the log, exe-
cute undo(?r).

o For all transactions Tn inT such that the record <7r commit> appears in the
log, execute redo(fi,).

Obviously, the undo operation does not need to be applied when the deferred-modifi-
cation technique is being employed.



17.5 Recovery with Concurrent Transactions 697

As an illustration, consider the set of transactions {?0, Tr, . . .,?roo} executed in the
order of the subscripts. Suppose that the most recent checkpoint took place during
the execution of transaction 7oz. Thus, only transactions Tar, Tae, . . .,Tr0o need to be
considered during the recovery scheme. Each of them needs to be redone if it has
committed; otherwise, it needs to be undone.

In Section 17.5.3, we consider an extension of the checkpoint technique for concur-
rent transaction processing.

17.5 Recovery with Concurrent Trqnsqctions
Until now, we considered recovery in an environment where only a single trans-
action at a time is executing. We now discuss how we can modify and extend the
log-based recovery scheme to deal with multiple concurrent transactions. Regardless
of the number of concurrent transactions, the system has a single disk buffer and a
single tog. All transactions share the buffer blocks. We allow immediate modification,
and permit a buffer block to have data items updated by one or more transactions.

17.5.1 Interqction with Concurrency Control
The recovery scheme depends greatly on the concurrency-control scheme that is
used. To roll back a failed transaction, we must undo the updates performed by the
transaction. Suppose that a transaction 7e has to be rolled baik, and i data item Q that
was updatedby Ts has to be restored to its old value. Using the log-based schemes
for recovery, we restore the value by using the undo information in a log record. Sup-
pose now that a second transaction ft has performed yet another update on e before
76 is rolled back. Then, the update performed by 

"1 
will be lost if ?s is rolled back.

Therefore, we require that, if a transaction ? has updated a data item e, no other
transaction may update the same data item until 7 has committed or been rolled
back. We can ensure this requirement easily by using strict two-phase locking-that
is, two-phase locking with exclusive locks held until the end of the transaction.

17.5.2 Trqnsqction Rollbqck
we roll back a failed transaction,Ti, by using the log. The system scans the log back-
ward;for every log record of the form <Ti, Xi, vy, v2) found in the log, the system
restores the data item Xy to its old value [. Scanning of the log terminates when the
log record <[, start> is found.

scanning the log backward is important, since a transaction may have updated a
data item more than once. As an illustration, consider the pair of log recordi

1Ti,  A, 10, 20>
{T i ,  A ,20 ,  30>

The log records represent a modification of data item A by ru, followed by another
modification of Aby fr. Scanning the log backward sets ,4 correctly to 10. If the log
were scanned in the forward direction, ,4 would be set to 20, which is incorrect.
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If strict two-phase locking is used for concurrency control, locks held by a transac-

tion 7 may be released only after the transaction has been rolled back as described.

Once transaction ? (that is being rolled back) has updated a data item, no other trans-

action could have updated the same data item, because of the concurrency-control

requirements mentioned in Section 17.5.7. Therefore, restoring the old value of the

data item will not erase the effects of any other transaction.

17.5.3 Checkpoints
In Section 17.4.3, we used checkpoints to reduce the number of log records that the
system must scan when it recovers from a crash. Since we assumed no concurrency,
it was necessary to consider only the following transactions during recovery:

o Those transactions that started after the most recent checkpoint

o The one transaction, if any, that was active at the time of the most recent check-
point

The situation is more complex when transactions can execute concurrently, since sev-
eral transactions may have been active at the time of the most recent checkpoint.

In a concurrent transaction-processing system, we require that the checkpoint log
record be of the form <checkpoint L>, where L is a list of transactions active at the
time of the checkpoint. Again, we assume that transactions do not perform updates
either on the buffer blocks or on the log while the checkpoint is in progress.

The requirement that transactions must not perform any updates to buffer blocks
or to the log during checkpointing can be bothersome, since transaction processing
will have to halt while a checkpoint is in progress. A fuzzy checkpoint is a check-
point where transactions are allowed to perform updates even while buffer blocks
are being written out. Section 17.8.5 describes fuzzy-checkpointing schemes.

17.5.4 Restqrt Recovery
When the system recovers from a crash, it constructs two lists: The undo-list consists
of transactions to be undone, and the redo-list consists of transactions to be redone.

The system constructs the two lists as follows: initially, they are both empty.
The system scans the log backward, examining each record, until it finds the first
<checkpoint> record:

o For each record found of the form <4 commit>, it adds 4 to redo-Iist.

o For each record found of the form <4 Start>, if Tt is not in redo-list, then it
addsTr to undo-list

When the system has examined all the appropriate log records, it checks the list L in
the checkpoint record. For each transaction TiinL,if Ttis not in redo-list then it adds

4 to the undo-list.
Once the redo-list and undo-list have have been constructed, the recovery pro-

ceeds as follows:
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1. The system rescans the log from the most recent record backward, and per-
forms an undo for each log record that belongs to transaction fr on the undo-
list. Log records of transactions on the redo-list are ignored in this phase. The
scan stops when the <4 start> records have been found for every transaction
I in the undo-list.

2. The system locates the most recent <checkpoint L> record on the log. Notice
that this step may involve scanning the log forward, if the checkpoint record
was passed in step 1.

3. The system scans the log forward from the most recent <checkpoint L> record,
and performs redo for each log record that belongs to a transaction fr that is
on the redo-list. It ignores 1og records of transactions on the undo-list in this
phase.

It is important in step 1 to process the log backward, to ensure that the resulting
state of the database is correct.

After the system has undone all transactions on the undo-list, it redoes those trans-
actions on the redo-list. It is important, in this case, to process the log forward. When
the recovery process has completed, transaction processing resumes.

It is important to undo the transaction in the undo-list before redoing transactions
in the redo-list, using the algorithm in steps 1 to B; otherwise, a problem may occur.
Suppose that data item A initiatty has the value 10. Suppose that a transaition I
updated data item A to 20 and aborted; transaction rollback would restore A to the
value 10. Suppose that another transaction Q. then updated data item,4 to 30 and
committed, following which the system crashed. The state of the log at the time of
the crash is

<Ti,  A, 10, 20>
{Ti,  A, 10, 30>
<Q commit>

If the redo pass is performed hrst, A wilt be set to 30; then, in the undo pass, ,4 will
be set to 10, which is wrong. The final value of Q should be 30, which we can ensure
by performing undo before performing redo.

17.5 Buffer Monogement
In this section, we consider several subtle details that are essential to the implementa-
tion of a crash-recovery scheme that ensures data consistency and imposes a minimal
amount of overhead on interactions with the database.

17.6.1 Log-Record Buffering
So far, we have assumed that every log record is output to stable storage at the time it
is created. This assumption imposes a high overhead on system execution for several
reasons: Typically, output to stable storage is in units of blocks. In most cases, a log
record is much smaller than a block. Thus, the output of each log record translates to
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a much larger output at the physical level. Furthermore, as we saw in Section 17.2.2,
the output of a block to stable storage may involve several output operations at the
physical level.

The cost of outputting a block to stable storage is sufficiently high that it is desir-
able to output multiple log records at once. To do so, we write log records to a log
buffer in main memory, where they stay temporarily until they are output to stable
storage. Multiple log records can be gathered in the log buffer, and output to stable
storage in a single output operation. The order of log records in the stable storage
must be exactly the same as the order in which they were written to the log buffer.

As a result of log buffering, a log record may reside in only main memory (volatile

storage) for a considerable time before it is output to stable storage. Since such log
records are lost if the system crashes, we must impose additional requirements on
the recovery techniques to ensure transaction atomicity:

r tansaction fr enters the commit state after tlrre <Ti commit> log record has
been output to stable storage.

o Before the <Ti commit> log record can be output to stable storage, all log
records pertaining to transaction I must have been output to stable storage.

o Before a block of data in main memory can be output to the database (in non-
volatile storage), all log records pertaining to data in that block must have
been output to stable storage.

This rule is called the write-ahead logging WAL) rule. (Strictly speaking,
the WAL rule requires only that the undo information in the log have been
output to stable storage, and permits the redo information to be written later.
The difference is relevant in systems where undo information and redo infor-
mation are stored in separate log records.)

The three rules state situations in which certain log records must have been output
to stable storage. There is no problem resulting from the output of log records earlier
than necessary. Thus, when the system finds it necessary to output a log record to
stable storage, it outputs an entire block of log records, if there are enough log records
in main memory to fill a block. If there are insufficient log records to fill the block, all
log records in main memory are combined into a partially full block, and are output
to stable storage.

Writing the buffered log to disk is sometimes referred to as a log force.

17.6.2 Dqtqbqse Buffering
In Section 17.2, we described the use of a two-level storage hierarchy. The system
stores the database in nonvolatile storage (disk), and brings blocks of data into main
memory as needed. Since main memory is typically much smaller than the entire
database, it may be necessary to overwrite a block 81 in main memory when another
block Bz needs to be brought into memoly. If Br has been modified, Bl must be
output prior to the input of 82. As discussed in Section 11.5.1 in Chapter 11, this
storage hierarchy is the standard operating system concept of oirtual memory.
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The rules for the output of log records limit the freedom of the system to output
blocks of data. If the input of block 82 causes block 81 to be chosen for output, all log
records pertaining to data in .B1 must be output to stable storage before 81 is output.
Thus, the sequence of actions by the system would be:

o Output log records to stable storage until all log records pertaining to block
81 have been output.

o Output block 81 to disk.

o Input block 82 from disk to main memory.

It is important that no writes to the block 81 be in progress while the system car-
ries out this sequence of actions. We can ensure that there are no writes in progress
by using a special means of locking: Before a transaction performs a write on a data
item, it must acquire an exclusive lock on the block in which the data item resides.
The lock can be released immediately after the update has been performed. Before
a block is output, the system obtains an exclusive lock on the block, to ensure that
no transaction is updating the block. It releases the lock once the block output has
completed. Locks that are held for a short duration are often called latches. Latches
are treated as distinct from locks used by the concurrency-control system. As a re-
sult, they may be released without regard to any locking protocol, such as two-phase
Iocking, required by the concurrency-control system.

To illustrate the need for the write-ahead logging requirement, consider our bank-
ing example with transactions 7s andTy. Suppose that the state of the log is

<70 start>
1Tg,  4 ,1000,  950>

and that transaction 7s issues a read(B). Assume that the block on which B resides is
not in main memory, and that main memory is full. Suppose that the block on which
A resides is chosen to be output to disk. If the system outputs this block to disk and
then a crash occurs, the values in the database for accounts A, B, and C are $950,
$2000, and $700, respectively. This database state is inconsistent. Howevel, because
of the WAL requirements, the log record

(Ts ,  A ,1000,  950>

must be output to stable storage prior to output of the block on which A resides.
The systern can use the log record during recovery to bring the database back to a
consistent state.

17.6.3 Operoting System Role in Buffer Monogement
We can manage the database buffer by using one of two approaches:

1. The database system reserves part of main memory to serve as a buffer that
it, rather than the operating system, manages. The database system manages
data-block transfer in accordance with the requirements in Section 17.6.2.
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This approach has the drawback of limiting flexibility in the use of main
memory. The buffer must be kept small enough that other applications have
sufficient main memory available for their needs. Flowever, even when the
other applications are not running, the database will not be able to make use
of all the available memory. Likewise, nondatabase applications may not use
that part of main memory reserved for the database buffer, even if some of the
pages in the database buffer are not being used.

2. The database system implements its buffer within the virtual memory pro-
vided by the operating system. Since the operating system knows about the
memory requirements of all processes in the system, ideally it should be in
charge of deciding what buffer blocks must be force-output to disk, and when.
But, to ensure the write-ahead logging requirements in Section 17.6.7, the op-
erating system should not write out the database buffer pages itself, but in-
stead should request the database system to force-output the buffer blocks.
The database system in turn would force-output the buffer blocks to the data-
base, after writing relevant log records to stable storage.

Unfortunately, almost all current-generation operating systems retain com-
plete control of virtual memory. The operating system reserves space on disk
for storing virtual-memory pages that are not currently in main memory; this
space is called swap space. If the operating system decides to output a block
8", thatblock is output to the swap space on disk, and there is no way for the
database system to get control of the output of buffer blocks.

Therefore, if the database buffer is in virtual memory, transfers between
database files and the buffer in virtual memory must be managed by the
database system, which enforces the write-ahead logging requirements that
we discussed.

This approach may result in extra output of data to disk. If a block B" is
output by the operating system, that block is not output to the database. In-
stead, it is output to the swap space for the operating system's virtual mem-
ory. When the database system needs to output B*, the operating system may
need first to input B* fromits swap space. Thus, instead of a single output of
.B,, there may be two outputs of B, (one by the operating system, and one by
the database system) and one extra input of 8".

Although both approaches suffer from some drawbacks, one or the other must
be chosen unless the operating system is designed to support the requirements of
database logging. Only a few current operating systems, such as the Mach operating
system, support these requirements.

17.7 Fqilure with Loss of Nonvolqtile Storoge
Until now, we have considered only the case where a failure results in the loss of
information residing in volatile storage while the content of the nonvolatile storage
remains intact. Although failures in which the content of nonvolatile storage is lost
are rare, we nevertheless need to be prepared to deal with this type of failure. In
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this section, we discuss only disk storage. Our discussions apply as well to other
nonvolatile storage Wpes.

The basic scheme is to dump the entire contents of the database to stable storage
periodically-say, once per day. For example, we may dump the database to one or
more magnetic tapes. If a failure occurs that results in the loss of physical database
blocks, the system uses the most recent dump in restoring the database to a previous
consistent state. Once this restoration has been accomplished, the system uses the log
to bring the database system to the most recent consistent state.

More precisely, no transaction may be active during the dump procedure, and a
procedure similar to checkpointing must take place:

1. Output all log records currently residing in main memory onto stable storage.

2. Output all buffer blocks onto the disk.

3. Copy the contents of the database to stable storage.

4. Output a log record <dump> onto the stable storage.

Steps 1, 2, and 4 correspond to the three steps used for checkpoints in Section 77.4.3.
To recover from the loss of nonvolatile storage, the system restores the database

to disk by using the most recent dump. Then, it consults the log and redoes all the
transactions that have committed since the most recent dump occurred. Notice that
no undo operations need to be executed.

A dump of the database contents is also referred to as an archival dump, since
we can archive the dumps and use them later to examine old states of the database.
Dumps of a database and checkpointing of buffers are similar.

The simple dump procedure described here is costly for the following two reasons.
First, the entire database must be copied to stable storage, resulting in considerable
data transfer. second, since transaction processing is halted during the dump pro-
cedure, CPU cycles are wasted. Fazzy dump schemes have been developed, which
allow transactions to be active while the dump is in progress. They are similar to
fuzzy-checkpointing schemes; see the bibliographical notes for more details.

17.8 Advqnced Recovery Techniquesxx
The recovery techniques described in Section 17.5 require tha! once a transaction up-
dates a data item, no other transaction may update the same data item until the firit
commits or is rolled back. We ensure the condition by using strict two-phase locking.
Although strict two-phase locking is acceptable for records in relations, as discussed
in Section 16.9, it causes a significant decrease in concurrency when applied to certain
specialized structures, such as B+-tree index pages.

To increase concurrency, we can use the B+-tree concurrency-control algorithm de-
scribed in Section 76.9 to allow locks to be release d early, in a non-two-phase manner.
As a result, however, the recovery techniques from Section 17.5 will become inap-
plicable. Several alternative recovery techniques, applicabie even with early lock re-
lease, have been proposed. These schemes can be used in a variety of applications, not
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just for recovery of B*-trees. We first describe an advanced recovery scheme supP9l-
ing early lock release. We then outline the ARIES recovery scheme, which is widely

,rt"d it ih" industry. ARIES is more complex than our advanced recovery scheme, but

incorporates a number of optimizations to minimize recovery time, and provides a
number of other useful features.

17.8.1 Logicol Undo Logging
For operations where locks are released early, we cannot perform the undo actions

by simply writing back the old value of the data items. Consider a transaction ?

that inieits un ettity into a B--tree, and, following the B+-tree concurrency-control
protocol, releases some locks after the insertion operation completes, but before the

iransaction commits. After the locks are released, other transactions may perform

further insertions or deletions, thereby causing further changes to the B+-tree nodes.

Even though the operation releases some locks early, It must retain enough locks

to ensure that no other transaction is allowed to execute any conflicting operation
(such as reading the inserted value or deleting the inserted value). For this reason/

the B+-tree .otri.ttr"tr.y-control protocol in Section 16.9 holds locks on the leaf level

of the B+-tree until the end of the transaction.
Now let us consider how to perform transaction rollback. If physical undo is used,

that is, the old values of the internal B+-tree nodes (before the insertion operation
was executed) are written back during transaction rollback, some of the updates per-

formed by later insertion or deletion operations executed by other transactions could

be lost. Instead, the insertion operation has to be undone by a logical undo-that is,

in this case, by the execution of a delete operation.
Therefore, when the insertion operation completes, before it releases any locks, it

writes a log record <Ti,Oi, operation-end, U), where the [/ denotes undo informa-

tion and Oi denotes a unique identifier for (the instance of) the operation. For exam-

ple, if the operation inserted an entry in a B+-tree, the undo information U would
indicate thai a deletion operation is to be performed, and would identify the B+-tree
and what to delete from the tree. Such logging of information about operations is

called logical logging. In contrast,logging of old-value and new-value information
is called physical logging, and the corresponding log records are called physical log

records.
The insertion and deletion operations are examples of a class of operations that re-

quire logical undo operations since they release locks early; we call such operations
lbgical operations. Before a logical operation begins, it writes a log record {Ti,Oi,
operation-begin>, where 07 is the unique identifier for the operation. While the sys-

tem is executing the operation, it does physical logging in the normal fashion for all

updates performed by the operation. Thus, the usual old-value and new-value in-

formation is written out for each update. When the operation finishes, it writes an

operation-end log record as described earlier.

17.8.2 Trqnsqction Rollbqck

First consider transaction rollback during normal operation (that is, not during re-

covery from system failure). The system scans the log backward and uses log records
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belonging to the transaction to restore the old values of data items. Unlike rollback
in normal operation, however, rollback in our advanced recovery scheme writes out
special redo-only log records of the form KTi, Xi, I/> containing the value v being
restored to data item Xr' during the rollback. These log records are sometimes called
compensation log records. Such records do not need undo information, since we will
never need to undo such an undo operation.

whenever the system finds a log record qTi,oi, operation-en d, [J],it takes spe-
cial actions:

1. It rolls back the operation by using the undo information U in the log record.
It logs the updates performed during the rollback of the operation just like
updates performed when the operation was first executed. In other words,
the system logs physical undo information for the updates performed during
rollback, instead of using compensation log records. This is because a crash
may occur while a logical undo is in progress, and on recovery the system
has to complete the logical undo; to do so, restart recovery will undo the par-
tial effects of the earlier undo, using the physical undo information, and then
perform the logical undo again, as we will see in Section77.8.4.

At the end of the operation rollback, instead of generating a tog record
<Ti, O i, operation-en d, U >, the database system generates a log record <Ti, O i,
operation-abort>.

2. When the backward scan of the log continues, the system skips all log records
of the transaction until it finds the log record .:Ti, Oi, operation-begin>. After
it finds the operation-begin log record, it processes log records of the transac-
tion in the normal manner again.

Observe that skipping over physical log records when the operation-end log record
is found during rollback ensures that the old values in the physical log record are not
used for rollback, once the operation completes.

If the system finds a record <Ti,oi, operation-abort>, it skips all preceding re-
cords until it finds the record {Ti,oi, operation-begin>. These preceding log records
must be skipped to prevent multiple rollback of the same operation, in case there had
been a crash during an earlier rollback, and the transaction had already been partly
rolled back. When the transaction f; has been rolled back, the svstem adds a record
<Ti aborl> to the log.

If failures occur while a logical operation is in progress, the operation-end log
record for the operation will not be found when the transaction is rolled back. How-
ever, for every update performed by the operation, undo information-in the form
of the old value in the physical log records-is available in the log. The physical log
records will be used to roII back the incomplete operation.

17.8.3 Checkpoints
Checkpointing is performed as described in section 17.5. The system suspends up-
dates to the database temporarilv and carries out these actions:
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It outputs to stable storage all log records currently residing in main memoly.

It outputs to the disk all modified buffer blocks.

It outputs onto stable storage a log record <Checkpoint L>, where tr is a list of
all active transactions.

17.8.4 Restort RecoverY
Recovery actions, when the database system is restarted after a failure, take place in

two phases:

L. In the redo phase, the system replays updates of aII transactions by scan-

ning the log forward from the last checkpoint. The log records that are re-

played include log records for transactions that were rolled back before sys-

lem crash, and those that had not committed when the system crash occurred.

The records are the usual log records of the form <Ti, Xi, Vt, 7z) as well

as the special log records of the form <fr, Xi, Vz)) the value V2 is written

to data item X i in either case. This phase also determines all transactions that

are either in the transaction list in the checkpoint record, or started later, but

did not have either a <Ti aborl> or a lTi commit> record in the log. All these

transactions have to be rolled back, and the system puts their transaction iden-

tifiers in an undo-list.

2. In the undo phase, the system rolls back all transactions in the undo-list. It

performs rollback by scanning the log backward from the end. Whenever

it finds a log record belonging to a transaction in the undo-list, it performs
und.o actioni just as if the log record had been found during the rollback of a

failed transaction. Thus, log records of a transaction preceding an operation-
end record, but after the corresponding Operation-begin record, are ignored.

When the system finds a <4 start> log record for a transaction ?j in undo-
list, it writes a lTi abort> log record to the log. Scanning of the log stops

when the system has found <f, start> log records for all transactions in the

undo-list.

The redo phase of restart recovery replays every physical log record since the most

recent checlipoint record. In other words, this phase of restart recovery repeats all

the update aitiotrs that were executed after the checkpoint, and whose log records

reached the stable log. The actions include actions of incomplete transactions and the

actions carried out to roll failed transactions back. The actions are repeated in the

same order in which they were carried out; hence, this process is called repeating

history. Repeating history simplifies recovery schemes greatly.
Note thit if an operation undo was in progress when the system crash occurred,

the physical log records written during operation undo would be found, and the par-
tial bperation undo would itself be undone on the basis of these physical log records.

After that the original operation's operation-end record would be found during re-

covery, and the operation undo would be executed again.

1.

2.

J .



17.8 Advanced Recovery Techniquesx x

17.8.5 Fuzzy Checkpointing
The checkpointing technique described in Section 17.5.3 rcquires that all updates to
the database be temporarily suspended while the checkpoint is in progreis. If the
number of pages in the buffer is large, a checkpoint may take a long time to finish,
which can result in an unacceptable interruption in processing of transactions.

To avoid such interruptions, the checkpointing technique can be modified to per-
mit updates to start once the checkpoint record has been written, but before the modi-
fied buffer blocks are written to disk. The checkpoint thus generated is a finzy check-
point.

Since pages are output to disk only after the checkpoint record has been written, it
is possible that the system could crash before all pages are written. Thus, a checkpoint
on disk may be incomplete. One way to deal with incomplete checkpoints iJthis:
The location in the log of the checkpoint record of the last completed checkpoint
is stored in a fixed position, last-checkpoint, on disk. The system does not update
this information when it writes the checkpoint record. Instead, before it writes the
checkpoint record, it creates a list of all modified buffer blocks. The last-checkpoint
information is updated only after all buffer blocks in the list of modified buffer blocks
have been output to disk.

Even with fuzzy checkpointing, a buffer block must not be updated while it is
being output to disk, although other buffer blocks may be updated concurrently. The
write-ahead log protocol must be followed so that (undo) log records pertaining to a
block are on stable storage before the block is output.

Note that, in our scheme, logical togging is used only for undo purposes, whereas
physical logging is used for redo and undo purposes. There are recovery schemes that
use logical logging for redo purposes. To perform logical redo, the database state on
disk must be operation consistent, that is, it should not have partial effects of any
operation. It is difficult to guarantee operation consistency of the database on disk
if an operation can affect more than one page, since it is not possible to write two
or more pages atomically. Therefore,logical redo logging is usually restricted only
to operations that affect a single page; we will see how to handle such logical redos
in Section 77.8.6.In contrast, logical undos are performed on an operation-consistent
database state achieved by repeating history and then performing physical undo of
partially completed operations.

17.8.5 AR|ES
The state of the art in recovery methods is best illustrated by the ARIES recovery
method. The advanced recovery technique which we have described is modeled af-
ter ARIES, but has been simplified significantly to bring out key concepts and make
it easier to understand. In contrast, ARIES uses a number of techniques to reduce the
time taken for recovery, and to reduce the overheads of checkpointing. In particu-
lar, ARIES is able to avoid redoing many logged operations that have already been
applied and to reduce the amount of information logged. The price paid is greater
complexity; the benefits are worth the price.
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The major differences between ARIES and our advanced recovery algorithm are

that ARIES:

1. Uses a log sequence number (LSN) to identify log records, and the use of

LSNs in database pages to identify which operations have been applied to a

database page.

2. Supports physiological redo operations, which are physical in that the af-

fected page is physically identified, but can be logical within the page.

For instance, the deletion of a record from a page may result in many other

records in the page being shifted, if a slotted page structure is used. With phys-

ical redo logging, all bytes of the page affected by the shifting of records must

be logged. Witirphyslological logging, the deletion operation can be logged,

resulting in a much smaller log record. Redo of the deletion operation would

delete the record and shift other records as required.

3. Uses a dirty page table to minimize unnecessary redos during recovery' Dirty

pages are those that have been updated in memory, and the disk version is

not up-to-date.

4. Uses afuzzy-checkpointing scheme that records only information about dirty

pages and associated information and does not even require writing of dirty

pa[es to disk. It flushes dirty pages in the background, continuously, instead

of writing them during checkpoints.

In the rest of this section we provide an overview of ARIES. The bibliographical notes

list references that provide a complete description of ARIES.

17.8.6.1 Dqtq Structures
Each log record in ARIES has a log sequence number (LSN) that uniquely identifies

the record. The number is conceptually just a logical identifier whose value is greater

for log records that occur later in the log. In practice, the LSN is generated in such a

way that it can also be used to locate the log record on disk. Typically, ARIES splits a

loginto multiple log files, each of which has a file number. When a log file grows to

some limit, erufS appends further log records to a new log file; the new log file has a

file number that is higher by 1 than the previous log file. The LSN then consists of a

file number and an offset within the file.
Each page also maintains an identifier called the PageLSN. Whenever an opera-

tion (whether physical or logical) occurs on a page, the operation stores the LSN of

its log record in the PageLSN field of the page. During the redo phase of recovery,

any tog records with LSN less than or equal to the PageLSN of a page should not be

executed on the page, since their actions are already reflected on the page. In com-

bination with a scheme for recording PageLSNs as part of checkpointing, which we

present later, ARIES can avoid even reading many pages for which logged operations

ire already reflected on disk. Thereby, recovery time is reduced significantly.
The PageLSN is essential for ensuring idempotence in the presence of physiologi-

cal redo operations, since reapplying a physiological redo that has already been ap-

plied to a page could cause incorrect changes to a page.
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Pages should not be flushed to disk while an update is in progress, since physi-
ological operations cannot be redone on the partially updated state of the page on
disk. Therefore, ARIES uses latches on buffer pages to prevent them from being writ-
ten to disk while they are being updated. It releases the buffer page latch only after
the update is completed, and the log record for the update has been written to the
log.

Each log record also contains the LSN of the previous log record of the same trans-
action. This value, stored in the PrevLSN field, permits log records of a transaction
to be fetched backward, without reading the whole log. There are special redo-only
log records generated during transaction rollback, called compensation log records
(CLRs) in ARIES. These serve the same purpose as the redo-only log records in our
advanced recovery scheme. In addition CLRs serve the role of the operation-abort
log records in our scheme. The CLRs have an extra field, called the UndoNextLSN,
that records the LSN of the log that needs to be undone next, when the transaction is
being rolled back. This field serves the same purpose as the operation identifier in the
operation-abort log record in our scheme, which helps to skip over log records that
have already been rolled back. The DirtyPageTable contains a list of pages that have
been updated in the database buffer. For each page,itstores the PageLSN and a field
called the RecLSN which helps identify log records that have been applied already
to the version of the page on disk. When a page is inserted into the DirtyPageTable
(when it is first modified in the buffer pool) the value of RecLSN is set to the cur-
rent end of log. whenever the page is flushed to disk, the page is removed from the
DirtyPageTable.

A checkpoint log record contains the DirtyPageTable and a list of active transac-
tions. For each transactioru the checkpoint log record also notes LastLSN, the LSN of
the last log record written by the transaction. A fixed position on disk also notes the
LSN of the last (complete) checkpoint log record.

17.8.6.2 Recovery Algorithm
ARIES recovers from a system crash in three passes.

o Analysis pass: This pass determines which transactions to undo, which pages
were dirty at the time of the crash, and the LSN from which the redo pass
should start.

o Redo pass: This pass starts from a position determined during analysis, and
performs a redo, repeating history, to bring the database to a state it was in
before the crash.

o Undo pass: This pass rolls back all transactions that were incomplete at the
time of crash.

Analysis Pass: The analysis pass finds the last complete checkpoint log record, and
reads in the DirtyPageTable from this record. It then sets RedoLSN to the minimum
of the RecLSNs of the pages in the DirtyPageTable. If there are no dirty pages, it
sets RedoLSN to the LSN of the checkpoint log record. The redo pass starts its scan
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of the log from RedoLSN. All the log records earlier than this point have already

been applied to the database pages on disk. The analysis pass initially sets the list of

transaitions to be undone, undo-list, to the list of transactions in the checkpoint log

record. The analysis pass also reads from the checkpoint log record the LSNs of the

last log record for each transaction in undo-Iist.
ThJanalysis pass continues scanning forward from the checkpoint. Whenever it

finds a log record for a transaction not in the undo-list, it adds the transaction to

undo-list. Whenever it finds a transaction end log recotd, it deletes the transaction

from undo-list. All transactions left in undo-list at the end of analysis have to be

rolled back later, in the undo pass. The analysis pass also keeps track of the last record

of each transaction in undo-list, which is used in the undo pass'
The analysis pass also updates DirtyPageTable whenever it finds a log record for

an update or'r u pug". If the page is not in DirtyPageTable,the analysis pass adds it to

DirtyPageTable, and sets the RecLSN of the page to the LSN of the log record' _
Redo pais: The redo pass repeats historyby replaying every action that is not already

reflected in the pagJotr disk. The redo pass scans the log forward from RedoLSN.

Whenever it finds an update log record, it takes this action:

L. If the page is not in DirtyPageTable or the LSN of the updatelog record is less

than the RecLSN of the page in DirtyPageTable, then the redo pass skips the

log record.

2. Otherwise the redo pass fetches the page from disk, and if the PageLSN is less

than the LSN of the log record, it redoes the log record'

Note that if either of the tests is negative, then the effects of the log record have

already appeared on the page. If the first test is negative, it is not even necessary to

fetch the page from disk.
Undo paJs ind Tiansaction Rollback The undo pass is relatively straightforward. It

performs a backward scan of the log, undoing all transactions in undo-list' If a CLR

is found, it uses the UndoNextLSN field to skip log records that have already been

rolled back. Otherwise, it uses the PrevLSN field of the log record to find the next log

record to be undone.
Whenever an update log record is used to perform an undo (whether for transac-

tion rollback during normal processing, or during the restart undo pass), the undo

pass generates a CLR containing the undo action performed (which must be physio-

ioglcit). It sets the UndoNextLSN of the CLR to the PrevLSN value of the update log

record.

17.8.6.3 Other Feotures
Among other key features that ARIES provides are:

o Recovery independence: Some pages can be recovered independently from

others, ro that they can be used even while other pages are being recovered. If

some pages of a disk fail, they can be recovered without stopping transaction

processing on other Pages.
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o Savepoints: Tiansactions can record savepoints, and can be rolled back par-
tially, up to a savepoint. This can be quite useful for deadlock handling, since
transactions can be rolled back up to a point that permits release of required
locks, and then restarted from that point.

o Fine-grained locking: The ARIES recovery algorithm can be used with index
concurrency-control algorithms that permit tuple-level locking on indices, in-
stead of page-level locking, which improves concurrency significantly.

o Recovery optimizations: The DirtyPageTable can be used to prefetch pages
during redo, instead of fetching a page only when the system finds a log
record to be applied to the page. Out-of-order redo is also possible: Redo can
be postponed on a page being fetched from disk, and performed when the
page is fetched. Meanwhile, other log records can continue to be processed.

In summary, the ARIES algorithm is a state-of-the-art recovery algorithm, incorpo-
rating a variety of optimizations designed to improve concurrency, reduce logging
overhead, and reduce recovery time.

17.9 Remote Bockup Systems
Traditional transaction-processing systems are centralized or client-server systems.
Such systems are vulnerable to environmental disasters such as fire, flooding, or
earthquakes. Increasingly, there is a need for transaction-processing systems that can
function in spite of system failures or environmental disasters. Such systems must
provide high availability, that is, the time for which the system is unusable must be
extremely small.

We can achieve high availability by performing transaction processing at one site,
called the primary site, and having a remote backup site where all the data from
the primary site are replicated. The remote backup site is sometimes also called the
secondary site. The remote site must be kept synchronized with the primary site, as
updates are performed at the primary. We achieve synchronization by sending all log
records from primary site to the remote backup site. The remote backup site must be
physically separated from the primary-for example, we can locate it in a different
state-so that a disaster at the primary does not damage the remote backup site.
Figure 17.8 shows the architecture of a remote backup system.

When the primary site fails, the remote backup site takes over processing. First,
however, it performs recovery, using its (perhaps outdated) copy of the data from the
primary, and the log records received from the primary. In effect, the remote backup
site is performing recovery actions that would have been performed at the primary
site when the latter recovered. Standard recovery algorithms, with minor modifica-
tions, can be used for recovery at the remote backup site. Once recovery has been
performed, the remote backup site starts processing transactions.

Availability is greatly increased over a single-site system, since the system can
recover even if all data at the primary site are lost. The performance of a remote
backup system is better than the performance of a distributed system with two-phase
commit.
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Figure 17.8 Architecture of remote backup system.

Several issues must be addressed in designing a remote backup system:

Detection of failure. As in failure-handling protocols for distributed system,
it is important for the remote backup system to detect when the primary has
failed. Failure of communication lines can fool the remote backup into believ-
ing that the primary has failed. To avoid this problem, we maintain several
communication links with independent modes of failure between the primary
and the remote backup. For example, in addition to the network connection,
there may be a separate modem connection over a telephone line, with ser-
vices provided by different telecommunication companies. These connections
may be backed up via manual intervention by operators, who can communi-
cate over the telephone system.

Transfer of control. When the primary fails, the backup site takes over pro-
cessing and becomes the new primary. When the original primary site recov-
ers, it can either play the role of remote backup, or take over the role of pri-
mary site again. In either case, the old primary must receive a log of updates
carried out by the backup site while the old primary was down,

The simplest way of transferring control is for the old primary to receive
redo logs from the old backup site, and to catch up with the updates by aP-
plying them locally. The old primary can then act as a remote backup site.
If control must be transferred back, the old backup site can pretend to have
failed, resulting in the old primary taking over.

Time to recover. If the log at the remote backup grows large, recovery will
take a long time. The remote backup site can periodically process the redo log
records that it has received, and can perform a checkpoint, so that earlier parts
of the log can be deleted. The delay before the remote backup takes over can
be significantly reduced as a result.

A hot-spare configuration can make takeover by the backup site almost
instantaneous. In this configuration, the remote backup site continually pro-
cesses redo log records as they arrive, applying the updates locally. As soon
as the failure of the primary is detected, the backup site completes recovery
by rolling back incomplete transactions; it is then ready to process new trans-
actions.
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o Time to commit. To ensure that the updates of a committed transaction are
durable, a transaction must not be declared committed until its log records
have reached the backup site. This delay can result in a longer wait to commit
a transactiory and some systems therefore permit lower degrees of durability.
The degrees of durability can be classified as follows.

I One-safe. A transaction commits as soon as its commit log record is writ-
ten to stable storage at the primary site.

The problem with this scheme is that the updates of a committed trans-
action may not have made it to the backup site, when the backup site
takes over processing. Thus, the updates may appear to be lost. When the
primary site recovers, the lost updates cannot be merged in directly, since
the updates may conflict with later updates performed at the backup site.
Thus, human intervention may be required to bring the database to a con-
sistent state.

n TWo-very-safe. A transaction commits as soon as its commit log record is
written to stable storage at the primary and the backup site.

The problem with this scheme is that transaction processing cannot
proceed if either the primary or the backup site is down. Thus, availabil-
ity is actually less than in the single-site case, although the probability of
data loss is much less.

n TWo-safe. This scheme is the same as two-very-safe if both primary and
backup sites are active. If only the primary is active, the transaction is
allowed to commit as soon as its commit log record is written to stable
storage at the primary site.

This scheme provides better availability than does two-very-safe, while
avoiding the problem of lost transactions faced by the one-safe scheme.
It results in a slower commit than the one-safe scheme, but the benefits
generally outweigh the cost.

Several commercial shared-disk systems provide a level of fault tolerance that is in-
termediate between centralized and remote backup systems. In these commercial
systems, the failure of a CPU does not result in system failure. Instead, other CPUs
take ovel and they carry out recovery. Recovery actions include rollback of trans-
actions running on the failed CPU, and recovery of locks held by those transactions.
Since data are on a shared disk, there is no need for transfer of log records. However,
we should safeguard the data from disk failure by using, for example, a RAID disk
organization.

An alternative way of achieving high availability is to use a distributed database,
with data replicated at more than one site. Transactions are then required to update
all replicas of any data item that they update. We study distributed databases, includ-
ing replication, in Chapter 22.

17.10 Summory
o A computer system, like any other mechanical or electrical device, is subject

to failure. There are a variety of causes of such failure, including disk crash,
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power failure, and software errors. In each of these cases, information con-
cerning the database system is lost.

In addition to system failures, transactions may also fail for various reasons,
such as violation of integrity constraints or deadlocks.

An integral part of a database system is a recovery scheme that is responsible
for the detection of failures and for the restoration of the database to a state
that existed before the occurrence of the failure.

The various types of storage in a computer are volatile storage, nonvolatile
storage, and stable storage. Data in volatile storage, such as in RAM, are lost
when the computer crashes. Data in nonvolatile storage, such as disk, are not
lost when the computer crashes, but may occasionally be lost because of fail-
ures such as disk crashes. Data in stable storage are never lost.

Stable storage that must be accessible online is approximated with mirrored
disks, or other forms of RAID, which provide redundant data storage. Offline,
or archival, stable storage may consist of multiple tape copies of data stored
in a physically secure location.

In case of failure, the state of the database system may no longer be consisten!
that is, it may not reflect a state of the world that the database is supposed to
capture. To preserve consistency, we require that each transaction be atomic. It
is the responsibility of the recovery scheme to ensure the atomicity and dura-
bility property.

In log-based schemes, all updates are recorded on a log, which must be kept
in stable storage.

n In the deferred-modifications scheme, during the execution of a transac-
tion, all the write operations are deferred until the transaction partially
commits, at which time the system uses the information on the log asso-
ciated with the transaction in executing the deferred writes.

! In the immediate-modifications scheme, the system applies all updates
directly to the database. If a crash occurs, the system uses the information
in the log in restoring the state of the system to a previous consistent state.

To reduce the overhead of searching the log and redoing transactions/ we can
use the checkpointing technique.

Transaction processing is based on a storage model in which main memory
holds a log buffer, a database buffer, and a system buffer. The system buffer
holds pages of system object code and local work areas of transactions.

Efficient implementation of a recovery scheme requires that the number of
writes to the database and to stable storage be minimized. Log records may
be kept in volatile log buffer initially, but must be written to stable storage
when one of the following conditions occurs:
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n Before the <4 commit> log record may be output to stable storage, all
log records pertaining to transaction I must have been output to stable
storage.

n Before a block of data in main memory is output to the database (in non-
volatile storage), all log records pertaining to data in that block must have
been output to stable storage.

o To recover from failures that result in the loss of nonvolatile storage, we must
dump the entire contents of the database onto stable storage periodically-
say, once per day. If a failure occurs that results in the loss of physical database
blocks, we use the most recent dump in restoring the database to a previous
consistent state. Once this restoration has been accomplished, we use the log
to bring the database system to the most recent consistent state.

o Advanced recovery techniques support high-concurrency locking techniques,
such as those used for B+-tree concurrency control. These techniques are based
on logical (operation) undo, and follow the principle of repeating history.
When recovering from system failure, the system performs a redo pass using
the log, followed by an undo pass on the log to roll back incomplete transac-
tions.

o The ARIES recovery scheme is a state-of-the-art scheme that supports a num-
ber of features to provide greater concurrency, reduce logging overheads, and
minimize recovery time. It is also based on repeating history, and allows log-
ical undo operations. The scheme flushes pages on a continuous basis and
does not need to flush all pages at the time of a checkpoint. It uses log se-
quence numbers (LSNs) to implement a variety of optimizations that reduce
the time taken for recovery.

o Remote backup systems provide a high degree of availability, allowing trans-
action processing to continue even if the primary site is destroyed by a fire,
flood, or earthquake.

Review Terms
o Recovery scheme

o Failure classification

n Transaction failure
n Logical error
n System error
n System crash
n Data-transferfailure

o Fail-stop assumption

o Disk failure

o Storage types

tr Volatile storage

n Nonvolatile storage
n Stable storage

o Blocks

n Physicalblocks
n Buffer blocks

o Disk buffer

o Force-output

o Log-based recovery

o Log

o Log records
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Update log record

Deferred modification

Idempotent

Immediate modification

Uncommitted modifications
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Recovery with concurrent
transactions

E Transactionrollback
Z Fuzzy checkpoint
n Restart recovery

Buffer management

Log-record buffering

Write-ahead logging (WAL)

Log force

Database buffering

Latches
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Loss of nonvolatile storage

Archival dump

Fuzzy dump

Advanced recovery technique

n Physicalundo
n Logical undo
n Physical logging
n Logical logging
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n Logical operations
I Transactionrollback
I Checkpoints
I Restart recovery
n Redophase
n Undo phase

Repeating history

Fuzzy checkpointing

ARIES

n Log sequence number (LSN)
n PageLSN
n Physiological redo
X Compensation log record

(CLR)
! DirtyPageTable
n Checkpoint log record

High availability

Remote backup systems

X Primary site
I Remote backup site
E Secondarysite

Detection of failure

Transfer of control

Time to recover

Hot-spare configuration

Time to commit

tr One-safe
n TWo-very-safe
I TWo-safe
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Prqctice Exercises
17.L Compare the deferred- and immediate-modification versions of the log-based

recovery scheme in terms of ease of implementation and overhead cost.

17.2 When the system recovers from a crash (see Section 77.5.4), it constructs an
undo-list and a redo-list. Explain why log records for transactions on the undo-
list must be processed in reverse order, while those log records for transactions
on the redo-list are processed in a forward direction.

17.3 Explain the reasons why recovery of interactive transactions is more difficult
to deal with than is recovery of batch transactions. Is there a simple way to deal



Exercises 717

with this difficulty? (Hint: Consider an automatic teller machine transaction in
which cash is withdrawn.)

17.4 Sometimes a transaction has to be undone after it has committed, because it
was erroneously executed, for example because of erroneous input by a bank
teller.

a. Cive an example to show that using the normal transaction undo mecha-
nism to undo such a transaction could lead to an inconsistent state.

b. One way to handle this situation is to bring the whole database to a state
prior to the commit of the erroneous transaction (called point-in-time recov-
ery). Transactions that committed later have their effects rolled back with
this scheme.

Suggest a modification to the advanced recovery mechanism to imple-
ment point-in-time recovery.

c. Later nonerroneous transactions can be reexecuted logically, but cannot be
reexecuted using their log records. Why?

17.5 Logging of updates is not done explicitly in persistent programming languages.
Describe how page access protections provided by modern operating systems
can be used to create before and after images of pages that are updated. (Hint:
See Practice Exercise 16.9.)

17.6 ARIES assumes there is space in each page for an LSN. When dealing with large
objects that span multiple pages, such as operating system files, an entire page
may be used by an object, leaving no space for the LSN. Suggest a technique to
handle such a situation; your technique must support physical redos but need
not support physiological redos.

Exercises

17.7 Explain the difference between the three storage types-volatile, nonvolatile,
and stable-in terms of I/O cost.

17.8 Stable storage cannot be implemented.

a. Explain why it cannot be.
b. Explain how database systems deal with this problem.

17.9 Assume that immediate modification is used in a system. Show, by an example,
how an inconsistent database state could result if log records for a transaction
are not output to stable storage prior to data updated by the transaction being
written to disk.

17.10 Explain the purpose of the checkpoint mechanism. How often should check-
points be performed? How does the frequency of checkpoints affect

o System performance when no failure occurs?
o The time it takes to recover from a system crash?
o The time it takes to recover from a disk crash?
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17.11 Explain how the buffer manager may cause the database to become inconsis-
tent if some log records pertaining to a block are not output to stable storage
before the block is output to disk.

17.12 Explain the benefits of logical logging. Give examples of one situation where
Iogical logging is preferable to physical logging and one situation where phys-
ical logging is preferable to logical logging.

17.13 Explain the difference between a system crash and a "disaster."

17,14 For each of the following requirements, identify the best choice of degree of
durability in a remote backup system:

a. Data loss must be avoided but some loss of availability may be tolerated.
b. Transaction commit must be accomplished quickly, even at the cost of loss

of some committed transactions in a disaster.
c. A high degree of availability and durability is required, but a longer run-

ning time for the transaction commit protocol is acceptable.

17.15 The Oracle database system uses undo log records to provide a snapshot view

of the database to read-only transactions. The snapshot view reflects updates

of all transactions that had committed when the read-only transaction started;
updates of all other transactions are not visible to the read-only transactions.

Describe a scheme for buffer handling whereby read-only transactions are

given a snapshot view of pages in the buffer. Include details of how to use

the log to generate the snapshot view, assuming that the advanced recovery

algorithm is used. Assume for simplicity that a logical operation and its undo

affect only a single page.
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Businesses have begun to exploit the burgeoning data online to make better decisions
about their activities, such as what items to stock and how best to target customers
to increase sales. Many of their queries are rather complicated, however, and certain
types of information cannot be extracted even by using SQL.

Several techniques and tools are available to help with decision support. Several
tools for data analysis allow analysts to view data in different ways. Other analy-
sis tools precompute summaries of very large amounts of data, in order to give fast
responses to queries. The SQL:1999 and SQL:2003 standards now contain additional
constructs to support data analysis. Another approach to getting knowledge from
data is to use dnta mining, which aims at detecting various types of patterns in large
volumes of data. Data mining supplements various types of statistical techniques
with similar goals.

This chapter covers decision support, including online analytical processing, data
warehousing, and data mining.

18.1 Decision-SupportSystems
Database applications can be broadly classified into transaction-processing and
decision-support systems. Transaction-processing systems are systems that record
information about transactions, such as product sales information for companies,
or course registration and grade information for universities. Transaction-processing
systems are widely used today, and organizations have accumulated a vast amount of
information generated by these systems. Decision-support systems aim to get high-
level information out of the detailed information stored in transaction-processing
systems, and to use the high-level information to make a variety of decisions. Decision-
support system, help managers to decide what products to stock in a shop, what
products to manufacture in a factory, or which of the applicants should be admitted
to a university.
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For example, company databases often contain enormous quantities of informa-

tion about customers and transactions. The srze of the information storage required

may range up to hundreds of gigabytes, or even terabytes, for large retail chains.

Transaction information for a retailer may include the name or identifier (such as

credit-card number) of the customer, the items purchased, the price paid, and the

dates on which the purchases were made. Information about the items purchased
may include the name of the item, the manufacturer, the model number, the color,

and the size. Customer information may include credit history, annual income, resi-

dence, age, and even educational background.
Such large databases can be treasure troves of information for making business

decisions, such as what items to stock and what discounts to offer. For instance, a

retail company may notice a sudden spurt in purchases of flannel shirts in the Pacific

Northwest, may realize that there is a trend, and may start stocking a larger number

of such shirts in shops in that area. As another example, a car company may find, on

querying its database, that most of its small sports cars are bought by young women

whose annual incomes are above $50,000. The company may then target its market-

ing to attract more such women to buy its small sports cars, and may avoid wasting

money trying to attract other categories of people to buy those cars. In both cases, the

company has identified patterns in customer behavior, and has used the patterns to

make business decisions.
The storage and retrieval of data for decision support raises several issues:

o Although many decision-support queries can be written in SQL, others either
cannot be expressed in SQL or cannot be expressed easily in SQL. Several SQL
extensions have therefore been proposed to make data analysis easier' The
area of online analytical processing (OLAP) deals with tools and techniques for
data analysis that can give nearly instantaneous answers to queries requesting
summarized data, even though the database may be extremely large. In Sec-
tion78.2, we study SQL extensions for data analysis and technigues for online
analytical processing.

o Database query languages are not suited to the performance of detailed sta-
tistical analyses of data. There are several packages, such as SAS and S++, that
help in statistical analysis. Such packages have been interfaced with databases,
to allow large volumes of data to be stored in the database and retrieved effi-
ciently for analysis. The field of statistical analysis is a large discipline on its
own; see the references in the bibliographical notes for more information.

r Large companies have diverse sources of data that they need to use for making
business decisions. The sources may store the data under different schemas.
For performance reasons (as well as for reasons of organization control), the
data sources usually will not permit other parts of the comPany to retrieve
data on demand.

To execute queries efficiently on such diverse data, companies have built
data wnrehouses.Data warehouses gather data from multiple sources under a
unified schema, at a single site. Thus, they provide the user a single uniform
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interface to data. We study issues in building and maintaining a data ware-
house in Section 18.3.

o Knowledge-discovery techniques attempt to discover automatically statistical
rules and patterns from data. The field of data mining combines knowledge-
discovery techniques invented by artificial intelligence researchers and statis-
tical analysts, with efficient implementation techniques that enable them to be
used on extremely large databases. Section 18.4 discusses data mining.

The area of decision support can be broadly viewed as covering all the above
areas, although some people use the term in a narrower sense that excludes statistical
analysis and data mining.

18.2 Dqtq Anclysis qnd OLAP
Although complex statistical analysis is best left to statistics packages, databases
should support simple, commonly used, forms of data analysis. Since the data stored
in databases are usually large in volume, they need to be summarized in some fash-
ion if we are to derive information that humans can use.

OLAP tools support interactive analysis of summary information. Several SQL ex-
tensions have been developed to support OLAP tools. There are many commonly
used tasks that cannot be done with the basic SQL aggregation and grouping facili-
ties. Examples include finding percentiles, or cumulative distributions, or aggregates
over sliding windows on sequentially ordered data. A number of extensions of SQL
have been recently proposed to support such tasks, and implemented in products
such as Oracle and IBM DB2.

18.2.1 Online Anolyticql Processing
Statistical analysis often requires grouping on multiple attributes. Consider an ap-
plication where a shop wants to find out what kinds of clothes are popular. Let us
suppose that clothes are characterizedby their item-name, color, and size, and that
we have a relation sales wlth the schema sales(item-name, color, size, number). Suppose
that item-name can take on the values (skirt, dress, shirt, pant), color can take on the
values (dark, pastel, white), and size can take on values (small, medium, large).

Given a relation used for data analysis, we can identify some of its attributes as
measure attributes, since they measure some value, and can be aggregated upon. For
instance, the attribute number of the sales relation is a measure attribute, since it mea-
sures the number of units sold. Some (or all) of the other attributes of the relation
are identified as dimension attributes, since they define the dimensions on which
measure attributes, and summaries of measure attributes, are viewed. Inthe sales rc-
lation, item-name, color, and size are dimension attributes. (A more realistic version of
the sales relation would have additional dimensions, such as time and sales location,
and additional measures such as monetary value of the sale.)

Data that can be modeled as dimension attributes and measure attributes are called
multidimensional data.
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Figure 18.1 Cross tabulation of salesby item-nnme and color.

To analyze the multidimensional data, a manager may want to see data laid out
as shown in the table in Figure 18.1. The table shows total numbers for different
combination s of itemtame and color. The value of size is specified to be all, indicating
that the displayed values are a summary across all values of size.

The table in Figure 18.1 is an example of a cross-tabulation (or cross-tab, for short),
also referred to as a pivot-table. In general, a cross-tab is a table where values for one
attribute (say A) form the row headers, values for another attribute (say B) form the
column headers, and the values in an individual cell are derived as follows. Each cell
can be identified by (on,by), where ai is a value for A and b7 a value for B.If there
is at most one tuple with any (ot,bi) value, the value in the cell is derived from that
single tuple (if any); for instance, it could be the value of one or more other attributes
of the tuple. If there can be multiple tuples with an (on,bi) value, the value in the ceII
must be derived by aggregation on the tuples with that value. In our example, the
aggregation used is the sum of the values for attribute number, across all values for
size,as indicated by size: all above the cross-tab in Figure 18.1. In our example, the
cross-tab also has an extra column and an extra row storing the totals of the cells in
the row/column. Most cross-tabs have such summary rows and columns.

A cross-tab is different from relational tables usually stored in databases, since the
number of columns in the cross-tab depends on the actual data. A change in the data
values may result in adding more columns, which is not desirable for data storage.
However, a cross-tab view is desirable for display to users. It is straightforward to
represent a cross-tab without summary values in a relational form with a fixed num-
ber of columns. A cross-tab with summary rows/columns can be represented by in-
troducing a special value all to represent subtotals, as in Figure 18.2. The SQL:1'999
standard actually uses the null value in place of all, but to avoid confusion with
regular null values, we shall continue to use all.

Consider the tuples (skirt, all, all, 53) and (dress, all, all,35). We have obtained
these tuples by eliminating individual tuples with different values for color and size,
and by replacing the value of number by an aggregate-namely, sum. The value all
can be thought of as representing the set of all values for an attribute. Tuples with the
value all for the color and size dimensions can be obtained by an aggregation on the
sales relationwith a group by on the column item*name, Similarly, a group by on color,
size canbe used to get the tuples with the value all for item-name, and a group by with

color
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Figure 18.2 Relational representation of the data in Figure 18.1.

no attributes (which can simply be omitted in sQL) can be used to get the tuple with
value all for item-name, color, and size.

The generalization of a cross-tab, which is two-dimensional, to n dimensions can
be visualized as an n-dimensional cube, called the data cube. Figure 18.3 shows a
data cube onthe sales relation. The data cube has three dimensions, namely item-name,
color, and size, and the measure attribute is number. Each cell is identified by values
for these three dimensions. Each cell in the data cube contains a value, just as in a
cross-tab. In Figure 18.3, the value contained in a cell is shown on one of the faces
of the cell; other faces of the cell are shown blank if they are visible. AII cells contain
values, even if they are not visible.

The value for a dimension may be all, in which case the cell contains a summary
over all values of that dimension, as in the case of cross-tabs. The number of different
ways in which the tuples can be grouped for aggregation can be large. In fact, for a
table with n dimensions, aggregation can be performed with grouping on each of the
2' subsets of the n dimensions.l

An online analytical processing or OLAP system is an interactive system that per-
mits an analyst to view different summaries of multidimensional data. The word
online indicates that an analyst must be able to request new summaries and get re-

1. Grouping on the set of all n dimensions is useful only if the table may have duplicates.
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Figure 18.3 Three-dimensional data cube.

sponses online, within a few seconds, and should not be forced to wait for a long
time to see the result of a query.

With an OLAP system, a data analyst can look at different cross-tabs on the same
data by interactively selecting the attributes in the cross-tab. Each cross-tab is a
two-dimensional view on a multidimensional data cube. For instance, the analyst
may select a cross-tab onitern-name and size or a cross-tab on color and size. The oper-
ation of changing the dimensions used in a cross-tab is called pivoting.

An OLAP system provides other functionality as well. For instance, the analyst
may wish to see a cross-tab on item-nsme and color for a fixed value of size, for ex-
ample, large, instead of the sum across all sizes. Such an operation is referred to as
slicing, since it can be thought of as viewing a slice of the data cube. The operation is

sometimes called dicing, particularly when values for multiple dimensions are fixed.
When a cross-tab is used to view a multidimensional cube, the values of dimension

attributes that are not part of the cross-tab are shown above the cross-tab. The value of
such an attribute can be all, as shown in Figure 18.1, indicating that data in the cross-
tab are a summary over all values for the attribute. Slicing/dicing simply consists of
selecting specific values for these attributes, which are then displayed on top of the
cross-tab.

OLAP systems permit users to view data at any desired level of granularity. The
operation of moving from finer-granularity data to a coarser granularity (by means
o,f aggregation) is called a rollup. In our example, starting from the data cube on the
sales table, we got our example cross-tab by rolling up on the attribute size. The op-
posite operation-that of moving from coarser-granularity data to finer-granularity
data-is called a drill down. Clearly, finer-granularity data cannot be generated from
coarse-granularity data; they must be generated either from the original data, or from
even finer-granularity summary data.
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Figure 18.4 Hierarchies on dimensions.

Analysts may wish to view a dimension at different levels of detail. For instance,
an attribute of type datetime contains a date and a time of day. Using time precise to
a second (or less) may not be meaningful: An analyst who is interested in rough time
of day may look at only the hour value. An analyst who is interested in sales by day
of the week may map the date to a day-of-the-week and look only at that. Another
analyst may be interested in aggregates over a month, or a quarter, or for an entire
year.

The different levels of detail for an attribute can be organized into a hierarchy.
Figure 18.4a shows a hierarchy on the datetime attribute. As another example, Fig-
ure 18.4b shows a hierarchy on location, with the city being at the bottom of the
hierarchy, state above it, country at the next level, and region being the top level. In
our earlier example, clothes can be grouped by category (for instance, menswear or
womenswear); category would then lie above item-name in our hierarchy on clothes.
At the level of actual values, skirts and dresses would fall under the womenswear
category and pants and shirts under the menswear category.

An analyst may be interested in viewing sales of clothes divided as menswear and
womenswear, and not interested in individual values. After viewing the aggregates
at the level of womenswear and menswear, an analyst may drill down the hierarclry
to look at individual values. An analyst looking at the detailed level rnay drill up the
hierarchy and look at coarser-Ievel aggregates. Both levels can be displayed on the
same cross-tab, as in Figure 18.5.

18.2.2 OLAP lmplementqtion
The earliest OLAP systems used multidimensional arrays in memory to store data
cubes, and are referred to as multidimensional OLAP (MoLAp) systems. Later, OLAp
facilities were integrated into relational systems, with data stored in a relational data-
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Figure 18.5 Cross tabulation of ssles with hierarchy onitem:name.

base. Such systems are referred to as relational OLAP (ROLAP) systems. Hybrid
systems, which store some summaries in memory and store the base data and other
summaries in a relational database, are called hybrid OLAP (HOLAP) systems.

Many OLAP systems are implemented as client-server systems. The server con-
tains the relational database as well as any MOLAP data cubes. Client systems obtain
views of the data by communicating with the server.

A naive way of computing the entire data cube (all groupings) on a relation is to
use any standard algorithm for computing aggregate operations/ one grouPing at a
time. The naive algorithm would require a large number of scans of the relation. A
simple optimization is to compute an aggregation on, say, (item-name, color) from an
aggregation (item-name, color, size), instead of from the original relation.

For the standard SQL aggregate functions, we can compute an aggregate with
grouping on a set of attributes A from an aggregate with grouping on a set of at-
tributes B if A C B; you can do so as an exercise (see Exercise 18.8), but note that to
compute avg, we additionally need the count value. (For some nonstandard aggre-
gate functions, such as median, aggregates cannot be computed as above; the opti-
mization described here do not apply to such non-decomposable aggregate functions.)
The amount of data read drops significantly by computing an aggregate from another
aggregate, instead of from the original relation. Further improvements are possible;
for instance, multiple groupings can be computed on a single scan of the data. See
the bibliographical notes for references to algorithms for efficiently computing data
cubes.

Early OLAP implementations precomputed and stored entire data cubes, that is,
groupings on all subsets of the dimension attributes. Precomputation allows OLAP
queries to be answered within a few seconds, even on datasets that may contain
millions of tuples adding up to gigabytes of data. However, there are 2" groupings
with n dimension attributes; hierarchies on attributes increase the number further.
As a result, the entire data cube is often larger than the original relation that formed
the data cube and in many cases it is not feasible to store the entire data cube.

Instead of precomputing and storing all possible groupings, it makes sense to
precompute and store some of the groupings, and to compute others on demand.
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Instead of computing queries from the original relation, which may take a very long
time, we can compute them from other precomputed queries. For instance, suppose
a query requires summaries by (item-name, color), which has not been precomputed.
The query result can be computed from summaries by (itern-name, cllor, size), if that
has been precomputed. See the bibliographical notes for references on how to select
a good set of groupings for precomputation, given limits on the storage available for
precomputed results.

The data in a data cube cannot be generated by a single SQL query, using the basic
group by constructs, since aggregates are computed for several different groupings
of the dimension attributes. Section 18.2.3 discusses SQL extensions to support OLAP
functionality.

18.2.3 Extended Aggregotion
The SQL-92 aggregation functionality is limited, so several extensions were imple-
mented by different databases. The SQL:1999 standard, howeve4, defines a rich set of
aggregate functions, which we outline in this section and in the next two sections. The
Oracle and IBM DB2 databases support most of these features, and other databases
will no doubt support these features in the near future.

The new aggregate functions on single attributes are standard deviation and vari-
ance (stddev and variance). Standard deviation is the square root of variance. 2 Some
database systems support other aggregate functions such as median and mode. Some
database systems even allow users to add new aggregate functions.

SQL:1999 also supports a new class of binary aggregate functions, which can com-
pute statistical results on pairs of attributes; they include correlations, covariances,
and regression curves, which give a line approximating the relation between the val-
ues of the pair of attributes. Definitions of these functions may be found in any stan-
dard textbook on statistics, such as those referenced in the bibliographical notes.

SQL:1999 also supports generalizations of the group by construct, using the cube
and rollup constructs. A representative use of the cube construct is:

select item-name, color, size, sam(number)
from sales
group by cube(item-name, color, size)

This query computes the union of eight different groupings of the sales relation:

{ (item-name, color, size), (item-name, color), (item-name, size),
(color, size), (item-name), (color), (size), 0 \

where 0 denotes an empty group by list.

2. The SQL:1999 standard actually supports two types of variance, called population oariance and sample
oariance, and correspondingly two types of standard deviation. The definitions of the two fypes differ
slightly; see a statistics textbook for details.
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For each grouping, the result contains the null value for attributes not present in
the grouping. For instance, the table in Figure 18.2, with occurrences of all replaced
by null, can be computed by the query

select it em-nam e, color, sarn(numb er)
ftom sales
group by cube(item-nsme, color)

A representative rollup construct is

select item-name, color, size, sum(number)
fronsales
group by rollup(lf em-nftme, color, size)

Here, only four groupings are generated:

{ (itern-name, color, size), (item-nnme, color), (item-name),0 }

Rollup can be used to generate aggregates at multiple levels of a hierarchy on a

column. For instance, suppose we have a table itemcategory(item-nnme, category) giv-
ing the category of each item. Then the query

select cat e gory, it em-name, sum(numb er)
ftom s nles, itemcat e gorY
where sales.item-nnlne = itemcategory.item:nnme
group by rollup(ca tegory, itemname)

would give a hierarchical summary by item-nnme and by category.
Multiple rollups and cubes can be used in a single group by clause. For instance,

the following query

select item-name, color, size, ssm(number)
from sales
group by rollup(lf em-nsme), rcllup(color, size)

generates the groupings

{ (item-nnme, color, size), (item-name, color), (item-name),
(color, size), (color), 0 \

To understand why, observe that rotlup(item-name) generates two groupings, {(item
-name),0), and rollap(color, size) generates three groupings, {(color, size), (color),0 }.
The cross product of the two gives us the six groupings shown.

As we mentioned in section 18.2.7, sQL:1,999 uses the value null to indicate the
usual sense of null as well as all. This dual use of null can cause ambiguity if the
attributes used in a rollup or cube clause contain null values. The function grouping
can be applied on an attribute; it returns 1 if the value is a null value representing all,
and returns 0 in all other cases. Consider the following query:
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select item-name, color, size, sam(number),
grouping(lf em-name) as item-name-flag,
grouping(color) as color-flag,
gr oup ing(s i z e) as s iz e -fI a g

from sales
group by cube(item-name, color, size)

The output is the same as in the version of the query without grouping, but with
three extra columns called item-name_flag, colorjag, and size-flag. In each tuple, the
value of a flag field is 1 if the corresponding field is a null representing all.

Instead of using tags to indicate nulls that represent all, we can replace the null
value by a value of our choice:

d e c o d e ( grou ping(it em -n am e), 1,' all', it em -n am e)

This expression returns the value "all" if the value of item:nnme is a nuII correspond-
ing to all, and returns the actual value of item-name otherwise. This expression can be
used in place of item-nqme in the select clause to get "all" in the output of the query,
in place of nulls representing all.

Neither the rollup nor the cube clause gives complete control on the groupings
that are generated. For instance, we cannot use them to specify that we want only
groupings {(color, size), (size, item-name)}. Such restricted groupings can be generated
by using the grouping construct in the having clause; we leave the details as an
exercise for you.

18.2.4 Ronking
Finding the position of a value in a larger set is a common operation. For instance,
we may wish to assign students a rank in class based on their total marks, with the
rank 1 going to the student with the highest marks, the rank 2 to the student with
the next highest marks, and so on. While such queries can be expressed in SQL-92,
they are difficult to express and inefficient to evaluate. Programmers often resort to
writing the query partly in SQL and partly in a programming language. A related
type of query is to find the percentile in which a value in a (multi)set belongs, for
example, the bottom third, middle third, or top third. We study SQL:1999 support for
these types of queries here.

Ranking is done in conjunction with an order by specification. Suppose we are
given a relation student-marks(student-id, marks) which stores the marks obtained by
each student. The following query gives the rank of each student.

select student-id, rank) over (order by (marks) d,esc) as s-rank
from student-marks

Note that the order of tuples in the output is not defined, so they may not be sorted
by rank. An extra order by clause is needed to get them in sorted order, as shown
below
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select student-id, rank 0 over (order by (marks) desc) as s-rank
from student-msrks order bY st ank

A basic issue with ranking is how to deal with the case of multiple tuples that are
the same on the ordering attribute(s). In our example, this means deciding what to
do if there are two students with the same marks. The rank function gives the same
rank to all tuples that are equal on the order by attributes. For instance, if the highest
mark is shared by two students, both would get rank 1. The next rank given would
be 3, not 2, so if three students get the next highest mark, they would all get rank
3, and the next student(s) would get rank 5, and so on. There is also a denserank
function that does not create gaps in the ordering. In the above example, the tuples
with the second highest value all get rank 2, and tuples with the third highest value
get rank 3, and so on.

Ranking can be done within partitions of the data. For instance, suppose we have
an additional relation student-section(student-id, section) that stores for each student
the section in which the student studies. The following query then gives the rank of
students within each section.

select stu dent -id, s ection,
rank 0 over (partition by section order by marks desc) as sec:rank

from student -marks, stud ent -section
where student-marks.student-id : studentsection.student-id
order by section, sec^rank

The outer order by clause orders the result tuples by section, and within each section
by the rank.

Multiple rank expressions can be used within a single select statement; thus we
can obtain the overall rank and the rank within the section by using two rank expres-
sions in the same select clause. An interesting question is what happens when rank-
ing (possibly with partitioning) occurs along with a group by clause. In this case, the
group by clause is applied first, and partitioning and ranking are done on the results
of the group by. Thus aggregate values can then be used for ranking. For example,
suppose we had marks for each student for each of several subjects. To rank students
by the sum of their marks in different subjects, we can use a group by clause to com-
pute the aggregate marks for each student and then rank students by the aggregate
sum. We leave details as an exercise for you.

The ranking functions can be used to find the top n tuples by embedding a ranking
query within an outer-Ievel query; we leave details as an exercise. Note that bottom
n is simply the same as top n with a reverse sorting order. Several database systems
provide nonstandard SQL extensions to specify directly that only the top n results are
required; such extensions do not require the rank function and simplify the job of the
optimizer, but are (currently) not as general, since they do not support partitioning.

SQL:1,999 also specifies several other functions that can be used in place of rank. For
instance, percentlank of a tuple gives the rank of the tuple as a fraction. If there are
n tuples in the partition3 and the rank of the tuple is r, then its percent rank is defined

3. The entire set is treated as a single partition if no explicit partition is used
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as (r - t) l(" - 1) (and as null if there is only one tuple in the partition). The function
cume-dist, short for cumulative distribution, for a iuple is defined as pf nwhere p is
the number of tuples in the partition with ordering values preceding or equal to the
ordering value of the tuple and ri is the number of tuples in the partition. The function
row-number sorts the rows and gives each row a unique number corresponding to
its position in the sort order; different rows with the same ordering value would get
different row numbers, in a nondeterministic fashion.

Finally, for a given constant n, the ranking function ntile(n) takes the tuples in each
partition in the specified order and divides them into n buckets with equal numbers
of tuples.a For each tuple, ntile(n) then gives the number of the bucket in which it is
placed, with bucket numbers starting with 1. This function is particularly useful for
constructing histograms based on percentiles. For instance, we can sort employees
by salary, and use ntile(3) to find which range (bottom third, middle third, or top
third) each employee is in, and compute the total salary earned by employees in each
Iange:

s ele ct thr e e til e, sam(s al ary)
from (

select salary, ntile(3) over (order by (salary)) as threetile
fuom employee) as s

group by threetile

The presence of null values can complicate the definition of rank, since it is not
clear where they should occur first in the sort order. SQL:1999 permits the user to
specify where they should occur by using nulls first or nulls lasf for instance

select student-id, rank 0 over (order by marks desc nulls last) as stank
from studenttnnrks

18.2.5 Windowing
An example of a window query is a query that, given sales values for each date, cal-
culates for each date the average of the sales on that day, the previous day, and the
next day; such moving-average queries are used to smooth out random variations.
Another example of a window query is one that finds the cumulative balance in an
account, given a relation specifying the deposits and withdrawals on an account.
Such queries are either hard or impossible (depending on the exact query) to express
in basic SQL.

SQL:1999 provides a windowing feature to support such queries. In contrast to
group by, the same tuple can exist in multiple windows. Suppose we are given a re-
lationtrnnsaction(account-number, date-time, anlue), where oalue is positive for a deposit
and negative for a withdrawal. We assume there is at most one transaction per date
-time vaIue.

4. If the total number of tuples in a partition is not divisible by n, then the number of tuples in each
bucket can differ by at most 1. Tuples with the same value for the ordering attribute may be assigned to
different buckets, nondeterministically, in order to make the number of tuples in each bucket equal.
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Consider the query

s elect a c c o unt :numb er, d nt e -t im e,
sum(ualue) over

(partition by ac count -numb er
order by date-time
rows unbounded preceding)

as balance
fromtransaction
order by nccountttumber, date-time

The query gives the cumulative balances on each account just before each transaction
on the aicount; the cumulative balance of the account is the sum of values of all

earlier transactions on the account.
The partition by clause partitions tuples by account number, so for each row only

the tupies in its partition are considered. A window is created for each tuple; the key-

wordJ rows unbounded preceding specify that the window for each tuple consists

of all tuples in the partition that precede it in the specified order (here, increasing

order of date-time). The aggregate function sam(aalue) is applied on all the tuples in

the window. Observe that the query does not use a group by clause, since there is an

output tuple for each tuple inthe transaction relation.
While ihe query could be written without these extended constructs, it would be

rather difficult to formulate. Note also that different windows can overlap; that is, a

tuple may be present in more than one window.
Other types of windows can be specified. For instance, to get a window contain-

ing the previous 10 rows for each row we can specify rows 10 preceding. To get a

window containing the current, previous, and following rows, we can use between
rows 1 preceding and 1 following. To get the previous rows and the current row we

can say between rows unbounded preceding and current. Note that if the ordering
is on a nonkey attribute, the result is not deterministic, since the order of tuples is not
fully defined.

We can even specify windows by ranges of values, instead of numbers of rows. For

instance, suppose the ordering value of a tuple is'u; then range between 10 preceding
and current row would give tuples whose ordering value is between r.' - 10 and'u
(both values inclusive). When dealing with dates, we can use range interval 10 day
preceding to get a window containing tuples within the previous 10 days, but not
including the date of the tuPle.

Clearly, the windowing functionality of SQL:1999 is very rich and can be used to
write rather complex queries with a small amount of effort.

18.3 Dqtq Wqrehousing
Large companies have presences in many places, each of which may generate a large
volume of data. For instance ,large retail chains have hundreds or thousands of stores,
whereas insurance companies may have data from thousands of local branches. Fur-
ther, large organizations have a complex internal organization structure, and there-
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fore different data may be present in different locations, or on different operational
systems, or under different schemas. For instance, manufacturing-problem data and
customer-complaint data may be stored on different database systems. Corporate de-
cision makers require access to information from all such sources. Setting up queries
on individual sources is both cumbersome and inefficient. Moreover, the sources of
data may store only current data, whereas decision makers may need access to past
data as well; for instance, information about how purchase patterns have changed in
the past year could be of great importance. Data warehouses provide a solution to
these problems.

A data warehouse is a repository (or archive) of information gathered from mul-
tiple sources, stored under a unified schema, at a single site. once gathered, the data
are stored for a long time, permitting access to historical data. Thus, data warehouses
provide the user a single consolidated interface to data, making decision-support
queries easier to write. Moreover, by accessing information for decision support from
a data warehouse, the decision maker ensures that online transaction-processing sys-
tems are not affected by the decision-support workload.

18.3.1 Components of q Dqtq Wqrehouse
Figure 18.6 shows the architecture of a typical data warehouse, and illustrates the
gathering of data, the storage of data, and the querying and data analysis support.
Among the issues to be addressed in building a warehouse are the following:

o When and how to gather data. In a source-driven architecture for gather-
ing data, the data sources transmit new information, either continually (as
transaction processing takes place), or periodically (nightly, for example). In
a destination-driven architecture, the data warehouse periodically sends re-
quests for new data to the sources.

data warehouse

Figure 18.6 Data-warehouse architecture.

data source 1

data source 2

query and
analysis tools

data source n
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Unless updates at the sources are replicated at the warehouse via two-phase
commit, the warehouse will never be quite up-to-date with the sources. Two-
phase commit is usually far too expensive to be an option, so data warehouses
lypicatty have slightly out-of-date data. That, however, is usually not a prob-
lem for decision-support systems.

I What schema to use. Data sources that have been constructed independently
are likely to have different schemas. In fact, they may even use different data
models. Part of the task of a warehouse is to perform schema integration, and
to convert data to the integrated schema before they are stored. As a result, the
data stored in the warehouse are not just a coPy of the data at the sources. In-
stead, they can be thought of as a materialized view of the data at the sources.

r Data transformation and cleansing. The task of correcting and preprocessing
data is called data cleansing. Data soulces often deliver data with numerous
minor inconsistencies, which can be corrected. For example, names are often
misspelled, and addresses may have street/area/city names misspelled, or
zip codes entered incorrectly. These can be corrected to a reasonable extent by

consulting a database of street names and zip codes in each city. The approxi-
mate matching of data required for this task is referred to as fazzy lookup.

Address lists collected from multiple sources may have duplicates that need
to be eliminated in a merge-Purge operation (this operation is also referred
to as deduplication). Records for multiple individuals in a house may be
grouped together so only one mailing is sent to each house; this operation
is called householding.

Data may be transformed in ways other than cleansing, such as changing
the units of measure, or converting the data to a different schema by joining

data from multiple source relations. Data warehouses tyPically have graphical
tools to support data transformation. Such tools allow transformation to be
specified as boxes, and edges can be created between boxes to indicate the
flow of data. Conditional boxes can route data to an aPProPriate next step in

transformation. See Figure 29.7 for an example of a transformation specified
using the graphical tool provided by Microsoft SQL Server.

o How to propagate updates. Updates on relations at the data sources must
be propagated to the data warehouse. If the relations at the data warehouse
are exactly the same as those at the data source, the propagation is straight-
forward. If they are not, the problem of propagating updates is basically the
oiew-msintenance problem, which was discussed in Section 14.5.

o What data to summarize. The raw data generated by a transaction-processing
system may be too large to store online. However, we can answer many queries
by maintaining just summary data obtained by aggregation on a relation,
rather than maintain the entire relation. For example, instead of storing data
about every sale of clothing, we can store total sales of clothing by item-name
and category.
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Suppose that a relation r has been replaced by a summary relation s. Users
may still be permitted to pose queries as though the relation r were available
online. If the query requires only summary data, it may be possible to trans-
form it into an equivalent one using s instead; see Section 14.5.

The different steps involved in getting data into a data warehouse are called as
extract, transform, and load or ETL tasks; extraction refers to getting data from the
sources/ while load refers to loading the data into the data warehouse.

18.3.2 Wqrehouse Schemqs
Data warehouses typically have schemas that are designed for data analysis, using
tools such as OLAP tools. Thus, the data are usually multidimensional data, with di-
mension attributes and measure attributes. Tables containing multidimensional data
are called fact tables and are usually very large. A table recording sales information
for a retail store, with one tuple for each item that is sold, is a typical example of afact
table. The dimensions of the sales table would include what the item is (usually an
item identifier such as that used in bar codes), the date when the item is sold, which
location (store) the item was sold from, which customer bought the item, and so on.
The measure attributes may include the number of items sold and the price of the
items.

To minimize storage requirements, dimension attributes are usually short identi-
fiers that are foreign keys into other tables called dimension tables. For instance, a
fact table sales would have attributes item-id, store-id, customer-id, and date, and mea-
sure attributes number and price. The attribute store-id is a foreign key into a dimen-
sion table store,whichhas other attributes such as store location (city, state, country).
The item-id attribute of the sales table would be a foreign key into a dimension ta-
ble item-info, which would contain information such as the name of the item, the
category to which the item belongs, and other item details such as color and size.
The customerjd attribute would be a foreign key into a customer table containing
attributes such as name and address of the customer. We can also view the date at-
tribute as a foreign key into a date-info table giving the month, quarter, and year of
each date.

The resultant schema appears in Figure 18.7. Such a schema, with a fact table, mul-
tiple dimension tables, and foreign keys from the fact table to the dimension tables,
is called a star schema. More complex data-warehouse designs may have multiple
levels of dimension tables; for instance,theitemjnfo table may have an attributeman-
ufacturerjd that is a foreign key into another table giving details of the manufacturer.
Such schemas are called snowflake schemas. Complex data-warehouse designs may
also have more than one fact table.

18.4 Dqtq Mining
The term data mining refers loosely to the process of semiautomatically analyzing
Iarge databases to find useful patterns. Like knowledge discovery in artificial intel-
ligence (also called machine learning) or statistical analysis, data mining attempts to
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Figure 18.7 Star schema for a data warehouse.

discover rules and patterns from data. However, data mining differs from machine
learning and statistics in that it deals with large volumes of data, stored primarily on
disk. That is, data mining deals with "knowledge discovery in databases."

Some types of knowledge discovered from a database can be represented by a set
of rules. The following is an example of a rule, stated informally: "Young women
with annual incomes greater than $50,000 are the most likely people to buy small
sports cars." Of course such rules are not universally true, and have degrees of "sup-

port" and "confidence," as we shall see. Other tlpes of knowledge are represented
by equations relating different variables to each other, or by other mechanisms for
predicting outcomes when the values of some variables are known.

There are a variety of possible types of patterns that may be useful, and different
techniques are used to find different types of patterns. We shall study a few examples
of patterns and see how they may be automatically derived from a database.

Usually there is a manual component to data mining, consisting of preprocessing
data to a form acceptable to the algorithms and postprocessing of discovered patterns
to find novel ones that could be useful. There may also be more than one type of
pattern that can be discovered from a given database, and manual interaction may
be needed to pick useful types of patterns. For this reasorL data mining is really a
semiautomatic process in real life. However, in our description we concentrate on
the automatic aspect of mining.

18.4.1 Applicotions of Dqtq Mining

The discovered knowledge has numerous applications. The most widely used ap-
plications are those that require some sort of prediction. For instance, when a per-
son applies for a credit card, the credit-card company wants to predict if the person

store

itemname
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size
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item-id
store-id
customer-id
date

name
street
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country
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is a good credit risk. The prediction is to be based on known attributes of the per-
son, such as age, income, debts, and past debt repayment history. Rules for making
the prediction are derived from the same attributes of past and current credit-card
holders, along with their observed behavior, such as whether they defaulted on their
credit-card dues. Other types of prediction include predicting which customers may
switch over to a competitor (these customers may be offered special discounts to
tempt them not to switch), predicting which people are likely to respond to promo-
tional mail ('Junk mail"), or predicting what types of phone calling card usage are
Iikely to be fraudulent.

Another class of applications looks for associations, for instance, books that tend
to be bought together. If a customer buys a book, an on-line bookstore may suggest
other associated books. If a person buys a camera, the system may suggest accessories
that tend to be bought along with cameras. A good salesperson is aware of such pat-
terns and exploits them to make additional sales. The challenge is to automate the
process. Other types of associations may lead to discovery of causation. For instance,
discovery of unexpected associations between a newly introduced medicine and car-
diac problems led to the finding that the medicine may cause cardiac problems in
some people. The medicine was then withdrawn from the market.

Associations are an example of descriptive patterns. Clusters are another example
of such patterns. For example, over a century ago a cluster of typhoid cases was found
around a well, which led to the discovery that the water in the well was contaminated
and was spreading typhoid. Detection of clusters of disease remains important even
today.

18.4.2 Clqssificqtion
As mentioned in Section 18.4.7, prediction is one of the most important types of data
mining. We outline what is classification, study techniques for building one type of
classifiers, called decision-tree classifiers, and then study other prediction techniques.

Abstractly, the classification problem is this: Given that items belong to one of
several classes, and given past instances (called training instances) of items along
with the classes to which they belong, the problem is to predict the class to which a
new item belongs. The class of the new instance is not known, so other attributes of
the instance must be used to predict the class.

Classification can be done by finding rules that partition the given data into
disjoint groups. For instance, suppose that a credit-card company wants to decide
whether or not to give a credit card to an applicant. The company has a variety of
information about the person, such as her age, educational background, annual in-
come, and current debts, that it can use for making a decision.

Some of this information could be relevant to the credit worthiness of the appli-
cant, whereas some may not be. To make the decision, the company assigns a credit-
worthiness level of excellent, good, average, or bad to each of a sample set of cur-
rent customers according to each customer's payment history. Then, the company
attempts to find rules that classify its current customers into excellent, good, aver-
age, or bad, on the basis of the information about the person, other than the actual
payment history (which is unavailable for new customers). Let us consider just two
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attributes: education level (highest degree earned) and income' The rules may be of

the following form:

Yyterson P, P.degree : rna,sters and' P.'income > 75' 000
+ P.cred'it: ercellent

Y person P, P.degree: bachelors or
(P.' income > 25,000 and P.' income 175,000) + P.cred'it : lood'

Similar rules would also be present for the other credit-worthiness levels (average

and bad).
The process of building a classifier starts from a sample of data, called a training

set. For each tuple in the training set, the class to which the tuple belongs is already

known. For instance, the training set for a credit-card application may be the existing

customers, with their credit worthiness determined from their payment history. The

actual data, or population, may consist of all people, including those who are not

existing customers. There are several ways of building a classifier, as we shall see.

18.4.2.1 Decisionjlree Clqssifiers
The decision-tree classifier is a widely used technique for classification. As the name
suggests, decision-tree classifiers use a tree; each leaf node has an associated class,
and each internal node has a predicate (or more generally, a function) associated with
it. Figure 18.8 shows an example of a decision tree.

To classify a new instance, we start at the root and traverse the tree to reach a
leaf; atan internal node we evaluate the predicate (or function) on the data instance,

bachelors masters doctorate
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50 to 100K
I
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bad good

@ u,,".ur" @ goooOr"o

Figure 18.8 Classification tree.
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to find which child to go to. The process continues till we reach a leaf node. For
example, if the degree level of a person is masters, and the person's income is 40K,
starting from the root we follow the edge labeled "masters," and from there the edge
labeled "25K to 75K," to reach a leaf. The class at the leaf is "good," so we predict that
the credit risk of that person is good.

Building Decision-Tree Classifi ers

The question then is how to build a decision-tree classifier, given a set of training
instances. The most common way of doing so is to use a greedy algorithm, which
works recursively, starting at the root and building the tree downward. Initially there
is only one node, the root, and all training instances are associated with that node.

At each node, if alf or "almost all" training instances associated with the node be-
long to the same class, then the node becomes a leaf node associated with that class.
Otherwise, a partitioning attribute and partitioning conditions must be selected to
create child nodes. The data associated with each child node is the set of training in-
stances that satisfy the partitioning condition for that child node. In our example, the
attribute degreeis chosen, and four children, one for each value of degree, are created.
The conditions for the four children nodes are degree = none, degree = bachelors, degree
= masters, and degree = doctorate, respectively. The data associated with each child
consist of training instances satisfying the condition associated with that child. At
the node corresponding to masters, the attribute income is chosen, with the range of
values partitioned into intervals 0 to 25K 25K to 50K, 50K to 75K, and over ZSK. The
data associated with each node consist of training instances with the degree attribute
being masters and the income attribute being in each of these ranges, respectively. As
an optimization, since the class for the range 25K to 50K and the range 50K to 75K is
the same under the node degree = masters, the two ranges have been merged into a
single range 25K to 75K.

Best Splits

Intuitively, by choosing a sequence of partitioning attributes, we start with the set
of all training instances, which is "impure" in the sense that it contains instances
from many classes, and ends up with leaves which are "pure" in the sense that at
each leaf all training instances belong to only one class. We shall see shortly how to
measure purity quantitatively. To judge the benefit of picking a particular attribute
and condition for partitioning of the data at a node, we measure the purity of the
data at the children resulting from partitioning by that attribute. The attribute and
condition that result in the maximum purity are chosen.

The purity of a set S of training instances can be measured quantitatively in several
ways. Suppose there are k classes, and of the instances in ,S the fraction of instances
in class i is pi. One measure of purity, the Gini measure, is defined as

k

Gini(s) : t -l)n?
x - L

When all instances are in a single class, the Gini value is 0, while it reaches its max-
imum (of 1 - llk) if each class has the same number of instances. Another measure
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of purity is the entropy measure, which is defined as

k

t rntropy(5) :  f  ,n, loSzR,
x- l

The entropy value is 0 if all instances are in a single class, and reaches its maximum

when each class has the same number of instances. The entropy measure derives

from information theory.
When a set,S is split into multiple sets ,56, 'i : L,2,. . . ir,we canmeasure the purity

of the resultant set of sets as:

-r- t,s,t
Purity(S1, Sz,.. ., S') : ), ffnutit l(S,)

x : I

That is, the purity is the weighted average of the purity of the sets Si. The above
formula can be used with both the Gini measure and the entropy measure of purity.

The information gain due to a particular split of ,9 into Si,'i : 7,2, . . ., r is then

Information-gain(S, {,Sr, Sr, . . ., S"}) : purity(S) - purity (,S1, Sz,' . ., S')

Splits into fewer sets are preferable to splits into many sets, since they lead to
simpler and more meaningful decision trees. The number of elements in each of the
sets Si may also be taken into account; otherwise, whether a set ,92 has 0 elements or
1 element would make a big difference in the number of sets, although the split is the

same for almost all the elements. The information content of a particular split can be
defined in terms of entropv as

" rq. l  l ,s,  l
InformaLiorucontent(S. {Sr. ,Sr. . . . ,,S, }) : - t ffi 

loC, 
ffii , - r  t '

All of this leads to a definition: The best split for an attribute is the one that gives

the maximum information gain ratio, defined as

Informatiotcontent(S, {Sr, Sr,. . ., S"})

Finding Best Splits

How do we find the best split for an attribute? How to split an attribute depends
on the type of the attribute. Attributes can be either continuous valued, that is, the
values can be ordered in a fashion meaningful to classification, such as age or income,
or can be categorical; that is, they have no meaningful order, such as department
names or country names. We do not expect the sort order of department names or
country names to have any significance to classification.

Usually attributes that are numbers (integers/reals) are treated as continuous val-
ued while character string attributes are treated as categorical, but this may be con-
trolled by the user of the system. In our example, we have treated the attribute degree
as categorical, and the attribute income as continuous valued.
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We first consider how to find best spiits for continuous-valued attributes. For sim-
plicity, we shall consider only binary splits of continuous-valued attributes, that is,
splits that result in two children. The case of multiway splits is more complicated;
see the bibliographical notes for references on the subject.

To find the best binary split of a continuous-valued attribute, we first sort the at-
tribute values in the training instances. We then compute the information gain ob-
tained by splitting at each value. For example, if the training instances have values
1,10,15, and 25 for an attribute, the split points considered are 1, 10, and 1b; in each
case values less than or equal to the split point form one partition and the rest of the
values form the other partition. The best binary split for the attribute is the split that
gives the maximum information gain.

For a categorical attribute, we can have a multiway split, with a child for each
value of the attribute. This works fine for categorical attributes with only a few dis-
tinct values, such as degree or gender. Howevel if the attribute has many distinct
values, such as department names in a large company, creating a child for each value
is not a good idea. In such cases, we would try to combine multiple values into each
child, to create a smaller number of children. See the bibliographical notes for refer-
ences on how to do scl.

Decision-Tree Construction Algorithm

The main idea of decision-tree construction is to evaluate different attributes and dif-
ferent partitioning conditions, and pick the attribute and partitioning condition that
results in the maximum information gain ratio. The same procedure works recur-
sively on each of the sets resulting from the split, thereby recursively constructing
a decision tree. If the data can be perfectly classified, the recursion stops when the
purity of a set is 0. However, often data are noisy, or a set may be so small that par-
titioning it further may not be justified statistically. In this case, the recursion stops
when the purity of a set is "sufficiently high," and the class of the resulting leaf is
defined as the class of the majority of the elements of the set. In general, different
branches of the tree could grow to different levels.

Figure 18.9 shows pseudocode for a recursive tree-construction procedure, which
takes a set of training instances S as parameter. The recursion stops when the set is
sufficiently pure or the set ,5 is too small for further partitioning to be statistically
significant. The parameters do and d" define cutoffs for purity and size; the system
may give them default values, which may be overridden by users.

There are a wide variety of decision-tree construction algorithms, and we outline
the distinguishing features of a few of them. See the bibliographical notes for details.
With very large data sets, partitioning may be expensive, since it involves repeated
copying. Several algorithms have therefore been developed to minimize the I/O and
computation cost when the training data are larger than available memory.

Several of the algorithms also prune subtrees of the generated decision tree to
reduce overfitting: A subtree is overfitted if it has been so highly tuned to the specifics
of the training data that it makes many classification errors on other data. A subtree
is pruned by replacing it with a leaf node. There are different pruning heuristics;
one heuristic uses part of the training data to build the tree and another part of the
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procedure GrowTree(S)
Partition(S);

procedure Partition (S)
if (purity(S) ) 6o or l,Sl < d" ) then

return;
for each attribute A

evaluate splits on attribute A;
Use best split found (across all attributes) to partition

S i n t o S l  ,  S z , . . . , S r )
f o r i , : 1 . 2 . . - - . r

Partition(Su );

Figure 18.9 Recursive construction of a decision tree.

training data to test it. The heuristic prunes a subtree if it finds that misclassification
on the test instances would be reduced if the subtree were replaced by a leaf node.

We can generate classification rules from a decision tree, if we so desire. For each
leaf we generate a rule as follows: The left-hand side is the conjunction of all the split
conditions on the path to the leaf, and the class is the class of the majority of the
training instances at the leaf. An example of such a classification rule is

degree : masters and'income > 75,000 + ercellent

18.4.2.2 Other Types of Clqssifiers

There are several types of classifiers other than decisibn-tree classifiers. Two types
that have been quite useful are neural net classifiers andBayesian classifiers. Neural net
classifiers use the training data to train artificial neural nets. There is a large body of
literature on neural nets, and we do not consider them further here.

Bayesian classifiers find the distribution of attribute values for each class in the
training data; when given a new instance d, they use the distribution information to

estimate, for each class ci, the probability that instance d belongs to class c7, denoted
by p(cild), in a manner outlined here. The class with maximum probability becomes
the predicted class for instance d.

To find the probability p(c1ld) of instance d being in class ci, Bayesian classifiers
use Bayes'theorem; which says

P(cild') - 
P(dlci)Pki)

p(d)

where p(dlci) is the probability of generating instance d given class c7, p(ci) is the
probability of occurrence of class ci, arnd p(d) is the probability of instance d occur-
ring. Of these, p(d) can be ignored since it is the same for all classes. p(ci) is simply
the fraction of training instances that belong to class ci.

Finding p(dlc) exactly is difficult, since it requires a complete distribution of in-
stances of ci.To simplify the task, naive Bayesian classifiers assume attributes have
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independent distributions, and thereby estimate

p(dlci)  :  p(dr lc j)  *  p(d2lci)  *  .  .  .  x p(d. lc i)

That is, the probability of the instance d occurring is the product of the probability of
occurrence of each of the attribute values da of d, given the class is c7.

The probabilittes p(dilc1) derive from the distribution of values for each attribute
i, for each class c7. This distribution is computed from the training instances that
belong to each class ci; the distribution is usually approximated by a histogram. For
instance, we may divide the range of values of attribute z into equal intervals, and
store the fraction of instances of class ci that fall in each interval. Given a value di for
attribute z, the value of p(dalc1) is simply the fraction of instances belonging to class
ci that fall in the interval to which da belongs.

A significant benefit of Bayesian classifiers is that they can classify instances with
unknown and null attribute values-unknown or null attributes are just omitted
from the probability computation. In contrast, decision-tree classifiers cannot mean-
ingfully handle situations where an instance to be classified has a null value for a
partitioning attribute used to traverse further down the decision tree.

18.4.2.3 Regression
Regression deals with the prediction of a value, rather than a class. Given values for
a set of variables, Xr, Xz, . . . , Xn, we wish to predict the value of a variable Y. For
instance, we could treat the level of education as a number and income as another
number, and, on the basis of these two variables, we wish to predict the likelihood of
default, which could be a percentage chance of defaulting, or the amount involved in
the default.

One way is to infer coefficients aot clrt a2t . . . ta, such that

Y :  a ,o  t  a1  *  X t  I  az  *  Xz  * . . .  I  an*  Xn

Finding such a linear polynomial is called linear regression. In general, we wish to
find a curve (defined by a polynomial or other formula) that fits the data; the process
is also called curve fitting.

The fit may be only approximate, because of noise in the data or because the rela-
tionship is not exactly a polynomial, so regression aims to find coefficients that give
the best possible fit. There are standard techniques in statistics for finding regression
coefficients. We do not discuss these techniques here, but the bibliographical notes
provide references.

18.4.3 Associqtion Rules
Retail shops are often interested in associations between different items that people
buy. Examples of such associations are:

o Someone who buys bread is quite likely also to buy milk.

o A person who bought the book Database System Concepts is quite likely also to
buy the book Operating System Concepts.
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Association information can be used in several ways. When a customer buys a partic-
ular book, an on-line shop may suggest associated books. A grocery shop may decide
to place bread close to milk, since they are often bought together, to help shoppersfin-
ish their task faster. Or the shop may place them at opposite ends of arow, and place
other associated items in between to tempt people to buy those items as well, as the
shoppers walk from one end of the row to the other. A shop that offers discounts on
one associated item may not offer a discount on the other, since the customer will
probabiy buy the other anywaY.
An example of an association rule is

bread + milk

In the context of grocery-store purchases, the rule says that customers who buy bread
also tend to buy milk with a high probability. An association rule must have an asso-
ciated population: The population consists of a set of instances. In the grocery-store
example, the population may consist of all grocery-store purchases; each purchase is

an instance. In the case of a bookstore, the population may consist of all people who

made purchases, regardless of when they made a purchase. Each customer is an in-

stance. Here, the analyst has decided that when a purchase is made is not significant,
whereas for the grocery-store example, the analyst may have decided to concentrate
on single purchases, ignoring multiple visits by the same customer.

Rules have an associated support, as well as an associated confidence. These ate
defined in the context of the population:

o Support is a measure of what fraction of the population satisfies both the an-
tecedent and the consequent of the rule.

For instance, suppose only 0.001 percent of all purchases include milk and
screwdrivers. The support for the rule

mi,lk + screwdriuers

is low. The rule may not even be statistically significant-perhaps there was
only a single purchase that included both milk and screwdrivers. Businesses
are usually not interested in rules that have low support, since they involve
few customers, and are not worth bothering about.

On the other hand, if 50 percent of all purchases involve milk and bread,
then support for rules involving bread and milk (and no other item) is rela-
tively high, and such rules may be worth attention. Exactly what minimum
degree of support is considered desirable depends on the application.

o Confidence is a measule of how often the consequent is true when the an-
tecedent is true. For instance, the rule

bread =+ mi,Ik

has a confidence of 80 percent if 80 percent of the purchases that include bread
also include milk. A rule with a low confidence is not meaningful. In busi-
ness applications, rules usually have confidences significantly less than 100
percent, whereas in other domains, such as in physics, rules may have high
confidences.
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Note that the confidence of bread + milk may be very different from the
confidence of milk ) bread, although both have the same support.

To discover association rules of the form

i t , i z r . . . , i r = + i ( )

we first find sets of items with sufficient support, called large itemsets. In our exam-
ple we find sets of items that are included in a sufficiently large number of instances.
We will shortly see how to compute large itemsets.

For each large itemset, we then output all rules with sufficient confidence that
involve all and only the elements of the set. For each large itemset S, we output a
rule 5 - s -+ s for every subset s C,9, provided S - s + s has sufficient confidence;
the confidence of the rule is given by support of s divided by support of S.

We now consider how to generate all large itemsets. If the number of possible sets
of items is small, a single pass over the data suffices to detect the level of support
for all the sets. A count, initialized to 0, is maintained for each set of items. When a
purchase record is fetched, the count is incremented for each set of items such that
all items in the set are contained in the purchase. For instance, if a purchase included
items o, b, and c, counts would be incremented for {"}, {b}, {"}, {o,b}, {b,c}, {o,"},
and {o, b, c}. Those sets with a sufficiently high count at the end of the pass corre-
spond to items that have a high degree of association.

The number of sets grows exponentially, making the procedure just described in-
feasible if the number of items is large. Luckily, almost all the sets would normally
have very low support; optimizations have been developed to eliminate most such
sets from consideration. These techniques use multiple passes on the database, con-
sidering only some sets in each pass.

In the a priori technique for generating large itemsets, only sets with single items
are considered in the first pass. In the second pass, sets with two items are considered,
and so on.

At the end of a pass all sets with sufficient support are output as large itemsets.
Sets found to have too little support at the end of a pass are eliminated. Once a set is
eliminated, none of its supersets needs to be considered. In other words, in pass z we
need to count only supports for sets of size z such that all subsets of the set have been
found to have sufficiently high support; it suffices to test all subsets of size z - 1 to
ensure this property. At the end of some pass z, we would find that no set of size ri has
sufficient support, so we do not need to consider any set of size z * 1. Computation
then terminates.

18.4.4 Other Types of Associqtions
Using plain association rules has several shortcomings. One of the major shortcom-
ings is that many associations are not very interesting, since they can be predicted.
For instance, if many people buy cereal and many people buybread, we can predict
that a fairly large number of people would buy both, even if there is no connection
between the two purchases. In fact, even if buying cereal has a mild negative influ-
ence on buying bread (that is, customers who buy cereal tend to purchase bread less
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often than the average customer), the association between cereal and bread may still
have a high support.

What would be more interesting is a deviation from the expected co-occurrence of
the two. In statistical terms, we look for correlations between items; correlations can
be positive, in that the co-occurrence is higher than would have been expected, or
negative, in that the items co-occur less frequently than predicted. Thus, if purchase
of bread is not correlated with cereal, it would not be reported, even if there was
a strong association between the two. There are standard measures of correlation,
widely used in the area of statistics. See a standard textbook on statistics for more
information about correlations.

Another important class of data-mining applications is sequence associations (or

sequence correlations). Time-series data, such as stock prices on a sequence of days,
form an example of sequence data. Stock-market analysts want to find associations
among stock-market price sequences. An example of such a association is the fol-
lowing rule: "Whenever bond rates go up, the stock prices go down within 2 days."
Discovering such association between sequences can help us to make intelligent in-
vestment decisions. See the bibliographical notes for references to research on this
topic.

Deviations from temporal patterns are often interesting. For instance, if a company
has been growing at a steady rate each year, a deviation from the usual growth rate
is surprising. If sales of winter clothes go dovrn in summer, it is not surprising, since
we can predict it from past years; a deviation that we could not have predicted from

past experience would be considered interesting. Mining techniques can find devia-
iions from what one would have expected on the basis of past temporal/sequential
patterns. See the bibliographical notes for references to research on this topic.

18.4.5 Clustering
Intuitively, clustering refers to the problem of finding clusters of points in the given
data. The problem of clustering can be formalized from distance metrics in several
ways. One way is to phrase it as the problem of grouping points into k sets (for a
given k) so that the average distance of points from the centroid of their assigned
cluster is minimized. s Another way is to group points so that the average distance
between every pair of points in each cluster is minimized. There are other defini-
tions too; see the bibliographical notes for details. But the intuition behind all these
definitions is to group similar points together in a single set.

Another type of clustering appears in classification systems in biology. (Such clas-
sification systems do not attempt to predict classes; rather they attempt to cluster re-
lated items together.) For instance, leopards and humans are clustered under the class
mammalia, while crocodiles and snakes are clustered under reptilia. Both mammalia
and reptilia come under the common class chordata. The clustering of mammalia has
further subclusters, such as carnivora and primates. We thus have hierarchical clus-

5. The centroid of a set of points is defined as a point whose coordinate on each dimension is the average

of the coordinates of all the points of that set on that dimension. For example in two dimensions, the

cent ro ido fase to f  po in ts { ( r r ,u i )  ( rz ,gz) , " . , ( rn ,g r ) } i sg ivenby  ( ry+3t ,DT- - ;on) .
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tering. Given characteristics of different species, biologists have created a complex
hierarchical clustering scheme grouping related species together at different levels of
the hierarchy.

Hierarchical clustering is also useful in other domains-for clustering documents,
for example. Internet directory systems (such as Yahoo's) cluster related documents
in a hierarchical fashion (see Section 1.9.9).Hierarchical clustering algorithms can be
classified as agglomerative clustering algorithms, which start by building small clus-
ters and then create higher levels, or divisive clustering algorithms, which first cre-
ate higher ievels of the hierarchical clustering, then refine each resulting cluster into
lower-level clusters.

The statistics community has studied clustering extensively. Database research has
provided scalable clustering algorithms that can cluster very large data sets (that may
not fit in memory). The Birch clustering algorithm is one such algorithm. Intuitively,
data points are inserted into a multidimensional tree structure (based on R-trees, de-
scribed in Section 24.3.5.3), and guided to appropriate leaf nodes on the basis of near-
ness to representative points in the internal nodes of the tree. Nearby points are thus
clustered together in leaf nodes, and summarized if there are more points than fit in
memory. The result of this first phase of clustering is to create a partially clustered
data set that fits in memory. Standard clustering techniques can then be executed
on the in-memory data to get the final clustering. See the bibliographical notes for
references to the Birch algorithm, and other techniques for clustering, including al-
gorithms for hierarchical clustering.

An interesting application of clustering is to predict what new movies (or books
or music) a person is likely to be interested in, on the basis of:

1,. The person/s past preferences in movies

2. Other people with similar past preferences

3. The preferences of such people for new movies

One approach to this problem is as follows. To find people with similar past prefer-
ences we create clusters of people based on their preferences for movies. The accuracy
of clustering can be improved by previously clustering movies by their similarity, so
even if people have not seen the same movies, if they have seen similar movies they
would be clustered together. We can repeat the clustering, alternately clustering peo-
ple, then movies, then people, and so on till we reach an equilibrium. Given a new
user, we find a cluster of users most similar to that user, on the basis of the user's
preferences for movies already seen. We then predict movies in movie clusters that
are popular with that user's cluster as likely to be interesting to the new user. In fact,
this problem is an instance of collaboratioe filtering, where users collaborate in the task
of filtering information to find information of interest.

18.4.5 Other Types of Mining
Text mining applies data-mining techniques to textual documents. For instance, there
are tools that form clusters on pages that a user has visited; this helps users when they
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browse the history of their browsing to find pages they have visited earlier. The dis-

tance between pages can be based, for instance, on common words in the pages (see

Section 79.2.2). Another application is to classify pages into a Web directory automat-

icaliy, according to their similarity with other pages (see Section 19.9).

Data-visualization systems help users to examine large volumes of data, and to

detect patterns visually. Visual displays of data-such as maps, chatts, and other

graphical representations-allow data to be presented compactly to users. A sin-

gle graphical screen can encode as much information as a far larger number of text

screens. For example, if the user wants to find out whether production problems at

plants are correlated to the locations of the plants, the problem locations can be en-

coded in a special color-say, red-on a map. The user can then quickly discover

locations where problems are occurring. The user may then form hypotheses about

why problems are occurring in those locations, and may verify the hypotheses quan-

titatively against the database.
As another example, information about values can be encoded as a color, and can

be displayed with as little as one pixel of screen area. To detect associations between

pairs of iiems, we can use a two-dimensional pixel matrix, with each row and each

iolumn representing an item. The percentage of transactions that buy both items can

be encoded by the color intensity of the pixel. Items with high association will show

up as bright pixels in the screen-easy to detect against the darker background.- 
Data-visuilization systems do not automatically detect patterns, but provide sys-

tem support for users to detect patterns. Since humans are very good at detecting

visual patterns, data visualizationis an important component of data mining.

18.5 Summory
o Decision-support systems analyze on-line data collected by transaction-

processing systems, to help people make business decisions. Since most or-

ganizations are extensively computerized today, a very large body of infor-
mation is available for decision support. Decision-support systems come in

various forms, including OLAP systems and data-mining systems.

o Online analytical processing (OLAP) tools help analysts view data summa-
rized in different ways, so that they can gain insight into the functioning of an
organization.

n OLAP tools work on multidimensional data, characterized by dimension
attributes and measure attributes.

n The data cube consists of multidimensional data summarized in different
ways. Precomputing the data cube helps speed up queries on summaries
of data.

I Cross-tab displays permit users to view two dimensions of multidimen-
sional data at a time, along with summaries of the data'

n Drill down, rollup, slicing, and dicing are among the operations that users
nerform with OLAP tools.
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The oLAP component of the sqL:rw9 standard provides a variety of new func-
tionality for data analysis, including new aggregate functions; cube and rollup
operations, ranking functions; windowing functions, which support summa-
rization on moving windows; and partitioning, with windowing and ranking
applied inside each partition.

Data warehouses help gather and archive important operational data. ware-
houses are used for deiision support and anilysis oniistorical d.ata, for in-
stance, to predict trends. Data cleansing from input data sources is often a
major task in data warehousing. warehouse schemas tend to be multidimen-
sional, involving one or a few very large fact tables and several much smaller
dimension tables.

Data mining is the process of semiautomatically analyzing large databases
to find useful patterns. There are a number of applications of data mining,
such as prediction of values based on past examples, finding of associations
between purchases, and automatic clustering of people and movies.

Classification deals with predicting the class of test instances, by using at-
tributes of the test instances, based on attributes of training instances, and
the actual class of training instances. Classification can be used, for instance,
to predict credit-worthiness levels of new applicants or to predict the perfor-
mance of applicants to a university.

There are several tlpes of classifiers, such as

r Decision-tree classifiers, which perform classification by constructing a
tree based on training instances with leaves having class labels. The tree
is traversed for each test instance to find aleai, and the class of the leaf is
the predicted class.

Several techniques are available to construct decision trees, most of
them based on greedy heuristics.

! Bayesian classifiers are simpler to construct than decision-tree classifiers,
and work better in the case of missing/null attribute values.

Association rules identify items that co-occur frequently, for instance, items
that tend to be bought by the same customer. Correlations look for deviations
from expected levels of association.

other types of data mining include clustering, text mining, and data visual-
ization.

Review Terms
o Decision-support systems

o Statistical analysis

o Multidimensional data
n Measure attributes
n Dimension attributes

o Cross-tabulation

o Data cube

o Online analytical processing
(OLAP)

n Pivoting
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o

a

a

O

I Slicing and dicing
n Ro[up and drill down

Multidimensional OLAP (MOLAP)

Relational OLAP (ROLAP)

Hybrid OLAP (HOLAP)

Extended aggregation

I Variance
! Standard deviation
n Correlation
I Regression

Ranking functions

n Rank
n Dense rank
n Partition by

o Windowing

o Data warehousing

I Gatheringdata
E Source-driven architecture
n Destination-driven architec-

ture
! Data cleansing

- Merge-purge
- Householding

n Exhact, Transform, Load
(rrl)

o Warehouse schemas

n Fact table
n Dimension tables
I Star schema

o Data mining

o Prediction

o Associations

e Classification

n taining data
f Testdata

o Decision-tree classifiers

I Partitioning attribute
n Partitioning condition
n Purity

- Gini measure
- Entropy measure

n Information gain
n Information content
n Information gain ratio
n Continuous-valued attribute
n Categorical attribute
n Binary split
[J Multiway split
n Overfitting

o Bayesian classifiers

I Bayes'theorem
n Naive Bayesian classifiers

r Regression

n Linear regression
n Curve fitting

r Association rules

n Population
I Support
tr Confidence
n Large itemsets

o Other types of associations

o Clustering

! Hierarchical clustering
I Agglomerative clustering
n Divisive clustering

o Text mining

o Data visualization

Prqctice Exercises
18.1 Show how to express group by cube(a, b, c, d) using rollup; your answer should

have only one group by clause.

18.2 Given a relation s(student,subject,mctrks), write a quely to find the top n

students by total marks, by using ranking.
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L8.3 Write a query to find cumulative balances, equivalent to that shown in Sec-
tion 18.2.5, but without using the extended sQL windowing constructs.

18.4 Consider the sales relation from Section 18.2. Write an sel query to compute
the cube operation on the relatiory giving the relation in Figure 18.2. Do not
use the cube construct.

18.5 Describe benefits and drawbacks of a source-driven architecture for gathering
of data at a data warehouse, as compared to a desiination-driven architecture.

L8.6 Suppose that there are two classification rules, one that says that people with
salaries between $10,000 and 920,000 have a credit rating of good, ind another
that says that people with salaries between 920,000 and 930,000 have a credit
rating of good. Under what conditions can the rules be replaced, without any
loss of information, by a single rule that says people with salaries between
$10,000 and $30,000 have a credit rating of good.

L8.7 Consider the schema depicted in Figure 18.7. Give anseL:1999 query to sum-
marize sales numbers and price by store and date, along with the hierarchies
on store and date.

Exercises

L8.8 For each of the SQL aggregate functions sum, count, min, and max, show how
to compute the aggregate value on a multiset 51 U ,S2, given the aggregate
values on multisets 51 and ,S2.

on the basis of the above, give expressions to compute aggregate values
with grouping on a subset S of the attributes of a relation r(A,B,C,D,E),
given aggregate values for grouping on attributes ? f ,9, for the following
aggregate functions:

a. sum, count, min, and max
b. avg
c. Standard deviation

18.9 Give an example of a pair of groupings that cannot be expressed by using a
single group by clause with cube and rollup.

18.L0 Givenrelationr(a,b,c),showhowtousetheextendedsel,featurestogenerate
a histogram of c versus a, dividing a into 20 equal-sized partitions (that is,
where each partition contains 5 percent of the tuples in r, sorted by o).

L8.11 Consider the balqnce attribute of the account relation. Write an sel- query to
compute a histogram of balance values, dividing the range 0 to the maximum
account balance present, into three equal ranges.

1.8.12 Construct a decision-tree classifier with binary splits at each node, using tu-
ples in relation r(A, B, c) shown below as training data; attribute c denotes
the class. Show the final tree, and with each node show the best split for each



Chapter 18 Data Analysis and Mining

attribute along with its information gain value.

( 7 , 2 , a ) , ( 2 , l , c r ' ) , ( 2 , 5 , b ) , ( 3 , 3 , b ) ,  ( 3 , 6 ' b ) ,  ( 4 , 5 , b ) , ( 5 , 5 , c ) ,  ( 6 , 3 , b ) , ( 6 , 7 , c )

18.13 Suppose half of all the transactions in a clothes shop purchase jeans, and 91e
thi?d of all transactions in the shop purchase T-shirts. Suppose also that half

of the transactions that purchase jeans also purchase T-shirts. Write down all

the (nontrivial) association rules you can deduce from the above information,

giving support and confidence of each rule.

L8.14 Consider the problem of finding large itemsets.

a. Describe how to find the support for a given collection of itemsets by using

a single scan of the data. Assume that the itemsets and associated informa-
tion, such as counts, will fit in memory.

b. Suppose an itemset has support less than j. Show that no superset of this

itemset can have suPPort greater than or equal to j.

18.15 Create a small example of a set of transactions showing that although many

transactions contain two items, that is the itemset containing the two items has

a high support, purchase of one of the items may have a negative correlation

with purchase of the other.

L8.16 The organization of parts, chapters, sections and subsections in a book is re-

lated to clustering. Explain why, and to what form of clustering'

18.17 Suggest how predictive mining techniques can be used by a sports team, using

your favorite sPort as an examPle.
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et al. 119921 and Shafer et al.119961; the decision-tree construction algorithm de-
scribed in this chapter is based on the SPRINT algorithm of Shafer et al. [7996].Agrawal
et al.l7993al introduced the notion of association rules, while Agrawal and Siikant
[1994] present an efficient algorithm for association rule mining. Algorithms for min-
ing of different forms of association rules are described by Srikant and Agrawal
[7996a] and Srikant and Agrawal17996bl Chakrabarti et al. [1998] describl tech-
niques for mining surprising temporal patterns.

Techniques for integrating data cubes with data mining are described by Sarawagi
t2oo0l.

Clustering has long been studied in the area of statistics, and Jain and Dubes [1988]
provide textbook coverage of clustering. Ng and Han[1994] describe spatial cluster-
ing techniques. Clustering techniques for large datasets are describedby Zhanget al.
179961. Breese et al. [1998] provide an empirical analysis of different algorithms for
collaborative filtering. Techniques for collaborative filtering of news articles are de-
scribed by Konstan et al. [79971.

Chakrabarti [2002] plevides a textbook description of information retrieval, in-
cluding extensive coverage of data mining-tasks related to textual and hypertext
data, such as classification and clustering. Chakrabarti [2000J provides a suivey of
hypertext mining techniques such as hypertext classification and clustering.

Tools
A variety of tools are available for each of the applications we have studied in this
chapter. Most database vendors provide OLAP tools as part of their database system,
or as add-on applications. These include OLAP tools from Microsoft Corp., Oracle
Express, and Informix Metacube. The Arbor Essbase OLAP tool is from an it"tdepen-
dent software vendor. The site www.databeacon.com provides an on-line demo o? the
Databeacon OLAP tools for use on Web and text-file data sources. Many companies
also provide analysis tools for specific applications, such as customer relationship
management.

Major database vendors also offer data warehousing products coupled with their
database systems. These provide support functionality for datamodeiing, cleansing,
loading, and querying. The Web site wwwdwinfocenter.org provides information on
data-warehousing products.

There is also a wide variety of general-purpose data-mining tools, including min-
ing tools from the sAS Institute, IBM Intelligent Miner, and sGI Mineset. A good
deal of expertise is required to apply general-purpose mining tools for specific appli-
cations. As a result, a large number of mining tools have been developed to address
specialized applications. The Web site www.kdnuggets.com provides an extensive di-
rectory of mining software, solutions, publications, and so on.





Textual data is unstructured, unlike the rigidly structured data in relational databases.
The term information retrieval generally refers to the querying of unstructured tex-
tual data. Information-retrieval systems have much in common with database sys-
tems, in particular, the storage and retrieval of data on secondary storage. However,
the emphasis in the field of information systems is different from that in database sys-
tems, concentrating on issues such as querying based on keywords; the relevance of
documents to the query; and the analysis, classification, and indexing of documents.

19.1 Overview
The field of information retrieval has developed in parallel with the field of databases.
In the traditional model used in the field of information retrieval, information is or-
ganized into documents, and it is assumed that there is a large number of documents.
Data contained in documents are unstructured, without any associated schema. The
process of information retrieval consists of locating relevant documents, on the basis
of user input, such as keywords or example documents.

The Web provides a convenient way to get to, and to interact with, information
sources across the Internet. However, a persistent problem facing the Web is the ex-
plosion of stored information, with little guidance to help the user to locate what
is interesting. Information retrieval has played a critical role in making the Web a
productive and useful tool, especially for researchers.

Tiaditional examples of information-retrieval systems are online library catalogs
and online document-management systems such as those that store newspaper arti-
cles. The data in such systems are organized as a collection ol documents; a newspaper
article and a catalog entry (in a library catalog) are examples of documents. In the
context of the Web, usually each HTML page is considered to be a document.

759
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A user of such a system may want to retrieve a particular document or a particular
class of documents. The intended documents are typically described by a set of key-
words-for example, the keywords "database system" may be used to locate books
on database systems, and the keywords "stock" and "scandal" may be used to locate
articles about stock-market scandals. Documents have associated with them a set of
keywords, and documents whose keywords contain those supplied by the user are
retrieved.

Keyword-based information retrieval can be used not only for retrieving textual
data, but also for retrieving other types of data, such as video and audio data, that
have descriptive keywords associated with them. For instance, a video movie may
have associated with it keywords such as its title, director, actors, and type.

There are several differences between this model and the models used in tradi-
tional database systems.

o Database systems deal with several operations that are not addressed in infor-
mation-retrieval systems. For instance, database systems deal with updates
and with the associated transactional requirements of concurrency control
and durability. These matters are viewed as less important in information sys-
tems. Similarly, database systems deal with structured information organized
with relatively complex data models (such as the relational model or object-
oriented data models), whereas information-retrieval systems traditionally
have used a much simpler model, where the information in the database is
organized simply as a collection of unstructured documents'

o Information-retrieval systems deal with several issues that have not been ad-
dressed adequately in database systems. For instance, the field of information
retrieval has dealt with the problems of managing unstructured documents,
such as approximate searching by keywords, and of ranking of documents on
estimated degree of relevance of the documents to the query.

Information-retrieval systems typically allow query expressions formed using key-
words and the logical connectives and, or, andnot. For example, a user could ask for
all documents that contain the keywords "motorcycle and maintenance," or docu-
ments that contain the keywords "computer or microprocessor," or even documents
that contain the keyword "computer but not database." A query containing keywords
without any of the above connectives is assumed to have ands irnplicltly connecting
the keywords.

In full text retrieval, all the words in each document are considered to be key-
words. For unstructured documents, full text retrieval is essential since there may be
no information about what words in the document are keywords. We shall use the
word term to refer to the words in a document, since all words are keywords.

In its simplest form, an information-retrieval system locates and returns all doc-
uments that contain all the keywords in the query, if the query has no connectives;
connectives are handled as you would expect. More-sophisticated systems estimate
relevance of documents to a query so that the documents can be shown in order of
estimated relevance. They use information about term occurrences, as well as hyper-
link information, to estimate relevance.
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19.2 Relevqnce Rqnking Using Terms
The set of all documents that satisfy a query expression may be very large; in par-
ticular, there are billions of documents on the Web, and most keyword queries on
a Web search engine find hundreds of thousands of documents containing the key-
words. Full text retrieval makes this problem worse: Each document may contain
many terms, and even terms that are only mentioned in passing are treated equiva-
lently with documents where the term is indeed relevant. Irrelevant documents may
get retrieved as a result.

Information-retrieval systems therefore estimate relevance of documents to a query,
and return only highly ranked documents as answers. Relevance ranking is not an
exact science, but there are some well-accepted approaches.

19.2.1 Ronking using TF-IDF
The first question to address is, given a particular termt, how relevant is a particu-
lar document d to the term. One approach is to use the the number of occurrences
of the term in the document as a measure of its relevance, on the assumption that
relevant terms are likely to be mentioned many times in a document. |usf counting
the number of occurrences of a term is usually not a good indicator: First, the num-
ber of occurrences depends on the length of the document, and second, a document
containing 10 occurrences of a term may not be 10 times as relevant as a document
containing one occurrence.

One way of measuringTF(d,t), the relevance of a document d to a term f, is

TF(d . . l )  :  I os  / t  * ' ( 1  1 ) \' \  n ( d )  )

where n(d) denotes the number of terms in the document and n(d,f) denotes the
number of occurrences of term I in the document d. Observe that this metric takes
the length of the document into account. The relevance grows with more occurrences
of a term in the document, although it is not directly proportional to the number of
occurrences.

Many systems refine the above metric by using other information. For instance, if
the term occurs in the title, or the author list, or the abstract, the document would
be considered more relevant to the term. Similarly, if the first occurrence of a term
is late in the document, the document may be considered less relevant than if the
first occurrence is early in the document. The above notions can be formalized by
extensions of the formula we have shown for TF(d,l). In the information retrieval
community, the relevance of a document to a term is referred to as term frequency
(TF), regardless of the exact formula used.

A query Q may contain multiple keywords. The relevance of a document to a
query with two or more keywords is estimated by combining the relevance measures
of the document to each keyword. A simple way of combining the measures is to add
them up. F{oweveq, not all terms used as keywords are equal. Suppose a query uses
two terms, one of which occurs frequently, such as "database," and another that is
less frequent, such as "Silberschatz." A document containing "silberschatz" but not
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"database" should be ranked higher than a document containing the term "database"

but not "Silberschatz."
To fix the above problem, weights are assigned to terms using the inverse docu-

ment frequency (IDF), defined as

t D t ' f t \ :  l -
n ( t \

where n(t) denotes the number of documents (among those indexed by the system)
that contain the term t. The relevance of a document d to a set of terms Q is then

defined as

r (d,  Q) :  >r  F@.t)  *  I  D F(t)
tee

This measure can be further refined if the user is permitted to specify weights tr(t)
for terms in the query, in which case the user-specified weights are also taken into
account by multiplyingf F (t) by w(t) in the above formula.

The above approach of using term frequence and inverse document frequency as
a measure of the relevance of a document is called the TF-IDF approach.

Almost all text documents (in English) contain words such as "and," "or,"'0a," and
so on, and hence these words are useless for querying purposes since their inverse
document frequency is extremely low. Information-retrieval systems define a set of
words, called stop words, containing 100 or so of the most common words, and ig-
nore these words when indexing a document. Such words are not used as keywords,
and are discarded if present in the ke)rwords supplied by the user.

Another factor taken into account when a query contains multiple terms is the
proximity of the terms in the document. If the terms occur close to each other in the
document, the document would be ranked higher than if they occur far apart. The
formula fior r(d,Q) can be modified to take proximity of the terms into account.

Given a query Q,the job of an information-retrieval system is to return documents
in descending order of their relevance to Q. Since there may be a very large number
of documents that are relevant, information-retrieval systems typically return only
the first few documents with the highest degree of estimated relevance, and permit
users to interactivelv request further documents.

19.2.2 Similority-Bqsed Retrievql
Certain information-retrieval systems permit similarity-based retrieval. Here, the
user can give the system document A, and ask the system to retrieve documents
that are "similar" to A. The similarity of a document to another may be defined, for
example, on the basis of common terms. One approach is to find k terms in,4 with
highest values of TF(A,I) * IDF(t), and to use these k terms as a query to find
relevance of other documents. The terms in the query are themselves weighted by
TF(A,t)  *  IDF(t) .

More generatly, the similarity of documents is defined by the cosine similarity
metric. Let the terms occurring in either of the two documents be t1,t2,. . . ,tn. Let
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r(d,t) : TF(d,t) * IDF(t). Then the cosine similarity metric between documents d
and e is defined as

D7.:,, r(d,ta)r(e,t)

JYTJ@WJYE;CW
You can easily verify that the cosine similarity metric of a document with itself is 1,
while that between two documents that do not share any terms is 0.

The name "cosine similarity" comes from the fact that the above formula com-
putes the cosine of the angle between two vectors, one representing each document,
defined as follows. Let there be n words overall across all the documents being con-
sidered. An n-dimensional space is defined, with each word as one of the dimensions.
A document d is represented by a point in this space, with the value of the zth coor-
dinate of the point being r(d,ta). The vector for document d connects the origin (all
coordinates = 0) to the point representing the document. The model of documents as
points and vectors in an n-dimensional space is called the vector space model.

If the set of documents similar to a query document A is large, the system may
present the user a few of the similar documents, allow the user to choose the most
relevant few, and start a new search based on similarity to A and to the chosen docu-
ments. The resultant set of documents is likely to be what the user intended to find.
This idea is called relevance feedback.

Relevance feedback can also be used to help users find relevant documents from a
large set of documents matching the given query keywords. In such a situation, users
may be allowed to identify one or a few of the returned documents as relevant; the
system then uses the identified documents to find other similar ones. The resultant
set of documents is likely to be what the user intended to find. An alternative to the
relevance feedback approach is to require users to modify the query by adding more
keywords; relevance feedback can be easier to use, in addition to giving a better final
set of documents as the answer.

In order to show the user a representative set of documents when the number
of documents is very Iarge, a search system may cluster the documents, based on
their cosine similarity. Clustering was described earlier in Section 18.4.5, and several
techniques have been developed to cluster sets of documents. See the bibliographic
notes for references to more information on clustering.

19.3 Relevqnce Using Hyperlinks
Early Web-search engines ranked documents by using only TF-IDF based relevance
measures like those described in Section 19.2. However, these techniques had some
limitations when used on very large collections of documents, such as the set of all
Web pages. In particular, many Web pages have all the keywords specified in a typical
search engine query; further some of the pages that users want as answers often have
just a few occurrences of the query terms, and would not get a very high TF-IDF score.

However, researchers soon realized that Web pages have very important infor-
mation that plain text documents do not have, namely hyperlinks. These can be ex-
ploited to get better relevance ranking; in particular, the relevance ranking of a page
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is influenced greatly by hyperlinks that point fo the page. in this section we study
how hyperlinks are used for ranking of Web pages.

19.3.1 Populority Ronking
The basic idea of popularity ranking (also called prestige ranking) is to find pages
that are popular, and to rank them higher than other pages that contain the specified
keywords. Since most searches are intended to find information from popular pages/
ranking such pages higher is generally a good idea. For instance, the term "google"
may occur in vast numbers of pages, but the page google.com is the most popu-
lar among the pages that contain the term "google." The page google.com should
therefore be ranked as the most relevant answer to a query consisting of the term
"google".

Traditional measures of relevance of a page such as the TF-IDF based measures/
which we saw in Section L9.2, canbe combined with the popularity of the page to get
an overall measure of the relevance of the page to the query. Pages with the highest
overall relevance value are returned as the top answers to a query.

This raises the question of how to define and how to find the popularity of a page.
One way would be to find how many times a page is accessed and use the number
as a measure of the sites popularity. However, getting such information is impossi-
ble without the cooperation of the site, and is infeasible for a Web-search engine to
implement.

A very effective alternative is to use hyperlinks to a page as a measure of its pop-
ularity. Many people have bookmark files that contain links to sites that they use
frequently. Sites that appear in a large number of bookmark files can be inferred to
be very popular sites. Bookmark files are usually stored privately and not accessible
on the Web. Howeve{, many users do maintain Web pages with links to their favorite
Web pages. Many Web sites also have links to other related sites, which can also be
used to infer the popularity of the linked sites. A Web search engine can fetch Web
pages (by a process called crawling, which we describe in Section 79.7), and analyze
them to find links between the pages.

A first solution to estimating the popularity of a page is to use the number of
pages that link to the page as a measure of its popularity. However, this by itself has
the drawback that many sites have a number of useful pages, yet external links often
point only to the root page of the site. The root page in turn has links to other pages
in the site. These other pages would then be wrongly inferred to be not very popular,
and would have a low ranking when answering queries.

One alternative is to associate popularity with sites, rather than with pages. All
pages at a site then get the popularity of the site, and pages other than the root page
of a popular site would also benefit from the sites popularity. However, the question
of what constitutes a site then arises. In general the Internet address prefix of a page
URL would constitute the site corresponding to the page. However, there are many
sites that host a large number of mostly unrelated pages, such as home page servers
in universities and Web portals such as groups.yahoo.com or tripod.com. For such
sites, the popularity of one part of the site does not imply popularity of another part
of the site.
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A simpler alternative is to allow transfer of prestige from popular pages to pages
that they link to. Under this scheme, in contrast to the one-person one-vote principles
of democracy, a link from a popular page r to a page g is treated as conferring more
prestige to page g than a link from a not-so-popular page z.r

This notion of popularity is in fact circular, since the popularity of a page is de-
fined by the popularity of other pages, and there may be cycles of links between
pages. However, the popularity of pages can be defined by a system of simultaneous
linear equations, which can be solved by matrix manipulation techniques. The linear
equations can be defined in such a way that they have a unique and well-defined
solution.

it is interesting to note that the basic idea underlying popularity ranking is actually
quite old, and first appeared in a theory of social networking developed by sociolo-
gists in the 1950s. In the social-networking context, the goal was to define the prestige
of people. For example, the president of the United States has high prestige since a
large number of people know him. If someone is known by multiple prestigious peo-
ple, then she also has high prestige, even if she is not known by as large a number
of people. The use of a set of linear equations to define the popularity measure also
dates back to this work.

19.3.2 PogeRcnk
The Web search engine Google introduced PageRank, which is a measure of pop-
ularity of a page based on the popularity of pages that link to the page. Using the
PageRank popularity measure to rank answers to a query gave results so much bet-
ter than previously used ranking techniques that Google became the most widely
used search engine, in a rather short period of time.

PageRank can be understood intuitively using a random walk model. Suppose a
person browsing the Web performs a random walk (traversal) on Web pages as fol-
lows: the first step starts at a random Web page, and in each step, the random walker
does one of the following. With a probability d the walker jumps to a randomly cho-
sen Web page, and with a probability of 1 - d the walker randomly chooses one of
the outlinks from the current Web page and follows the link. The PageRank of a page
is then the probability that the random walker is visiting the page at any given point
in time.

Note that pages that are pointed to from many Web pages are more likely to be
visited, and thus will have a higher PageRank. Similarly, pages pointed to by Web
pages with a high PageRank will also have a higher probability of being visited, and
thus will have a higher PageRank.

PageRank can be defined by a set of linear equations, as follows. First, Web pages
are given integer identifiers. The jump probability matrix 7 is defined with 7[i, j] set
to the probability that a random walker who is following a link out of page z follows
the link to page 7. Assuming that each link from i has an equal probability of being
followed Tli,, i1 : l/AL, where l4 is the number of links out of page i. Most entries

1. This is similar in some sense to giwing extra weight to endorsements of products by celebrities (such
as film stars), so its significance is open to question, although it is effective and widely used in practice.
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of T are 0 and it is best represented as an adjacency list. Then the PageRank Pljl for

each page j canbe defined as

Pl j l :  6 lN  +  (1  -  d )  *  l t r l z ,  j1  x  P l ; l )
.i:r

where d is a constant between 0 and 1, and N the number of pages; d represents the

probability of a step in the random walk being a jump.

The set of equations generated as above are usually solved by an an iterative tech-

nique, starting with each Plz] set to IlN. Each step of the iteration computes new

values for each Plz] using the P values from the previous iteration. Iteration stops
when the maximum change in any Plz] value in an iteration goes below some cut-off
value.

19.3.3 Other Meqsures of Populority
Basic measures of popularity such as PageRank play an important role in ranking of
query answers, but are by no means the only factor. The TF-IDF scores of a page are
used to judge its relevance to the query keywords, and must be combined with the
popularity ranking. Other factors must also be taken into account, to handle limita-
tions of PageRank and related popularity measures.

One drawback of the PageRank algorithm is that it assigns a measure of popularity
that does not take query keywords into account. For example, the page google.com is
likely to have a very high PageRank because many sites contain a link to it. Suppose
it contains a word mentioned in passing, such as "Stanford" (the advanced search
page at Google did in fact contain this word, as of early 2005 at least). A search on
the ke)rword Stanford would then return google.com as the highest ranked answer/
ahead of a more relevant answer such as the Stanford University Web page.

One widely used solution to this problem is to use keywords in the anchor text of
links to a page to judge what topics the page is highly relevant to. The anchor text of
a link consists of the text that appears within the HTML a href tag. For example the
anchor text of the link

< a h ref ="http ://stanford. edu"> Stanford U n iversity<ia>

is "stanford University." If many links to stanford.edu have word Stanford in their
anchor text, the site can be judged to be very relevant to the keyword Stanford. Text
near the anchor text may also be taken into account; for example a Web site may
contain the text "stanford's home page is here", but may have used only the word
"here" as anchor text in the link to the Stanford Web site.

Popularity based on anchor text is combined with other measures of popularity,
and with TF-IDF measures, to get an overall ranking for query answers. We note that
most search engines do not reveal how they compute relevance rankings; theybelieve
that revealing their ranking techniques would allow competitors to catch up, and
would make the job of "search engine spamming" easier resulting in poorer quality
of results. Search engine spamming is described in more detail later in this section.
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An alternative approach to taking keywords into account when defining popular-
ity is to compute a measure of popularity usingonly pages that contain the query key-
words, instead of computing popularity using all available Web pages. This approach
is more expensive, since the computation of popularity ranking has to be done dy-
namically when a query is received, whereas PageRank is computed statically once,
and reused for all queries. Web search engines handling billions of queries per day
cannot afford to spend so much time answering a query. As a result, although this
approach can give better answers, it is not very widely used.

The HITS algorithm was based on the above idea of first finding pages that con-
tain the query keywords, and then computing a popularity measure using just this
set of related pages. In addition it introduced a notion of hubs and authoritles. A hub
is a page that stores links to many related pages; it may not in itself contain actual
information on a topic, but points to pages that contain actual information. In con-
trast, an authority is a page that contains actual information on a topic, although it
may not store links to many related pages. Each page then gets a prestige value as a
hub (hub-prestige), and another prestige value as an authority (authority-prestige).The
definitions of prestige, as before, are cyclic and are defined by a set of simultaneous
linear equations. A page gets higher hub-prestige if it points to many pages with
high authority-prestige, while a page gets higher authority-prestige if it is pointed to
by many pages with high hub-prestige. Given a query, pages with highest authority-
prestige are ranked higher than other pages. See the bibliographical notes for refer-
ences giving further details.

Search engine spamming refers to the practice of creating Web pages, or sets of
Web pages, designed to get a high relevance rank for some queries, even though the
sites are not actually popular sites. For example, a travel site may want to be ranked
high for queries with the keyword "travel". It can get high TF-IDF scores by repeating
the word "travel" many times in its page.2 Even a site unrelated to travel, such as a
pornographic site, could do the same thing, and would get highly ranked for a query
on the word travel. In fact, this sort of spamming of TF-IDF was common in the early
days of Web search, and there was a constant battle between such sites and search
engines that tried to detect spamming and deny them a high ranking.

Popularity ranking schemes such as PageRank make the job of search engine spam-
ming more difficult, since just repeating words to get a high TF-IDF score was no
longer sufficient. However, even these techniques can be spammed, by creating a
collection of Web pages that point to each other, increasing their popularity rank.
Techniques such as using sites instead of pages as the unit of ranking (with appropri-
ately normalized jump probabilities) have been proposed to avoid some spamming
techniques, but are not fully effective against other spamming techniques. The war
between search engine spammers and the search engines continues even today.

The hubs and authorities approach of the HITS algorithm is more susceptible to
spamming. A spammer can create a Web page containing links to good authorities
on a topic, and gains a high hub score as a result. In addition the spammers Web

2. Repeated words in a Web page may confuse users; spammers can tackle this problem by delivering
different pages to search engines than to other users, for the same URL, or by making the repeated words
invisible, for example by formatting the words in small white font on a white background.
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page includes links to pages that they wish to popularize, which may not have any

relevance to the topic. Because these linked pages are pointed to by a page with high

hub score, they get a high but undeserved authority score.

19.4 Synonyms, Homonyms ond Ontologies
Consider the problem of locating documents about motorcycle maintenance, using
the query "motorcycle maintenance." Suppose that the keywords for each document
are the words in the title and the names of the authors. The document titled Motorcycle
Repair would not be retrieved, since the word "maintenance" does not occur in its
title.

We can solve that problem by making use of synonyms. Each word can have a set
of synonyms defined, and the occurrence of a word can be replaced by the or of all
its synonyms (including the word itself). Thus, the query "motorcycle andrepair" can
be replaced by "motorcycle and (repair or maintenance)." This quely would find the
desired document.

Keyword-based queries also suffer from the opposite problem, of homonyms, that
is single words with multiple meanings. For instance, the word "object" has different
meanings as a noun and as a verb. The word "table" may refer to a dinner table, or to
a table in a relational database.

In fact, a danger even with using synonyms to extend queries is that the synonyms
may themselves have different meanings. For example, "allowance" is a synonym for
one meaning of the word "maintenance", but has a different meaning than what the
user intended in the query "motorcycle maintenance". Documents that use the syn-
onyms with an alternative intended meaning would be retrieved. The user is then left
wondering why the system thought that a particular retrieved document (for exam-
ple, using the word "allowance") is relevant, if it contains neither the ke)-words the
user specified, nor words whose intended meaning in the document is synonymous
with specified keywords! It is therefore a bad idea to use synonyms to extend a query
without first verifying the synonyms with the user.

A better approach to the above problem is for the system to understandwhat con-
cept eachword in a document represents, and similarly understand what concepts a
user is looking for, and to return documents that address the concepts that the user
is interested in. A system that supports concept-based querying has to analyze each
document to disambiguate each word in the document, and replace it by the concePt
that it represents; disambiguation is usually done by looking at other surrounding
words in the document. For example, if a document contains words such as database
or query, the word table probably should be replaced by the concept "table: data"
whereas if the document contains words such as furniture, chair, or wood near the
word table, the word table should be replaced by the concept "table: furniture." Dis-
ambiguation based on nearby words is usually harder for user queries, since queries
contain very few words, so concept-based query systems would offer several alter-
natives concepts to the user, who picks one or more before search continues.

Concept-based querying has several advantages; for example a query in one lan-
guage can retrieve documents in other languages, so long as they relate to the same
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concept. Automated translation mechanisms can be used subsequently if the user
does not understand the language in which the document is written. However, the
overhead of processing documents to disambiguate words are very high when han-
dling billions of documents. Internet search engines therefore generally do not sup-
port concept-based querying. However, concept-based querying systems have been
built and used for other large collections of documents.

Querying based on concepts can be extended further by exploiting concept hier-
archies. For example, suppose a person issues a query "flying animals"; a document
containing information about "flying mammals" is certainly relevant, since a mam-
mal is an animal. However, the two concepts are not the same, and just matching
concepts would not allow the document to be returned as an answer. Concept-based
querying systems can support retrieval of documents based on concept hierarchies.

Ontologies are hierarchical structures that reflect relationships between concepts.
The most common relationship is the is-a relationship; for example, a leopard is-a
mammal, and a mammal is-a animal. Other relationships, such as part-of are also
possible; for example, an airplane wing is part of an airplane.

The WordNet system defines a large variety of concepts with associated words
(called a synset in WordNet terminology). The words associated with a synset are
synonyms for the concept; a word may of course be a synonym for several different
concepts. In addition to synonyms, WordNet defines homonyms and other relation-
ships. In particulal, the is-a and part-of relationships that it defines connects concepts,
and in effect defines an ontology. The Cyc project was another effort to create an on-
tology.

In addition to language-wide ontologies, ontologies have been defined for spe-
cific areas, to deal with terminology relevant that that area. For example ontologies
have been created to standardize terms used in businesses; this is an important step
in building a standard infrastructure for handling order processing and other inter-
organization flow of data.

It is also possible to build ontologies that link multiple languages. For example,
WordNets have been built for different languages, and common concepts between
languages can be linked to each other. Such a system can be used for translation of
text. In the context of information retrieval, a multi-lingual ontology can be used to
implement concept-based search across documents in multiple languages.

19.5 Indexin g of Documents
An effective index structure is important for efficient processing of queries in an
information-retrieval system. Documents that contain a specified keyword can be
efficiently located by using an inverted index, which rnaps each keyword Ka to a
list ,92 of (identifiers of) the documents that contain Ki.To support relevance ranking
based on proximity of keywords, such an index may provide not just identifiers of
documents, but also a list of locations within the document where the keyword ap-
pears. Such indices must be stored on disk, and each list Sa can span multiple disk

Pages. To minimize the number of I/O operations to retrieve each list S2, the system
would attempt to keep each list ,Sr in a set of consecutive disk pages, so the entire list
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can be retrieved with just one disk seek. A B+-tree index can be used to map each
keyword Ki to its associated inverted list ,9r.

The and operation finds documents that contain all of a specified set of keywords
Kr, Kz, . . . , Kn. We implement the nnd operation by first retrieving the sets of docu-
ment identifiers ,S1 , 52, . . . , S, of all documents that contain the respective keywords.
The intersection, 51 o 52 o . .' ) Sn, of the sets gives the document identifiers of the
desired set of documents. The or operation gives the set of all documents that con-
tain at least one of the keywords 1(1, Kz, . . . , Kn.We implement the or operation by
computing the union, ̂ 9r U,Sz U. . .l) Sn, of the sets. The not operation finds documents
that do not contain a specified keyword K;. Given a set of document identifiers S, we
can eliminate documents that contain the specified keyword Kiby taking the differ-
ence S - Sa, where S4 is the set of identifiers of documents that contain the keyword
Ki.

Given a set of keywords in a query, many information-retrieval systems do not
insist that the retrieved documents contain all the keywords (unless anand operation
is explicitly used). In this case, all documents containing at least one of the words are
retrieved (as in the or operation), but are ranked by their relevance measure.

To use term frequency for ranking, the index structure should additionally main-
tain the number of times terms occur in each document. To reduce this effort, they
may use a compressed representation with only a few bits that approximates the term
frequency. The index should also store the document frequency of each term (that is,
the number of documents in which the term appears).

The list ,9; can be sorted on popularity ranking (and secondarily, for documents
with the same popularity ranking, on document-id). Then, a simple merge can be
used to compute and and or operations. The results with highest popularity rank
would appear near the front of the lists. For the case of the and operation, if we ignore
the TF{DF contribution to the relevance score, and merely require that the document
should contain the given keywords, merging can stop once K answers have been
obtained, if the user requires only the top K answers.

19.5 Meqsuring Retrievol Effectiveness
Each keyword may be contained in a large number of documents; hence, a compact
representation is critical to keep space usage of the index low. Thus, the sets of doc-
uments for a keyword are maintained in a compressed form. So that storage space
is saved, the index is sometimes stored such that the retrieval is approximate; a few
relevant documents may not be retrieved (called a false drop or false negative), or
a few irrelevant documents may be retrieved (called a false positive). A good index
structure will not have any false drops, but may permit a few false positives; the sys-
tem can filter them away later by looking at the keywords that they actually contain.
In Web indexing, false positives are not desirable either, since the actual document
may not be quickly accessible for filtering.

TWo metrics are used to measure how well an information-retrieval system is able
to answer queries. The first, precision, measures what percentage of the retrieved
documents are actually relevant to the query. The second, recall, measures what per-
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centage of the documents relevant to the query were retrieved. Ideally both should
be 100 percent.

Precision and recall are also important measures for understanding how well a
particular document ranking strategy performs. Ranking strategies can result in false
negatives and false positives, but in a more subtle sense.

o False negatives may occur when documents are ranked as a result of relevant
documents receiving a low ranking. If the system fetched all documents down
to those with very low ranking there would be very few false negatives. How-
ever, humans would rarely look beyond the first few tens of returned doc-
uments, and may thus miss relevant documents because they are not ranked
low. Exactly what is a false negative depends on how many documents are ex-
amined. Therefore instead of having a single number as the measure of recall,
we can measure the recall as a function of the number of documents fetched.

o False positives may occur because irrelevant documents get higher rankings
than relevant documents. This too depends on how many documents are ex-
amined. One option is to measure precision as a function of number of docu-
ments fetched.

A better and more intuitive alternative for measuring precision is to measure it
as a function of recall. With this combined measure, both precision and recall can be
computed as a function of number of documents, if required.

For instance, we can say that with a recall of 50 percent the precision was 75 per-
cent, whereas at a recall of 75 percent the precision dropped to 60 percent. In generaf
we can draw a graph relating precision to recall. These measures can be computed for
individual queries, then averaged out across a suite of queries in a query benchmark.

Yet another. problem with measuring precision and recall lies in how to define
which documents are really relevant and which are not. In fact, it requires under-
standing of natural language, and understanding of the intent of the query, to decide
if a document is relevant or not. Researchers therefore have created collections of doc-
uments and queries, and have manually tagged documents as relevant or irrelevant
to the queries. Different ranking systems can be run on these collections to measure
their average precision and recall across multiple queries.

19.7 Web Seqrch Engines
web crawlers are programs that locate and gather information on the Web. They
recursively follow hyperlinks present in known documents to find other documents.
A crawler retrieves the documents and adds information found in the documents to a
combined index; the document is generally not stored, although some search engines
do cache a copy of the document to give clients faster access to the documents.

Since the number of documents on the Web is very large, it is not possible to crawl
the whole Web in a short period of time; and in fact, all search engines cover only
some portions of the Web, not all of it, and their crawlers may take weeks or months
to perform a single crawl of all the pages they cover. There are usually many pro-
cesses/ running on multiple machines, involved in crawling. A database stores a set
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of links (or sites) to be crawled; it assigns links from this set to each crawler process.

New links found during a crawl are added to the database, and may be crawled later

if they are not crawled immediately. Pages found during a crawl are also handed over

to a prestige computation and indexing system, which may be running on a different

machine. Pages have to be re-fetched (that is,links re-crawled) periodically to obtain

updated information, and to discard sites that no longer exist, so that the information

in the search index is kept reasonably up to date.
The prestige computation and indexing systems themselves run on multiple ma-

chines in parallel. It is not a good idea to add pages to the same index that is being

used for queries, since doing so would require concurrency control on the index, and

affect query and update performance. Instead, one copy of the index is used to an-

swer queries while another copy is updated with newly crawled Pages. At periodic

intervals the copies switch over, with the old one being updated while the new copy

is being used for queries.
To support very high query rates, the indices may be kept in main memorY, and

there are multiple machines; the system selectively routes queries to the machines to

balance the load among them. Popular search engines often have tens of thousands

of machines carrying out the various tasks of crawling, indexing and answering user

queries.

19.8 Informqtion Retrievql qnd Structured Dqtq
Although information retrieval systems were originally designed to find textual doc-
uments related to a query, there is an increasing need for systems that try to under-
stand documents (to a limited extent), and answer questions based on the (limited)

understanding. One approach is to create structured information from unstructured
documents, and answer questions based on the structured information. Another ap-
proach applies natural language techniques to find documents related to a question
(phrased in natural language) and return relevant segments of the documents as an
answer to the question.

19.8.1 Informqtion Extrqction
Information extraction systems convert information from textual form to a more
structured form. For example, a real estate advertisement may describe attributes
of a home in textual form, for example "two bedroom three bath house in Queens, $1
million," from which an information extraction system may extract attributes such as
number of bedrooms, number of bathrooms, cost and neighborhood. Such extracted
information can be used to better answer queries. An organization that maintains a
database of company information may use an information extraction system to au-
tomatically extract information from newspaper articles; the information extracted
would relate to changes in attributes of interest, such as resignations, dismissals or
appointments of company officers. Several systems have been built for information
extraction for specialized applications. They use linguistic techniques, as well as user
defined rules for specific domains (such as real estate advertisements).
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19.8.2 Querying Structured Dqtq
Structured data is primarily represented in either relational or XML form. Several
systems have been built to support keyword querying on relational and XML data. A
common theme between these systems lies in finding nodes (tuples or XML elements)
containing the specified keywords, and finding connecting paths (or common ances-
tors, in the case of XML data) between them.

For example, a query "Smith Queens" on a bank database may find the name Smith
occurring in a customer tuple, and the name Queens in a branch tuple, and a path
through the depositor relation connecting the two tuples. Such queries may be used
for ad-hoc browsing and querying of data, when the user does not know the exact
schema and does not wish to take the effort to write an SQL or XQuery query defining
what they are searching for. Indeed it is unreasonable to expect lay users to write
queries in a structured query language, whereas keyword querying is quite natural.

Since queries are not fully defined, they may have many different types of answers,
which must be ranked. A number of techniques have been proposed to rank answers
in such a setting, based on the lengths of connecting paths, and on techniques for as-
signing directions and weights to edges. Techniques have also been proposed for as-
signing popularity ranks to tuples and XML elements, based on links such as foreign
key and IDREF links. See the bibliographic notes for more information on keyword
searching on relational and XML data.

19.8.3 Question Answering
Information retrieval systems focus on finding documents relevant to a given query.
However, the answer to a query may lie in just one part of a document, or in small
parts of several documents. Question answering systems attempt to provide direct
answers to questions posed by users. For example, a question of the form "Who killed
Lincoln?" may best be answered by a line that says "Abraham Lincoln was shot by
John Wilkes Booth in 1865." Note that the answer does not actually contain the words
"killed" or "who", but the system infers thaf "who" can be answered by a name, and
"killed" is related to "shot".

Question answering systems targeted at information on the Web typically gener-
ate one or more keyword queries from a submitted question, execute the keyword
queries against Web search engines, and parse returned documents to find segments
of the documents that answer the question. A number of linguistic techniques and
heuristics are used to generate keyword queries, and to find relevant segments from
the document. The Microsoft MSN search engine supports question answering, using
the Encarta encyclopedia as its primary information source.

Current generation question answering systems are limited in power, since they
do not really understand either the question or the documents used to answer the
question. However, they are useful for a number of simple question answering tasks.

19.9 Directories
A typical library user may use a catalog to locate a book for which she is looking.
When she retrieves the book from the shelf, however, she is likely tobrowse through
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other books that are located nearby. Libraries organize books in such a way that re-
lated books are kept close together. Hence, a book that is physically near the desired
book may be of interest as well, making it worthwhile for users to browse through
such books.

To keep related books close together, libraries use a classification hierarchy. Books
on science are classified together. Within this set of books, there is a finer classifica-
tion, with computer-science books organized together, mathematics books organized
together, and so on. Since there is a relation between mathematics and computer sci-
ence, relevant sets of books are stored close to each other physically. At yet another
level in the classification hierarchy, computer-science books are broken down into
subareas, such as operating systems, languages, and algorithms. Figure 19.1 illus-
trates a classification hierarchy that may be used by a library. Because books can be
kept at only one place, each book in a library is classified into exactly one spot in the
classification hierarchy.

In an information-retrieval system, there is no need to store related documents
close together. Howevel such systems need to organize documents logically so as to
permit browsing. Thus, such a system could use a classification hierarchy similar to
one that libraries use, and, when it displays a particular document, it can also display
a brief description of documents that are close in the hierarchy.

In an information-retrieval system, there is no need to keep a document in a single
spot in the hierarchy. A document that talks of mathematics for computer scientists
could be classified under mathematics as well as under computer science. All that is
stored at each spot is an identifier of the document (that is, a pointer to the document),
and it is easy to fetch the contents of the document by using the identifier.

As a result of this flexibility, not only can a document be classified under two lo-
cations, but also a subarea in the classification hierarchy can itself occur under two
areas. The class of "graph algorithm" documents can appear both under mathemat-

Figure 19.1 A classification hierarchy for a library system.
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Figure 19.2 A classification DAG for a library information-retrieval system.

ics and under computer science. Thus, the classification hierarchy is now a directed
acyclic graph (DAG), as shown in Figure 79.2. A graph-algorithm document may ap-
pear in a single location in the DAG, but can be reached via multiple paths.

A directory is simply a classification DAG structure. Each leaf of the directory
stores links to documents on the topic represented by the leaf. Internal nodes may
also contain links, for example to documents that cannot be classified under any of
the child nodes.

To find information on a topic, a user would start at the root of the directory and
follow paths down the DAG until reaching a node representing the desired topic.
While browsing down the directory, the user can find not only documents on the
topic he is interested in, but also find related documents and related classes in the
classification hierarchy. The user may learn new information by browsing through
documents (or subclasses) within the related classes.

Organizing the enormous amount of information available on the Web into a di-
rectory structure is a daunting task.

o The first problem is determining what exactly the directory hierarchy should
be.

o The second problem is, given a document, deciding which nodes of the direc-
tory are categories relevant to the document.

To tackle the first problem, portals such as Yahoo have teams of "Internet librar-
ians" who come up with the classification hierarchy and continually refine it. The
Open Directory Project is a large collaborative effort, with different volunteers being
responsible for organizing different branches of the directory.

The second problem can also be tackled manually by librarians, or Web site main-
tainers may be responsible for deciding where their sites should lie in the hierarchy.
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There are also techniques for automatically deciding the location of documents based
on computing their similarity to documents that have already been classified.

19.10 Summory
o Information retrieval systems are used to store and query textual data such

as documents. They use a simpler data model than do database systems, but
provide more powerful querying capabilities within the restricted model.

Queries attempt to locate documents that are of interest by specifying, for
example, sets of keywords. The query that a user has in mind usually cannot
be stated precisely; hence, information-retrieval systems order answers on the
basis of potential relevance.

o Relevance ranking makes use of several types of information, such as:

n Term frequency: how important each term is to each document.
I Inverse document frequency.
I Popularity ranking.

o Similarity of documents is used to retrieve documents similar to an example
document. The cosine metric is used to define similarity, and is based on the
vector space model.

o PageRank and hub/authority rank are two ways to assign prestige to pages
on the basis of links to the page. The PageRank measure can be intuitively
understood using a random-walk model. Anchor text information is also used
to compute a per-keyword notion of popularity.

o Search engine spamming attempts to get (an undeserved) high ranking for a
page.

o Synonyms and homonyms complicate the task of information retrieval. Con-
cept-based querying aims at finding documents containing specified concepts,
regardless of the exact words (or language) in which the concept is specified.
Ontologies are used to relate concepts using relationships such as is-a or part-
of.

o Inverted indices are used to answer keyword queries.

o Precision and recall are two measures of the effectiveness of an information
retrieval system.

o Web search engines crawl the Web to find pages, analyze them to compute
prestige measures, and index them.

o Techniques have been developed to extract structured information from tex-
tual data, to perform keyword querying on structured data, and to give direct
answers to simple questions posed in natural language.

o Directory structures are used to classify documents with other similar docu-
ments.



Review Terms
o Information retrieval systems

o Keyword search

o Full text retrieval

o Term

o Relevance ranking

tr Termfrequency
tr Inverse document frequency
n Relevance
n Proximity

o Similarity-based retrieval

n Vector space model
n Cosine similarity metric
n Relevancefeedback

o Stop words
o Relevance using hyperlinks

n Popularity/Prestige
I Transfer ofprestige

o PageRank

I Random walk model
o Anchor text based relevance
o Hub/authority ranking

Practice Exercises

o Search engine spamming

o Synonyms

o Homonyms

o Concepts

o Concept-based querying

o Ontologies

o WordNet

o Inverted index

o False drop

o False negative

o False positive

o Precision

o Recall

o Web crawlers

o Information extraction

o Querying structured data

o Question answering

o Directories

o Classification hierarchy

Prqctice Exercises
19.1 Compute the relevance (using appropriate definitions of term frequency and

inverse document frequency) of each of the Practice Exercises in this chapter
to the query "SQL relation."

19.2 Suppose you want to find documents that contain at least k of a given set of n
keywords. Suppose also you have a keyword index that gives you a (sorted) list
of identifiers of documents that contain a specified keyword. Give an efficient
algorithm to find the desired set of documents.

19.3 Suggest how to implement the iterative technique for computing PageRank
given that the ? matrix (even in adjacency list representation) does not fit in
memory.

19.4 Suggest how a document containing a word (such as "leopard") can be indexed
such that it is efficiently retrieved by queries using a more general concept

' 
(such as "carnivore" or "mammal"). You can assume that the concept hierarchy
is not very deep, so each concept has only a few generalizations (a concept can,
however, have a large number of specializations). You can also assume that
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you are provided with a function that returns the concept for each word in a
document.

Also suggest how a query using a specialized concept can retrieve docu-
ments using a more general concept.

19.5 Suppose inverted lists are maintained in blocks, with each block noting the
largest popularity rank and TF-IDF scores of document in the remaining blocks
in the list. Suggest how merging of inverted lists can stop early if the user
wants only the top K answers.

Exercises

19.6 Using a simple definition of term frequency as the number of occurrences of the
term in a document, give the TF-IDF scores of each term in the set of documents
consisting of this and the next exercise.

19.7 Create a small example of a 4 small documents each with a PageRank, and
create inverted lists for the documents sorted by the PageRank. You do not
need to compute PageRank, just assume some values for each page.

19.8 Suppose you wish to perform keyword querying on a set of tuples in a database,
where each tuple has only a few attributes, each containing only a few words.
Does the concept of term frequency make sense in this context? And that of
inverse document frequency? Explain your answer. Also suggest how you can
define the similarity of two tuples using TF-IDF concepts.

19.9 Web sites that want to get some publicity can join a Web ring, where they create
links to other sites in the ring, in exchange for other sites in the ring creating
links to their site. What is the effect of such rings on popularity ranking tech-
niques such as PageRank?

19.10 The Google search engine provide a feature whereby Web sites can display ad-
vertisements supplied by Google. The advertisements supplied are based on
the contents of the page. Suggest how Google might choose which advertise-
ments to supply for apage, given the page contents.

19.1L One way to create a keyword-specific version of PageRank is to modify the ran-
dom jump such that a jump is only possible to pages containing the keyword.
Thus pages that do not contain the keyword but are close (in terms of links) to
pages that contain the keyword also get a non-zero rank for that keyword.

a. Give equations defining such a keyword-specific version of PageRank.
b. Give a formula for computing the relevance of a page to a query containing

multiple keywords.

19.12 The idea of popularity ranking using hyperlinks can be extended to relational
and XML data, using foreign key and IDREF edges in place of hyperlinks. Sug-
gest how such a ranking scheme may be of value in the following applications.
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a. A bibliographic database, which has links from articles to authors of the
articles and links from each article to every article that it references.

b. A sales database which has links from each sales record to the items that
were sold.

Also suggest why prestige ranking can give less than meaningful results in a
movie database that records which actor has acted in which movies.

L9.L3 What is the difference between a false positive and a false drop? If it is essential
that no relevant information be missed by an information retrieval query, is it
acceptable to have either false positives or false drops? Why?

Bibliogrophicol Notes
Chakrabarti 120021, Grossman and Frieder 120041, Witten et al. 179991, and Baeza-
Yates and Ribeiro-Netol7999l provide textbook descriptions of information retrieval.
Chakrabarti [20021 provides detailed coverage of Web crawling, ranking techniques,
and clustering and other mining techniques related to information retrieval. Indexing
of documents is covered in detail by Witten et aI.11999). Jones and Willet [79971ils a
collection of articles on information retrieval. Salton h9891 is an early textbook on
information-retrieval systems.

Brin and Page [19981 describes the anatomy of the Google search engine, includ-
ing the PageRank technique, while a hubs- and authorities-based ranking technique
called HITS is described by Kleinbergll999). Bharat and Henzinger [19981 presents a
refinement of the HITS ranking technique. These techniques, as well as other popu-
larity based ranking techniques (and techniques to avoid search engine spamming)
are described in detail in Chakrabarti [2002]. Chakrabarti et aI. 119991 addresses fo-
cused crawling of the Web to find pages related to a specific topic. Chakrabartill.999l
provides a survey of Web resource discovery.

The Citeseer system (citeseer.ist.psu.edu) maintains a very large database of pub-
lications (articles), with citation links between the publications, and uses citations to
rank publications. It includes a technique for adjusting the citation ranking based on
the age of a publication, to compensate for the fact that citations to a publication in-
crease as time passes; without the adjustment, older documents tend to get a higher
ranking than they truly deserve.

Information extraction and question answering have had a fairly long history in
the artificial intelligence community. Jackson and Moulinier [2002] provides textbook
coverage of natural language processing technique with an emphasis on information
extraction. Soderland [1999] describes information extraction using the WHISK sys-
tem, while Appelt and Israel [1999] provides a tutorial on information extraction.

The annual Text Retrieval Conference (TREC) has a number of tracks including
document retrieval, question answering, genomics search and so on. Each track de-
fines a problem and infrastructure to test the quality of solutions to the problem.
Details on TREC may be found at trec.nist.gov. Information about the question an-
swering track may be found at trec.nist.gov/data/qa.html.

More information about WordNet can be found at wordnet.princeton.edu and glob-
alwordnet.org. The goal of the Cyc system was a formal representation of large amou-
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nts of human knowledge. Its knowledge base contains a large number of terms, and
assertions about each term. Cyc also includes a support for natural language under-
standing and disambiguation. Information about the Cyc system may be found at
cyc.com and opencyc.org.

Agrawal et al. [2002], Bhalotia et al. [2002] and Hristidis and Papakonstantinou

[2002] cover keyword querying of relational data. Keyr,vord querying of xML data is
addressed by Florescu et al. [2000a] and Guo et al. [2003], among others.

Tools
Google (www.google.com) is currently the most popular search engine, but there are
a number of other search engines, such as MSN Search (search.msn.com) and Yahoo
search (search.yahoo.com). The site searchenginewatch.com provides a variety of
information about search engines. Yahoo (www.yahoo.com) and the Open Directory
Project (dmoz.org) provide classification hierarchies for Web sites.







The architecture of a database system is greatly influenced by the underiying com-
puter system on which it runs, in particular by such aspects of computer architecture
as networking, parallelism, and distribution:

o Networking of computers allows some tasks to be executed on a server system
and some tasks to be executed on client systems. This division of work has led
to client - seraer dqtnbose systems.

o Parallel processing within a computer system allows database-system activi-
ties to be speeded up, allowing faster response to transactions, as well as more
transactions per second. Queries can be processed in a way that exploits the
parallelism offered by the underlying computer system. The need for parallel
query processing has led to parallel dqtabsse systems.

o Distributing data across sites in an organization allows those data to reside
where they are generated or most needed, but still to be accessible from other
sites and from other departments. Keeping multiple copies of the database
across different sites also allows large organizations to continue their database
operations even when one site is affected by a natural disaster, such as flood,
fire, or earthquake. Distributed database systems handle geographically or ad-
ministratively distributed data spread across multiple database systems.

We study the architecture of database systems in this chapter, starting with the
traditional centralized systems, and covering client-server, parallel, and distributed
database systems.

2O.7 Centrq I ized q nd Client - Server Arch itectu res
Centralized database systems are those that run on a single computer system and do
not interact with other computer systems. Such database systems span a range from
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single-user database systems running on personal computers to high-performance
database systems running on high-end server systems. Client-server systems, on

the other hand, have functionality split between a server system and multiple client

sysrems.

20.1.1 Centrqlized Systems
A modern, general-purpose computer system consists of one to a few CPUs and a
number of device controllers that are connected through a common bus that provides
access to shared memory (Figure 20.1). The CPUs have local cache rnemories that store
local copies of parts of the memory, to speed up access to data. Each device controller
is in charge of a specific type of device (for example, a disk drive, an audio device,
or a video display). The CPUs and the device controllers can execute concurrently,
competing for memory access. Cache memory reduces the contention for memory
access, since it reduces the number of times that the CPU needs to access the shared
memory.

We distinguish two ways in which computers are used: as single-user systems
and as multiuser systems. Personal computers and workstations fall into the first cat-
egory. A typical single-user system is a desktop unit used by a single person, usually
with only one CPU and one or two hard disks, and usually only one person using the
machine at a time. A typical multiuser system, on the other hand, has more disks
and more memory, may have multiple CPUs and has a multiuser operating system.
It serves a large number of users who are connected to the system via terminals.

Database systems designed for use by single users usually do not provide many
of the facilities that a multiuser database provides. In particular, they may not sup-
port concurrency control, which is not required when only a single user can generate
updates. Provisions for crash recovery in such systems are either absent or primitive
-for example, they may consist of simply making a backup of the database before
any update. Many such systems do not support SQL, and provide a simpler query

Figure 20.1 A centralized computer system.
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language, such as a variant of QBE. In contrast, database systems designed for mul-
tiuser systems support the full transactional features that we have studied earlier.

Although general-purpose computer systems today have multiple processors, they
have coarse-granularity parallelism, with only a few processors (about two to four,
typically), all sharing the main memory. Databases running on such machines usu-
ally do not attempt to partition a single query among the processors; instead, they
run each query on a single processor, allowing multiple queries to run concurrently.
Thus, such systems support a higher throughput; that is, they allow a greater num-
ber of transactions to run per second, although individual transactions do not run
any faster.

Databases designed for single-processor machines already provide multitasking,
allowing multiple processes to run on the same processor in a time-shared manner,
giving a view to the user of multiple processes running in parallel. Thus, coarse-
granularity parallel machines logically appear to be identical to single-processor
machines, and database systems designed for time-shared machines can be easily
adapted to run on them.

In contrast, machines with fine-granularity parallelism have a large number of
processors, and database systems running on such machines attempt to parallelize
single tasks (queries, for example) submitted by users. We study the architecture of
parallel database systems in Section 20.3.

20.1.2 Client-Server Systems
As personal computers became faster, more powerful, and cheaper, there was a shift
away from the centralized system architecture. Personal computers supplanted ter-
minals connected to centralized systems. Correspondingly, personal computers as-
sumed the user-interface functionality that used to be handled directly by the cen-
tralized. systems. As a result, centralized systems today act ur 

""*"t 
rystems that

satisfy requests generated by client systems. Figure 20.2 shows the general structure
of a client-server system.

Functionality provided by database systems can be broadly divided into two parts
-the front end and the back end. The back end manages access structures, query
evaluation and optimization, concurrency control, and recovery. The front end of a
database system consists of tools such as SQL user interface, forms interfaces, report
generation tools, and data mining and analysis tools. The interface between the front
end and the back end is through SQL, or through an application program.

network

Figure20.2 General structure of a client-server system.
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SQL engine

interface
(SQL + API)

back end

Figure 20.3 Front-end and back-end functionality.

Standards such as )DBC and/DBC, which we saw in Chapter 3, were developed
to interface clients with servers. Any client that uses the ODBC or }DBC interface can
connect to any server that provides the interface.

Certain application programs, such as spreadsheets and statistical-analysis pack-
ages, use the client-server interface directly to access data from a back-end server. In
effect, they provide front ends specialized for particular tasks.

Systems that deal with large numbers of users adopt a three-tier architecture,
which we saw earlier in Figure 1.7 (Chapter 1), where the front end is a Web browser
which talks to an application server. The application setver, in effect, acts as a client
to the database server

Some transaction-processing systems provide a transactional remote procedure
call interface to connect clients with a server. These calls appear like ordinary Pro-
cedure calls to the programmer, but all the remote procedure calls from a client are
enclosed in a single transaction at the server end. Thus, if the transaction aborts, the
server can undo the effects of the individual remote procedure calls.

2O.2 Server System Architectures
Server systems can be broadly categorized as transaction servers and data servers.

o Transaction-server systems, also called query-server systems, provide an in-
terface to which clients can send requests to perform an action, in response
to which they execute the action and send back results to the client. Usually,
client machines ship transactions to the server systems, where those transac-
tions are executed, and results are shipped back to clients that are in charge
of displaying the data. Requests may be specified by using SQL, or through a
specialized application program interface.

o Data-server systems allow clients to interact with the servers by making re-
quests to read or update data, in units such as files or pages. For example,
file servers provide a file-system interface where clients can create, update,
read, and delete files. Data servers for database systems offer much more func-
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tionality; they support units of data-such as pages, tuples, or objects-that
are smaller than a file. They provide indexing facilities for data, and provide
transaction facilities so that the data are never left in an inconsistent state if a
client machine or process fails.

Of these, the transaction-server architecture is by far the more widely used archi-
tecture. We shall elaborate on the transaction-server and data-server architectures in
Sections 20.2.7 and 20.2.2.

20.2.1 Trqnsqction-Server Process Structure
A typicat transaction-server system today consists of multiple processes accessing
data in shared memory, as in Figure 20.4. The processes that form part of the database
system include

o Server processes: These are processes that receive user queries (transactions),
execute them, and send the results back. The queries may be submitted to the
server processes from a a user interface, or from a user process running em-

log disks

Figure20.4 Shared memory and

aPrsq9.?-
I monitor I
w,Ig:91,
-
I  lock 

'1

f .:l.r1}a'l1g9,li:i1
t

data disks

process structure,



Chapter20 Database-SystemArchitectures

bedded SQL, or via JDBC, ODBC, or similar protocols. Some database systems
use a separate process for each user session, and a few use a single database
process for all user sessions, but with multiple threads so that multiple queries
can execute concurrently. (A thread is like a process, but multiple threads ex-
ecute as part of the same process, and all threads within a process run in the
same virtual-memory space. Multiple threads within a process can execute
concurrently.) Many database systems use a hybrid architecture, with multi-
ple processes, each one running multiple threads.

o Lock manager process: This process implements lock manager functionality,
which includes lock grant, lock release, and deadlock detection.

o Database writer process: There are one or more processes that output modi-
fied buffer blocks back to disk on a continuous basis.

o Log writer process: This process outputs log records from the log record buffer
to stable storage. Server processes simply add log records to the log record
buffer in shared memory, and if a log force is required, they request the log
writer process to output log records.

o Checkpoint process: This process performs periodic checkpoints.

o Process monitor process: This process monitors other processes, and if any of
them fails, it takes recovery actions for the process, such as aborting any trans-
action being executed by the failed process, and then restarting the process.

The shared memory contains all shared data, such as:

o Buffer pool

o Lock table

o Log buffer, containing log records waiting to be output to the log on stable
storage

o Cached query plans, which can be reused if the same query is submitted again

All database processes can access the data in shared memory. Since multiple pro-
cesses may read or perform updates on data structures in shared memory, there must
be a mechanism to ensure that only one of them is modifying any data structure at
a time, and no process is reading a data structure while it is being written by others.
Such mutual exclusion can be implemented by means of operating system functions
called semaphores. Alternative implementations, with less overheads, use special
atomic instructions supported by the computer hardware; one type of atomic in-
struction tests a memory location and sets it to 1 atomically. Further implementation
details of mutual exclusion can be found in any standard operating system textbook.
The mutual exclusion mechanisms are also used to implement latches.

To avoid the overhead of message passing, in many database systems, server pro-
cesses implement locking by directly updating the lock table (which is in shared
memory), instead of sending lock request messages to a lock manager process. The
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lock request procedure executes the actions that the lock manager process would
take on getting a lock request. The actions on lock request and release are like those
in Section 1.6.1..4, but with two significant differences:

o Since multiple server processes may access shared memory, mutual exclusion
must be ensured on the lock table.

o If a lock cannot be obtained immediately because of a lock conflict, the lock
request code keeps monitoring the lock table to check when the lock has been
granted. The lock release code updates the lock table to note which process
has been granted the lock.

To avoid repeated checks on the lock table, operating system semaphores
can be used by the lock request code to wait for a lock grant notification. The
lock release code must then use the semaphore mechanism to notify waiting
transactions that their locks have been granted.

Even if the system handles lock requests through shared memory, it still uses the lock
manager process for deadlock detection.

20.2.2 Dqtq Servers
Data-server systems are used in local-area networks, where there is a high-speed
connection between the clients and the server, the client machines are comparable in
processing power to the server machine, and the tasks to be executed are computa-
tion intensive. In such an environment, it makes sense to ship data to client machines,
to perform all processing at the client machine (which may take a while), and then
to ship the data back to the server machine. Note that this architecture requires full
back-end functionality at the clients. Data-server architectures have been particularly
popular in object-oriented database systems.

Interesting issues arise in such an architecture, since the time cost of communica-
tion between the client and the server is high compared to that of a local memory
reference (milliseconds, versus less than 100 nanoseconds):

o Page shipping versus item shipping. The unit of communication for data can
be of coarse granularity, such as a page, or fine granularity, such as a tuple (or
an object, in the context of object-oriented database systems). We use the term
item to refer to both tuples and objects.

If the unit of communication is a single item, the overhead of message pass-
ing is high compared to the amount of data transmitted. Instead, when an item
is requested, it makes sense also to send back other items that are likely to be
used in the near future. Fetching items even before they are requested is called
prefetching. Page shipping can be considered a form of prefetching if mutti-
ple items reside on a page, since all the items in the page are shipped when a
process desires to access a single item in the page.

o Locking. Locks are usually granted by the server for the data items that it
ships to the client machines. A disadvantage of page shipping is that client
machines may be granted locks of too coarse a granularity-a lock on a page
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implicitly locks all items contained in the page. Even if the client is not access-

ing some items in the page, it has implicitly acquired locks on all prefetched

items. Other client machines that require locks on those items may be blocked

unnecessarily. Techniques for lock de-escalation have been proposed where

the server can request its clients to transfer back locks on prefetched items. If

the client machine does not need a prefetched item, it can transfer locks on the

item back to the server, and the locks can then be allocated to other clients.

o Data caching. Data that are shipped to a client on behalf of a transaction can be

cached at the client, even after the transaction completes, if sufficient storage

space is available. Successive transactions at the same client may be able to

make use of the cached data. However, cache coherency is an issue: Even if a

transaction finds cached data,itmust make sure that those data are up to date,

since they may have been updated by a different client after they were cached.

Thus, a message must still be exchanged with the server to check validity of

the data, and to acquire a lock on the data.

o Lock caching. If the use of data is mostly partitioned among the clients, with

clients rarely requesting data that are also requested by other clients, locks can

also be cached at the client machine. Suppose that a client finds a data item in

the cache, and that it also finds the lock required for an access to the data item

in the cache. Then, the access can proceed without any communication with

the server. However, the server must keep track of cached locks; if a client re-

quests a lock from the server, the server must call back all conflicting locks on

the data item from any other client machines that have cached the locks. The

task becomes more complicated when machine failures are taken into account.

This technique differs from lock de-escalation in that lock caching takes place

across transactions; otherwise, the two techniques are similar.

The bibliographical references provide more information about client-server data-

base systems.

2O.3 Pqrqllel Systems
Parallel systems improve processing and I/o speeds by using multiple CPUs and
disks in parallel. Parallel machines are becoming increasingly common, making the
study of parallel database systems correspondingly more important. The driving
force behind parallel database systems is the demands of applications that have to
query extremely large databases (of the order of terabytes-that is, 1012 bytes) or
that have to process an extremely large number of transactions per second (of the or-
der of thousands of transactions per second). Centralized and client-server database
systems are not powerful enough to handle such applications.

In parallel processing, many operations are performed simultaneously, as opposed
to serial processing, in which the computational steps are performed sequentially. A
coarse-grain parallel machine consists of a small number of powerful processors; a
massively parallel or fine-grain parallel machine uses thousands of smaller proces-
sors. Most high-end machines today offer some degree of coarse-grain parallelism:
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TWo or four processor machines are common. Massively parallel computers can be
distinguished from the coarse-grain parallel machines by the much larger degree of
parallelism that they support. Parallel computers with hundreds of CPUs and disks
are available commercially.

There are two main measures of performance of a database system: (1) through-
put, the number of tasks that can be completed in a given time interval, and (2) re-
sponse time, the amount of time it takes to complete a single task from the time
it is submitted. A system that processes a large number of small transactions can
improve throughput by processing many transactions in parallel. A system that pro-
cesses large transactions can improve response time as well as throughput by per-
forming subtasks of each transaction in parallel.

20.3.1 Speedup ond Sccleup
TWo important issues in studying parallelism are speedup and scaleup. Running a
given task in less time by increasing the degree of parallelism is called speedup.
Handling larger tasks by increasing the degree of parallelism is called scaleup.

Consider a database application running on a parallel system with a certain num-
ber of Processors and disks. Now suppose that we increase the size of the system by
increasing the number or processors, disks, and other components of the system. The
goal is to process the task in time inversely proportional to the number of processors
and disks allocated. Suppose that the execution time of a task on the larger machine
is Ty, and that the execution time of the same task on the smaller machine is ?s.
The speedup due to parallelism is defined as Ts f 71. The parallel system is said to
demonstrate linear speedup if the speedup is l'I when the larger system has l,r times
the resources (CPU, disk, and so on) of the smaller system. If the speedup is less than
1t/, the system is said to demonstrate sublinear speedup. Figure 20.5 i l lu;trates l inear
and sublinear speedup.

Scaleup relates to the ability to process larger tasks in the same amount of time by
providing more resources. Let Qbe atask, and let Q1,' be a task that is N times bigger

1
E

a

linear speedup

sublinear speedup

resources -----------*

Figure 20.5 Speedup with increasing resources.
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than Q. Suppose that the execution time of task Q on a given machine Ms is Ts, and

the execution time of task Qr on a parallel machine Ml,whichis ly' times larger than

Ms,is ft. The scaleup is then defined asT5fT;. The parallel system M1, is said to

demonstrate linear scaleup on task Q if TL : Ts'If Tt ) Ts, the system is said to

demonstrate sublinear scaleup. Figure 20.6 illustrates linear and sublinear scaleups
(where the resources increase proportional to problem size). There are two kinds of

scaleup that are relevant in parallel database systems, depending on how the size of

the task is measured:

o In batch scaleup, the size of the database increases, and the tasks are large jobs

whose runtime depends on the size of the database. An example of such a task

is a scan of a relation whose size is proportional to the size of the database.

Thus, the size ofthe database is the measure of the size of the problem. Batch

scaleup also applies in scientific applications, such as executing a query at an

N-times finer resolution or performing an N-times longer simulation.

o In transaction scaleup, the rate at which transactions are submitted to the

database increases and the size of the database increases proportionally to

the transaction rate. This kind of scaleup is what is relevant in transaction-

processing systems where the transactions are small updates-for example, a

deposit or withdrawal from an account-and transaction rates Srow as more

accounts are created. Such transaction processing is especially well adapted

for parallel execution, since transactions can run concurrently and indepen-

dently on separate processors, and each transaction takes roughly the same

amount of time, even if the database grows.

Scaleup is usually the more important metric for measuring efficiency of parallel

database systems. The goal of parallelism in database systems is usually to make sure

that the database system can continue to perform at an acceptable speed, even as the

size of the database and the number of transactions increases. Increasing the capac-

ity of the system by increasing the parallelism provides a smoother path for growth

t
t

I
k.T,

linear scaleup

problem size ->

Figure 2O.6 Scaleup with increasing problem size and resources.
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for an enterprise than does replacing a centralized system by a faster machine (even
assuming that such a machine exists). However, we must also look at absolute per-
formance numbers when using scaleup measures; a machine that scales up linelrly
may perform worse than a machine that scales less than linearly, simply because the
latter machine is much faster to start off with.

A number of factors work against efficient parallel operation and can diminish
both speedup and scaleup.

o Start-uP costs. There is a start-up cost associated with initiating a single pro-
cess. In a parallel operation consisting of thousands of processes, the start-up
time may overshadow the actual processing time, affecting speedup adversely.

o Interference. Since processes executing in a parallel system often access shared
resources/ a slowdown may result from the interference of each new process as
it competes with existing processes for commonly held resources, such as a
system bus, or shared disks, or even locks. Both speedup and scaleup are af-
fected by this phenomenon.

o skew. By breaking down a single task into a number of parallel steps, we
reduce the size of the average step. Nonetheless, the service time for the single
slowest step will determine the service time for the task as a whole. It is often
difficult to divide a task into exactly equal-sized parts, and the way that the
sizes are distributed is therefore skerned. For example, if a task of size 100 is
divided into 10 parts, and the division is skewed, there may be some tasks of
size less than 10 and some tasks of size more than 10; if even one task happens
to be of size 20, the speedup obtained by running the tasks in parallel is only
five, instead of ten as we would have hoped.

20.3.2 lnterconnection Networks
Parallel systems consist of a set of components (processors, memory, and disks) that
can communicate with each other via an interconnection network. Figure 20.7 shows
three commonly used types of interconnection networks:

o Bus. AII the system components can send data on and receive data from a sin-
gle communication bus. This type of interconnection is shown inFigure2}.7a.
The bus could be an Ethernet or a parallel interconnect. Bus architectures work
well for small numbers of processors. However, they do not scale well with in-
creasing parallelism, since the bus can handle communication from only one
component at a time.

o Mesh. The components are nodes in a grid, and each component connects to
all its adjacent components in the grid. In a two-dimensional mesh each node
connects to four adjacent nodes, while in a three-dimensional mesh each node
connects to six adjacent nodes. Figure 20.7b shows a two-dimensional mesh.
Nodes that are not directly connected can communicate with one another
by routing messages via a sequence of intermediate nodes that are directly
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(a) bus (b) mesh (c) hypercube

Figure2O.T Interconnection networks.

connected to one another. The number of communication links grows as the
number of components grows, and the communication capacity of a mesh
therefore scales better with increasing parallelism.

o Hypercube. The components are numbered in binary, and a component is
connected to another if the binary representations of their numbers differ in

exactly one bit. Thus, each of the n components is connected to 1og(rz) other
components. Figure 20.7c shows a hypercube with 8 nodes. In a hypercube
interconnection, a message from a component can reach any other component
by going through at most iog(n) Iinks. In contrast, in a mesh architecture a

component may be 2(^/" - 1) links away from some of the other components
(or ,rr links away, if the mesh interconnection wraps around at the edges of
the grid). Thus communication delays in a hypercube are significantly lower
than in a mesh.

20.3.3 Pqrqllel Dotqbqse Architectures

There are several architectural models for parallel machines. Among the most promi-
nent ones are those in Figure 20.8 (in the figure, M denotes memory, P denotes a
processor, and disks are shown as cylinders):

o Shared memory. AII the processors share a common memoly (Figure 20.8a).

o Shared disk. All the processors share a common set of disks (Figure 20.8b).
Shared-disk systems are sometimes called clusters.

o Shared nothing. The processors share neither a common memory nor com-
mon disk (Figure 20.8c).

o Hierarchical. This model is a hybrid of the preceding three architectures (Fig-

ure 20.8d).

In Sections 20.3.3.1, through 20.3.3.4, we elaborate on each of these models.
Techniques used to speed up transaction processing on data-server systems, such

as data and lock caching and lock de-escalation, outlined in Section 20 .2.2, canalso be
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(a) shared memory (b) shared disk

(c) shared nothing (d) hierarchical

Figure 2O.8 Parallel database architectures.

used in shared-disk parallel databases as well as in shared-nothing parallel databases.
ln fact, they are very important for efficient transaction processing in such systems.

20.3.3.1 Shqred Memory
In a shared-memory architecture, the processors and disks have access to a common
memory/ typically via a bus or through an interconnection network. The benefit of
shared memory is extremely efficient communication between processors-data in
shared memory can be accessed by any processor without being moved with soft-
ware. A processor can send messages to other processors much faster by using mem-
ory writes (which usually take less than a microsecond) than by sending a message
through a communication mechanism. The downside of shared-memory machines is
that the architecture is not scalable beyond 32 or 64 processors because the bus or the
interconnection network becomes a bottleneck (since it is shared by all processors).
Adding more processors does not help after a point, since the processors will spend
most of their time waiting for their turn on the bus to access memory.

Shared-memory architectures usually have large memory caches at each processor,
so that referencing of the shared memory is avoided whenever possible. However, at
least some of the data will not be in the cache, and accesses will have to go to the
shared memory. Moreover, the caches need to be kept coherent; that is, if a processor
performs a write to a memory location, the data in that memory location should be
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either updated at or removed from any processor where the data are cached. Main-

taining iache coherency becomes an increasing overhead with increasing number of

processors. Consequently, shared-memory machines are not capable of scaling up

beyond a point; current shared-memory machines cannot support more than 64pro-

CCSSOIS.

20.3.3.2 Shqred Disk
In the shared-disk model, all processors can access all disks directly via an intercon-
nection network, but the processors have private memories. There are two advan-
tages of this architecture over a shared-memory architecture. First, since each pro-
cessor has its own memory, the memory bus is not a bottleneck. Second, it offers a
cheap way to provide a degree of fault tolerance: If a processor (or its memory) fails,
the other processors can take over its tasks, since the database is resident on disks
that are aicessible from all processors. We can make the disk subsystem itself fault

tolerant by using a RAID architecture, as described in Chapter 11. The shared-disk
architecture has found acceptance in many applications.

The main problem with a shared-disk system is again scalability. Although the

memory bus is no longer a bottleneck, the interconnection to the disk subsystem is

now a bottleneck; it is particularly so in a situation where the database makes a large

number of accesses to disks. Compared to shared-memory systems, shared-disk sys-

tems can scale to a somewhat larger number of processors, but communication across

processors is slower (up to a few milliseconds in the absence of special-purpose hard-

ware for communication), since it has to go through a communication network.

20.3.3.3 Shqred Nothing
In a shared-nothing system, each node of the machine consists of a processor, mem-
ory, and one or more disks. The processors at one node may communicate with an-
other processor at another node by a high-speed interconnection network. A node
functions as the server for the data on the disk or disks that the node owns. Since

local disk references are serviced by local disks at each processor, the shared-nothing
model overcomes the disadvantage of requiring alII/O to go through a single inter-
connection network; only queries, accesses to nonlocal disks, and result relations pass
through the network. Moreover, the interconnection networks for shared-nothing
systems are usually designed to be scalable, so that their transmission capacity in-

creases as more nodes are added. Consequently, shared-nothing architecfures are
more scalable and can easily support a large number of processors. The main draw-
backs of shared-nothing systems are the costs of communication and of nonlocal disk
access, which are higher than in a shared-memory or shared-disk architecture since
sending data involves software interaction at both ends.

20.3.3.4 Hierqrchicol
The hierarchical architecture combines the characteristics of shared-memory, shared-
disk, and shared-nothing architectures. At the top level, the system consists of nodes
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that are connected by an interconnection network and do not share disks or mem-
ory with one another. Thus, the top level is a shared-nothing architecture. Each node
of the system could actually be a shared-memory system with a few processors. Al-
ternatively, each node could be a shared-disk system, and each of the systems shar-
ing a set of disks could be a shared-memory system. Thus, a system could be built
as a hierarchy, with shared-memory architecture with a few processors at the base,
and a shared-nothing architecture at the top, with possibly a shared-disk architec-
ture in the middle. Figure 20.8d illustrates a hierarchical architecture with shared-
memory nodes connected together in a shared-nothing architecture. Commercial par-
allel database systems today run on several of these architectures.

Attempts to reduce the complexity of programming such systems have yielded
distributed virtual-memory architectures, where logically there is a single shared
memory/ but physically there are multiple disjoint memory systems; the virtual-
memory-mapping hardware, coupled with system software, allows each processor
to view the disjoint memories as a single virtual memory. Since access speeds differ,
depending on whether the page is available locally or not, such an architecture is also
referred to as a nonuniform memory architecture (NUMA).

2O.4 Distributed Systems
In a distributed database system, the database is stored on several computers. The
computers in a distributed system communicate with one another through various
communication media, such as high-speed networks or telephone lines. They do not
share main memory or disks. The computers in a distributed system may vary in size
and function, tanging from workstations up to mainframe systems.

The computers in a distributed system are referred to by a number of different
names, such as sites or nodes, depending on the context in which they are mentioned.
We mainly use the term site, to emphasize the physical distribution of these systems.
The general structure of a distributed system appears in Figure 20.9.

The main differences between shared-nothing parallel databases and distributed
databases are that distributed databases are typically geographically separated, are
separately administered, and have a slower interconnection. Another major differ-
ence is that, in a distributed database system, we differentiate between local and
global transactions. A local transaction is one that accesses data only from sites
where the transaction was initiated. A global transaction, on the other hand, is one
that either accesses data in a site different from the one at which the transaction was
initiated, or accesses data in several different sites.

There are several reasons for building distributed database systems, including
sharing of data, autonomy, and availability.

o Sharing data. The major advantage in building a distributed database system
is the provision of an environment where users at one site may be able to
access the data residing at other sites. For instance, in a distributed banking
system, where each branch stores data related to that branch, it is possible for
a user in one branch to access data in another branch. Without this capability,
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site C

Figure 2O.9 A distributed system.

a user wishing to transfer funds from one branch to another would have to
resort to some external mechanism that would couple existing systems.

Autonomy. The primary advantage of sharing data by means of data distri-
bution is that each site is able to retain a degree of control over data that
are stored locally. In a centralized system, the database administrator of the
central site controls the database. In a distributed system, there is a global
database administrator responsible for the entire system. A part of these re-
sponsibilities is delegated to the local database administrator for each site.
Depending on the design of the distributed database system, each adminis-
trator may have a different degree of local autonomy. The possibility of local
autonomy is often a major advantage of distributed databases.

Availability. If one site fails in a distributed system, the remaining sites may
be able to continue operating. In particular, if data items are replicated in sev-
eral sites, a transaction needing a particular data item may find that item in
any of several sites. Thus, the failure of a site does not necessarily imply the
shutdown of the system.

The failure of one site must be detected by the system, and appropriate
action may be needed to recover from the failure. The system must no longer
use the services of the failed site. Finally, when the failed site lecovers or is
repaired, mechanisms must be available to integrate it smoothly back into the
system.

Although recovery from failure is more complex in distributed systems
than in centralized systems, the ability of most of the system to continue to
operate despite the failure of one site results in increased availability. Avail-
ability is crucial for database systems used for real-time applications. Loss of
access to data by, for example, an airline may result in the loss of potential
ticket buvers to competitors.

communication
via network

site B
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20.4.1 An Exqmple of o Distributed Dqtqbqse
Consider a banking system consisting of four branches in four different cities. Each
branch has its own computer, with a database of all the accounts maintained at that
branch. Each such installation is thus a site. There also exists one single site that
maintains information about all the branches of the bank. Each branch maintains
(among others) a relation account(Account s chemn), where

Accountscheryt = (accountnumber , branch_name, balance)

The site containing information about all the branches of the bank maintains the re-
Iation b r nn ch (B r an ch -s ch em a), wher e

Branch_schemt = (foranch_name, brnnch_city, assets)

There are other relations maintained at the various sites; we ignore them for the pur-
pose of our example

To illustrate the difference between the two types of transactions-local and
global-at the sites, consider a transaction to add $50 to account number A-177
located at the Valleyview branch. If the transaction was initiated at the Valleyview
branch, then it is considered locaf otherwise, it is considered global. A transaction
to transfer $50 from account A-777 to account A-305, which is located at the Hillside
branch, is a global transaction, since accounts in two different sites are accessed as a
result of its execution.

In an ideal distributed database system, the sites would share a common global
schema (although some relations may be stored only at some sites), all sites would
run the same distributed database-management software, and the sites would be
aware of each other's existence. If a distributed database is built from scratch, it
would indeed be possible to achieve the above goals. However, in reality a dis-
tributed database has to be constructed by linking together multiple already-existing
database systems, each with its own schema and possibly running different database-
management software. Such systems are sometimes called multidatabase systems
or heterogeneous distributed database systems. We discuss these systems in Sec-
tion22.8, where we show how to achieve a degree of global control despite the het-
erogeneity of the component systems.

20.4.2 lmplementqtion lssues
Atomicity of transactions is an important issue in building a distributed database sys-
tem. If a transaction runs across two sites, unless the system designers are careful, it
may commit at one site and abort at another, leading to an inconsistent state. Trans-
action commit protocols ensure such a situation cannot arise. The two-phase commit
protocol (2PC) is the most widely used of these protocols.

The basic idea behind 2PC is for each site to execute the transaction till just before
commit, and then leave the commit decision to a single coordinator site; the trans-
action is.said to be in the ready state at a site at this point. The coordinator decides
to commit the transaction only if the transaction reaches the ready state at every site
where it executed; otherwise (for example, if the transaction aborts at any sitej, the
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coordinator decides to abort the transaction. Every site where the transaction exe-

cuted must follow the decision of the coordinator. If a site fails when a transaction is

in ready state, when the site recovers from failure it should be in a position to either

commii or abort the transaction, depending on the decision of the coordinator' The

2PC protocol is described in detail in Section 22'4.7.

Concurrency control is another issue in a distributed database. Since a transac-

tion may access data items at several sites, transaction managers at several sites may

need to coordinate to implement concurrency control. If locking is used (as is almost

always the case in practice), locking can be performed locally at the sites containing

accessed data items, but there is also a possibility of deadlock involving transactions

originating at multiple sites. Therefore deadlock detection needs to be carried out

u.r6rr r,-r,rltipl" sites. Failures are more common in distributed systems since not only

may computers fail, but communication links may also fail. Replication of data items,

which b [he key to the continued functioning of distributed databases when failures

occur, further complicates concurrency control. Section 225 provides detailed cover-

age of concurrency control in distributed databases.

The standard transaction models, based on multiple actions carried out by a single

program unit, are often inappropriate for carrying out tasks that cross the boundaries

of dutubur"r that cannot or will not cooperate to implement protocols such as 2PC' Al-

ternative approaches, based onpersistent messaging for communication, are generally

used for such tasks.
When the tasks to be carried out are complex, involving multiple databases and/or

multiple interactions with humans, coordination of the tasks and ensuring transac-

tion properties for the tasks become more complicated. Workflow mnnagement systems

are systems designed to help with carrying out such tasks. Section 22.4.3 describes

persistent messaging, while Section25.2 describes workflow management systems.

In case an organization has to choose between a distributed architecture and a

centralized architecture for implementing an application, the system architect must

balance the advantages against the disadvantages of distribution of data. We have al-

ready seen the advantages of using distributed databases. The primary disadvantage

of distributed database systems is the added complexity required to ensure proper

coordination among the sites. This increased complexity takes various forms:

o Software-development cost. It is more difficult to implement a distributed

database system; thus, it is more costly.

o Greater potential for bugs. Since the sites that constitute the distributed sys-

tem operate in parallel, it is harder to ensure the correctness of algorithms,

especiilly operation during failures of part of the system, and recovery from

failures. The potential exists for extremely subtle bugs.

o Increased processing overhead. The exchange of messages and the additional

computation required to achieve intersite coordination are a form of overhead

that does not arise in centralized systems.

There are several approaches to distributed database design, ranging from fully

distributed designs to ones that include a large degree of centralization. We study

them in Chapter 22.
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2O.5 Network Types
Distributed databases and client-server systems are built around communication
networks. There are basically two types of networks: local-area networks and wide-
area networks. The main difference between the two is the way in which they are
distributed geographically. In local-area networks, processors are distributed over
small geographical areas, such as a single building or a number of adjacent buitd-
ings. In wide-area networks, on the other hand, a number of autonomous processors
are distributed over a large geographical area (such as the United States or the en-
tire world). These differences imply major variations in the speed and reliability of
the communication network, and are reflected in the distributed operating-system
design.

20.5.1 Locql-Areo Networks
Local-area networks (LANs) (Figure 20.10) emerged in the early 7970s as a way
for computers to communicate and to share data with one another. People recog-
nized that, for many enterprises, numerous small computers, each with its own self-
contained applications, are more economical than a single large system. Because each
small computer is likely to need access to a full complement of peripheral devices
(such as disks and printers), and because some form of data sharing is likely to oc-
cur in a single enterprise, it was a natural step to connect these small systems into a
network.
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Figure 2O.1O Local-area network.
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Figure2o.ll Storage-areanetwork.

LANs are generally used in an office environment. AII the sites in such systems
are close to one another, so the communication links tend to have a higher speed and
lower error rate than do their counterparts in wide-area networks. The most common
links in a local-area network are twisted pair, coaxial cable, fiber optics, and, increas-
ingly, wireless connections. Communication speeds range from a few megabits per
second (for wireless local-area networks), to 1 gigabit per second for Gigabit Ether-
net. Standard Ethernet runs at 10 megabits per second, while Fast Ethernet run at 100

megabits per second.
A storage-area network (SAN) is a special type of high-speed local-area network

designed to connect large banks of storage devices (disks) to computers that use the

data (see Figure 20.1.1).
Thus storage-area networks help build large-scale shared-disk systems. The motiva-

tion for using storage-area networks to connect multiple computers to large banks of
storage devices is essentially the same as that for shared-disk databases, namely

o Scalability by adding more computers

o High availability, since data are still accessible even if a computer fails

RAID organizations are used in the storage devices to ensure high availability of

the data, permitting processing to continue even if individual disks fail. Storage-area
networkJare usually built with redundancy, such as multiple paths between nodes,
so if a component such as a link or a connection to the network fails, the network
continues to function.

20.5.2 Wide-Areq Networks
Wide-area networks (WANs) emerged in the late 1960s, mainly as an academic re-
search project to provide efficient communication among sites, allowing hardware
and software to be shared conveniently and economically by a wide community of
users. Systems that allowed remote terminals to be connected to a central computer
via telephone lines were developed in the early 7960s, but they were not true WANs.



20.6 Summary 803

The first wAN to be designed and developed was the Arpanet. Work on the Arpanet
began in 7968. The Arpanet has grown from a four-site experimental network to a
worldwide network of networks, the Interne! comprising hundreds of millions of
computer systems. Typical links on the Internet are fiber-optic lines and, sometimes,
satellite channels. Data rates for wide-area links typically range from a few megabits
per second to hundreds of gigabits per second. The last link, to end user sites, is of-
ten based on digital subsuiber line (DSL) technology (supporting a few megabits per
second), or cable modem (supporting 10 megabits per second), or dial-up modlm
connections over phone lines (supporting up to 56 kilobits per second).

WANs can be classified into two types:

o In discontinuous connection WANs, such as those based on wireless connec-
tions, hosts are connected to the network only part of the time.

o In continuous connection WANs, such as the wired Internet, hosts are con-
nected to the network at all times.

Networks that are not continuously connected typically do not allow transactions
across_ sites, but may keep local copies of remote data, and refresh the copies peri-
odically (every night, for instance). For applications where consistency is not criiical,
such as sharing of documents, groupware systems such as Lotus Notes allow up-
dates of remote data to be made locally, and the updates are then propagated baik
to the remote site periodically. There is a potential for conflicting updites at differ-
ent sites, conflicts that have to be detected and resolved. A mechanism for detecting
conflicting updates is described late1, in Section 24.5.4;the resolution mechanism for
conflicting updates is, however, application dependent.

20.6 Summory
o Centralized database systems run entirely on a single computer. with the

growth of personal computers and local-area networking, the database front-
end functionality has moved increasingly to clients, with server systems pro-
viding the back-end functionality. Ctient-server interface protocols have
helped the growth of client-server database systems.

o Servers can be either transaction servers or data servers, although the use
of transaction servers greatly exceeds the use of data servers for providing
database services.

n rransaction servers have multiple processes, possibly running on multiple
processors. So that these processes have access to common data, such as
the database buffer, systems store such data in shared memory. In addition
to processes that handle queries, there are system processes that carry out
tasks such as lock and log management and checkpointing.

n Data-server systems supply raw data to clients. such systems strive to
minimize communication between clients and servers by caching data
and locks at the clients. Parallel database systems use similar optimiza-
tions.
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o Parallel database systems consist of multiple Processols and multiple disks

connected by a fast interconnection network. Speedup measures how much

we can increase processing speed by increasing parallelism, for a single trans-

action. Scaleup measures how well we can handle an incleased number of

transactions by increasing parallelism. Interference, skew, and start-up costs

act as barriers to getting ideal speedup and scaleup.

o Parallel database architectures include the shared-memoly, shared-disk,

shared-nothing, and hierarchical architectures. These architectures have dif-

ferent trade-offs of scalability versus communication speed.

o A distributed database system is a collection of partially independent database

systems that (ideally) share a common schema, and coordinate processing of

transactions that access nonlocal data. The systems communicate with one an-

other through a communication network that handles routing and connection

strategies.

o Principally, there are two types of communication networks: local-area net-

works and wide-area networks. Local-area networks connect nodes that are

distributed over small geographical areas, such as a single building or a few

adjacent buildings. Wide-area networks connect nodes spread over a large

geographical area. The Internet is the most extensively used wide-area net-

work today.
Storage-area networks are a

to provide fast interconnection
multiple computers.

Review Terms
o Centralized systems

o Server systems

o Coarse-granularity parallelism

o Fine-granularity parallelism

o Database process structure

o Mutual exclusion

r Thread

o Server processes

n Lock manager process
! Database writer Process
! Log writer process

, I Checkpoint process
I Process monitor Process

o Client-server systems

o Transaction server

special type of local-area network designed
between large banks of storage devices and

o Query server

o Data server

! Prefetching
n De-escalation
I Data caching
I Cache coherency
n Lock caching
tr Call back

o Parallel systems

o Throughput

e Response time

o Speedup

I Linear speedup
tr Sublinear speedup

o Scaleup



I Linear scaleup
tr Sublinear scaleup
n Batch scaleup
I Transaction scaleup

o Start-up costs
o Interference

o Skew

o Interconnection networks

n Bus
n Mesh
I Hypercube

o Parallel database architectures
f Shared memory
n Shared disk (clusters)
n Shared nothing
n Hierarchical
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o Fault tolerance

o Distributed virtual-memory

o Nonuniform memory architecture
(NUMA)

o Distributed systems

r Distributed database

tr Sites (nodes)
n Local transaction
n Clobal transaction
n Local autonomy

e Multidatabase systems

o Network types

f Local-area networks (LAN)
E Wide-area networks (WAN)
I Storage-area network (SAN)

Prqctice Exercises
20.1 Instead of storing shared structures in shared memory, an alternative architec-

ture would be to store them in the local memory of a special process, and access
the shared data by interprocess communication with the process. What would
be the drawback of such an architecture?

20.2 In typical client-server systems the server machine is much more powerful
than the clients; that is, its processor is faster, it may have multiple proces-
sors, and it has more memory and disk capacity. Consider instead a scenario
where client and server machines have exactly the same power. Would it make
sense to build a client-server system in such a scenario? Why? Which scenario
would be better suited to a data-server architecture?

20.3 Consider an object-oriented database system based on a client-server architec-
ture, with the server acting as a data server.

a. What is the effect of the speed of the interconnection between the client
and the server on the choice between object and page shipping?

b. If page shipping is used, the cache of data at the client can be organized
either as an object cache or a page cache. The page cache stores data in units
of a page, while the object cache stores data in units of objects. Assume
objects are smaller than a page. Describe one benefit of an object cache
over a page cache.

20.4 Suppose a transaction is written in C with embedded SQL, and about 80 percent
of the time is spent in the sQL code, with the remaining 20 percent spent in C
code. How much speedup can one hope to attain if parallelism is used only for
the SQL code? Explain.
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20.5 Consider a network based on dial-up phone lines, where sites communicate

periodically, such as every night. Such networks are often configured with a

server site and multipie client sites. The client sites connect only to the server,

and exchange data with other clients by storing data at the server and retriev-

ing data stored at the server by other clients. What is the advantage of such an

arihitecture over one where a site can exchange data with another site only by

first dialing it up?

Exercises

20.5 Why is it relatively easy to port a database from a single Processor machine to

a multiprocessor machine if individual queries need not be parallelized?

20.7 Transaction-server architectures are popular for client-server relational data-
bases, where transactions are short. On the other hand, data-server architec-
tures are popular for client-server object-oriented database systems, where

transactions are expected to be relatively long. Give two reasons why data
servers may be popular for object-oriented databases but not for relational
databases.

20.8 What is lock de-escalation, and under what conditions is it required? Why is it

not required if the unit of data shipping is an item?

20.9 Suppose you were in charge of the database operations of a company whose
main loU is to process transactions. suppose the company is growing rapidly

each yea1, and has outgrown its current computer system. When you are choos-
ing a new parallel computer, what measure is most relevant-speedup, batch

scaleup, or transaction scaleup? Why?

20.10 Database systems are typically implemented as a set of processes (or threads)
sharing a shared memory area.

a. How is access to the shared memory area controlled?
b. Is two-phase locking appropriate for serializing access to the data struc-

tures in shared memory? Explain your answer.

20.11 What are the factors that can work against linear scaleup in a transaction pro-
cessing system? Which of the factors are likely to be the most important in

each o1 the following architectures: shared memory, shared disk, and shared
nothing?

20.12 Processor speeds have been increasing much faster than memory access speeds.
What impact does this have on the number of processors that can effectively
share a common memorY?

20.13 Consider a bank that has a collection of sites, each running a database system.
Suppose the only way the databases interact is by electronic transfer of money
between one another. Would such a system qualify as a distributed database?
why?
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In this chapter, we discuss fundamental algorithms for parallel database systems that
are based on the relational data model. In particulal, we focus on the placement of
data on multiple disks and the parallel evaluation of relational operations, both of
which have been instrumental in the success of parallel databases.

21.1 Introduction
Fifteen years ago, parallel database systems had been nearly written off, even by
some of their staunchest advocates. Today, they are successfully marketed by practi-
cally every database-system vendor. Several trends fueled this transition:

o The transaction requirements of organizations have grown with increasing
use of computers. Moreover, the growth of the World Wide Web has created
many sites with millions of viewers, and the increasing amounts of data col-
lected from these viewers has produced extremely large databases at many
companies.

o Organizations are using these increasingly large volumes of data-such as
data about what items people buy, what Web links users click on, and when
people make telephone calls-to plan their activities and pricing. Queries
used for such purposes are called decision'support queries, and the data re-
quirements for such queries may run into terabytes. Single-processor systems
are not capable of handling such large volumes of data at the required rates.

o The set-oriented nature of database queries naturally lends itself to paral-
lelization. A number of commercial and research systems have demonslrated
the power and scalability of parallel query processing.

o As microprocessors have become cheap, parallel machines have become com-
mon and relatively inexpensive.

809
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As we discussed in Chapter 20, parallelism is used to provide speedup, where

queries are executed faster because more resources/ such as processors and disks, are

provided. Parallelism is also used to provide scaleup, where increasing workloads

are handled without increased response time, via an increase in the degree of paral-

lelism.
We outlined in Chapter 20 the different architectures for parallel database systems:

shared-memory, shared-disk, shared-nothing, and hierarchical architectures. Briefly,
in shared-memory architectures, all processors share a common memory and disks;
in shared-disk architectures, processors have independent memories, but share disks;

in shared-nothing architectures, processors share neither memory nor disks; and hi-

erarchical architectures have nodes that share neither memory nor disks with each

other, but internally each node has a shared-memory or a shared-disk architecture.

21.2 llO Psrsllelism
In it simplest form, I/O parallelism refers to reducing the time required to retrieve
relations from disk by partitioning the relations on multiple disks. The most common
form of data partitioning in a parallel database environment is horizontnl partitioning.
In horizontal partitioning, the tuples of a relation are divided (or declustered) among
many disks, so that each tuple resides on one disk. Several partitioning strategies
have been proposed.

21.2.1 Pqrtitioning Techniques
We present three basic data-partitioning strategies. Assume that there are n disks,
Do, Dt,. . . , Dn-r, across which the data are to be partitioned.

o Round-robin. This strategy scans the relation in any order and sends the ath
tuple to disk number Dt *odr. The round-robin scheme ensures an even dis-
tribution of tuples across disks; that is, each disk has approximately the same
number of tuples as the others.

o Hash partitioning. This declustering strategy designates one or more attrib-
utes from the given relation's schema as the partitioning attributes. A hash
function is chosen whose range is {0, 1, . . . ,n - I}. Each tuple of the original
relation is hashed on the partitioning attributes. If the hash function returns i,
then the tuple is placed on disk D;.

o Range partitioning. This strategy distributes contiguous attribute-value
ranges to each disk. It chooses a partitioning attribute, A, as a partitioning
vector. The relation is partitioned as follows. Let l,.,s, 'u1,. . . ,u'-2] denote the
partitioning vector, such that, if i < i, then oa ( oi. Consider a tuple t such
that tlAl: r.If tr I us, then I goes on disk Ds.If r ) 1)n-2, then t goes on disk
Dn-t. I I  ui  < r  1uiay, then f  goes on disk Da11.

For example, range partitioning with three disks numbered 0, 1, and 2may
assign tuples with values less than 5 to disk 0, values between 5 and 40 to disk
1, and values greater than 40 to disk 2.
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21.2.2 Comporison of Pqrtitioning Techniques
Once a relation has been partitioned among several disks, we can retrieve it in paral-
lel, using all the disks. Similarly, when a relation is being partitioned, it can be written
to multiple disks in parallel. Thus, the transfer rates for reading or writing an entire
relation are much faster with I/O parallelism than without it. However, reading an
entire relation, or scanning a relation, is only one kind of access to data. Access to data
can be classified as follows:

1. Scanning the entire relation

2. Locating a tuple associatively (for example, employee_name = "Campbell");
these queries, called point queries, seek tuples that have a specified value
for a specific attribute

3. Locating all tuples for which the value of a given attribute lies within a spec-
ified range (for example, 10000 I salary < 20000); these queries are called
range queries.

The different partitioning techniques support these types of access at different levels
of efficiency:

o Round-robin. The scheme is ideally suited for applications that wish to read
the entire relation sequentially for each query. With this scheme, both point
queries and range queries are complicated to process, since each of the n disks
must be used for the search.

o Hash partitioning. This scheme is best suited for point queries based on the
partitioning attribute. For example, if a relation is partitioned on the telephone
-number attribute, then we can answer the query "Find the record of the em-
ployee with telephone-number = 555-3333" by applying the partitioning hash
function to 555-3333 and then searching that disk. Directing a query to a sin-
gle disk saves the start-up cost of initiating a query on multiple disks, and
leaves the other disks free to process other queries.

Hash partitioning is also useful for sequential scans of the entire relation.
If the hash function is a good randomizing functiorl and the partitioning at-
tributes form a key of the relation, then the number of tuples in each of the
disks is approximately the same, without much variance. Hence, the time
taken to scan the relation is approximately If n of the time required to scan
the relation in a single disk system.

The scheme, however, is not well suited for point queries on nonparti-
tioning attributes. Hash-based partitioning is also not well suited for answer-
ing range queries, since, typically, hash functions do not preserve proximity
within a range. Therefore, all the disks need to be scanned for range queries
to be answered.

o Range partitioning. This scheme is well suited for point and range queries on
the partitioning attribute. For point queries, we can consult the partitioning
vector to locate the disk where the tuple resides. For range queries, we consult
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the partitioning vector to find the range of disks on which the tuples may
reside. In both cases, the search narrows to exactly those disks that might have
any tuples of interest.

An advantage of this feature is that, if there are only a few tuples in the
queried range, then the query is typically sent to one disk, as opposed to
all the disks. Since other disks can be used to answer other queries/ range
partitioning results in higher throughput while maintaining good response
time. On the other hand, if there are many tuples in the queried range (as

there are when the queried range is a larger fraction of the domain of the re-
lation), many tuples have to be retrieved from a few disks, resulting in an I/O
bottleneck (hot spot) at those disks. In this example of execution skew, all pro-
cessing occurs in one-or only a few-partitions. In contrast, hash partition-
ing and round-robin partitioning would engage all the disks for such queries,
giving a faster response time for approximately the same throughput.

The type of partitioning also affects other relational operations, such as joins, as
we shall see in Section21..5. Thus, the choice of partitioning technique also depends
on the operations that need to be executed. In general, hash partitioning or range
partitioning are preferred to round-robin partitioning.

In a system with many disks, the number of disks across which to partition a rela-
tion can be chosen in this way: If a relation contains only a few tuples that will fit into
a single disk block, then it is better to assign the relation to a single disk. Large rela-
tions are preferably partitioned across all the available disks. If a relation consists of
nz disk blocks and there are n disks available in the system, then the relation should
be allocated min(m, n) disks.

21.2.3 Hondling of Skew
When a relation is partitioned (by a technique other than round-robin), there may be
a skew in the distribution of tuples, with a high percentage of tuples placed in some
partitions and fewer tuples in other partitions. The ways that skew may appear are
classified as:

Attribute-value skew

Partition skew

Attribute-value skew refers to the fact that some values appear in the partitioning
attributes of many tuples. AII the tuples with the same value for the partitioning
attribute end up in the same partition, resulting in skew. Partition skew refers to
the fact that there may be load imbalance in the partitioning, even when there is no
attribute skew.

Attribute-value skew can result in skewed partitioning regardless of whether range
partitioning or hash partitioning is used. If the partition vector is not chosen carefully,
range partitioning may result in partition skew. Partition skew is less likely with hash
partitioning, if a good hash function is chosen.

a

a
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As Section 20.3.1 noted, even a small skew can result in a significant decrease in
performance. Skew becomes an increasing problem with a higher degree of paral-
lelism. For example, if a relation of 1000 tuples is divided into 10 parts, and the di-
vision is skewed, then there may be some partitions of size less than 100 and some
partitions of size more than 100; if even one partition happens to be of size 200, the
speedup that we would obtain by accessing the partitions in parallel is only 5, instead
of the 10 for which we would have hoped. If the same relation has to be partitioned
into 100 parts, a partition will have 10 tuples on an average. If even one pirtition has
40 tuples (which is possible, given the large number of partitions) the speedup that
we would obtain by accessing them in parallel would be 25, rather than 100. Thus,
we see that the loss of speedup due to skew increases with parallelism.

A balanced range-partitioning vector can be constructed by sorting: The relation
is first sorted on the partitioning attributes. The relation is then scanned in sorted
order. After every \f n of the relation has been read, the value of the partitioning
attribute of the next tuple is added to the partition vector. Here, n denotes the number
of partitions to be constructed. In case there are many tuples with the same value
for the partitioning attribute, the technique can still result in some skew. The main
disadvantage of this method is the extra I/O overhead incurred in doing the initial
sort.

The I/O overhead for constructing balanced range-partition vectors can be re-
duced by constructing and storing a frequency table, or histogram, of the attribute
values for each attribute of each relation. Figure 21.1 shows an example of a his-
togram for an integer-valued attribute that takes values in the range 1to 25. A his-
togram takes up only a little space, so histograms on several different attributes
can be stored in the system catalog. It is straightforward to construct a balanced
range-partitioning function given a histogram on the partitioning attributes. If the
histogram is not stored, it can be computed approximately by sampling the relation,
using only tuples from a randomly chosen subset of the disk blocks of the relation.

Another approach to minimizing the effect of skew, particularly with range par-
titioning, is to use airtual processors.In the virtual processor approach, we pretend

1-5 6-'t0 't7-15 16--20 21-25

value

Figure 21.1 Example of histogram.

50

40
U
d

O J U-
o.
9 t ^

10



Chapter 21 Parallel Databases

there are several times as rrrany rirtual processors as the number of real processors.
Any of the partitioning techniques and query-evaluation techniques that we study
later in this chapter can be used, but they map tuples and work to virtual Processors
instead of to real processors. Virtual processors/ in turn, are mapped to real Proces-
sors, usually by round-robin partitioning.

The idea is that even if one range had many more tuples than the others because of
skew, these tuples would get sptit across multiple virtual processor ranges. Round-
robin allocation of virtual processors to real processors would distribute the extra
work among multiple real processors, so that one processor does not have to bear all
the burden.

21.3 Interquery Pqrqllelism
In interquery parallelism, different queries or transactions execute in parallel with
one another. Transaction throughput can be increased by this form of parallelism.
However, the response times of individual transactions are no faster than they would
be if the transactions were run in isolation. Thus, the primary use of interquery par-
allelism is to scaleup a transaction-processing system to support a larger number of
transactions per second.

Interquery parallelism is the easiest form of parallelism to support in a database
system-particularly in a shared-memory parallel system. Database systems design-
ed for single-processor systems can be used with few or no changes on a shared-
memory parallel architecture, since even sequential database systems support con-
current processing. Transactions that would have operated in a time-shared concur-
rent manner on a sequential machine operate in parallel in the shared-memory par-
allel architecture.

Supporting interquery parallelism is more complicated in a shared-disk or shared-
nothing architecture. Processors have to perform some tasks, such as locking and
logging, in a coordinated fashion, and that requires that they pass messages to each
other. A parallel database system must also ensure that two processors do not update
the same data independently at the same time. Further, when a processor accesses
or updates data, the database system must ensure that the processor has the latest
version of the data in its buffer pool. The problem of ensuring that the version is the
latest is known as the cache-coherency problem.

Various protocols are available to guarantee cache coherency; often, cache-coheren-
cy protocols are integrated with concurrency-control protocols so that their overhead
is reduced. One such protocol for a shared-disk system is this:

Before any read or write access to a page, a transaction locks the page in shared
or exclusive mode, as appropriate. Immediately after the transaction obtains
either a shared or exclusive lock on apage, it also reads the most recent copy
of the page from the shared disk.

Before a transaction releases an exclusive lock on apage, it flushes the page to
the shared disk; then. it releases the lock.

,
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This protocol ensures that, when a transaction sets a shared or exclusive lock on a
page, rt gets the correct copy of the page.

More complex protocols avoid the repeated reading and writing to disk required
by the preceding protocol. Such protocols do not write pages to disk when exclusive
locks are released. When a shared or exclusive lock is obtained, if the most recent
version of a page is in the buffer pool of some processor, the page is obtained from
there. The protocols have to be designed to handle concurrent requests. The shared-
disk protocols can be extended to shared-nothing architectures by this scheme: Each
page has a home processor Pi, and is stored on disk Dz. When other processors want
to read or write the page, they send requests to the home processor Pi of lhe page,
since they cannot directly communicate with the disk. The other actions are the same
as in the shared-disk protocols.

The Oracle and Oracle Rdb systems are examples of shared-disk parallel database
systems that support interquery parallelism.

21.4 Introquery Pqrqllelism
Intraquery parallelism refers to the execution of a single query in parallel on multi-
ple processors and disks. Using intraquery parallelism is important for speeding up
long-running queries. Interquery parallelism does not help in this task, since each
query is run sequentially.

To illustrate the parallel evaluation of a query, consider a query that requires a
relation to be sorted. Suppose that the relation has been partitioned across multiple
disks by range partitioning on some attribute, and the sort is requested on the parti-
tioning attribute. The sort operation can be implemented by sorting each partition in
parallel, then concatenating the sorted partitions to get the final sorted relation.

Thus, we can parallelize a query by parcIlelizing individual operations. There is
another source of parallelism in evaluating a query: The operator tree for a query can
contain multiple operations. We can parallelize the evaluation of the operator tree by
evaluating in parallel some of the operations that do not depend on one another. Fur-
ther, as Chapter 13 mentions, we may be able to pipeline the output of one operation
to another operation. The two operations can be executed in parallel on separate pro-
cessors/ one generating output that is consumed by the other, even as it is generated.

In summary, the execution of a single query can be parallelized in two ways:

o Intraoperation parallelism. We can speed up processing of a query by paral-
lelizing the execution of each individual operation, such as sort, select, project,
and join. We consider intraoperation parallelism in Section 21.5.

o Interoperation parallelism. We can speed up processing of a query by execut-
ing in parallel the different operations in a query expression. We consider this
form of parallelism in Section 21.6.

The two forms of parallelism are complementary, and can be used simultaneously
on a query. Since the number of operations in a typical query is small, compared to
the number of tuples processed by each operation, the first form of parallelism can
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scale better with increasing parallelism. However, with the relatively small number of
processors in typical parallel systems today, both forms of parallelism are important.

In the following discussion of parallelization of queries, we assume that the queries
are read only. The choice of algorithms for parallelizing query evaluation depends
on the machine architecture. Rather than present algorithms for each architecture
separately, we use a shared-nothing architecture model in our description. Thus, we
explicitly describe when data have to be transferred from one processor to another.
We can simulate this model easily by using the other architectures, since transfer
of data can be done via shared memory in a shared-memory architecture, and via
shared disks in a shared-disk architecture. Hence, algorithms for shared-nothing ar-
chitectures can be used on the other architectures, too. We mention occasionally how
the algorithms can be further optimized for shared-memory or shared-disk systems.

To simplify the presentation of the algorithms, assume that there are n processors/
Po,Pr , . . . ,Pn- r ,and n ,  d isks  Do,Dt , . . . ,Dn-L ,whered iskDz is  assoc ia tedwi thpro-
cessor Pz. A real system may have multiple disks per processor. It is not hard to
extend the algorithms to allow multiple disks per processor: We simply allow Di to
be a set of disks. However, for simplicity, we assume here that Di is a single disk.

21.5 Introoperqtion Pqrqllelism
Since relational operations work on relations containing large sets of tuples, we can
parallelize the operations by executing them in parallel on different subsets of the re-
lations. Since the number of tuples in a relation can be large, the degree of parallelism
is potentially enormous. Thus, intraoperation parallelism is natural in a database sys-
tem. We shall study parallel versions of some common relational operations in Sec-
tions 21.5.1 through 21,.5.3.

21.5.1 Pqrqllel Sort
Suppose that we wish to sort a relation that resides on n disks Do, Dt, . . . , Dn-1.If the
relation has been range partitioned on the attributes on which it is to be sorted, then,
as noted in Section 21,.2.2, we can sort each partition separately, and can concatenate
the results to get the full sorted relation. Since the tuples are partitioned on n disks,
the time required for reading the entire relation is reduced by the parallel access.

If the relation has been partitioned in any other way, we can sort it in one of two
ways:

1. We can range partition it on the sort attributes, and then sort each partition
separately.

2. We can use a parallel version of the external sort-merge algorithm.

21.5.1.1 Ronge-Portitioning Sort

Range-partitioning sort works in two steps: first range partitioning the relation, then
sorting each partition separately. When we sort by range partitioning the relation,
it is not necessary to range partition the relation on the same set of processors or
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disks as those on which that relation is stored. Suppose that we choose processors
Po, Pt,. . . , P*, where rn < n to sort the relation. There are two steps involved in this
operation:

1. Redistribute the tuples in the relation, using a range-partition strategy, so that
all tuples that lie within the zth range are sent to processor fl, which stores
the relation temporarily on disk Da.

To implement range partitioning, in parallel every processor reads the tu-
ples from its disk and sends the tuples to their destination processor. Each
processor Po, Pt, . . . , P* also receives tuples belonging to its partition, and
stores them locally. This step requires disk I/O and communication overhead.

2. Each of the processors sorts its partition of the relation locally, without inter-
action with the other processors. Each processor executes the same operation
-namely, sorting-on a different data set. (Execution of the same operation
in parallel on different sets of data is called data parallelism.)

The final merge operation is trivial, because the range partitioning in the
first phase ensures that, for I < i < j { m, the key values in processor pi are
all less than the key values in Pi.

We must do range partitioning with a good range-partition vector, so that each
partition will have approximately the same number of tuples. Virtual processor par-
titioning can also be used to reduce skew.

21.5.1.2 Pqrqllel Externql Sort-Merge
Parallel external sort-merge is an alternative to range partitioning. Suppose that a
relation has already been partitioned among disks Ds, Dr, . . . , Dn_! (it does not mat-
ter how the relation has been partitioned). Parallel external sort-merge then works
this way:

1. Each processor fl locally sorts the data on disk Dz.

2. The system then merges the sorted runs on each processor to get the final
sorted output.

The merging of the sorted runs in step 2 can be parallelized by this sequence of
actions:

1. The system range partitions the sorted partitions at each processor Pt (r.llby
the same partition vector) across the processors Ps, P1, . . . , P*_!.It sends the
tuples in sorted ordeq, so that each processor receives the tuples in sorted
streams.

2. Each processor P, performs a merge on the streams as they are received, to get
a single sorted run.

3. The system concatenates the sorted runs on processors Po, Pt, . . . , P*_y to get
the final result.
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As described, this sequence of actions results in an interesting form of execution
skew, since at first every processor sends all blocks of partition 0 to Pe, then every
processor sends all blocks of partition I to P1, and so on. Thus, while sending hap-
pens in parallel, receiving tuples becomes sequential: first only P0 receives tuples,
then only Pr receives tuples, and so on. To avoid this problem, each processor repeat-
edly sends a block of data to each partition. In other words, each processor sends the
first block of every partition, then sends the second block of every partition, and so
on. As a result, all processors receive data in parallel.

Some machines, such as the Teradata DBC series machines, use specialized hard-
ware to perform merging. The Y-net interconnection network in the Teradata DBC
machines can merge output from multiple processors to give a single sorted output.

21.5.2 Porollel Join
The join operation requires that the system test pairs of tuples to see whether they
satisfy the join condition; if they do, the system adds the pair to the join output.
Parallel join algorithms attempt to split the pairs to be tested over several Processors.
Each processor then computes part of the join locally. Then, the system collects the
results from each processor to produce the final result.

21.5.2.1 Pqrtitioned Join
For certain kinds of joins, such as equi-joins and natural joins, it is possible to pnrtition
the two input relations across the processors and to compute the join locally at each
processor. Suppose that we are using n processors and that the relations to be joined
are r and s. Partitioned join then works this way: The system partitions the relations
randseach in to r i ,par t i t ions ,denotedTo,Tr , . . . t rn - randsg,3r , . . - , s r -1 'Thesys tem
sends partitions r4 and sa to processor Pa, where their join is computed locally.

The partitioned join technique works correctly only if the join is an equi-join (for

example, r Xr.A:s.B s) and if we partition r and s by the same partitioning function
on their join attributes. The idea of partitioning is exactly the same as that behind the
partitioning step of hash join. In a partitioned join, however, there are two different
ways of partitioning r and s:

o Range partitioning on the join attributes

o Hash partitioning on the join attributes

In either case, the same partitioning function must be used for both relations. For
range partitioning, the same partition vector must be used for both relations. For
hash partitioning, the same hash function must be used on both relations. Figure27.2
depicts the partitioning in a partitioned parallel join.

Once the relations are partitioned, we can use any join technique locally at each
processor fl to compute the join of ra and s6. For example, hash join, merge join, or
nested-loop join could be used. Thus, we can use partitioning to parallelize any join
technique.
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Figure2l.2 Partitioned parallel join.

If one or both of the relations r and s are already partitioned on the join attributes
(by either hash partitioning or range partitioning), the work needed for partitioning
is reduced greatly. If the relations are not partitioned, or are partitioned on attributes
other than the join attributes, then the tuples need to be repartitioned. Each processor
Pi reads in the tuples on disk Dr, computes for each tuple I the partition 7 to which f
belongs, and sends tuple I to processor Py. Processor P7 stores the tuples on disk Dy.

We can optimize the join algorithm used locally at each processor to reduce l/Oby
buffering some of the tuples to memory, instead of writing them to disk. We describe
such optimizations in Section 27.5.2.3.

Skew presents a special problem when range partitioning is used, since a partition
vector that splits one relation of the join into equal-sized partitions may split the other
relations into partitions of widely varying size. The partition vector should be such
that lril * l".; | (that is, the sum of the sizes of ra and sa) is roughly equal over all the
'i :0,1, ... , rL - 1. With a good hash function, hash partitioning is likely to have a
smaller skew, except when there are many tuples with the same values for the join
attributes.

21.5.2.2 Frogment-qnd-Replicote f oin
Partitioning is not applicable to all types of joins. For instance, if the join condition
is an inequality, such as r x".o.".6 s, it is possible that all tuples in r join with some
tuple in s (and vice versa). Thus, there may be no easy way of partitioning r and s so
that tuples in partition ri join with only tuples in partition s1.

We can parallelize such joins by using a technique called t'ragment and replicate.We
first consider a special case of fragment and replicate-asymmetric fragment-and-
replicate join-which works as follows:
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1. The system partitions one of the relations -sdft r. Any partitioning technique

can be used on r, including round-robin partitioning.

2. The system replicates the other relation, s, across all the processors.

3. Processor 4 then locally computes the join of ri with all of s, using any join

technique.

The asymmetric fragment-and-replicate scheme aPPeaIS in Figure 27.3a. If r is al-

ready stored by partitioning, there is no need to partition it further in step 1. All that

is required is to replicate s across all processors.
T[e general case of fragment-and-replicate join appears in Figure 21'.3b;1t works

this way: The system partitions relation r into n partitions, ro,rr, . . . trn-., and parti-

tions s into m partitions, s0, sl, . . . t sm,r. As before, any partitioning technique may

be used on r and on s. The values of m and rz do not need to be equal, but they

must be chosen so that there are at least ??? x n Processors. Asymmetric fragment and

replicate is simply a special case of general fragment and replicate, where m : 7.

Frlgment and replicate reduces the sizes of the relations at each processor, compared

to asymmetric fragment and replicate.
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Figure 21.3 Fragment-and-replicate schemes.
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Let the processors be Ps,g, Po J, . . ., P0,*_r, Pt,o, . . ., Pn-r,^_r.Processor Pi,i corm-
Putes the join of ri with s7. Each processor must get the tuples in the partitions it
works on. To do so, the system replicates ri to processors P4,s, PtJ, . . . , P.i,^_7 (which
form a row in Figure 21.3b), and replicates si to processors Ps,4, P1,i, . . . , Pn_r,i (which
form a column in Figure 21.3b). Any join technique can be used at each process or p.i,i .

Fragment and replicate works with any join condition, since every tuple in r can
be tested with every tuple in s. Thus, it can be used where partitioning cannot be.

Fragment and replicate usually has a higher cost than partitioning when both re-
lations are of roughly the same size, since at least one of the relations has to be repli-
cated. Howevel, if one of the relations-say, s-is small, it may be cheaper to repli-
cate s across all processors, rather than to repartition r and s on the join attributes. In
such a case, asymmetric fragment and replicate is preferable, even though partition-
ing could be used.

21.5.2.3 Pqrtitioned Pqrqllel Hosh Join
The partitioned hash join of Section 13.5.5 can be parallelized. Suppose that we have
7? processors, Po, Pt,. . . , Pn_r, and two relations r and s, such that the relations r and
s are partitioned across multiple disks. Recall from Section 13.5.5 that the smaller
relation is chosen as the build relation. If the size of s is less than that of r, the parallel
hash-join algorithm proceeds this way:

1. Choose a hash function-say, h1-that takes the join attribute value of each
tuple in r and s and maps the tuple to one of the n processors. Let r7 denote the
tuples of relation r that are mapped to processor Pi; similarly,let s1 denote the
tuples of relation s that are mapped to processor Pi. Each processor fl reads
the tuples of s that are on its disk Di and sends each tuple to the appropriate
processor on the basis of hash function h1.

2. As the destination processor fl receives the tuples of si, it further partitions
them by another hash function, h2, which the processor uses to compute the
hash join locally. The partitioning at this stage is exactly the same as in the
partitioning phase of the sequential hash-join algorithm. Each processor Pi
executes this step independently from the other processors.

3. Once the tuples of s have been distributed, the system redistributes the larger
relation r across the n processors by the hash function h1, in the same way
as before. As it receives each tuple, the destination processor repartitions it
by the function h2, just as the probe relation is partitioned in the sequential
hash-join algorithm.

4. Each processor fl executes the build and probe phases of the hash-join algo-
rithm on the local partitions ri arrd si of r and s to produce a partition of the
final result of the hash join.

The hash join at each processor is independent of that at other processors, and
receiving the tuples of ra and sa is similar to reading them from disk. Therefore, any
of the optimizations of the hash join described in Chapter 13 can be apptied as well
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to the parallel case. In particulat we can use the hybrid hash-join algorithm to cache

some of the incoming tuples in memory, and thus avoid the costs of writing them

and of reading them back in.

21.5.2.4 Pqrqllel Nested-Loop roin
To illustrate the use of fragment-and-replicate*based parallelization, consider the
case where the relation s is much smaller than relation r. Suppose that relation r is
stored by partitioning; the attribute on which it is partitioned does not matter. Sup-
pose too that there is an index on a join attribute of relation r at each of the partitions
of relation r.

We use asymmetric fragment and replicate, with relation s being replicated and
with the existing partitioning of relation r. Each processor Py where a partition of
relation s is stored reads the tuples of relation s stored in D i , and replicates the tuples
to every other processor Pi. At the end of this phase, relation s is replicated at all sites
that store tuples of relation r.

Now, each processor 4 performs an indexed nested-loop join of relation s with
the zth partition of relation r. We can overlap the indexed nested-loop join with the
distribution of tuples of relation s, to reduce the costs of writing the tuples of relation
s to disk, and of reading them back. However, the replication of relation s must be
synchronized with the join so that there is enough space in the in-memory buffers
at each processor P; to hold the tuples of relation s that have been received but that
have not yet been used in the join.

21.5.3 Other Relqtionol Operotions
The evaluation of other relational operations also can be parallelized:

o Selection. Let the selection be oo(r). Consider first the case where d is of the
form o,6 : u, where ai is an attribute and o is a value. If the relation r is par-
titioned on a,4, th€ selection proceeds at a single processor. If 0 is of the form

I I a,;. ( u-that is, 0 is a range selection-and the relation has been range
partitioned on oi, then the selection proceeds at each processor whose parti-
tion overlaps with the specified range of values. In all other cases, the selection
proceeds in parallel at all the processors.

o Duplicate elimination. Duplicates can be eliminated by sorting; either of the
parallel sort techniques canbe used, optimized to eliminate duplicates as soon
as they appear during sorting. We can also parallelize duplicate elimination by
partitioning the tuples (by either range or hash partitioning) and eliminating
duplicates localiy at each processor.

o Projection. Projection without duplicate elimination can be performed as tu-
ples are read in from disk in parallel. If duplicates are to be eliminated, either
of the techniques just described can be used.

o Aggregation. Consider an aggregation operation. We can parallelize the op-
eration by partitioning the relation on the grouping attributes, and then com-
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puting the aggregate values locally at each processor. Either hash partitioning
or range partitioning can be used. If the relation is already partitioned on the
grouping attributes, the first step can be skipped.

We can reduce the cost of transferring tuples during partitioning by partly
computing aggregate values before partitioning, at leist for the iommonly
used aggregate functions. Consider an aggregation operation on a relation r,
using the sum aggregate function on attribute B, with grouping on attribute
'4. The system can perform the operation at each processor fl on those r tuples
stored on disk D;. This computation results in tuples with partial sums at each
processor; there is one tuple at Pi for each value for attribute A present in r
tuples stored on Di. The system partitions the result of the local aggregation
on the grouping attribute A, and performs the aggregation again (on tuples
with the partial sums) at each processor P.; to get the final result.

As a result of this optimization, fewer tuples need to be sent to other pro-
cessors during partitioning. This idea can be extended easily to the min and
max aggregate functions. Extensions to the count and avgaggregate functions
are left for you to do in Exercise 21.10.

The parallelization of other operations is covered in several of the the exercises.

21.5.4 Cost of Pqrqllel Evoluqtion of Operotions
We achieve parallelism by partitioning the I/O among multiple disks, and partition-
ing the CPU work among multiple processors. If such a split is achieved without any
overhead, and if there is no skew in the splitting of work, a parallel operation using n
processors will take 1/n times as long as the same operation on a single processor. We
already know how to estimate the cost of an operation such as a join or a selection.
The time cost of parallel processing would then be Iln of the time cost of sequential
processing of the operation.

We must also account for the following costs:

o Start-up costs for initiating the operation at multiple processors

o Skew in the distribution of work among the processors, with some processors
getting a larger number of tuples than others

o Contention for resources-such as memory, disk, and the communication
network-resulting in delays

o Cost of assembling the final result by transmitting partial results from each
Processor

The time taken by a parallel operation can be estimated as

Tpurt * 4r- -l- max(70, Tt, . . . ,Tn t)

where \u.t is the time for partitioning the relations, ?ur- is the time for assembling
the results, andTi is the time taken for the operation at processor P,. Assuming that
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the tuples are distributed without any skew the number of tuples sent to each pro-
cessor can be estimated as I f n of the total number of tuples. Ignoring contention, the
costTi of the operations at each processor Pz can then be estimated by the techniques
in Chapter 13.

The preceding estimate will be an optimistic estimate, since skew is common. Even
though breaking down a single query into a number of parallel steps reduces the size
of the average step, it is the time for processing the single slowest step that deter-
mines the time taken for processing the query as a whole. A partitioned parallel eval-
uation, for instance, is only as fast as the slowest of the parallel executions. Thus, any
skew in the distribution of the work across processors greatly affects performance.

The problem of skew in partitioning is closely related to the problem of partition
overflow in sequential hash joins (Chapter 13). We can use overflow resolution and
avoidance techniques developed for hash joins to handle skew when hash partition-
ing is used. We can use balanced range partitioning and virtual processor partitioning
to minimize skew due to range partitioning, as in Section2L2.3.

21.6 Interoperqtion Pqrqllelism
There are two forms of interoperation parallelism: pipelined parallelism, and inde-
pendent parallelism.

21.6.1 Pipelined Pqrqllelism
As discussed in Chapter 13, pipelining forms an important source of economy of
computation for database query processing. Recall that, in pipelining, the output tu-
ples of one operation, A, are consumed by a second operation, B, even before the first
operation has produced the entire set of tuples in its output. The major advantage of
pipelined execution in a sequential evaluation is that we can carry out a sequence of
such operations without writing any of the intermediate results to disk.

Parallel systems use pipelining primarily for the same reason that sequential sys-
tems do. However, pipelines are a source of parallelism as well, in the same way that
instruction pipelines are a source of parallelism in hardware design. It is possible to
run operations ,4 and B simultaneously on different processors, so that B consumes
tuples in parallel with A producing them. This form of parallelism is ca1led pipelined
parallelism.

Consider a join of four relations:

r y X 1 2 X 1 3 X r a

We can set up a pipeline that allows the three joins to be computed in parallel. Sup-
pose processor P1 is assigned the computation of templ <- rr x 12, and P2 is assig-
ned the computation of 13 X temp1. As P1 computes tuples in 11 X 12, it makes
these tuples available to processor P2. Thus, Pz has available to it some of the tuples
in 11 X 12 before P1 has finished its computation. Pz can use those tuples that are
available to begin computation of templ fi r3t even before rr X 12 is fully com-
puted by Pt. Likewise, as P2 computes tuples in (r1 X 12) X ry, it makes these tuples
available to P3, which computes the join of these tuples with ra.
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Pipelined parallelism is useful with a small number of processors, but does not
scale up well. First, pipeline chains generally do not attain sufficient length to pro-
vide a high degree of parallelism. Second, it is not possible to pipeline relational
operators that do not produce output until all inputs have been accessed, such as the
set-difference operation. Third, only marginal speedup is obtained {or the frequent
cases in which one operator's execution cost is much higher than are those of the
others.

All things considered, when the degree of parallelism is high, pipelining is a less
important source of parallelism than partitioning. The real reason for using pipelin-
ing is that pipelined executions can avoid writing intermediate results to disk.

21.6.2 Independent Pqrqllelism
Operations in a query expression that do not depend on one another can be executed
in parallel. This form of parallelism is called independent parallelism.

Considerthejoinrl X 12 X rs X r+. Clearly,wecancomputetempt + rt X r2
in parallel with temp2 <- 13 x 14. When these two computations complete, we
compute

templ X temp2

To obtain further parallelism, we can pipeline the tuples in templ and temp2 into
the computation of temy4 X temp2, which is itself carried out by a pipelined join
(Section 1.3.7.2.2).

Like pipelined parallelism independent parallelism does not provide a high de-
gree of parallelism and is less useful in a highly parallel system, although it is useful
with a lower degree of parallelism.

21.6.3 Query Optimizotion
Query optimizers account in large measure for the success of relational technology.
Recall that a query optimizer takes a query and finds the cheapest execution plan
among the many possible execution plans that give the same answer.

Query optimizers for parallel query evaluation are more complicated than query
optimizers for sequential query evaluation. First, the cost models are more compli-
cated, since partitioning costs have to be accounted for, and issues such as skew and
resource contention must be taken into account. More important is the issue of how
to parallelize a query. Suppose that we have somehow chosen an expression (from
among those equivalent to the query) to be used for evaluating the query. The ex-
pression can be represented by an operator tree, as in Section 13.1.

To evaluate an operator tree in a parallel system, we must make the following
decisions:

How to parallelize each operation, and how many processors to use for it

What operations to pipeline across different processors, what operations to ex-
ecute independently in parallel, and what operations to execute sequentially,
one after the other

a

a
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These decisions constitute the task of scheduling the execution tree.
Determining the resources of each kind-such as processors, disks, and memory

-that should be allocated to each operation in the tree is another aspect of the opti-
mization problem. For instance, it may appear wise to use the maximum amount of
parallelism available, but it is a good idea not to execute certain operations in paral-
lel. Operations whose computational requirements are significantly smaller than the
communication overhead should be clustered with one of their neighbors. Otherwise,
the advantage of parallelism is negated by the overhead of communication.

One concern is that long pipelines do not lend themselves to good resource utiliza-
tion. Unless the operations are coarse grained, the final operation of the pipeline may
wait for a long time to get inputs, while holding precious resources, such as memory.
Hence,long pipelines should be avoided.

The number of parallel evaluation plans from which to choose is much larger than
the number of sequential evaluation plans. Optimizing parallel queries by consid-
ering all alternatives is therefore much more expensive than optimizing sequential
queries. Hence, we usually adopt heuristic approaches to reduce the number of par-
allel execution plans that we have to consider. We describe two popular heuristics
here.

The first heuristic is to consider only evaluation plans that parallelize every oper-
ation across all processors, and that do not use any pipelining. This approach is used
in the Teradata DBC series machines. Finding the best such execution plan is like do-
ing query optimization in a sequential system. The main differences lie in how the
partitioning is performed and what cost-estimation formula is used.

The second heuristic is to choose the most efficient sequential evaluation plan,
and then to parallelize the operations in that evaluation plan. The Volcano parallel
database popularized a model of parallelization called the exchange-operator model.
This model uses existing implementations of operations, operating on local copies of
data, coupled with an exchange operation that moves data around between different
processors. Exchange operators can be introduced into an evaluation plan to trans-
form it into a parallel evaluation plan.

Yet another dimension of optimization is the design of physical-storage organi-
zation to speed up queries. The optimal physical organization differs for different
queries. The database administrator must choose a physical organization that ap-
pears to be good for the expected mix of database queries. Thus, the area of parallel
query optimization is complex, and it is still an area of active research.

21.7 Design of Pqrqllel Systems
So far this chapter has concentrated on parallelization of data storage and of query
processing. Since large-scale parallel database systems are used primarily for storing
large volumes of data, and for processing decision-support queries on those data,
these topics are the most important in a parallel database system. Parallel loading
of data from external sources is an important requirement, if we are to handle large
volumes of incoming data.
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A large parallel database system must also address these availability issues:

o Resilience to failure of some processors or disks

o On line reorganization of data and schema changes

We consider these issues here.
With a large number of processors and disks, the probability that at least one pro-

cessor or disk will malfunction is significantly greater than in a single-processor sys-
tem with one disk. A poorly designed parallel system will stop functioning if any
component (processor or disk) fails. Assuming that the probability of failure of a sin-
gle processor or disk is small, the probability of failure of the system goes up linearly
with the number of processors and disks. If a single processor or disk would fail once
every 5 years/ a system with 100 processors would have a failure every 18 days.

Therefore, large-scale parallel database systems, such as Compaq Himalaya,
Teradata, and Informix XPS (now a division of IBM), are designed to operate even
if a processor or disk fails. Data are replicated across at least two processors. If a pro-
cessor fails, the data that it stored can still be accessed from the other processors. The
system keeps track of failed processors and distributes the work among functioning
processors. Requests for data stored at the failed site are automatically routed to the
backup sites that store a replica of the data. If all the data of a processor ,4 are repli-
cated at a single processor B, B w17L have to handle all the requests to,4 as well as
those to itself, and that will result in B becoming a bottleneck. Therefore, the replicas
of the data of a processor are partitioned across multiple other processors.

When we are dealing with large volumes of data (ranging in the terabytes), simple
operations, such as creating indices, and changes to schema, such as adding a col-
umn to a relation, can take a long time-perhaps hours or even days. Therefore, it is
unacceptable for the database system to be unavailable while such operations are in
progress. Many parallel database systems, such as the Compaq Himalaya systems,
allow such operations to be performed online, that is, while the system is executing
other transactions.

Consider, for instance, online index construction. A system that supports this fea-
ture allows insertions, deletions, and updates on a relation even as an index is being
built on the relation. The index-building operation therefore cannot lock the entire
relation in shared mode, as it would have done otherwise. Instead, the process keeps
track of updates that occur while it is active, and incorporates the changes into the
index being constructed.

21.8 Summory
o Parallel databases have gained significant commercial acceptance in the past

20 years.

o In I/O parallelism, relations are partitioned among available disks so that
they can be retrieved faster. Three commonly used partitioning techniques
are round-robin partitioning, hash partitioning, and range partitioning.
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o Skew is a major problem, especially with increasing degrees of parallelism.
Balanced partitioning vectors, using histograms, and virtual processor parti-
tioning are among the techniques used to reduce skew.

o In interquery parallelism, we run different queries concurrently to increase
throughput.

o Intraquery parallelism attempts to reduce the cost of running a query. There
are two types of intraquery parallelism: intraoperation parallelism and inter-
operation parallelism.

o We use intraoperation parallelism to execute relational operations, such as
sorts and joins, in parallel. Intraoperation parallelism is natural for relational
operations, since they are set oriented.

o There are two basic approaches to parallelizing abinary operation such as a
join.

! In partitioned parallelism, the relations are split into several parts, and
tuples in ri are joined only with tuples from si. Partitioned parallelism
can be used only for natural and equi-joins.

tr In fragment and replicate, both relations are partitioned and each parti-
tion is replicated. In asymmetric fragment and replicate, one of the rela-
tions is replicated while the other is partitioned. Unlike partitioned par-
allelism, fragment and replicate and asymmetric fragment and replicate
can be used with any join condition.

Both parallelization techniques can work in conjunction with any join tech-
nique.

o In independent parallelism, different operations that do not depend on one
another are executed in parallel.

o In pipelined parallelism, processors send the results of one operation to an-
other operation as those results are computed, without waiting for the entire
operation to finish.

r Query optimization in parallel databases is significantly more complex than
query optimization in sequential databases.

Review Terms
o Decision-support queries

o l/O parallelism

o Horizontalpartitioning

r Partitioning techniques

n Round-robin
tr Hash partitioning
n Range partitioning

o Partitioning attribute

o Partitioning vector

o Point query

o Range query

o Skew

I Executionskew
n Aftribute-value skew



n Partition skew
o Handling of skew

! Balanced range-partitioning
vector

I Histogram
I Virtual processors

o Interqueryparallelism

o Cache coherency

o Intraquery parallelism

n Intraoperation parallelism
! Interoperation parallelism

o Parallel sort

n Range-partitioning sort
tr Parallel external sort-merge

o Data parallelism
o Parallel join

n Partitioned join
n Fragment-and-replicate join
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n Asymmetric fragment-and-
replicate join

I Partitioned parallel hash join
n Parallel nested-loop join

o Parallel selection

o Parallel duplicate elimination

. Parallel projection

r Parallel aggregation

o Cost of parallel evaluation

o Interoperation parallelism

n Pipelined parallelism
! Independentparallelism

o Query optimization

e Scheduling

o Exchange-operatormodel

o Design of parallel systems

o Online index construction

Prqctice Exercises
2l.l In a range selection on a range-partitioned attribute, it is possible that only

one disk may need to be accessed. Describe the benefits and drawbacks of this
property.

21.2 What form of parallelism (interquery, interoperation, or intraoperation) is likely
to be the most important for each of the following tasks?

a. Increasing the throughput of a system with many small queries
b. Increasing the throughput of a system with a few large queries, when the

number of disks and processors is large

21.3 With pipelined parallelism, it is often a good idea to perform several operations
in a pipeline on a single processot even when many processors are available.

a. Explain why.
b. Would the arguments you advanced in part a hold if the machine has a

shared-memory architecture? Explain why or why not.
c. Would the arguments in part a hold with independent parallelism? (That

is, are there cases where, even if the operations are not pipelined and there
are many processors available, it is still a good idea to perform several
operations on the same processor?)

21.4 Consider join processing using symmetric fragment and replicate with range
partitioning. How can you optimize the evaluation if the join condition is of
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theform lr .A- s.B |  (  k,wherekisasmal lconstant?Here, l r  ldenotesthe
absolute value of r. A join with such a join condition is called a band join.

21.5 Recall that histograms are used for constructing load-balanced range parti-
tions.

a. Suppose you have a histogram where values are between 1 and 100, and
are partitioned into 10 ranges, 1-10,71-20, . . . ,91'-700, with frequencies
15,5,20, L0,I0, 5, 5,20,5, and 5, respectively. Give a load-balanced range
partitioning function to divide the values into 5 partitions.

b. Write an algorithm for computing a balanced range partition with p parti-
tions, given a histogram of frequency distributions containing n ranges.

21.6 Some parallel database systems store an extra copy of each data item on disks
attached to a different processo4, to avoid loss of data if one of the processors
faiIs.

a. Why is it a good idea to partition the copies of the data items of a processor
across multiple processors?

b. What are the benefits and drawbacks of using RAID storage instead of stor-
ing an extra copy of each data item?

Exercises

21.7 For each of the three partitioning techniques, namely round-robin, hash par-
titioning, and range partitioning, give an example of a query for which that
partitioning technique would provide the fastest resPonse.

21.8 What factors could result in skew when a relation is partitioned on one of its
attributes by:

a. Hash partitioning?
b. Range partitioning?

In each case, what can be done to reduce the skew?

21.9 Give an example of a join that is not a simple equi-join for which partitioned
parallelism can be used. What attributes should be used for partitioning?

2L.10 Describe a good way to parallelize each of the following.

a. The difference operation
b. Aggregation by the count operation
c. Aggregation by the count distinct operation
d. Aggregation by the avg operation
e. Left outer join, if the join condition involves only equality
f. Left outer joirg if the join condition involves comparisons other than equal-

ity
g. Full outer join, if the join condition involves comparisons other than equal-

Ity

21.11 Describe the benefits and drawbacks of pipelined parallelism.
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21.12 Suppose you wished to handle a workload consisting of a large number of
small transactions by using shared nothing parallelism.
a. Is intraquery parallelism required in such a situation? If not, why, and what

form of parallism is appropriate?
b. What form of skew would be of signifance with such a workload?
c. Suppose most transactions accessed one account record/ which includes an

account type attribute, and an associated account-type-Tnaster record, which
provides information about the account type. How would you partition
and/ or replicate data to speed up transactions? You may assume that the
account-typesnaster relation is rarely updated.
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Unlike parallel systems, in which the processors are tightly coupled and constitute
a single database system, a distributed database system consists of loosely coupled
sites that share no physical components. Furthermore, the database systems that run
on each site may have a substantial degree of mutual independence. We discussed
the basic structure of distributed systems in Chapter 20.

Each site may participate in the execution of transactions that access data at one
site, or several sites. The main difference between centralized and distributed data-
base systems is that, in the former, the data reside in one single location, whereas in
the latter, the data reside in several locations. This distribution of data is the cause of
many difficulties in transaction processing and query processing. In this chapter, we
address these diff iculties.

We start by classifying distributed databases as homogeneous or heterogeneous,
in Section 22.7.We then address the question of how to store data in a distributed
database in Section 22.2. In Section 22.3,we outline a model for transaction processing
in a distributed database. In Section 22.4,we describe how to implement atomic trans-
actions in a distributed database by using special commit protocols. In Section 22.5,
we describe concurrency control in distributed databases. In Section 22$, we outline
how to provide high availability in a distributed database by exploiting replication,
so the system can continue processing transactions even when there is a failure. We
address query processing in distributed databases in Section 22.7.In Section 22.8, we
outline issues in handling heterogeneous databases. In Section 229, we describe di-
rectory systems, which can be viewed as a specialized form of distributed databases.

22.1 Homogeneous qnd Heterogeneous Dqtqbqses
In a homogeneous distributed database system, all sites have identical database-
management system software, are aware of one another, and agree to cooperate in
processing users' requests. In such a system, local sites surrender a portion of their
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autonomy in terms of their right to change schemas or database-management system

software. That software must also cooperate with other sites in exchanging informa-

tion about transactions, to make transaction processing possible across multiple sites.

In contrast, in a heterogeneous distributed database, different sites may use dif-

ferent schemas, and different database-management system software. The sites may

not be aware of one another, and they may provide only limited facilities for cooper-

ation in transaction processing. The differences in schemas are often a major problem

for query processing, while the divergence in software becomes a hindrance for pro-

cessing transactions that access multiple sites.
In this chapter, we concentrate on homogeneous distributed databases. However,

in Section 22.8 we briefly discuss query processing issues in heterogeneous distributed

database systems. Tiansaction processing issues in such systems are covered late{, in

Section 25.7.

22.2 Distributed Dqto Storoge
Consider a relation r that is to be stored in the database. There are two approaches to
storing this relation in the distributed database:

o Replication. The system maintains several identical replicas (copies) of the
relation, and stores each replica at a different site. The alternative to replication
is to store only one copy of relation r.

o Fragmentation. The system partitions the relation into several fragments, and
stores each fragment at a different site.

Fragmentation and replication can be combined: A relation can be partitioned into
several fragments and there may be several replicas of each fragment. In the follow-
ing subsections, we elaborate on each of these techniques'

22.2.1 Dqtq Replicotion
If relation r is replicate d, a copy of relation r is stored in two or more sites. In the most
extreme case, we have full replication, in which a copy is stored in every site in the
system.

There are a number of advantages and disadvantages to replication.

Availability. If one of the sites containing relation r faiIs, then the relation r
can be found in another site. Thus, the system can continue to process queries
involving r, despite the failure of one site.

Increased parallelism. In the case where the majority of accesses to the rela-
tion r result in only the reading of the relation, then several sites can process
queries involving r in parallel. The more replicas of r there are, the greater the
chance that the needed data will be found in the site where the transaction
is executing. Hence, data replication minimizes movement of data between
sites.
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o Increased overhead on update. The system must ensure that all replicas of a
relation r are consisten! otherwise, erroneous computations may result. Thus,
whenever r is updated, the update must be propagated to all sites containing
replicas. The result is increased overhead. For example, in a banking system,
where account information is replicated in various sites, it is necessary to en-
sure that the balance in a particular account agrees in all sites.

In general, replication enhances the performance of read operations and increases
the availability of data to read-only transactions. However, update transactions incur
greater overhead. Controlling concurrent updates by several transactions to repli-
cated data is more complex than in centralized systems, which we saw in Chapter
16. We can simplify the management of replicas of relation r by choosing one of them
as the primary copy of r. For example, in a banking system, an account can be as-
sociated with the site in which the account has been opened. Similarly, in an airline-
reservation system, a flight can be associated with the site at which the flight origi-
nates. We shall examine the primary copy scheme and other options for distributed
concurrency control in Section 22.5.

22.2.2 Dqtq Frogmentqtion
If relation r is fragmented, r is divided into a number of fragments 11, 12, . . . ,rn. These
fragments contain sufficient information to allow reconstruction of the original re-
lation r. There are two different schemes for fragmenting a relation: horizontql frag-
mentation andaertical fragmentation. Horizontal fragmentation splits the relation by
assigning each tuple of r to one or more fragments. Vertical fragmentation splits the
relation by decomposing the scheme R of relation r.

We shall illustrate these approaches by fragmenting the relation account, with the
schema

Account-schema = (account_number, br anch:name, b slsnce)

In horizontal fragmentation, a relation r is partitioned into a number of subsets,
rr, r2t . . . , rn. Each tuple of relation r must belong to at least one of the fragments, so
that the original relation can be reconstructed, if needed.

As an illustration, the sccount relation can be divided into several different frag-
ments, each of which consists of tuples of accounts belonging to a particular branch.
If the banking system has only two branches-Hillside and Valleyview-then there
are two different fragments:

accountl : abranch^name : .,Hillside', (account)

account2 : obranch_name :,,yalleyview- \account)

Horizontal fragmentation is usually used to keep tuples at the sites where they are
used the most, to minimize data transfer.

In general, a horizontal fragment can be defined as a selection on the global relation
r. That is, we use a predicate Pz to construct fragment ra:

r i  :  o p , ( r )
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We reconstruct the relation r by taking the union of all fragments; that is,

r  :  r t  U  r z  U . . . U  r n

In our example, the fragments are disjoint. By changing the selection predicates
used to construct the fragments, we can have a particular tuple of r appear in more
than one of the r;.

In its simplest form, vertical fragmentation is the same as decomposition (see

Chapter 7). Vertical fragmentation of r(R) involves the definition of several subsets
of attributes Rr, Rz, . . . , Rn of the schema R so that

R :  Rr  t )  Rz  t - )  " 'U  R,

Each fragment ra of r is defined by

ri : fIp, (r)

The fragmentation should be done in such a way that we can reconstruct relation r
from the fragments by taking the natural join

r :  rr  x 12 X re x " '  x rn

One way of ensuring that the relation r can be reconstructed is to include the
primary-key attributes of -R in each /?2. More generally, any superkey can be used.
It is often convenient to add a special attribute, called a tuple-id, to the schema R.
The tuple-id value of a tuple is a unique value that distinguishes the tuple from all
other tuples. The tuple-id attribute thus serves as a candidate key for the augmented
schema, and is included in each Re. The physical or logical address for a tuple can be
used as a tuple-id, since each tuple has a unique address.

To illustrate vertical fragmentation, consider a university database with a relation
employee-info that stores, for each employee, employee-id, name, designation, and salary.
For privacy reasons, this relation may be fragmented into a relation employeeqriuate
-info containing employee-id and snlary, and another relation employee4ublic-info con'
taining attributes employee-id, nnme, and designation. These may be stored at different
sites, again for security reasons.

The two types of fragmentation can be applied to a single schema; for instance, the
fragments obtained by horizontally fragmenting a relation can be further partitioned
vertically. Fragments can also be replicated. In general, a fragment can be replicated,
replicas of fragments can be fragmented further, and so on.

22.2.3 Tronsporency
The user of a distributed database system should not be required to know either
where the data are physically located or how the data can be accessed at the specific
local site. This characteristic, called data transparency, can take several forms:

r Fragmentation transparency. Users are not required to know how a relation
has been fragmented.

o Replication transparency. Users view each data object as logically unique'
The distributed system may replicate an object to increase either system
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performance or data availability. Users do not have to be concerned with what
data objects have been replicated, or where replicas have been placed.

o Location transparency. Users are not required to know the physical location
of the data. The distributed database system should be able to find any data
as long as the data identifier is supplied by the user transaction.

Data items-such as relations, fragments, and replicas-musthaveunique names.
This property is easy to ensure in a centralized database. In a distributed database,
however, we must take care to ensure that two sites do not use the same name for
distinct data items.

One solution to this problem is to require all names to be registered in a central
name server. The name server helps to ensure that the same name does not get used
for different data items. We can also use the name server to locate a data item, given
the name of the item. This approach, however, suffers from two major disadvantages.
First, the name server may become a performance bottleneck when data items are
located by their names, resulting in poor performance. Second, if the name server
crashes, it may not be possible for any site in the distributed system to continue
to run.

A more widely used alternative approach requires that each site prefix its own
site identifier to any name that it generates. This approach ensures that no two sites
generate the same name (since each site has a unique identifier). Furthermore, no
central control is required. This solution, however, fails to achieve location trans-
Parency, since site identifiers are attached to names. Thus, the nccount relation might
be referred to as siteT7.account, or account@sitelT,rather than as simpLy account.Many
database systems use the Internet address of a site to identify it.

To overcome this problem, the database system can create a set of alternative
names, or aliases, foi data items. A user may thus refer to data items by simple
names that are translated by the system to complete names. The mapping of uliur"t
to the real names can be stored at each site. With aliases, the user can be unaware of
the physical location of a data item. Furthermore, the user will be unaffected if the
database administrator decides to move a data item from one site to another.

Users should not have to refer to a specific replica of a data item. Instead, the
system should determine which replica to reference on a read request, and should
update all replicas on a write request. We can ensure that it does so by maintaining a
catalog table, which the system uses to determine all replicas for the data item.

22.3 Distributed Trqnsqctions
Access to the various data items in a distributed system is usually accomplished
through transactions, which must preserve the ACID properties (Section 15.1). There
are two types of transaction that we need to consider. The local transactions are those
that access and update data in only one local database; the global transactions are
those that access and update data in several local databases. Ensuring the ACID prop-
erties of the local transactions can be done as described in Chapters 75,76, and 77.
However, for global transactions, this task is much more complicated, since several
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sites may be participating in execution. The failure of one of these sites, or the failure

of a communication link connecting these sites, may result in effoneous computa-

tions.
In this section we study the system structure of a distributed database, and its

possible failure modes. On the basis of the model presented in this section, in Sec-

iion22.4 we study protocols for ensuring atomic commit of global transactions, and

in Section 22.5 we study protocols for concurrency control in distributed databases.

In Section 22.6 we study how a distributed database can continue functioning even

in the presence of various tvpes of failure.

22.3.1 System Structure
Each site has its ownlocsl transaction manager, whose function is to ensure the ACID
properties of those transactions that execute at that site. The various transaction man-
agers cooperate to execute global transactions. To understand how such a manager
can be implemented, consider an abstract model of a transaction system, in which
each site contains two subsystems:

o The transaction manager manages the execution of those transactions (or sub-
transactions) that access data stored in a local site. Note that each such trans-
action may be either a local transaction (that is, a transaction that executes at
only that site) or part of a global transaction (that is, a transaction that executes
at several sites).

o The transaction coordinator coordinates the execution ofthe various transac-
tions (both local and global) initiated at that site.

The overall system architecture appears in Figure 22.1.

transaction
coordinator

transaction
manager

computer,4

Figure22.1 System architecture.

computer 1
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The structure of a transaction manager is similar in many respects to the structure
of a centralized system. Each transaction manager is responsible for

o Maintaining a log for recovery purposes

o Participating in an appropriate concurrency-control scheme to coordinate the
concurrent execution of the transactions executing at that site

As we shall see, we need to modify both the recovery and concurrency schemes to
accommodate the distribution of transactions.

The transaction coordinator subsystem is not needed in the centralized environ-
ment, since a transaction accesses data at only a single site. A transaction coordinatol,
as its name implies, is responsible for coordinating the execution of all the transac-
tions initiated at that site. For each such transaction, the coordinator is responsible
for

Starting the execution of the transaction

Breaking the transaction into a number of subtransactions and distributing
these subtransactions to the appropriate sites for execution

Coordinating the termination of the transaction, which may result in the trans-
action being committed at all sites or aborted at all sites

22.3.2 System Foilure Modes
A distributed system may suffer from the same types of failure that a centralized
system does (for example, software errors, hardware errors, or disk crashes). There
are, however, additional types of failure with which we need to deal in a distributed
environment. The basic failure types are

o Failure of a site

o Loss of messages

o Failure of a communication link

o Network partition

The loss or corruption of messages is always a possibility in a distributed sys-
tem. The system uses transmission-control protocols, such as TCP /IP, to handle such
errors. Information about such protocols may be found in standard textbooks on net-
working (see the bibliographical notes).

However, if two sites A and B are not directly connected, messages from one to
the other must be routed through a sequence of communication links. If a communi-
cation link fails, messages that would have been transmitted across the link must be
rerouted. In some cases, it is possible to find another route through the network, so
that the messages are able to reach their destination. In other cases, a failure may re-
sult in there being no connection between some pairs of sites. A system is partitioned
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if it has been split into two (or more) subsystems, called partitions, that lack any con-
nection between them. Note that, under this definition, a subsystem may consist of a
single node.

22.4 Commit Protocols
If we are to ensure atomicity, all the sites in which a transaction T executed must

agree on the final outcome of the execution. T must either commit at all sites, or it

must abort at all sites. To ensure this property, the transaction coordinator of T must

execute a commit protocol.
Among the simplest and most widely used commit protocols is the two-phase

commit protocol (2PC), which is described in Section 22.4.7. An alternative is the

three-phase commit protocol (3PC), which avoids certain disadvantages of the 2PC

protocol but adds to complexity and overhead. Section 22.4.2briefly outlines the 3PC

protocol.

22.4.1 Two-Phqse Commit
We first describe how the two-phase commit protocol (2PC) operates during normal
operation, then describe how it handles failures and finally how it carries out recov-
ery and concurrency control.

Consider a transaction T initiated at site ,9;, where the transaction coordinator
is C*

22.4.1.1 The Commit Protocol
When T completes its execution-that is, when all the sites at which T has executed
inform Ci that T has completed-Ci starts the 2PC protocol.

o Phase 'L. C,i adds the record <prepare T> to the log, and forces the log onto sta-
ble storage. It then sends a prepare T message to all sites at which T executed.
On receiving such a message, the transaction manager at that site determines
whether it is willing to commit its portion of T. If the answer is no, it adds a
record <no T> to the log, and then responds by sending an abort T message
to CrIf the answer is yes, it adds a record <ready T> to the 1og, and forces
the log (with all the log records corresponding to T) onto stable storage. The
transaction manager then replies with a ready T message to C;.

o Phase 2. When C; receives responses to the prepare T message from all the
sites, or when a prespecified interval of time has elapsed since the prepare
T message was sent out, Ct can determine whether the transaction T can be
committed or aborted. Transaction T can be committed if Ci received a ready
T message from all the participating sites. Otherwise, transaction T must be
aborted. Depending on the verdict, either a record <commit T> or a record
<abort 7> is added to the log and the log is forced onto stable storage. At
this point, the fate of the transaction has been sealed. Following this point, the
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coordinator sends either a commit T or an abort T message to all participating
sites. When a site receives that message, it records the message in the log.

A site at which T executed can unconditionally abort T at any time before it sends
the message ready T to the coordinator. Once the message is sent, the transaction is
said to be in the ready state at the site. The ready T message is, in effect, a promise
by a site to follow the coordinator's order to commit T or to abort T. To make such a
promise, the needed information must first be stored in stable storage. Otherwise, if
the site crashes after sending ready T,itmay be unable to make good on its promise.
Furthel, locks acquired by the transaction must continue to be held till the transaction
completes.

Since unanimity is required to commit a transaction, the fate of T is sealed as soon
as at least one site responds abort T. Since the coordinator site ̂ 9i is one of the sites at
which T executed, the coordinator can decide unilaterally to abort T. The final verdict
regarding T is determined at the time that the coordinator writes that verdict (commit
or abort) to the log and forces that verdict to stable storage. In some implementations
of the 2PC protocol, a site sends an acknowledge T message to the coordinator at the
end of the second phase of the protocol. When the coordinator receives the acknowl-
edge T message from all the sites, it adds the record <complete 7> to the log.

22.4.1.2 Hondling of Fqilures
The 2PC protocol responds in different ways to various types of failures:

o Failure of a participating site. If the coordinator Ci detects that a site has
failed, it takes these actions: If the site fails before responding with a ready
T message to Ca, the coordinator assumes that it responded with an abort T
message. If the site fails after the coordinator has received the ready T message
from the site, the coordinator executes the rest of the commit protocol in the
normal fashion, ignoring the failure of the site.

When a participating site ,Sp r€Covers from a failure, it must examine its log
to determine the fate of those transactions that were in the midst of execution
when the failure occurred. Let T be one such transaction. We consider each of
the possible cases:

n The log contains a <commit T> record. In this case, the site executes
redo(T).

tr The log contains an <abort T> record. In this case, the site executes undo(T).
n The log contains a <ready 7> record. In this case, the site must consult Ci

to determine the fate of T. If C6 is up, it notifies 56 regarding whether T
committed or aborted. In the former case, it executes redo(T); in the latter
case, it executes undo(T). I{ Ct is dou'n, ,Sa must try to find the fate of T
from other sites. It does so by sending a querystatus T message to all the
sites in the system. On receiving such a message, a site must consult its
log to determine whether 7 has executed there, and if T has, whether T
committed or aborted. It then notifies Sr about this outcome. If no site has
the appropriate information (that is, whether T committed or aborted),
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then ,97, can neither abort nor commit T. The decision concerning T is
postponed until ,9r can obtain the needed information. Thus, ,Sk must Pe-
riodically resend the querystatus message to the other sites. It continues
to do so until a site that contains the needed information recovers. Note
that the site at which Ce resides always has the needed information.

n The log contains no control records (abort, commit, ready) concerning T.
Thus, we know that ,5r failed before responding to the prepare T message
from Ci. Since the failure of ,S7" precludes the sending of such a response/
by our algorithm C4 must abort T. Hence, Sp must execute undo(D.

o Failure of the coordinator. If the coordinator fails in the midst of the execu-
tion of the commit protocol for transaction T, then the participating sites must
decide the fate of T. We shall see that, in certain cases, the participating sites
cannot decide whether to commit or abort T, and therefore these sites must
wait for the recovery of the failed coordinator.

I If an active site contains a <commit T> record in its log, then T must be
committed.

n If an active site contains an <abort T> record in its log, then T must be
aborted.

tr if some active site does not contain a <ready T> record in its 1og, then
the failed coordinator C4 cannot have decided to commit T, because a site
that does not have a <ready T> record in its log cannot have sent a ready
7 message to Cz. However, the coordinator may have decided to abort T,
but not to commit T. Rather than wait for Ci to recover, it is preferable to
abort T.

! If none of the preceding cases holds, then all active sites must have a
<ready T> record in their logs, but no additional control records (such

as <abort T> or <commit T>). Since the coordinator has failed, it is im-
possible to determine whether a decision has been made, and if one has,
what that decision is, until the coordinator recovers. Thus, the active sites
must wait for Ct to recover. Since the fate of 7 remains in doubt, T may
continue to hold system resources. For example, if locking is used, T may
hold locks on data at active sites. Such a situation is undesirable, because
it may be hours or days before Ci is again active. During this time, other
transactions may be forced to wait for T. As a result, data items may be
unavailable not only on the failed site (C),buton active sites as well. This
situation is called the blocking problem, because T is blocked pending the
recovery of slte C.i.

o Network partition. When a network partitions, two possibilities exist:

1. The coordinator and all its participants remain in one partition. In this
case, the failure has no effect on the commit protocol.

2. The coordinator and its participants belong to several partitions. From the
viewpoint of the sites in one of the partitions, it aPPears that the sites in
other partitions have failed. Sites that are not in the partition containing
the coordinator simply execute the protocol to deal with failure of the
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coordinator. The coordinator and the sites that are in the same partition as
the coordinator follow the usual commit protocol, assuming that the sites
in the other partitions have failed.

Thus, the major disadvantage of the 2PC protocol is that coordinator failure may re-
sult in blocking, where a decision either to commit or to abort T may have to be
postponed until C6 recovers.

22.4.1.3 Recovery qnd Concurrency Control
When a failed site restarts, we can perform recovery by using, for example, the re-
covery algorithm described in Section 77.8. To deal with distributed commit proto-
cols (such as 2PC and 3PC), the recovery procedure must treat in-doubt transactions
specially; in-doubt transactions are transactions for which a <ready T> log record is
found, but neither a <commit T> log record nor an <abort 7> log record is found.
The recovering site must determine the commit-abort status of such transactions by
contacting other sites, as described in Section 22.4.7.2.

If recovery is done as just described, however, normal transaction processing at
the site cannot begin until all in-doubt transactions have been committed or rolled
back. Finding the status of in-doubt transactions can be slow, since multiple sites
may have to be contacted. Further, if the coordinator has failed, and no other site has
information about the commit-abort status of an incomplete transaction, recovery
potentially could become blocked if 2PC is used. As a result, the site performing
restart recovery may remain unusable for a long period.

To circumvent this problem, recovery algorithms typically provide support for
noting lock information in the log. (We are assuming here that locking is used for
concurrency control.) Instead of writing a <ready T> log record, the algorithm writes
a <ready T, L> log record, where tr is a list of all write locks held by the transaction
7 when the log record is written. At recovery time, after performing local recovery
actions, for every in-doubt transaction 7, all the write locks noted in the <ready T,
L> log record (read from the log) are reacquired.

After lock reacquisition is complete for all in-doubt transactions, transaction pro-
cessing can start at the site, even before the commit-abort status of the in-doubt trans-
actions is determined. The commit or rollback of in-doubt transactions proceeds con-
currently with the execution of new transactions. Thus, site recovery is fastel, and
never gets blocked. Note that new transactions that have a lock conflict with any
write locks held by in-doubt transactions will be unable to make progress until the
conflicting in-doubt transactions have been committed or rolled back.

22.4.2 Three-Phqse Commit
The three-phase commit (3PC) protocol is an extension of the two-phase commit pro-
tocol that avoids the blocking problem under certain assumptions. In particular, it is
assumed that no network partition occurs, and not more than k sites fail, where k is
some predetermined number. Under these assumptions, the protocol avoids blocking
by introducing an extra third phase where multiple sites are involved in the decision
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to commit. Instead of directly noting the commit decision in its persistent storage, the

coordinator first ensures that at least k other sites know that it intended to commit

the transaction. If the coordinator fails, the remaining sites first select a new coor-

dinator. This new coordinator checks the status of the protocol from the remaining

sites; if the coordinator had decided to commit, at least one of the other k sites that it

informed will be up and will ensure that the commit decision is respected. The new

coordinator restarts the third phase of the protocol if some site knew that the old co-

ordinator intended to commit the transaction. Otherwise the new coordinator aborts

the transaction.
While the 3PC protocol has the desirable property of not blocking unless k sites

fail, it has the drawback that a partitioning of the network will appear to be the same

as more than k sites failing, which would lead to blocking. The protocol also has to

be carefully implemented to ensure that network partitioning (or more than k sites

failing) does not result in inconsistencies, where a transaction is committed in one

partition, and aborted in another. Because of its overhead, the 3PC protocol is not

widely used. See the bibliographical notes for references giving more details of the

3PC protocol.

22.4.3 Alternotive Models of Trqnsqction Processing

For many applications, the blocking problem of two-phase commit is not acceptable.
The problem here is the notion of a single transaction that works across multiple sites.
In this section we describe how to use persistent messaging to avoid the problem of
distributed commit, and then briefly outline the larger issue of workflows) workflows
are considered in more detail in Section 25.2.

To understand persistent messaging consider how one might transfer funds be-
tween two different banks, each with its own computer. One approach is to have a
transaction span the two sites, and use two-phase commit to ensure atomicity. How-
evel the transaction may have to update the total bank balance, and blocking could
have a serious impact on all other transactions at each bank, since almost all transac-
tions at the bank would update the total bank balance.

In contrast, consider how fund transfer by a bank check occurs. The bank first
deducts the amount of the check from the available balance and prints out a check.
The check is then physically transferred to the other bank where it is deposited. After
verifying the check, the bank increases the local balance by the amount of the check.
The check constitutes a message sent between the two banks. So that funds are not
lost or incorrectly increased, the check must not be lost, and must not be duplicated
and deposited more than once. When the bank computers are connected by a net-
work, persistent messages provide the same service as the check (but much faster, of
course).

Persistent messages are messages that are guaranteed to be delivered to the re-
cipient exactly once (neither less nor more), regardless of failures, if the transaction
sending the message commits, and are guaranteed to not be delivered if the transac-
tion aborts. Database recovery techniques are used to implement persistent messag-
ing on top of the normal network channels, as we will see shortly. In contrast, regular
messages may be lost or may even be delivered multiple times in some situations.
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Error handling is more complicated with persistent messaging than with two-
phase commit. For instance, if the account where the check is to be deposited has
been closed, the check must be sent back to the originating account and credited
back there. Both sites must therefore be provided with error-handling code, along
with code to handle the persistent messages. In contrast, with two-phase commit,
the error would be detected by the transaction, which would then never deduct the
amount in the first place.

The types of exception conditions that may arise depend on the applicatiory so
it is not possible for the database system to handle exceptions automatically. The
application programs that send and receive persistent messages must include code
to handle exception conditions and bring the system back to a consistent state. For
instance, it is not acceptable to just lose the money being transferred if the receiving
account has been closed; the money must be credited back to the originating account,
and if that is not possible for some reason, humans must be alerted to resolve the
situation manually.

There are many applications where the benefit of eliminating blocking is well
worth the extra effort to implement systems that use persistent messages. In fact, few
organizations would agree to support two-phase commit for transactions originating
outside the organization, since failures could result in blocking of access to local data.
Persistent messaging therefore plays an important role in carrying out transactions
that cross organizational boundaries.

Workflows provide a general model of transaction processing involving multiple
sites and possibly human processing of certain steps. For instance, when a bank re-
ceives a loan application, there are many steps it must take, including contacting ex-
ternal credit-checking agencies, before approving or rejecting a loan application. The
steps, together, form a workflow. We study workflows in more detail in Section 25.2.
We also note that persistent messaging forms the underlying basis for workflows in
a distributed environment.

We now consider the implementation of persistent messaging. Persistent messag-
ing can be implemented on top of an unreliable messaging infrastructure, which may
lose messages or deliver them multiple times, by these protocols:

o Sending site protocol. When a transaction wishes to send a persistent mes-
sage, it writes a record containing the message in a special relation messages-to
-send, instead of directly sending out the message. The message is also given
a unique message identifier.

Amessage deliaery process monitors the relation, and when a new message is
found, it sends the message to its destination. The usual database concuffency-
control mechanisms ensure that the system process reads the message only af-
ter the transaction that wrote the me-ssage iommits; if the transaction aborts,
the usual recovery mechanism would delete the message from the relation.

The message delivery process deletes a message from the relation only af-
ter it receives an acknowledgment from the destination site. If it receives no
acknowledgement from the destination site, after some time it sends the mes-
sage again. It repeats this until an acknowledgment is received. In case of per-
manent failures, the system will decide, after some period of time, that the



Chapter 22 Distributed Databases

message is undeliverable. Exception handling code provided by the applica-

tion is then invoked to deal with the failure.

Writing the message to a relation and processing it only after the transaction

commits ensures that the message will be delivered if and only if the transac-

tion commits. Repeatedly sending it guarantees it will be delivered even if

there are (temporary) system or network failures.

o Receiving site protocol. When a site receives a persistent message, it runs a

transaction that adds the message to a special receiaedsnessages relation, pro-

vided it is not already present in the relation (the unique message identifier

detects duplicates). After the transaction commits, or if the message was al-

ready present in the relation, the receiving site sends an acknowledgment back

to the sending site.
Note that sending the acknowledgment before the transaction commits is

not safe, since a system failure may then result in loss of the message. Check-

ing whether the message has been received earlier is essential to avoid multi-

ple deliveries of the message.
In many messaging systems, it is possible for messages to get delayed ar-

bitrarily, although such delays are very unlikely. Therefore, to be safe, the

message must never be deleted from the receiaedflessages relation Deleting it

could result in a duplicate delivery not being detected. But as a result, the re-

ceiaedsnessages relation may grow indefinitely. To deal with this problem, each

message is given a timestamp, and if the timestamp of a received message is

older than some cutoff, the message is discarded. All messages recorded in

the receiaedsnessages relation that are older than the cutoff can be deleted.

225 Concurrency Control in Distributed Dqtqbqses
We show here how some of the concurrency-control schemes discussed in Chapter 16
can be modified so that they can be used in a distributed environment. We assume
that each site participates in the execution of a commit protocol to ensure global trans-
action atomicity.

The protocols we describe in this section require updates to be done on all replicas
of a data item. If any site containing a replica of a data item has failed, updates to the
data item cannotbe processed. In Section 22.6 we describe protocols that can continue
transaction processing even if some sites or links have failed, thereby providing high
availability.

22.5.1 Locking Protocols
The various locking protocols described in Chapter 1.6 can be used in a distributed
environment. The only change that needs to be incorporated is in the way the lock
manager deals with replicated data. We present several possible schemes that are
applicable to an environment where data can be replicated in several sites. As in
Chapter L6,we shall assume the existence of the shared and exclusiae lock modes.
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22.5.1.1 Single Lock-Mqnqger Approoch
In the single lock-manager approach, the system maintains a single lock manager
that resides in a single chosen site-say Si. All lock and unlock requests are made at
site Si. When a transaction needs to lock a data item, it sends a lock request to ,S;.
The lock manager determines whether the lock can be granted immediately. If the
lock can be granted, the lock manager sends a message to that effect to the site at
which the lock request was initiated. Otherwise, the request is delayed until it can
be granted, at which time a message is sent to the site at which the lock request was
initiated. The transaction can read the data item from any one of the sites at which a
replica of the data item resides. In the case of a write, all the sites where a replica of
the data item resides must be involved in the writing.

The scheme has these advantages:

o Simple implementation. This scheme requires two messages for handling
lock requests and one message for handling unlock requests.

o Simple deadlock handling. Since all lock and unlock requests are made at one
site, the deadlock-handling algorithms discussed in Chapter 16 can be applied
directly to this environment.

The disadvantages of the scheme are:

r Bottleneck. The site ,Sz becomes a bottleneck, since all requests must be pro-
cessed there.

o Vulnerability. If the site Sa fails, the concurrency controller is lost. Either pro-
cessing must stop, or a recovery scheme must be used so that a backup site
can take over lock management from ,Sa, as described in Section 22.6.5.

22.5.1.2 Distributed Lock Monoger
A compromise between the advantages and disadvantages can be achieved through
the distributed-lock-manager approach, in which the lock-manager function is dis-
tributed over several sites.

Each site maintains a local lock manager whose function is to administer the lock
and unlock requests for those data items that are stored in that site. When a trans-
action wishes to lock data item Q, which is not replicated and resides at site ^9a, a
message is sent to the lock manager at site Si requesting a lock (in a particular lock
mode). If data item Q is locked in an incompatible mode, then the request is delayed
until it can be granted. Once it has determined that the lock request can be granted,
the lock manager sends a message back to the initiator indicating that it has granted
the lock request.

There are several alternative ways of dealing with replication of data items, which
we study in Sections 22.5.7.3 to 22.5.1.6.

The distributed-lock-manager scheme has the advantage of simple implementa-
tion, and reduces the degree to which the coordinator is a bottleneck. It has a reason-
ably low overhead, requiring two message transfers for handling lock requests, and
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one message transfer for handling unlock requests. Flowever, deadlock handling is

more complex, since the lock and unlock requests are no longer made at a single site:

There may be intersite deadlocks even when there is no deadlock within a single site.

The deadlock-handling algorithms discussed in Chapter 16 must be modified/ as we

shall discuss in Section 22.5.4, to detect global deadlocks.

22.5.1.3 Primory Copy
When a system uses data replication, we can choose one of the replicas as the primary
copy. Thus, for each data item Q, the primary copy of Q must reside in precisely one
site, which we call the primary site of Q.

When a transaction needs to lock a data item Q, it requests a lock at the primary
site of Q. As before, the response to the request is delayed until it can be granted.

Thus, the primary copy enables concurrency control for replicated data to be han-
dled like that for unreplicated data. This similarity allows for a simple implementa-
tion. However, if the primary site of Q fails, Q is inaccessible, even though other sites
containing a replica may be accessible.

22.5.1.4 Mojority Protocol
The majority protocol works this way: If data item Q is replicated in n different sites,
then a lock-request message must be sent to more than one-half of the n sites in which

Q is stored. Each lock manager determines whether the lock can be granted immedi-
ately (as far as it is concerned). As before, the response is delayed until the request can
be granted. The transaction does not operate on Q until it has successfully obtained
a lock on a majority of the replicas of Q.

We assume for now that writes are performed on all replicas, requiring all sites
containing replicas to be available. However, the major benefit of the majority proto-
col is that it can be extended to deal with site failures, as we will see in Section22.6.1,.
The protocol also deals with replicated data in a decentralizedmannet thus avoiding
the drawbacks of central control. However, it suffers from these disadvantages:

o Implementation. The majority protocol is more complicated to implement
than are the previous schemes. It requires at least 2(nl2 + 1) messages for
handling lock requests and at least (nl2 * 1) messages for handling unlock
requests.

o Deadlock handling. In addition to the problem of global deadlocks due to
the use of a distributed-lock-manager approach, it is possible for a deadlock
to occur even if only one data item is being locked. As an illustration, consider
a system with four sites and full replication. Suppose that transactions ?r and
7z wish to lock data item Q in exclusive mode. Transaction Ty rnay succeed
in locking Q at sites 51 and Ss, while transaction T2 rr:rar succeed in locking

Q at sites Sz and ̂ 9a. Each then must wait to acquire the third locki hence, a
deadlock has occurred. Luckily, we can avoid such deadlocks with relative
ease, by requiring all sites to request locks on the replicas of a data item in the
same predetermined order.
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22.5.1.5 Biqsed Protocol
The biased protocol is another approach to handling replication. The difference from
the majority protocol is that requests for shared locks are given more favorable treat-
ment than requests for exclusive locks.

o Shared locks. When a transaction needs to lock data item Q, it simply requests
a lock on Q from the lock manager at one site that contains a replica of Q.

o Exclusive locks. When a transaction needs to lock data item Q, it requests a
lock on Q from the lock manager at all sites that contain a replica of Q.

As before, the response to the request is delayed until it can be granted.
The biased scheme has the advantage of imposing less overhead on read oper-

ations than does the majority protocol. This savings is especially significant in com-
mon cases in which the frequency of read is much greater than the frequency of write.
However, the additional overhead on writes is a disadvantage. Furthermore, the bi-
ased protocol shares the majority protocol's disadvantage of complexity in handling
deadlock.

22.5.1.6 Quorum Consensus Protocol
The quorum consensus protocol is a generalization of the majority protocol. The
quorum consensus protocol assigns each site a nonnegative weight. It assigns read
and write operations on an item r two integers, called read quorum Q, and write
quorum Q-, that must satisfy the following condition, where S is the total weight of
all sites at which r resides:

Q " + q - > ^ 9 a n d 2 * Q - > S

To execute a read operation, enough replicas must be locked that their total weight
it > 8". To execute a write operation, enough replicas must be locked so that tlieir
total weight is )> Q-.

A benefit of the quorum consensus approach is that it can permit the cost of either
read or write locking to be selectively reduced by appropriately defining the read and
write quorums. For instance, with a small read quorum, reads need to obtain fewer
locks, but the write quorum will be higher, hence writes need to obtain more locks.
Also, if higher weights are given to some sites (for example, those less likely to fail),
fewer sites need to be accessed for acquiring locks. In fact, by setting weights and
quorums appropriately, the quorum consensus protocol can simulate the majority
protocol and the biased protocols.

Like the majority protocol, quorum consensus can be extended to work even in
the presence of site failures, as we will see in Section22.6.1,.

22.5.2 Timestomping
The principal idea behind the timestamping scheme in Section 76.2is that each trans-
action is given a unique timestamp that the system uses in deciding the serialization
order. Our first task, then, in generalizing the centralized scheme to a distributed
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Figure22.2 Generation of unique timestamps.

scheme is to develop a scheme for generating unique timestamps. Then, the various
protocols can operate directly to the nonreplicated environment.

There are two primary methods for generating unique timestamps, one central-
ized and one distributed. In the centralized scheme, a single site distributes the time-
stamps. The site can use a logical counter or its own local clock for this purPose.

In the distributed scheme, each site generates a unique local timestamp by using
either a logical counter or the local clock. We obtain the unique global timestamp by
concatenating the unique local timestamp with the site identifier, which also must be
unique (Figure 22.2).The order of concatenation is important!We use the site iden-
tifier in the least significant position to ensure that the global timestamps generated
in one site are not always greater than those generated in another site. Compare this
technique for generating unique timestamps with the one that we presented in Sec-
tion22.2.3 for generating unique names.

We may still have a problem if one site generates local timestamps at a rate faster
than that of the other sites. In such a case, the fast site's logical counter will be larger
than that of other sites. Therefore, all timestamps generated by the fast site will be
larger than those generated by other sites. What we need is a mechanism to ensure
that local timestamps are generated fairly across the system. We define within each
site ,Sr a logical clock (LC.), which generates the unique local timestamp. The logical
clock can be implemented as a counter that is incremented after a new local time-
stamp is generated. To ensure that the various logical clocks are slmchronized, we
require that a site Sa advance its logical clock whenever a transaction 4 with time-
stamp ax ,A) visits that site and r is greater than the current valu e of LC r . In this case,
site ̂ 9i advances its logical clock to the value r + 1.

If the system clock is used to generate timestamps, then timestamps will be as-
signed fairly, provided that no site has a system clock that runs fast or slow. Since
clocks may not be perfectly accurate, a technique similar to that for logical clocks
must be used to ensure that no clock gets far ahead of or behind another clock.

22.5.3 Replicotion with Weqk Degrees of Consistency

Many commercial databases today support replication, which can take one of several
forms. With master-slave replication, the database allows updates at a primary site,
and automatically propagates updates to replicas at other sites. Transactions may
read the replicas at other sites, but are not permitted to update them.

An important feature of such replication is that transactions do not obtain locks at
remote sites. To ensure that transactions running at the replica sites see a consistent
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(but perhaps outdated) view of the database, the replica should reflect a transaction-
consistent snapshot of the data at the primary; that is, the replica should reflect all
updates of transactions up to some transaction in the serialization order, and should
not reflect any updates of later transactions in the serialization order.

The database may be configured to propagate updates immediately after they oc-
cur at the primary, or to propagate updates only periodically.

Master-slave replication is particularly useful for distributing information, for in-
stance from a central office to branch offices of an organization. Another use for this
form of replication is in creating a copy of the database to run large queries, so that
queries do not interfere with transactions. Updates should be propagated periodi-
cally-every night, for example-so that update propagation does not interfere with
query processing.

The Oracle database system supports a create snapshot statement, which can cre-
ate a transaction-consistent snapshot copy of a relation, or set of relations, at a remote
site. It also supports snapshot refresh, which can be done either by recomputing the
snapshot or by incrementally updating it. Oracle supports automatic refresh, either
continuously or at periodic intervals.

With multimaster replication (also called update-anywhere replication) updates
are permitted at any replica of a data item, and are automatically propagated to
all replicas. This model is the basic model used to manage replicas in distributed
databases. Transactions update the local copy and the system updates other replicas
transparently.

One way of updating replicas is to apply immediate update with two-phase com-
mit, using one of the distributed concurrency-control techniques we have seen. Many
database systems use the biased protocol, where writes have to lock and update all
replicas and reads lock and read any one replica, as their currency-control technique.

Many database systems provide an alternative form of updating: They update at
one site, with lazy propagation of updates to other sites, instead of immediately
aPPlyrng updates to all replicas as part of the transaction performing the update.
Schemes based on lazy propagation allow transaction processing (including updates)
to proceed even if a site is disconnected from the network, thus improving availabil-
ity, but, unfortunately, do so at the cost of consistency. One of two approaches is
usually followed when lazy propagation is used:

o Updates at replicas are translated into updates at a primary site, which are
then propagatedlazily to all replicas.

This approach ensures that updates to an item are ordered serially, although
serializability problems can occur, since transactions may read an old value of
some other data item and use it to perform an update.

o Updates are performed at any replica and propagated to all other replicas.
This approach can cause even more problems, since the same data item

may be updated concurrently at multiple sites.

Some conflicts due to the iack of distributed concurrency control can be detected
when updates are propagated to other sites (we shall see how in section 24.s.4),
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but resolving the conflict involves rolling back committed transactions, and dura-

bility of committed transactions is therefore not guaranteed. Further, human inter-

vention may be required to deal with conflicts. The above schemes should therefore

be avoided or used with care.

22.5.4 Deqdlock Hondling
The deadlock-prevention and deadlock-detection algorithms in Chapter 16 can be
used in a distributed system, provided that modifications are made. For example,
we can use the tree protocol by defining a global tree among the system data items.
Similarly, the timestamp-ordering approach could be directly applied to a distributed
environment, as we saw in Section 22.5.2.

Deadlock prevention may result in unnecessary waiting and rollback. Further-
more, certain deadlock-prevention techniques may require more sites to be involved
in the execution of a transaction than would otherwise be the case.

If we allow deadlocks to occur and rely on deadlock detection, the main problem
in a distributed system is deciding how to maintain the wait-for graph. Common
techniques for dealing with this issue require that each site keep a local wait-for
graph. The nodes of the graph correspond to all the transactions (local as well as
nonlocal) that are currently either holding or requesting any of the items local to that
site. For example, Figure 22.3 depicts a system consisting of two sites, each maintain-
ing its local wait-for graph. Note that transactions T2 andTs appear in both graphs,
indicating that the transactions have requested items at both sites.

These local wait-for graphs are constructed in the usual manner for local transac-
tions and data items. When a transaction I on site ,51 needs a resource in site ,92, it
sends a request message to site ̂ 92. If the resource is held by transaction Ti, the system
inserts an edge Ti -+ Ti in the local wait-for graph of site 52.

Clearly, if any local wait-for graph has a cycle, deadlock has occurred. On the
other hand, the fact that there are no cycles in any of the local wait-for graphs does
not mean that there are no deadlocks. To illustrate this problem, we consider the
Iocal wait-for graphs of Figure 22.3. Each wait-for graph is acyclic; nevertheless, a
deadlock exists in the system because the union of the local wait-for graphs contains
a cycle. This graph appears inFigure22.4.

site 51 site 52

Figure22.3 Local wait-for graphs.
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Figure22.4 Global wait-for graph for Figure 22.3.

In the centralized deadlock detection approach, the system constructs and main-
tains a global wait-for graph (the union of all the local graphs) in a single site: the
deadlock-detection coordinator. Since there is communication delay in the system,
we must distinguish between two types of wait-for graphs. The reql graph describes
the real but unknown state of the system at any instance in time, as would be seen
by an omniscient observer. The constructed graph is an approximation generated by
the controller during the execution of the controller's algorithm. Obviously, the con-
troller must generate the constructed graph in such a way that, whenever the detec-
tion algorithm is invoked, the reported results are correct. Correct means in this case
that, if a deadlock exists, it is reported promptly, and if the system reports a deadlock,
it is indeed in a deadlock state.

The global wait-for graph can be reconstructed or updated under these conditions:

o Whenever a new edge is inserted in or removed from one of the local wait-for
graphs.

o Periodically, when a number of changes have occurred in a local wait-for
graph.

o Whenever the coordinator needs to invoke the cycle-detection algorithm.

When the coordinator invokes the deadlock-detection algorithm, it searches its
global graph. If it finds a cycle, it selects a victim to be rolled back. The coord.inator
must notify all the sites that a particular transaction has been selected as victim. The
sites, in turn, roll back the victim transaction.

This scheme may produce unnecessary rollbacks if:

o False cycles exist in the global wait-for graph. As an illustration, consider a
snapshot of the system represented by the local wait-for graphs of Figure 22.5 .
Suppose thatT2 releases the resource that it is holding in site,S1, resulting in
the deletion of the edge fi ---+ T2 in,S1. Transaction 72 then requests a resource
held by ?3 at site,92, resulting in the addition of the edgeT2 ---+ 73 in 52. If the
inSert 7z ---+ 73 message from 52 arrives before the remOve T1 ---+ T2 message
from,S1, the coordinator may discover the false cycle fi - T2 - 73 after the
insert (but before the remove). Deadlock recovery may be initiated, although
no deadlock has occurred.
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Figure22.S False cycles in the global wait-for graph.

Note that the false-cycle situation could not occur under two-phase locking.

The likelihood of false cycles is usually sufficiently low that they do not cause

a serious performance problem.

o A deadlock has indeed occurred and a victim has been picked, while one of the

transactions was aborted for reasons unrelated to the deadlock. For example,

suppose that site 51 in Figure 22.3 decides to abort Tz. At the same time, the

coordinator has discovered a cycle, and has picked Ts as avictim. Both 7z and
Ts are now rolled back, although only ?z needed to be rolled back.

Deadlock detection can be done in a distributed manner, with several sites taking

on parts of the task, instead of being done at a single site, However, such algorithms
are more complicated and more expensive. See the bibliographical notes for refer-

ences to such algorithms.

22.6 Avsilqbility
One of the goals in using distributed databases is high availability; that is, the data-
base must function almost all the time. In particular, since failures are more likely
in large distributed systems, a distributed database must continue functioning even
when there are various types of failures. The ability to continue functioning even
during failures is referred to as robustness.

For a distributed system to be robust, it must detect failures, reconfigure the system
so that computation may continue, and recorer when a processor or a link is repaired.

The different types of failures are handled in different ways. For example, message
loss is handled by retransmission. Repeated retransmission of a message across a link,

q - s2



22.6 Availability 855

without receipt of an acknowledgment, is usually a symptom of a link failure. The
network usually attempts to find an alternative route for the message. Failure to find
such a route is usually a symptom of network partition.

It is generally not possible, however, to differentiate clearly between site failure
and network partition. The system can usually detect that a failure has occurred, but
it may not be able to identify the type of failure. For example, suppose that site 51
is not able to communicate with ,92. It could be that ^92 has failed. However, another
possibility is that the link between ,S1 and ,52 has failed, resulting in network parti-
tion. The problem is partly addressed by using multiple links between sites, so that
even if one link fails the sites will remain connected. However, multiple link failure
can still occuL so there are situations where we cannot be sure whether a site failure
or network partition has occurred.

Suppose that site ,S1 has discovered that a failure has occurred. It must then ini-
tiate a procedure that will allow the system to reconfigure, and to continue with the
normal mode of operation.

o If transactionswereactive atafailed/inaccessiblesiteatthetimeof thefailure,
these transactions should be aborted. It is desirable to abort such transactions
promptly, since they may hold locks on data at sites that are still active; wait-
ing for the failed/inaccessible site to become accessible again may impede
other transactions at sites that are operational.

Howevel, in some cases, when data objects are replicated it may be possible
to proceed with reads and updates even though some replicas are inaccessible.
In this case, when a failed site recovers, if it had replicas of any data object, it
must obtain the current values of these data objects, and must ensure that it
receives all future updates. We address this issue in Section 22.6.7.

r If replicated data are stored at a failed/inaccessible site, the catalog should be
updated so that queries do not reference the copy at the failed site. When a
site rejoins, care must be taken to ensure that data at the site are consistent, as
we will see in Section22.6.3.

o If a failed site is a central server for some subsystem, an election must be held
to determine the new server (see Section 22.6.5). Examples of central servers
include a name server, a concurrency coordinator, or a global deadlock detec-
tor.

Since it is, in general, not possible to distinguish between network link failures and
site failures, any reconfiguration scheme must be designed to work correctly in case
of a partitioning of the network. In particular, these situations must be avoided:

o TWo or more central servers are elected in distinct partitions.

o More than one partition updates a replicated data item.

22.6.1 Mojority-Bqsed Approoch
The majority-based approach to distributed concurrency control in Section 22.5.7.4
can be modified to work in spite of failures. In this approach, each data object stores
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with it a version number to detect when it was last written to. Whenever a transaction
writes an object it also updates the version number in this way:

o If data object a is replicated in r different sites, then a lock-request message
must be sent to more than one-half of the n sites in which a is stored. The
transaction does not operate on a until it has successfully obtained a lock on a
majority of the replicas of n.

o Read operations look at all replicas on which a lock has been obtained, and
read the value from the replica that has the highest version number. (Option-

ally, they may also write this value back to replicas with lower version num-
bers.) Writes read all the replicas just like reads to find the highest version
number (this step would normally have been performed earlier in the trans-
action by a read, and the result can be reused). The new version number is
one more than the highest version number. The write operation writes all the
replicas on which it has obtained locks, and sets the version number at all the
replicas to the new version number'

Failures during a transaction (whether network partitions or site failures) can be tor-
erated as long as (1) the sites available at commit contain a majority of replicas of all
the objects written to and (2) during reads, a majority of replicas are read to find the
version numbers. If these requirements are violated, the transaction must be aborted.
As long as the requirements are satisfied, the two-phase commit protocol canbe used,
as usual, on the sites that are available.

In this scheme, reintegration is trivial; nothing needs to be done. This is because
writes would have updated a majority of the replicas, while reads will read a majority
of the replicas and find at least one replica that has the latest version.

The version numbering technique used with the majority protocol can also be used
to make the quorum consensus protocol work in the presence of failures. We leave the
(straightforward) details to the reader. However, the danger of failures preventing the
system from processing transactions increases if some sites are given higher weights.

22.6.2 Reqd One, Write All Avqilqble Approoch

As a special case of quorum consensus, we can employ the biased protocol by giving
unit weights to all sites, setting the read quorum to 1, and setting the write quorum to
ri (a11 sites). In this special case, there is no need to use version numbers; however, if

even a single site containing a data item fails, no write to the item can proceed, since
the write quorum will not be available. This protocol is called the read one, write all
protocol since all replicas must be written.

To allow work to proceed in the event of failures, we would like to be able to use a
read one, write all available protocol. In this approach, a read operation proceeds as
in the read one, write all scheme; any available replica can be read, and a read lock is
obtained at that replica. A write operation is shipped to all replicas; and write locks
are acquired on all the replicas. If a site is down, the transaction manager proceeds
without waiting for the site to recover.
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While this approach appears very attractive, there are several complications. In
particular, temporary communication failure may cause a site to appear to be un-
available, resulting in a write not being performed, but when the link is restored,
the site is not aware that it has to perform some reintegration actions to catch up on
writes it has lost. Further, if the network partitions, each partition may proceed to
update the same data item, believing that sites in the other partitions are all dead.

The read one, write all available scheme can be used if there is never any network
partitioning, but it can result in inconsistencies in the event of network partitions.

22.6.3 Site Reintegrotion
Reintegration of a repaired site or link into the system requires care. When a failed
site recovers, it must initiate a procedure to update its system tables to reflect changes
made while it was down. If the site had replicas of any data items, it must obtain
the current values of these data items and ensure that it receives all future updates.
Reintegration of a site is more complicated than it may seem to be at first glance,
since there may be updates to the data items processed during the time that the site
is recovering.

An easy solution is to halt the entire system temporarily while the failed site rejoins
it. In most applications, however, such a temporary halt is unacceptably disruptive.
Techniques have been developed to allow failed sites to reintegrate while concurrent
updates to data items proceed concurrently. Before a read or write lock is granted
on any data item, the site must ensure that it has caught up on all updates to the
data item. If a failed link recovers, two or more partitions can be rejoined. Since a
partitioning of the network limits the allowable operations by some or all sites, all
sites should be informed promptly of the recovery of the link. See the bibliographical
notes for more information on recovery in distributed systems.

22.6.4 Comporison with Remote Bockup
Remote backup systems, which we studied in Section 77.9, and replication in dis-
tributed databases are two alternative approaches to providing high availability. The
main difference between the two schemes is that with remote backup systems, ac-
tions such as concurrency control and recovery are performed at a single site, and
only data and log records are replicated at the other site. In particular, remote backup
systems help avoid two-phase commit, and its resultant overheads. Also, transac-
tions need to contact only one site (the primary site), and thus avoid the overhead
of running transaction code at multiple sites. Thus remote backup systems offer a
lower-cost approach to high availability than replication.

On the other hand, replication can provide greater availability by having multiple
replicas available and using the majority protocol.

22.6.5 Coordinqtor Selection
Several of the algorithms that we have presented require the use of a coordinator. If
the coordinator fails because of a failure of the site at which it resides, the system can
continue execution only by restarting a new coordinator on another site. One way to
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continue execution is by maintaining a backup to the coordinator, which is ready to
assume responsibility if the coordinator fails.

A backup coordinator is a site that, in addition to other tasks, maintains enough
information locally to allow it to assume the role of coordinator with minimal disrup-
tion to the distributed system. All messages directed to the coordinator are received
by both the coordinator and its backup. The backup coordinator executes the same
algorithms and maintains the same internal state information (such as, for a concur-
rency coordinator, the lock table) as does the actual coordinator. The only difference
in function between the coordinator and its backup is that the backup does not take
any action that affects other sites. Such actions are left to the actual coordinator.

In the event that the backup coordinator detects the failure of the actual coordi-
nator, it assumes the role of coordinator. Since the backup has all the information
available to it that the failed coordinator had, processing can continue without inter-
ruption.

The prime advantage to the backup approach is the ability to continue processing
immediately. If a backup were not ready to assume the coordinator's responsibility,
a newly appointed coordinator would have to seek information from all sites in the
system so that it could execute the coordination tasks. Frequently, the only source
of some of the requisite information is the failed coordinator. In this case, it may be
necessary to abort several (or all) active transactions, and to restart them under the
control of the new coordinator.

Thus, the backup-coordinator approach avoids a substantial amount of delay while
the distributed system recovers from a coordinator failure. The disadvantage is the
overhead of duplicate execution of the coordinator's tasks. Furthermore, a coordina-
tor and its backup need to communicate regularly to ensure that their activities are
synchronized.

In short, the backup-coordinator approach incurs overhead during normal pro-
cessing to allow fast recovery from a coordinator failure.

In the absence of a designated backup coordinator, or in order to handle multiple
failures, a new coordinator may be chosen d;mamically by sites that are live. Elec-
tion algorithms enable the sites to choose the site for the new coordinator in a decen-
tralized manner. Election algorithms require that a unique identification number be
associated with each active site in the system.

The bully algorithm for election works as follows. To keep the notation and the
discussion simple, assume that the identification number of site Sa is I and that the

chosen coordinator will always be the active site with the largest identification num-
ber. Hence, when a coordinator fails, the algorithm must elect the active site that has
the largest identification number. The aigorithm must send this number to each active
site in the system. In addition, the algorithm must provide a mechanism by which a
site recovering from a crash can identify the current coordinator. Suppose that site ̂ 9r
sends a request that is not answered by the coordinator within a prespecified time
interval T. In this situation, it is assumed that the coordinator has failed, and ,52 tries
to elect itself as the site for the new coordinator.

Site & sends an election message to every site that has a higher identification num-
ber. Site ,9; then waits, for a time interval T,for ananswer from any one of these sites.
If it receives no response within time 7, it assumes that all sites with numbers greater
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than I have failed, and it elects itself as the site for the new coordinator and sends a
message to inform all active sites with identification numbers lower than i that it is
the site at which the new coordinator resides.

If ,9i does receive an answer, it begins a time interval ?/, to receive a message
informing it that a site with a higher identification number has been elected. (Some
other site is electing itself coordinator, and should report the results within time ?/.)
If ,S; receives no message within TI, then it assumes the site with a higher number
has failed, and site ,Sa restarts the algorithm.

After a failed site recovers, it immediately begins execution of the same algorithm.
If there are no active sites with higher numbers, the recovered site forces all sites with
lower numbers to let it become the coordinator site, even if there is a currently active
coordinator with a lower number. It is for this reason that the algorithm is termed the
bully algorithm. If the network partitions, the bully algorithm elects a separate coor-
dinator in each partition; to ensure that at most one coordinator is elected, winning
sites should additionally verify that a majority of the sites are in their partition.

22.7 Distributed Query Processing
In Chapter 74, we saw that there are a variety of methods for computing the answer
to a query. We examined several techniques for choosing a strategy for processing a
query that minimize the amount of time that it takes to compute the answer. For cen-
tralized systems, the primary criterion for measuring the cost of a particular strategy
is the number of disk accesses. In a distributed system, we must take into account
several other matters, including

o The cost of data transmission over the network

o The potential gain in performance from having several sites process parts of
the query in parallel

The relative cost of data transfer over the network and data transfer to and from disk
varies widely depending on the type of network and on the speed of the disks. Thus,
in general, we cannot focus solely on disk costs or on network costs. Rather, we must
find a good trade-off between the two.

22.7.1 Query Tronsformqtion
Consider an extremely simple query: "Find all the tuples in the account relation."
Although the query is simple-indeed, trivial-processing it is not trivial, since the
account relation may be fragmented, replicated, or both, as we saw in Section 22.2.
If the accounf relation is replicated, we have a choice of replica to make. If no repli-
cas are fragmented, we choose the replica for which the transmission cost is lowest.
However, if a replica is fragmented, the choice is not so easy to make, since we need
to compute several joins or unions to reconstruct the accounl relation. In this case,
the number of strategies for our simple example may be large. Query optimization
by exhaustive enumeration of all alternative strategies may not be practical in such
situations.
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Fragmentation transparency implies that a user may write a query such as

o bran ch-n ame. "Hillside" (account)

Since accounf is defined as

accountl L) account2

the expression that results from the name translation scheme is

obranch-name:"Hi1lside" (accountl U account2)

Using the query-optimization techniques of Chapter 1.4, we can simplify the preced-
ing expression automatically. The result is the expression

obranch-name:,,Hillside', (accountl) l) obron"rrnome:"Hillside" (account2)

which includes two subexpressions. The first involves or.ly (rccountl, ar.d thus can
be evaluated at the Hillside site. The second involves only account2, arlrd thus can be
evaluated at the Valleyview site.

There is a further optimization that can be made in evaluating

o bran eh-n a m e: "Ftillside" (account y)

Since accountl has only tuples pertaining to the Hillside branch, we can eliminate the
selection operation. In evaluating

obr ancluname: "Hiliside" (account2)

we can apply the definition of the account2 fragrnent to obtain

o br anch-name: "Hillside" (cb, on.h-no*e - "Vaileyview" (account))

This expression is the empty set, regardless of the contents of the accounl relation.
Thus, our final strategy is for the Hillside site to return accountl as the result of

the query.

22.7.2 Simple Join Processing
As we saw in Chapter 74, arnajor decision in the selection of a query-processing strat-
egy is choosing a join strategy. Consider the following relational-algebra expression:

account X depos'itor X brancll

Assume that the three relations are neither replicated nor fragmented, and that ac-
count is stored at site 51, depositor at 52, and branch at 53. Let Sr denote the site
at which the query was issued. The system needs to produce the result at site 57.
Among the possible strategies for processing this query are these:

o Ship copies of all three relations to site 57. Using the techniques of Chapter 14,

choose a strategy for processing the entire query locally at site ,Sr.
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o Ship a copy of the accounf relation to site 52, arrd compute templ = account X
depositor at ̂ 92 . Ship templ from Sz to Ss, and comput e temp2 = templ X branch
at ,93. Ship the result temp2 to S 1 .

o Devise strategies similar to the previous one, with the roles of Sr, Sz, 53 ex-
changed.

No one strategy is always the best one. Among the factors that must be considered
are the volume of data being shipped, the cost of transmitting a block of data between
a pair of sites, and the relative speed of processing at each site. Consider the first two
strategies listed. Suppose indices present at ,92 and ^93 are useful for computing the
join. If we ship all three relations to ̂ 97, we would need to either re-create these indices
al S 1 , or use a different, possibly more expensive, join strategy. Re-creation of indices
entails extra processing overhead and extra disk accesses. With the second strategy
a potentially large relation (account x depositor) must be shipped from ,Sz to ,93. This
relation repeats the name of a customer once for each account that the customer has.
Thus, the second strategy may result in extra network transmission compared to the
first strategy.

22.7.3 Semijoin Strctegy
Suppose that we wish to evaluate the expression 11 X rz,where 11 and 12 are stored
at sites ,91 and ,92, respectively. Let the schemas of 11 and r2be R1 and R2. Suppose
that we wish to obtain the result at ,9r. If there are many tuples of 12 that do not
join with any tuple of 11, then shipping 12 to Sl entails shipping tuples that fail to
contribute to the result. We want to remove such tuples before shipping data to 51,
particularly if network costs are high.

A possible strategy to accomplish all this is:

1. Compute templ <- fI_R, n _R, (r1) at ^91 .

2. Ship tempr fuom 51 to,S2.

3. Compute tempz <- 12 X tempy at Sz.

a. Ship temp2 from 52 to 51.

5. Compute 11 X tempz at ,91. The resulting relation is the same ds 11 X 12.

Before considering the efficiency of this strategy, let us verify that the strategy com-
putesthecorrectanswer. Instep3,tempzhastheresultof 12 X llprnnr(r1).Instep
5, we compute

rt X rz P4 IIR, n a, (ry)

Since join is associative and commutative, we can rewrite this expression as

(r1 X 116, na,(r1)) x r,

Since 11 x [(a, n ar) ("r) : r'r, the expression is, indeed, equal to 11 x 12, the
expression we are trying to evaluate.
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This strategy is particularly advantageous when relatively few tuples of 12 con'

tribute to the join. This situation is likely to occur if 11 is. the result of a relational-

algebra expression involving selection. In such a case, temp2 rr:.ay have significantly

fewer tuples than 12. The cost savings of the strategy result from having to ship only

temp2, rather than all of rz, to ^9r. Additional cost is incurred in shipping tempr to 52.

If a sufficiently small fraction of tuples in 12 contribute to the join, the overhead of

shipping tempt wtII be dominated by the savings of shipping only a fraction of the

tuples in 12.
This strategy is called a semijoin strategy, after the semijoin operator of the rela-

tional algebra, denoted x. The semijoin of 11 with rz, denoted 11 x 12, is

fl6,(r1 X 12)

Thus, 11 x 12 selects those tuples of relation 11 that contributed to 11 X 12. In step 3,

t emp2=r2  X  11 .
For joins of several relations, this strategy can be extended to a series of semijoin

steps. A substantial body of theory has been developed regarding the use of semijoins

for query optimization. Some of this theory is referenced in the bibliographical notes.

22.7.4 Join Strotegies thqt Exploit Pqrqllelism

Consider a join of four relations:

1 1 X 1 2 N 1 3 } ( 1 4

where relation rl is stored at site Sz. Assume that the result must be presented at site
,S1. There are many possible strategies for parallel evaluation. (We studied the issue
of parallel processing of queries in detail in Chapter 21.) In one such strategy, 11 is
shipped to 52, and 11 x 12 computed at Sz. At the same time, 13 is shipped to Sa,
and 13 x ra computed at ,9a. Site ,92 can ship tuples of (r1 x 12) to $ as they are
produced, rather than wait for the entire join to be computed. Similarly, ̂ 9a can ship
tuples of (r3 x 14) to ,91. Once tuples of (r1 x 12) and (ry x ra) arrive at ,5r, the
computation of (r1 X 12) x (ry X ra) can begin, with the pipelined join technique
of Seciion 13.7.2.2. Thus, computation of the final join result at 51 can be done
in parallel with the computation of (r1 g ,r) at Sz, and with the computation of
(r3 X ra) at,Sa.

22.8 Heterogeneous Distributed Dqtqbqses
Many new database applications require data from a variety of preexisting databases
located in a heterogeneous collection of hardware and software environments. Ma-
nipulation of information located in a heterogeneous distributed database requires
an additional software layer on top of existing database systems. This software layer
is called a multidatabase system. The local database systems may employ different
logical models and data-definition and data-manipulation languages, and may dif-
fer in their concurrency-control and transactlon-management mechanisms. A multi-
database system creates the illusion of logical database integration without requiring
physical database integration.
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Full integration of heterogeneous systems into a homogeneous distributed data-
base is often difficult or impossible:

o Technical difficulties. The investment in application programs based on ex-
isting database systems may be huge, and the cost of converting these appli-
cations may be prohibitive.

o Organizational difficulties. Even if integration is technically possible, it may
not be politically possible, because the existing database systems belong to dif-
ferent corporations or organizations. In such cases, it is important for a multi-
database system to allow the local database systems to retain a high degree of
autonomy over the local database and transactions running against that data.

For these reasons, multidatabase systems offer significant advantages that out-
weigh their overhead. In this section, we provide an overview of the challenges faced
in constructing a multidatabase environment from the standpoint of data definition
and query processing. Section 25.7 provides an overview of transaction-management
issues in multidatabases.

22.8.1 Unified View of Dqtq
Each local database management system may use a different data model. For in-
stance, some may employ the relational model, whereas others may employ older
data models, such as the network model (see Appendix A) or the hierarchical model
(see Appendix B).

Since the multidatabase system is supposed to provide the illusion of a single, in-
tegrated database system, a common data model must be used. A commonly used
choice is the relational model, with SQL as the common query language. Indeed,
there are several systems available today that allow SQL queries to a nonrelational
database-management system.

Another difficulty is the provision of a common conceptual schema. Each local sys-
tem provides its own conceptual schema. The multidatabase system must integrate
these separate schemas into one common schema. Schema integration is a compli-
cated task, mainly because of the semantic heterogeneity.

Schema integration is not simply straightforward translation between data-
definition languages. The same attribute names may appear in different local data-
bases but with different meanings. The data types used in one system may not be
supported by other systems, and translation between types may not be simple. Even
for identical data types, problems may arise from the physical representation of data:
One system may use ASCII, another EBCDIC; floating-point representations may dif-
fer; integers may be represented in big-endian or little-endian forrn. At the semantic
levef an integer value for length may be inches in one system and millimeters in
another, thus creating an awkward situation in which equality of integers is only
an approximate notion (as is always the case for floating-point numbers). The same
name may appear in different languages in different systems. For example, a system
based in the United states may refer to the city "Cologne," whereas one in Germany
refers to it as "Kiiln."
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All these seemingly minor distinctions must be properly recorded in the com-

mon global conceptual schema. Translation functions must be provided. Indices must

be annotated for system-dependent behavior (for example, the sort order of nonal-

phanumeric characters is not the same in ASCII as in EBCDIC). As we noted earlier,

the alternative of converting each database to a common format may not be feasible

without obsoleting existing application programs.

22.8.2 Query Processing

Query processing in a heterogeneous database can be complicated. Some of the issues

are:

r Given a query on a global schema, the query may have to be translated into
queries on local schemas at each of the sites where the query has to be exe-
cuted. The query results have to be translated back into the global schema.

The task is simplified by writing wrappers for each data source, which pro-
vide a view of the local data in the global schema. Wrappers also translate
queries on the global schema into queries on the local schema, and translate
results back into the global schema. Wrappers may be provided by individual
sites, or may be written separately as part of the multidatabase system.

Wrappers can even be used to provide a relational view of nonrelational
data sources, such as web pages (possibly with forms interfaces), flat files,
hierarchical and network databases, and directory systems.

e Some data sources may provide only limited quely capabilities; for instance,
they may support selections, but not joins. They may even restrict the form
of selections, allowing selections only on certain fields; Web data sources with
form interfaces are an example of such data sources. Queries may therefore
have to be broken up, to be partly performed at the data source and partly at
the site issuing the query.

o In general, more than one site may need to be accessed to answer a given
query. Answers retrieved from the sites may have to be processed to remove
duplicates. Suppose one site contains account tuples satisfying the selection
balance < 100, while another contains account tuples satisfying balance > 50.
A query on the entire account relation would require access to both sites and
removal of duplicate answels resulting from tuples with balance between 50
and 100, which are replicated at both sites.

o Global query optimization in a heterogeneous database is difficult, since the
query execution system may not know what the costs are of alternative query
plans at different sites. The usual solution is to rely on only local-level opti-
mization, and just use heuristics at the global level.

Mediator systems are systems that integrate multiple heterogeneous data sources/
providing an integrated global view of the data and providing query facilities on
the global view Unlike full-fledged multidatabase systems, mediator systems do
not bother about transaction processing. (The terms mediator and multidatabase are
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often used in an interchangeable fashion, and systems that are called mediators may
support limited forms of transactions.) The term virtual database is used to refer
to multidatabase/mediator systems, since they provide the appearance of a single
database with a global schema, although data exist on multiple sites in local schemas.

22.9 Directory Systems
Consider an organization that wishes to make data about its employees available to
a variety of people in the organization; examples of the kinds of data include name,
designation, employee-id, address, email address, phone number, fax number, and
so on. In the precomputerization days, organizations would create physical directo-
ries of employees and distribute them across the organization. Even today, telephone
companies create physical directories of customers.

In general, a directory is a listing of information about some class of objects such as
persons. Directories can be used to find information about a specific object, or in the
reverse direction to find objects that meet a certain requirement. In the world of phys-
ical telephone directories, directories that satisfy lookups in the forward direction are
called white pages, while directories that satisfy lookups in the reverse direction are
called yellow pages.

In today's networked world, the need for directories is still present and, if any-
thing, even more important. However, directories today need to be available over a
computer network, rather than in a physical (paper) form.

22.9.1 Directory Access Protocols
Directory information can be made available through Web interfaces, as many orga-
nizations, and phone companies in particulat do. Such interfaces are good for hu-
mans. However, programs too, need to access directory information. Directories can
be used for storing other types of information, much like file system directories. For
instance, Web browsers can store personal bookmarks and other browser settings in
a directory system. A user can thus access the same settings from multiple locations,
such as at home and at work, without having to share a file system.

Several directory access protocols have been developed to provide a standardized
way of accessing data in a directory. The most widely used among them today is the
Lightweight Directory Access Protocol (LDAP).

Obviously all the types of data in our examples can be stored without much trou-
ble in a database system, and accessed through protocols such as JDBC or ODBC. The
question then is, why come up with a specialized protocol for accessing directory
information? There are at least two answers to the question.

o First, directory access protocols are simplified protocols that cater to a lim-
ited type of access to data. They evolved in parallel with the database access
protocols.

o Second, and more important, directory systems provide a simple mechanism
to name objects in a hierarchical fashion, similar to file system directory names,
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which can be used in a distributed directory system to specify what informa-
tion is stored in each of the directory servers. For example, a particular di-
rectory server may store information for Bell Laboratories employees in Mur-
ray Hill, while another may store information for Bell Laboratories employees
in Bangalore, giving both sites autonomy in controlling their local data. The
directory access protocol can be used to obtain data from both directories,
across a network. More important, the directory system can be set up to au-
tomatically forward queries made at one site to the other site, without user
intervention.

For these reasons, several organizations have directory systems to make organi-
zational information available online through a directory access protocol. Informa-
tion in an organizational directory can be used for a variety of purposes, such as to
find address, phone or email addresses of people, to find which departments people
are in, and to track department hierarchies. Directories are also used to authenticate
users: applications can collect authentication information such as passwords from
users and authenticate them using the directory.

As may be expected, several directory implementations find it beneficial to use re-
lational databases to store data, instead of creating special-purpose storage systems.

22.9.2 LDAP: Lightweight Directory Access Protocol

In general a directory system is implemented as one or more servers, which service
multiple clients. Clients use the application programmer interface defined by direc-
tory system to communicate with the directory servers. Directory access protocols
also define a data model and access control.

The X.500 directory access protocol, defined by the International Organization for
Standardization (ISO), is a standard for accessing directory information. However,
the protocol is rather complex, and is not widely used. The Lightweight Directory
Access Protocol (LDAP) provides many of the X.500 features, but with less complex-
ity, and is widely used. In the rest of this section, we shall outline the data model and
access protocol details of LDAP.

22.9.2.1 LDAP Dqtq Model
In LDAP, directories store entries, which are similar to objects. Each entry must have a
distinguished name (DN), which uniquely identifies the entry. A DN is in turn made
up of a sequence of relative distinguished names (RDNs). For example, an entry may
have the following distinguished name.

cn=Silberschatz, ou=Bell Labs, o=Lucent, C=USA

As you can see, the distinguished name in this example is a combination of a name
and (organizational) address, starting with a person's name, then giving the orga-
nizational unit (ou), the organization (o), and country (c). The order of the compo-
nents of a distinguished name reflects the normal postal address order, rather than
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the reverse order used in specifying path names for files. The set of RDNs for a DN is
defined by the schema of the directory system.

Entries can also have attributes. Lpep provides binary, string, and time types, and
additionally the types tel for telephone numbers, and PostalAddress for addresses
(lines separated by a "$" character). Unlike those in the relational model, attributes
are multivalued by default, so it is possible to store multiple telephone numbers or
addresses for an entry.

LDAP allows the definition of object classes with attribute names and types. In-
heritance can be used in defining object classes. Moreover, entries can be specified to
be of one or more object classes. It is not necessary that there be a single most-specific
object class to which an entry belongs.

Entries are organized into a directory information tree (DIT), according to their
distinguished names. Entries at the leaf level of the tree usually represent specific
objects. Entries that are internal nodes represent objects such as organizational units,
organizations, or countries. The children of a node have a DN containing all the RDNs
of the parent, and one or more additional RDNs. For instance, an internal node may
have a DN c=USA, and all entries below it have the value USA for the RDN c.

The entire distinguished name need not be stored in an entry; The system can
generate the distinguished name of an entry by traversing up the DIT from the entry,
collecting the RDN=value components to create the full distinguished name.

Entries may have more than one distinguished name-for example, an entry for a
Person in more than one organization. To deal with such cases, the leaf level of a DIT
can be an alias, which points to an entry in another branch of the tree.

22.9.2.2 Dqtq Monipulqtion
Unlike SQL, LDAP does not define either a data-definition language or a data-manip,
ulation language. However, LDAP defines a network protocol for carrying out data
definition and manipulation. Users of LDAP can either use an application program-
ming interface or use tools provided by various vendors to perform data definition
and manipulation. LDAP also defines a file format called LDAP Data Interchange
Format (LDIF) that can be used for storing and exchanging information.

The querying mechanism in LDAP is very simple, consisting of just selections and
projections, without any join. A query must specify the following:

o A base-that is, a node within a DIT-by giving its distinguished name (the
path from the root to the node).

o A search condition, which can be a Boolean combination of conditions on in-
dividual attributes. Equality, matching by wild-card characters, and approxi-
mate equality (the exact definition of approximate equality is system depen-
dent) are supported.

o A scope, which can be just the base, the base and its children, or the entire
subtree beneath the base.

o Attributes to return.

o Limits on number of results and resource consumption.
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The query can also specify whether to automatically dereference aliases; if alias deref-
erences are turned off, alias entries can be returned as answers'

One way of querying an LDAP data source is by using LDAP URLs. Examples of
LDAP URLs are:

ldap:J I aura.research. bel l-labs.comio=Lucent,c=USA
ldap:: I I aura.research. bel l-labs. com/o=Lucent,c= USA? ?su b?cn=Ko rth

The first URL returns all attributes of all entries at the server with organization being
Lucent, and country being USA. The second URL executes a search query (selection)

cn=Korth on the subtree of the node with distinguished name o=Lucent, C=USA. The
question marks in the URL separate different fields. The first field is the distinguished
name, here o=Lucent,c=UsA. The second field, the list of attributes to return, is left
empty, meaning return all attributes. The third attribute, sub, indicates that the entire
subtree is to be searched. The last parameter is the search condition.

A second way of querying an LDAP directory is by using an application program-
ming interface. Figure 22.6 shows a piece of C code used to connect to an LDAP server
and run a query against the server. The code first opens a connection to an LDAP
server by ldap-open and ldap-bind. It then executes a query by ldap-search-s. The
arguments to ldap-search-s are the LDAP connection handle, the DN of the base from
which the search should be done, the scope of the search, the search condition, the
list of attributes to be returned, and an attribute called attrsonly, which, if set to 1,
would result in only the schema of the result being returned, without any actual tu-
ples. The last argument is an output argument that returns the result of the search as
an LDAPMessage structure.

The first for loop iterates over and prints each entry in the result. Note that an
entry may have multiple attributes, and the second for loop prints each attribute.
Since attributes in LDAP may be multivalued, the third for loop prints each value of
an attribute. The calls ldap-msgf ree and ldap-value-free free memory that is allocated
by the LDAP libraries. Figure 225 does not show code for handling error conditions.

The LDAP API also contains functions to create, update, and delete entries, as well
as other operations on the DIT. Each function call behaves like a separate transaction;
LDAP does not support atomicity of multiple updates.

22.9.2.3 Distributed Directory Trees
Information about an organization may be split into multiple DITs, each of which
stores information about some entries. The suffix of a DIT is a sequence of RDN=value
pairs that identify what information the DIT stores; the pairs are concatenated to the
rest of the distinguished name generated by traversing from the entry to the root.
For instance, the suffix of a DIT may be O=LUcent, c=USA, while another may have
the suffix o=Lucent, c=lndia. The DITs may be organizationally and geographically
separated.

A node in a DIT may contain a referral to another node in another DIT; for in-
stance, the organizational unit Bell Labs under o=Lucent, C=USA may have its own
DIT, in which case the DIT for O=LuCent, C=USA would have a node ou=Bell Labs
representing a referral to the DIT for Bell Labs.
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#include <stdio.h>
#include <ldap.h>
mainQ {

LDAP -Id;

LDAPMessage *res, *entry;

char *dn, *attr, *attrlist[] = {"telephoneNumber", NULL};
BerElement *ptr;

int vals, i;
ld = ldap-open("aura.research.bell-labs.com", LDAP-PORT);
ldap_simple_bind(ld, "avi", "avi-passwd") ;
ldap_search-s(ld, "o=Lucent, c=USA", LDAP_SCOpE_SUBTREE, "cn=Korth',,

attrlist, /*attrsonly*/ 0, &res);
printf("found %d entries", ldap_count_entries(ld, res));
for (entry=ldap-first-entry(ld, res); entry != NULL;

entry - ldap-next-entry(ld, entry))
{

dn = ldap_get_dn(td, entry);
printf("dn: %s", dn);
ldap_memf ree(dn);
for (attr = ldap_first_attribute(ld, entry, &ptr);

attr ! NULL;

, 
^nr = Idap_next_attribute(ld, entry, ptr))

printf("%s:", attr);
vals = ldap_get_values(ld, entry, attr);
for (i=0; vals[i] != NULL; i++)

printf("%s, ", vals[i]);

_ ldap_value_free(vals);

I t
ldap-msgfree(res);

- ldap_unbind(ld);
l

Figure22.6 Example of LDAP code in C.

Referrals are the key component that help organize a distributed collection of di-
rectories into an integrated system. When a server gets a query on a DIT, it may
return a referral to the client, which then issues a query on the referenced DIT. Ac-
cess to the referenced DIT is transparent, proceeding without the user's knowledge.
Alternatively, the server itself may issue the query to the referred DIT and return the
results along with locally computed results.

The hierarchical naming mechanism used by LDAP helps break up control of in-
formation across parts of an organization. The referral facility then helps integrate all
the directories in an organization into a single virtual directory.

Although it is not an LDAP requirement, organizations often choose to break up
information either by geography (for instance , an organization may maintain a direc-
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tory for each site where the organization has a large presence) or by organizational

structure (for instance, each organizational unit, such as department, maintains its

own directory).
Many LDAP implementations support master-slave and multimaster replication

of DITs, although replication is not part of the current LDAP version 3 standard. Work

on standardizing replication in LDAP is in progress.

22.10 Summory
o A distributed database system consists of a collection of sites, each of which

maintains a local database system. Each site is able to process local transac-
tions: those transactions that access data in only that single site. In additiorU a
site may participate in the execution of global transactions: those transactions
that access data in several sites. The execution of global transactions requires
communication among the sites.

o Distributed databases may be homogeneous, where all sites have a common
schema and database system code, or heterogeneous, where the schemas and
system codes may differ.

o There are several issues involved in storing a relation in the distributed data-
base, including replication and fragmentation. It is essential that the system
minimize the degree to which a user needs to be aware of how a relation is
stored.

o A distributed system may suffer from the same types of failure that can afflict
a centralized system. There are, however, additional failures with which we
need to deal in a distributed environment, including the failure of a site, the
failure of a link, loss of a message, and network partition. Each of these prob-
lems needs to be considered in the design of a distributed recovery scheme.

o To ensure atomicity, all the sites in which a transaction T executed must agree
on the final outcome of the execution. T either commits at all sites or aborts at
all sites. To ensure this property, the transaction coordinator of T must execute
a commit protocol. The most widely used commit protocol is the two-phase
commit protocol.

r The two-phase commit protocol may lead to blocking, the situation in which
the fate of a transaction cannot be determined until a failed site (the coordi-
nator) recovers. We can use the three-phase commit protocol to reduce the
probability of blocking.

o Persistent messaging provides an alternative model for handling distributed
transactions. The model breaks a single transaction into parts that are exe-
cuted at different databases. Persistent messages (which are guaranteed to
be delivered exactly once, regardless of failures), are sent to remote sites to
request actions to be taken there. While persistent messaging avoids the block-
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ing problem, application developers have to write code to handle various
types of failures.

o The various concurrency-control schemes used in a centralized system can be
modified for use in a distributed environment.

tr In the case of locking protocols, the only change that needs to be incor-
porated is in the way that the lock manager is implemented. There are
a variety of different approaches here. One or more central coordinators
may be used. If, instead, a distributed-lock-manager approach is taken,
replicated data must be treated specially.

I Protocols for handling replicated data include the primary copy, majority,
biased, and quorum consensus protocols. These have different trade-offs
in terms of cost and ability to work in the presence of failures.

I In the case of timestamping and validation schemes, the only needed
change is to develop a mechanism for generating unique global time-
stamps.

n Many database systems supportlazy replication, where updates are prop-
agated to replicas outside the scope of the transaction that performed the
update. Such facilities must be used with great care, since they may result
in nonserializable executions.

o Deadlock detection in a distributed-lock-manager environment requires co-
operation between multiple sites, since there may be global deadlocks even
when there are no local deadlocks.

o To provide high availability, a distributed database must detect failures, recon-
figure itself so that computation may continue, and recover when a processor
or a link is repaired. The task is greatly complicated by the fact that it is hard
to distinguish between network partitions and site failures.

The majority protocol can be extended by using version numbers to per-
mit transaction processing to proceed even in the presence of failures. while
the protocol has a significant overhead, it works regardless of the type of fail-
ure. Less-expensive protocols are available to deal with site failures, but they
assume network partitioning does not occur.

o Some of the distributed algorithms require the use of a coordinator. To provide
high availability, the system must maintain a backup copy that is ready to as-
sume responsibility if the coordinator fails. Another approach is to choose the
new coordinator after the coordinator has failed. The algorithms that deter-
mine which site should act as a coordinator are called election algorithms.

o Queries on a distributed database may need to access multiple sites. Several
optimization techniques are available to choose which sites need to be ac-
cessed. Based on fragmentation and replication, the techniques can use semi-
join techniques to reduce data transfer.

o Heterogeneous distributed databases allow sites to have their own schemas
and database system code. A multidatabase system provides an environment
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in which new database applications can access data from a variety of pre-

existing databases located in various heterogeneous hardware and software

environments. The local database systems may employ different logical mod-

els and data-definition and data-manipulation languages, and may differ in

their concurrency-control and transaction-management mechanisms. A mul-

tidatabase system creates the illusion of logical database integration, without

requiring physical database integration.

o Directory systems can be viewed as a specialized form of database, where

information is organized in a hierarchical fashion similar to the way files are

organized in a file system. Directories are accessed by standardized directory

access protocols such as LDAP.
Directories can be distributed across multiple sites to provide autonomy to

individual sites. Directories can contain referrals to other directories, which

help build an integrated view whereby a query is sent to a single directory,

and it is transparently executed at all relevant directories'
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Prqctice Exercises
22.1 F{ow might a distributed database designed for a local-area network differ

from one designed for a wide-area network?

22.2 To build a highly available distributed system, you must know what kinds of
failures can occur.

a. List possible types of failure in a distributed system.
b. Which items in your list from part a are also applicable to a centralized

system?

22.3 Consider a failure that occurs during 2PC for a transaction. For each possible
failure that you listed in Practice Exercise 22.2a, explain how 2PC ensures trans-
action atomicity despite the failure.

22.4 Consider a distributed system with two sites, A and B. Can site A distinguish
among the following?

o B goes down.
o The link between A and B goes down.
o B is extremely overloaded and response time is 100 times longer than nor-

mal.

What implications does your answer have for recovery in distributed systems?

22,5 The persistent messaging scheme described in this chapter depends on time-
stamps combined with discarding of received messages if they are too old.
Suggest an alternative scheme based on sequence numbers instead of time-
stamps.
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22.6 Give an example where the read one, write all available approach leads to an
erroneous state.

22.7 Explainthe difference between data replication in a distributed system and the
maintenance of a remote backup site.

22.8 Give an example where lazy replication can lead to an inconsistent database
state even when updates get an exclusive lock on the primary (master) copy.

22.9 Consider the following deadlock-detection algorithm. When transaction 4, at
site,Sr, requests a resource frornTi, at site,S3, a re![uest message with time-
stamp n is sent. The edge (Ti,Ti,n) is inserted in the local wait-for of Sr. The
edge ([, Ti,n) is inserted in the local wait-for graph of 53 only if Q has re-
ceived the request message and cannot immediately grant the requested re-
source. A request fromTi to Q in the same site is handled in the usual manner;
no timestamps are associated with the edge ([, Ti). n central coordinator in-
vokes the detection algorithm by sending an initiating message to each site in
the system.

On receiving this message, a site sends its local wait-for graph to the coordi-
nator. Note that such a graph contains all the local information that the site has
about the state of the real graph. The wait-for graph reflects an instantaneous
state of the site, but it is not synchronized with respect to any other site.

When the controller has received a reply from each site, it constructs a graph
as follows:

o The graph contains a vertex for every transaction in the system.
r The graph has an edge (Ti,Q) if and only if

X There is an edge (Ti,Ti) in one of the wait-for graphs.
n An edge (Ti,Ti,n) (fot some n) aPPears in more than one wait-for

graPh.

Show that, if there is a cycle in the constructed graph, then the system is in a
deadlock state, and that, if there is no cycle in the constructed graph, then the
system was not in a deadlock state when the execution of the algorithm began.

22.10 Consider a relation that is fragmented horizontally by plant-number:

employ ee (name, address, salary, plant-number)

Assume that each fragment has two replicas: one stored at the New York site
and one stored locally at the plant site. Describe a good processing strategy for
the following queries entered at the San Jose site.

a. Find all employees at the Boca plant.
b. Find the average salary of all employees.
c. Find the highest-paid employee at each of the following sites: Toronto, Ed-

monton, Vancouver, Montreal.
d. Find the lowest-paid employee in the company.

22.11. Compute r x s for the relations oIFigtte22.7.
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Figure22.7 Relations for Practice Exercise 22.11.

22.12 Given that the LDAP functionality can be implemented on top of a database
system/ what is the need for the LDAP standard?

Exercises

22.13 Discuss the relative advantages of centralized and distributed databases.

22.14 Explain how the following differ: fragmentation transparency, replication
transparency, and location transparency.

22.15 When is it useful to have replication or fragmentation of data? Explain your
answer.

22.16 Explain the notions of transparency and autonomy. Why are these notions de-
sirable from a human-factors standpoint?

22.L7 If we apply a distributed version of the multiple-granularity protocol of Chap-
ter 16 to a distributed database, the site responsible for the root of the DAG may
become a bottleneck. Suppose we modify that protocol as follows:

. Only intention-mode locks are allowed on the root.
o All transactions are given all possible intention-mode locks on the root

automatically.

Show that these modifications alleviate this problem without allowing any
nonserializable schedules.

22.18 Study and summarize the facilities that the database system you are using pro-
vides for dealing with inconsistent states that can be reached withlazy propa-
gation of updates.

22.19 Discuss the advantages and disadvantages of the two methods that we pre-
sented in Section 22.5.2 for generating globally unique timestamps.

22.20 Consider the relations

employ ee (name, addr ess, snlary, plant:numb er)
machine (mschine-number, type, plant:numb er)
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Assume that the employee relation is fragmented horizontallyby plant-number,

and that each fragment is stored locally at its corresponding plant site. Assume

that the machine relation is stored in its entirety at the Armonk site. Describe a

good strategy for processing each of the following queries.

a. Find all employees at the plant that contains machine number 1130.

b. Find all employees at plants that contain machines whose type is "milling

machine."
c. Find all machines at the Almaden plant.

d. Find employee X machine.

22.21. For each of the strategies of Exercise 22.20, state how your choice of a strategy

depends on:

a. The site at which the query was entered

b. The site at which the result is desired

22.22 Isthe expressior ?.i x rT necessarily equal to ri x r;? Under what conditions

does r1 x ri : ri x rihold?

22.23 Describe how LDAP can be used to provide multiple hierarchical views of data,

without replicating the base-Ievel data.
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Chapter 23 covers a number of issues in database-s-y9tem performance tuning to
improve application speed. [t also discusses standard benchmarks that are used as
measures of commercial database-system performance. It then overviews the stan-
dardization process and existing database-language standards. It concludes with a
discussion of the role of database systems in elecLronic commerce and the challenges

::ililll3lt"l;':j:,*:a 
stored in older "regacy systems," and of migrating an

- 
bhapter 24 describes data types, such as temporal data, spatial data, and multime-

dia data, and the issues in storing such data in databases. Applications such as mobile
computing and its connections with databases, are also described in this chapter.

Finally, Chap ter 25 describes several a dvanced transa ction-processing tech niques,
including transaction-processing monitors, transactional workflows, long-duration
tra nsactions, and mul t idatabase transactions.





There are a number of tasks in application development. We saw earlier in Chapters 6
to 8 how to design and build an application. One of the aspects of application design
is the performance one expects out of the application. In fact, it is common to find that
once an application has been built, it runs slower than the designers wanted, or han-
dles fewer transactions per second than they required. An application that takes an
excessive amount of time to perform requested actions can cause user dissatisfaction
at best and be completely unusable at worst.

Applications can be made to run significantly faster by performance tuning, which
consists of finding and eliminating bottlenecks and adding appropriate hardware
such as memory or disks. There are many things an application developer can do to
tune the application, and there are things that a database-system administrator can
do to speed up processing for an application.

Benchmarks are standardized sets of tasks that help to characterize the perfor-
mance of database systems. They are useful to get a rough idea of the hardware and
software requirements of an application, even before the application is built.

Standards are very important for application development, especially in the age of
the Internet, since applications need to communicate with each other to perform use-
ful tasks. A variety of standards have been proposed that affect database-application
development.

Legacy systems are application systems that are outdated and usually based on
older-generation technology. However, they are often at the core of organizations,
and run mission-critical applications. We outline issues in interfacing with and issues
in migrating away from legacy systems, replacing them by more modern systems.

23.1 Performqnce Tuning
Tuning the performance of a system involves adjusting various parameters and de-
sign choices to improve its performance for a specific application. Various aspects of
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a database-system design-ranging from high-level aspects such as the schema and
transaction design to database parameters such as buffer sizes, down to hardware
issues such as number of disks-affect the performance of an application. Each of
these aspects can be adjusted so that performance is improved-

23.1.1 Locqtion of Bottlenecks

The performance of most systems (at least before they are tuned) is usually limited
primarily by the performance of one or a few components, called bottlenecks. For

instance, a program may spend 80 percent of its time in a small loop deep in the code,
and the remaining 20 percent of the time on the rest of the code; the small loop then is

a bottleneck. Improving the performance of a component that is not a bottleneck does
little to improve the overall speed of the system; in the example, improving the speed
of the resfof the code cannot lead to more than a 20 percent improvement overall,
whereas improving the speed of the bottleneck loop could result in an improvement
of nearly B0 percent overall, in the best case.

Henie, when tuning a system, we must first try to discover what the bottlenecks

are and then eliminate them by improving the performance of system components
causing the bottlenecks. When one bottleneck is removed, it may turn out that an-

other cbmponent becomes the bottleneck. In a well-balanced system, no single com-

ponent is the bottleneck. If the system contains bottlenecks, components that are not

part of the bottleneck are underutilized, and could perhaps have been replaced by

cheaper components with lower performance.
For simple programs, the time spent in each region of the code determines the

overall exeiution time. Howeveq, database systems are much more complex, and can

be modeled as queueing systems. A transaction requests various services from the

database system, starting from entry into a server process, disk reads during exe-

cution, CpU cycles, and locks for concurrency control. Each of these services has a

queue associated with it, and small transactions may spend most of their time wait-

ing in queues-especially in disk I/O queues-instead of executing code. Figure 23.1

illustrates some of the queues in a database system.
As a result of the numerous queues in the database, bottlenecks in a database sys-

tem typically show up in the form of long queues for a particular service, or, equiva-
lently,ln high utilizations for a particular service. If requests are spaced exactly uni-

formly, attd th" time to service a request is less than or equal to the time before the

next request arrives, then each request will find the resource idle and can therefore
start execution immediately without waiting. Unfortunately, the arrival of requests

in a database system is never so uniform and is instead random'
If a resource, such as a disk, has a low utilization, then, when a request is made,

the resource is likely to be idle, in which case the waiting time for the request will be

0. Assuming uniformly randomly distributed arrivals, the length of the queue (and

correspondingly the waiting time) go up exponentially with utilization; as utilization
approiches 100 percent, the queue length increases sharply, resulting in excessively

long waiting times. The utilization of a resource should be kept low enough that

queue length is short. As a rule of the thumb, utilizations of around 70 percent are
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Figure 23.1 Queues in a database system.

considered to be good, and utilizations above 90 percent are considered excessive,
since they will result in significant delays. To learn more about the theory of queueing
systems, generally referred to as queueing theory, you can consult the references
cited in the bibliographical notes.

23.1.2 TUnqble Pqrometers
Database administrators can tune a database system at three levels. The lowest level
is at the hardware level. Options for tuning systems at this level include adding disks
or using a RAID system if disk r/o is a bottleneck, adding more memory if the disk
buffer size is a bottleneck, or moving to a faster processor if CPU use is a bottleneck.

The second level consists of the database-system parameters, such as buffer size
and checkpointing intervals. The exact set of database-system parameters that can be
tuned depends on the specific database system. Most database-system manuals pro-
vide information on what database-system parameters canbe adjusted, and how you
should choose values for the parameters. Well-designed database systems perform
as much tuning as possible automatically, freeing the user or database administrator
from the burden. For instance, in many database systems the buffer size is fixed but
tunable. If the system automatically adjusts the buffer sizeby observing indicators
such as page-fault rates, then the user will not have to worry about tuning the buffer
size.
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The third level is the highest level. It includes the schema and transactions. The

administrator can tune the design of the schema, the indices that are created, and

the transactions that are executed, to improve performance. Tuning at this level is

comparatively system independent.
The three levels of tuning interact with one another; we must consider them to-

gether when tuning a system. For example, tuning at a higher level may result in the

hardware bottleneck changing from the disk system to the CPU, or vice versa.

23.1.3 Tuning of Hqrdwqre

Even in a well-designed transaction processing system, each transaction usually has

to do at least a few I/O operations, if the data required by the transaction is on disk.

An important factor in tuning a transaction processing system is to make sure that

the disk subsystem can handle the rate at which I/O operations are required. For in-

stance, consider a disk that supports an access time of about 10 milliseconds, and

average transfer rate of 25 megabytes PeI second (a fairly typical disk today). Such

a disk would support a little under 100 random-access I/O operations of 4 kilobytes

each per second. I? each transaction requires just2I/O operations, a single disk would

support at most 50 transactions Per second. The only way to support more transac-

tioni per second is to increase the number of disks. If the system needs to support n

transictions per second, each performing2l/O operations, data must be striped (or

otherwise partitioned) across at least n/50 disks (ignoring skew).
Notice here that the limiting factor is not the capacity of the disk, but the speed

at which random data can be accessed (limited in turn by the speed at which the

disk arm can move). The number of I/O operations per transaction can be reduced

by storing more data in memory. If all data are in memory, there will be no disk I/O

except foi writes. Keeping frequently used data in memory reduces the number of

disk I/Os, and is worth the extra cost of memory. Keeping very infrequently used

data in memory would be a waste, since memory is much more expensive than disk.

The question is, for a given amount of money available for spending on disks or

*e*o.y, what is the best way to spend the money to achieve maximum number of

transactions per second. A reduction of1'UO per second saves

(price per disk driae) I (access per second per disk)

Thus, if a particular page is accessed n times per second, the saving due to keeping it

in memory is n times the above value. Storing a page in memory costs

(price per megnbyte of memory) l(pages per megabyte of memory)

Thus, the break-even point is

price per disk driae price per megnbyte of memory
t t  +  -

access per second per disk pages per megabyte of memory

We can rearrange the equation and substitute current values for each of the above

parameters to get a value for n; if a page is accessed more frequently than this, it is

worth buying enough memory to stole it. Current disk technology and memory and
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disk prices give a value of ?? around 1/300 times per second (or equivalently, once in
5 minutes) for pages that are randomly accessed.

This reasoning is captured by the rule of thumb called the S-minute rule: If a page
is lsed more frequently than once in 5 minutes, it should be cached in memoiy. in
other words, it is worth buying enough memory to cache all pages that are acceised
at least once in 5 minutes on an average. For data that are accessed less frequently,
buy enough disks to support the rate of l/O required for the data.

The formula for finding the break-even point depends on factors, such as the costs
of disks and memory, that have changed by factors of 100 or 1000 over the past
decade. However, it is interesting to n6te that the ratios of the changes have been
such that the break-even point has remained at roughly 5 minutes; the S-minute rule
has not changed to, say, a l-hour rule or a l-second rule!

For data that are sequentially accessed, significantly more pages can be read per
second. Assuming 1 megabyte of data is read at a time, we get the l-minut" rul",
which says that sequentially accessed data should be cached in memory if they are
used at least once in 1 minute.

The rules of thumb take only the number of I/O operations into account, and do
not consider factors such as response time. Some applications need to keep even in-
frequently used data in memory, to support response times that are less than or com-
parable to disk-access time.

Another aspect of tuning is whether to use RAID 1 or RAID 5. The answer depends
on how frequently the data are updated, since RAID 5 is much slower than RAID 1
on random writes: RAID 5 requires 2 reads and 2 writes to execute a single random
write request. If an application performs r random reads and tt random writes per
second to support a particular throughput, a RAID 5 implementation would require
r I 4w I/O operations per second whereas a RAID 1 implementation would require
r I2w I/O operations per second. We can then calculate the number of disks reguired
to support the required I/O operations per second by dividing the result of tlie cal-
culation by 100 I/O operations per second (for current generation disks). For many
applications, r and Tr are large enough that the (r + w) lr00 disks can easily hold two
copies of all the data. For such applications, if RAID 1 is used, the required number of
disks is actually less than the required number of disks if RAID 5 is used! Thus RAID
5 is useful only when the data storage requirements are very large, but the I/O rates
and data-transfer requirements are small, that is, for very large and very "cold" data.

23.1.4 Tuning of the Schemq
Within the constraints of the chosen normal form, it is possible to partition relations
vertically. For example, consider the account relation, with the schema

acc ount (a c count _numb er, br anch_name, balance)

for which account-number is a key. Within the constraints of the normal forms (BCNF
and third normal forms), we can partition the sccount relation into two relations:

a c c o unt -b r an ch (a c c o u nt -ntrmb er, b r an ch-n am e)
a c c o un t -b aI an c e (a c c o unt -numb er, b aI qn c e)
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The two representations are iogically equivalent, since qccount-number is a key, but

they have different performance characteristics.
If most accesses to account information look at only the account:number and bsl

ance, t!1e1- they can be run against tine account-balance relation, and access is likely

to be somewhat faster, since the branch-name attribute is not fetched. For the same

reason, more tuples oI account-balance wiII fit in the buffer than corresponding tu-

ples of account, igainleading to faster performance. This effect would be particularly

marked 1f thebrnnch-name attribute were large. Hence, a schema consisting of account

_branch and accountJalunce wouldbe preferable to a schema consisting of t}lre sccount

relation in this case.
On the other hand, if most accesses to account information require b othbslance and

branch-nnme, using the nccount relation would be preferable, since the cost of the join

of account-balsnce-and. account-branck would be avoided. Also, the storage overhead

would be lower, since there would be only one relation, and the attribute account

number would not be rePlicated.
Another trick to impiove performance is to store a denormalized relation, such

as a join of account aid depositor, where the information about branch-names and

balances is repeated for every account holder. More effort has to be expended to

make sure the relation is consistent whenever an update is carried out' However,

a query that fetches the names of the customers and the associated balances will

Ue speeaea up, since the join of account and depositor will have been precomputed' If

,rr.h u query is executed frequently, and has to be performed as efficiently as possible,

the denorm alized relation could be beneficial'
Materialized views can provide the benefits that denormalized relations provide,

at the cost of some extra storage; we describe performance tuning of materialized

views in Section 23.1,.6. A major advantage to materialized views over denormal-

ized relations is that maintaining consistency of redundant data becomes the job of

the database system, not the programmer. Thus, materialized views are preferable,

whenever they are supported by the database system.
Another approach to speed up the computation of the join without materializing

it, is to clustefrecords that would match in the join on the same disk page. We saw

such clustered file organizations in Section 77.7.2.

23.1.5 Tuning of Indices

We can tune the indices in a database system to improve performance. If queries

are the bottleneck, we can often speed them up by creating appropriate indices on

relations. If updates are the bottleneck, there may be too many indices, which have to

be updated when the relations are updated. Removing indices may speed up certain

updates.
The choice of the type of index also is important. Some database systems support

different kinds of indices, such as hash indices and B-tree indices. If range queries

are common, B-tree indices are preferable to hash indices. Whether to make an index

a clustered index is another tunable parameter. Only one index on a relation can

be made clustered, by storing the relation sorted on the index attributes. Generally,
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the index that benefits the most number of queries and updates should be made
clustered.

To help identify what indices to create, and which index (if any) on each rela-
tion should be clustered, most commercial database systems provide tuning wiznrds;
these are described in more detail in Section 23.1,.7. These tools use the past history
of queries and updates (called the workload) to estimate the effects of various indices
on the execution time of the queries and updates in the workload. Recommendations
on what indices to create are based on these estimates.

23.1.6 Using Mqteriqlized Views
Maintaining materialized views can greatly speed up certain types of queries, in par-
ticular aggregate queries. Recall the example from Section 14.5 where the total loan
amount at each branch (obtained by summing the loan amounts of all loans at the
branch) is required frequently. As we saw in that section, creating a materialized view
storing the total loan amount for each branch can greatly speed up such queries.

Materialized views should be used with care, however, since there is not only a
space overhead for storing them but, more important, there is also a time overhead
for maintaining materialized views. In the case of immediate view maintenance, if
the updates of a transaction affect the materialized view, the materialized view must
be updated as part of the same transaction. The transaction may therefore run slower.
In the case of deferred view maintenance, the materialized view is updated later;
until it is updated, the materialized view may be inconsistent with the database rela-
tions. For instance, the materialized view may be brought up-to-date when a query
uses the view, or periodically. Using deferred maintenance reduces the burden on
update transactions.

An important question is, how does one select which materialized views to main-
tain? The system administrator can make the selection manually by examining the
types of queries in the workload, and finding out which queries need to run faster
and which updates/queries may be executed slower. From the examination, the sys-
tem administrator may choose an appropriate set of materialized views. For instance,
the administrator may find that a certain aggregate is used frequently, and choose to
materialize it, or may find that a particular join is computed frequently, and choose
to materialize it.

However, manual choice is tedious for even moderately large sets of query types,
and making a good choice may be difficult, since it requires understanding the costs
of different alternatives; only the query optimizer can estimate the costs with reason-
able accuracy, without actually executing the query. Thus a good set of views may be
found only by trial and error-that is, by materializing one or more views, running
the workload, and measuring the time taken to run the queries in the workload. The
administrator repeats the process until a set of views is found that gives acceptable
performance.

A better alternative is to provide support for selecting materialized views within
the database system itself, integrated with the query optimizer. This approach is de-
scribed in more detail in Section 23.1.7.
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23.1.7 Automated Tirning of Physicql Design
Most commercial database systems today provide tools to help the database adminis-
trator with index and materialized view selection, and other tasks related to physical
database design such as how to partition data in a parallel database system.

These tools examine the workload (the history of queries and updates) and sug-
gest indices and views to be materialized. The tuning tool user may specify the im-
portance of speeding up different queries, which the user takes into account when
selecting views to materialize. Often tuning must be done before the application is
fully developed, and the actual database contents may be small on the development
database, but expected to be much larger on a production database. Thus, some tun-
ing tools also allow the tuning tool user to specify information about the expected
size of the database and related statistics.

Microsoft's Database Tuning Assistant, for example, allows the user to ask "what
if' questions, whereby the user can pick a view, and the optimizer then estimates the
effect of materializing the view on the total cost of the workload and on the individual
costs of different query /update types in the workload.

Automated index and materialized view selection techniques are usually imple-
mented by enumerating different alternatives and using the query optimizer to esti-
mate the costs and benefits of selecting each alternative by using the workload. Since
the number of design alternatives may be extremely large, as also the workload, the
selection techniques must be carefully designed.

The first step is to generate a workload. This is usually done by recording all the
queries and updates that are executed during some time period. Next, the selection
tools performworkload compression, that is, create a representation of the workload
using a small number of updates and queries. For example, updates of the same
form can be represented by a single update with a weight corresponding to how
many times the update occurred. Queries of the same form can be similarly replaced
by a representative with appropriate weight. After this, queries that are very infre-
quent and do not have a high cost may be discarded from consideration. The most
expensive queries may be chosen to be addressed first. Such workload compression
is essential for large workloads.

With the help of the optimizer, the tool would come up with a set of indices and
materialized views that could help the queries and updates in the compressed work-
load. Different combinations of these indices and materialized views can be tried
out to find the best combination. However, an exhaustive approach would be totally
impractical, since the number of potential indices and materialized views is already
large, and each subset of these is a potential design alternative, leading to an expo-
nential number of alternatives. Heuristics are used to reduce the space of alternatives,
that is, to reduce the number of combinations considered.

Greedy heuristics for index and materialized view selection operate as follows:
They estimate the benefits of materializing different indices/views (using the op-
timizer's cost estimation functionality as a subroutine). They then choose the in-
dex/view that gives either the maximum benefit or the maximum benefit per unit
space (that is, benefit divided by the space required to store the index or view). The
cost of maintaining the index/view must be taken into account when computing
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the benefit. Once the heuristic has selected an index/view, the benefits of other in-
dices/views may have changed, so the heuristic recomputes these, and chooses the
next best index/view for materialization. The process continues until either the avail-
able disk space for storing indices or materialized views is exhausted, or the cost of
maintaining the remaining candidates is more than the benefit to queries that could
use the indices/views.

Real-world index and materialized-view selection tools usually incorporate some
elements of greedy selection, but use other techniques to get better results. They also
support other aspects of physical database design, such as deciding how to partition
a relation in a parallel database, or what physical storage mechanism to use for a
relation.

23.1.8 Tuning of Ti,qnsqctions
In this section, we study two approaches for improving transaction performance:

o Improve set orientation

r Reduce lock contention

In the past, optimizers on many database systems were not particularly good, so how
a query was written would have a big influence on how it was executed, and there-
fore on the performance. Today's advanced optimizers can transform even badly
written queries and execute them efficiently, so the need for tuning individual queries
is less important than it used to be. Howevel, complex queries containing nested sub-
queries are not optimized very well by many optimizers. Most systems provide a
mechanism to find out the exact execution plan for a query; this information can be
used to rewrite the query in a form that thebptimizer ian deal with better.

In embedded SQL, if a query is executed frequently with different values for a
parameter, it may help to combine the calls into a more set-oriented query that is
executed only once. The communication cost of SQL queries is often relatively high
in client-server systems, so combining the embedded SQL calls is particularly helpful
in such systems.

For example, consider a program that steps through each department specified in
a list, invoking an embedded SQL query to find the total expenses of the department
by using the group by construct on a relation erpenses(date, employee, deqtartment,
amount).If the erpenses relation does not have a clustered index on department, each
such query will result in a scan of the relation. Instead, we can use a single SQL query
to find total expenses of all departments; the query can be evaluated with a single
scan. The relevant departments can then be looked up in this (much smaller) tempo-
rary relation containing the aggregate. Even if there is an index that permits efficient
access to tuples of a given department, using multiple SQL queries can have a high
communication overhead in a client-server system. Communication cost can be re-
duced by using a single SQL query, fetching its results to the client side, and then
stepping through the results to find the required tuples.

Another technique used widely in client-server systems to reduce the cost of com-
munication and SQL compilation is to use stored procedures, where queries are stored
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at the server in the form of procedures, which may be precompiled. Clients can in-
voke these stored procedures, rather than communicate entire queries.

Concurrent execution of different types of transactions can sometimes lead to poor
performance because of contention on locks. Consider, for example, a banking data-
base. During the day, numerous small update transactions are executed almost con-
tinuously. Suppose that a large query that computes statistics on branches is run at
the same time. If the query performs a scan on a relation, it may block out all updates
on the relation while it runs, and that can have a disastrous effect on the performance
of the system.

Some database systems-Oracle and Microsoft SQL Server, for example-permit
multiversion concurrency control, whereby queries are executed on a snapshot of the
data, and updates can go on concurrently. This feature should be used if available.
If it is not available, an alternative option is to execute large queries at times when
updates are few or nonexistent. For databases supporting Web sites, there may be no
such quiet period for updates.

Another alternative is to use weaker levels of consistency, whereby evaluation of
the query has a minimal impact on concurrent updates, but the query results are not
guaranteed to be consistent. The application semantics determine whether approx-
imate (inconsistent) answers are acceptable. Applications often maintain sequence
number counters updated by many transactions, which can become points of lock
contention. Practice Exercise 23.1 explores how database-provided sequence coun-
ters can help improve concurrency by using weaker levels of consistency.

Long update transactions can cause performance problems with system logs, and
can increase the time taken to recover from system crashes. If a transaction performs
many updates, the system log may become full even before the transaction com-
pletes, in which case the transaction will have to be rolled back. If an update transac-
tion runs for a long time (even with few updates), it may block deletion of old parts
of the log, if the logging system is not well designed. Again, this blocking could lead
to the log getting filled up.

To avoid such problems, many database systems impose strict limits on the num-
ber of updates that a single transaction can carry out. Even if the system does not
impose such limits, it is often helpful to break up a large update transaction into a set
of smaller update transactions where possible. For example, a transaction that gives
a raise to every employee in a large corporation could be split up into a series of
small transactions, each of which updates a small range of employee-ids. Such trans-
actions are called minibatch transactions. However, minibatch transactions must be
used with care. First, if there are concurrent updates on the set of employees, the
result of the set of smaller transactions may not be equivalent to that of the single
large transaction. Second, if there is a failure, the salaries of some of the employees
would have been increased by committed transactions, but salaries of other employ-
ees would not. To avoid this problem, as soon as the system recovers from failure, we
must execute the transactions remaining in the batch.

23.1.9 Performqnce Simulqtion
To test the performance of a database system even before it is installed, we can cre-
ate a performance-simulation model of the database system. Each service shown in
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Figure 23.1, such as the CPU, each disk, the buffer, and the concurrency controf is
modeled in the simulation. Instead of modeling details of a service, the simulation
model may capture only some aspects of each service, such as the service time-that
is, the time taken to finish processing a request once processing has begun. Thus, the
simulation can model a disk access from just the average disk-access time.

Since requests for a service generally have to wait their turn, each service has an
associated queue in the simulation model. A transaction consists of a series of re-
quests. The requests are queued up as they arrive, and are serviced according to the
policy for that service, such as first come, first served. The models for services such as
CPU and the disks conceptually operate in parallel, to account for the fact that these
subsystems operate in parallel in a real system.

Once the simulation model for transaction processing is built, the system admin-
istrator can run a number of experiments on it. The administrator can use experi-
ments with simulated transactions arriving at different rates to find how the system
would behave under various load conditions. The administrator could run other ex-
periments that vary the service times for each service to tind out how sensitive the
performance is to each of them. System parameters, too, can be varied, so that per-
formance tuning can be done on the simulation model.

23.2 Performqnce Benchmqrks
As database servers become more standardized, the differentiating factor among the
products of different vendors is those products' performance. Performance bench-
marks are suites of tasks that are used to quantify the performance of software sys-
tems.

23.2.1 Suites of Tqsks
Since most software systems, such as databases, are complex, there is a good deal of
variation in their implementation by different vendors. As a result, there is a signifi-
cant amount of variation in their performance on different tasks. One system may be
the most efficient on a particular task; another may be the most efficient on a differ-
ent task. Hence, a single task is usually insufficient to quantify the performance of the
system. Instead, the performance of a system is measured by suites of standardized
tasks, called performance benchmnrks.

Combining the performance numbers from multiple tasks must be done with care.
Suppose that we have two tasks, ft andT2, and that we measure the throughput of
a system as the number of transactions of each type that run in a given amount of
time-say, 1 second. Suppose that system A runs T1 at 99 transactions per second
and T2 at 1 transaction per second. Similarly, let system B run both T1 and T2 at 50
transactions per second. Suppose also that a workload has an equal mixture of the
two types of transactions.

If we took the average of the two pairs of numbers (that is, 99 and 1, versus 50
and 50), it might appear that the two systems have equal performance. Howevel, it
is wrong to take the averages in this fashion-if we ran 50 transactions of each type,
system ,4 would take about 50.5 seconds to finish, whereas system B would finish in
iust 2 seconds!
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The example shows that a simple measure of performance is misleading if there

is more than one type of transaction. The right way to average out the numbers is to

take the time to completion for the workload, rather than the average throughput for

each transaction type. We can then compute system performance accurately in trans-

actions per second for a specified workload. Thus, system A takes 50.5/100, which is

0.505 seconds per transaction, whereas system B takes 0.02 seconds per transaction,

on average. In terms of throughput, system A runs at an average of 1.98 transac-

tions per second, whereas system B runs at 50 transactions per second. Assuming

that transactions of all the types are equally likely, the correct way to average out

the throughputs on different transaction types is to take the harmonic mean of the

throughputs. The harmonic mean of n throughputs f1, . . . ,tnis defined as
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For our example, the harmonic mean for the throughputs in system A is 1.98. For
system B, it is 50. Thus, system B is approximately 25 times faster than system A on
a workload consisting of an equal mixture of the two example types of transactions.

23.2.2 Dqtqbqse-Applicqtion Clqsses

Online transaction processing (OLTP) and decision support [including online ana-
lytical processing (OLAP)I are two broad classes of applications handled by database
systems. These two classes of tasks have different requirements. High concurrency
and clever techniques to speed up commit processing are required for supporting
a high rate of update transactions. On the other hand, good query-evaluation algo-
rithms and query optimization are required for decision support. The architecture of
some database systems has been tuned to transaction processing; that of others, such
as the Teradata DBC series of parallel database systems, has been tuned to decision
support. Other vendors try to strike a balance between the two tasks.

Applications usually have a mixture of transaction-processing and decision-support
requirements. Hence, which database system is best for an application depends on
what mix of the two requirements the application has.

Suppose that we have throughput numbers for the two classes of applications
separately, and the application at hand has a mix of transactions in the two classes.
We must be careful even about taking the harmonic mean of the throughput num-
bers, because of interference between the transactions. For example, a long-running
decision-support transaction may acquire a number of locks, which may prevent all
progress of update transactions. The harmonic mean of throughputs should be used
only if the transactions do not interfere with one another.

23.2.3 The TPC Benchmsrks
The Transaction Processing Performance Council (TPC) has defined a series of
benchmark standards for database systems.

I
tn



23.2 PerformanceBenchmarks

The TPC benchmarks are defined in great detail. They define the set of relations
and the sizes of the tuples. They define the number of tuples in the relations not as a
fixed number, but rather as a multiple of the number of claimed transactions per sec-
ond, to reflect that a larger rate of tiansaction execution is likely to be correlatla wlttr
a larger number of accounts. The performance metric is throughput, expressed as
transactions per second (TPS). When its performance is measured, the system must
provide a response time within certain bounds, so that a high throughput cannot be
obtained at the cost of very long response times. Furthe4 for business applications,
cost is of great importance. Hence, the TPC benchmark also measures performance
in terms of price per TPS. A large system may have a high number of transactions
per second, but may be expensive (that is, have a high price per TPS). Moreover, a
company cannot claim TPC benchmark numbers for its systems znithout an external
audit that ensures that the system faithfully follows the definition of the benchmark,
including full support for the ACID properties of transactions.

The first in the series was the TPC-A benchmark, which was defined in 1989. This
benchmark simulates a typical bank application by a single type of transaction that
models cash withdrawal and deposit at a bank teller. The transaction updates sev-
eral relations-such as the bank balance, the teller's balance, and the customer's
balance-and adds a record to an audit trail relation. The benchmark also incor-
porates communication with terminals, to model the end-to-end performance of the
system realistically. The TPC-B benchmark was designed to test the core performance
of the database system, along with the operating system on which the system runs.
It removes the parts of the TPC-A benchmark that deal with users, communication,
and terminals, to focus on the back-end database server. Neither TPC-A nor TPC-B is
widely used today.

The TPC-C benchmark was designed to model a more complex system than the
TPC-A benchmark. The TPC-C benchmark concentrates on the main activities in an
order-entry environment, such as entering and delivering orders, recording payments,
checking status of orders, and monitoring levels of stock. The TPC-C benchmark is
still widely used for transaction processing.

The TPC-D benchmark was designed to test the performance of database systems
on decision-support queries. Decision-support systems are becoming increasingly
important today. The TPC-A, TPC-B, and TPC-C benchmarks measure performance
on transaction-processing workloads, and should not be used as a measure of per-
formance on decision-support queries. The D in TPC-D stands for decision support.
The TPC-D benchmark schema models a sales/distribution application, with parts,
suppliers, customers, and orders, along with some auxiliary information. The sizes
of the relations are defined as a ratio, and database size is the total size of all the rela-
tions, expressed in gigabytes. TPC-D at scale factor 1 represents the TPC-D benchmark
on a 1-gigabyte database, while scale factor 10 represents a 10-gigabyte database. The
benchmark workload consists of a set of 77 SQL queries modeling common tasks ex-
ecuted on decision-support systems. Some of the queries make use of complex SQL
features, such as aggregation and nested queries.

The benchmark's users soon realized that the various TPC-D queries could be
significantly speeded up by using materialized views and other redundant informa-
tion. There are applications, such as periodic reporting tasks, where the queries are
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known in advance and materialized view can be carefully selected to speed up the

queries. It is necessary, howevel, to account for the overhead of maintaining materi-

alized views.
The TPC-R benchmark (where R stands for reporting) is a refinement of the TPC-D

benchmark. The schema is the same, but there are 22 queries, of which 16 are from
TPC-D. In addition, there are two updates, a set of inserts, and a set of deletes. The

database running the benchmark is permitted to use materialized views and other
redundant information.

In contrast, the TPC-H benchmark (where H represents ad hoc) uses the same
schema and workload as TPC-R but prohibits rnaterialized views and other redun-

dant information, and permits indices only on primary and foreign keys. This bench-
mark models ad-hoc querying where the queries are not known beforehand, so it is

not possible to create appropriate materialized views ahead of time.
Both TPC-H and TPC-R measure performance in this way: The power test runs

the queries and updates one at a time sequentially, and 3600 seconds divided by

geometric mean of the execution times of the queries (in seconds) gives a measure

of queries per hour. The throughput test runs multiple streams in parallel, with each

stream executing all22 queries. There is also a parallel update stream. Here the total

time for the entire run is used to compute the number of queries per hour.

The composite query per hour metric, which is the overall metric, is then ob-

tained as the square root of the the product of the power and throughput metrics. A

composite price/performance metric is defined by dividing the system price by the

composite metric.
The TpC,W benchmark Web commerce benchmark is an end-to-end benchmark

that models Web sites having static content (primarily images) and dynamic con-

tent generated from a database. Caching of dynamic content is specifically permitted,

since it is very useful for speeding up Web sites. The benchmark models an electronic
bookstore, and like other TPC benchmarks, provides for different scale factors. The

primary performance metrics are Web interactions per second (WPS) and price per
WIPS.

23.2.4 The OODB Benchmqrks
The nature of applications in an object-oriented database (OODB) is different from
that of typical transaction-processing applications. Therefore, a different set of bench-
marks has been proposed for OODBs.

The Object Operations benchmark, version 1, popularly known as the OO1 bench-
mark, was an early proposal. The oo7 benchmark follows a philosophy different
from that of the tpC benchmarks. The TPC benchmarks provide one or two numbers
(in terms of average transactions per second and transactions per second per dol-
lar); the OO7 benchmark provides a set of numbers, containing a separate benchmark
number for each of several different kinds of operations. The reason for this approach
is that it is not yet clear what is the typical OODB transaction. It is clear that such a
transaction will carry out certain operations, such as traversing a set of connected
objects oI retrieving all objects in a class, but it is not clear exactly what mix of these
operations will be used. Hence, the benchmark provides separate numbers for each
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class of operations; the numbers can be combined in an appropriate way, depending
on the specific application.

23.3 Stqndqrdizqtion
Standards define the interface of a software system; for example, standards define the
syntax and semantics of a programming language, or the functions in an application-
program interface, or even a data model (such as the object-oriented database stan-
dards). Today, database systems are comple>1, and are often made up of multiple in-
dependently created parts that need to interact. For example, client programs may
be created independently of back-end systems, but the two must be able to interact
with each other. A company that has multiple heterogeneous database systems may
need to exchange data between the databases. Given such a scenario, standards play
an important role.

Formal standards are those developed by a standards organization or by industry
groups, through a public process. Dominant products sometimes become de facto
standards, in that they become generally accepted as standards without any formal
process of recognition. Some formal standards, like many aspects of the SeL-92 and
SQL:1999 standards, are anticipatory standards that lead the marketplace; they define
features that vendors then implement in products. In other cases, the standards, or
parts of the standards, are reactionary standards, in that they attempt to standardize
features that some vendors have already implemented, and that may even have be-
come de facto standards. SQL-89 was in many ways reactionary, since it standardized
features, such as integrity checking, that were already present in the IBM SAA SeL
standard and in other databases.

Formal standards committees are typically composed of representatives of the
vendors and of members from user groups and standards organizations such as
the International Organization for Standardization (ISO) or the American National
Standards Institute (ANSD, or professional bodies, such as the Institute of Electri-
cal and Electronics Engineers (IEEE). Formal standards committees meet periodically,
and members present proposals for features to be added to or modified in the stan-
dard. After a (usually extended) period of discussion, modifications to the proposal,
and public review, members vote on whether to accept or reject a feature. Some time
after a standard has been defined and implemented, its shortcomings become clear
and new requirements become apparent. The process of updating the standard then
begins, and a new version of the standard is usually released after a few years. This
cycle usually repeats every few years, until eventually (perhaps many years later) the
standard becomes technologically irrelevant, or loses its user base.

The DBTG CODASYL standard for network databases, formulated by the Database
Task Group, was one of the early formal standards for databases. IBM database prod-
ucts formerly established de facto standards, since IBM commanded much of the
database market. With the growth of relational databases came a number of new
entrants in the database business; hence, the need for formal standards arose. In re-
cent years, Microsoft has created a number of specifications that also have become
de facto standards. A notable example is oDBC, which is now used in non-Microsoft
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environments. JDBC, whose specification was created by Sun Microsystems, is an-

other widely used de facto standard.
This section gives a very high level overview of different standards, concentrating

on the goals of the standard. The bibliographical notes at the end of the chapter pro-

vide references to detailed descriptions of the standards mentioned in this section.

23.3.1 SQL Stqndqrds

Since SQL is the most widely used query language, much work has been done on

standardizing it. ANSI and ISO, with the various database vendors, have played a

leading role in this work. The SQL-86 standard was the initial version. The IBM Sys-

tems Application Architecture (Sea) standard for SQL was released in 7987 . As peo-

ple identified the need for more features, updated versions of the formal SQL stan-

dard were developed, called SQL-89 and SQL-92.

The SQL:1999 version of the SQL standard, added a variety of features to SQL. We

have seen many of these features in earlier chapters. The SQL:2003 version of the SQt

standard is a minor extension of the SQL:1999 standard. Some features such as the

SQL:1999 OLAP features (Section 18.2.3) were specified as an amendment to the earlier

version of the SQL:1999 standard, instead of waiting for the release of SQL:2003.

The SQL:2003 standard is broken into several parts:

o Part 1: SQl/Framework provides an overview of the standard.

o Part 2: SQl/Foundation defines the basics of the standard: types, schemas, ta-

bles, views, query and update statements, expressions, security model, predi-

cates, assignment rules, transaction management, and so on'

r Part 3: SQL/CLI (Call Level Interface) defines application program interfaces

to SQL.

o Part 4: SQL/PSM (Persistent Stored Modules) defines extensions to SQL to

make it procedural.

o Part 9: SQL/MED (Management of External Data) defines standards or inter-

facing an SQL system to external sources. By writing wraPpers, system de-

signers can treat external data sources, such as files or data in nonrelational

databases, as if they were "foreign" tables.

o Part 10: SQL/OLB (Object Language Bindings) defines standards for embed-

ding SQL in ]ava.

o Part 11: SQl/Schemata (Information and Definition Schema) defines a stan-

dard catalog interface.

o Part 13: SQL/IRT (Java Routines and types) defines standards for accessing

routines and types in java.

o Part 14: SQL/XML defines XMl-Related Specifications.
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The missing numbers cover features such as temporal data, distributed transac-
tion processing, and multimedia data, for which there is as yet no agreement on the
standards.

23.3.2 Dqtqbqse Connectivity Stqndqrds
The ODBC standard is a widely used standard for communication between client ap-
plications and database systems. ODBC is based on the SQL Call Level Interface (CLI)
standards developed by the XlOpen industry consortium and the SQL Access Group,
but has several extensions. The ODBC API defines a CLt, an SQL syntax definition,
and rules about permissible sequences of CLI calls. The standard also defines confor-
mance levels for the CLI and the SQL s;mtax. For example, the core level of the CLI
has commands to connect to a database, to prepare and execute SQL statements, to
get back results or status values, and to manage transactions. The next level of con-
formance (level 1) requires support for catalog information retrieval and some other
features over and above the core-level CLI; level 2 requires further features, such as
ability to send and retrieve arrays of parameter values and to retrieve more detailed
catalog information.

oDBC allows a client to connect simultaneously to multiple data sources and to
switch among them, but transactions on each are independent; ODBC does not sup-
port two-phase commit.

A distributed system provides a more general environment than a client-server
system. The X/Open consortium has also developed the )OOpen XA standards for
interoperation of databases. These standards define transaction-management prim-
itives (such as transaction begin, commit, abort, and prepare-to-commit) that com-
pliant databases should provide; a transaction manager can invoke these primitives
to implement distributed transactions by two-phase commit. The XA standards are
independent of the data model and of the specific interfaces between clients and
databases to exchange data. Thus, we can use the XA protocols to implement a dis-
tributed transaction system in which a single transaction can access relational as well
as object-oriented databases, yet the transaction manager ensures global consistency
via two-phase commit.

There are many data sources that are not relational databases, and in fact may not
be databases at all. Examples are flat files and email stores. Microsoft's OLE-DB is
a C++ API with goals similar to ODBC, but for nondatabase data sources that may
provide only limited querying and update facilities. Just like ODBC, OLE-DB provides
constructs for connecting to a data source, starting a session, executing commands,
and getting back results in the form of a rowset, which is a set of result rows.

However, OLE-DB differs from ODBC in several ways. To support data sources with
Iimited feature support, features in OLE-DB are divided into a number of interfaces,
and a data source may implement only a subset of the interfaces. An OLE-DB program
can negotiate with a data source to find what interfaces are supported. In ODBC com-
mands are always in SQL. In OLE-DB, commands may be in any language supported
by the data source; while some sources may support SQL, or a limited subset of SeL,
other sources may provide only simple capabilities such as accessing data in a flat
file, without any query capability. Another major difference of OLE-DB from ODBC is
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that a rowset is an object that can be shared by multiple applications through shared
memory. A rowset object can be updated by one application, and other applications

sharing that object would get notified about the change.
The Active Data Objects (ADO) API, also created by Microsoft, provides an easy-

to-use interface to the OLE-DB functionality, which can be called from scripting lan-

guages, such as VBScript and JScript. The newer ADO.NET API is designed for appli-

cations written in the .NET languages such as C# and Visual Basic.NET. In addition
to providing simplified interfaces, it provides an abstraction called theDntaSet which
permits disconnected data access.

23.3.3 Object Dqtqbqse Stqndqrds

Standards in the area of object-oriented databases have so far been driven primar-
ily by OODB vendors. The Object Database Management Group (ODMG) was a group
formed by OODB vendors to standardize the data model and language interfaces to
OODBs. The C++ language interface specified by ODMG was briefly outlined in Chap-
ter 9. ODMG is no longer active. JDO is a standard for adding persistence to Java.

The Object Management Group (OMG) is a consortium of companies, formed with
the objective of developing a standard architecture for distributed software applica-
tions based on the object-oriented model. OMG brought out the Object Management
Architecture (OMA) reference model. The Object Request Broker (ORB) is a component
of the OMA architecture that provides message dispatch to distributed objects trans-
parently, so the physical location of the object is not important. The Common Object
Request Broker Architecture (CORBA) provides a detailed specification of the ORB,
and includes an Interface Description Language (IDL), which is used to define the
data types used for data interchange. The IDL helps to support data conversion when
data are shipped between systems with different data representations.

23.3.4 XML-Bqsed Stqndqrds
A wide variety of standards based on XML (see Chapter 10) have been defined for
a wide variety of applications. Many of these standards are related to e-commerce.
They include standards promulgated by nonprofit consortia and corporate-backed
efforts to create de facto standards.

RosettaNet, which falls into the former category, is an industry consortium that
uses XMl-based standards to facilitate supply-chain management in the computer
and information technology industries. Supply-chain management refers to the pur-
chases of material and services that an organization needs to function. In contrast,
customer relationship management refers to the front end of a company's interac-
tion, dealing with customers. Supply-chain management requires standardization of
a variety of things such as:

o Global company identifier: RosettaNet specifies a system for uniquely iden-
tifying companies, using a 9-digit identifier called Data Uniaersal Numbering
System (DUNS).

o Global product identifier: RosettaNet specifies a 1,4-digit Global Trade ltem
Number (GTIN) for identifying products and services.
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o Global class identifier: This is a 10-digit hierarchical code for classifying prod-
ucts and services called the United NationslStandard Product and Seraices Code
(UN/SPSC).

o Interfaces between trading partners: RosettaNet Partner Intert'ace Processes
(PIPs) define business processes between partners. PIPs are system-to-system
XMl-based dialogs: They define the formats and semantics of business docu-
ments involved in process and the steps involved in completing a transaction.
Examples of steps could include getting product and service information, pur-
chase orders, order invoicing, payment, order status requests, inventory man-
agement, post-sales support including service warranty, and so on. Exchange
of desigO configuration, process, and quality information is also possible to
coordinate manufacturing activities across organizations.

Participants in electronic marketplaces may store data in a variety of database sys-
tems. These systems may use different data models, data formats, and data types.
Furthermore, there may be semantic differences (metric versus English measure, dis-
tinct monetary currencies, and so forth) in the data. Standards for electronic market-
places include methods for wrapping each of these heterogeneous systems with an
XML schema. These XllL wrappers form the basis of a unified view of data across all
of the participants in the marketplace.

Simple Object Access Protocol (SOAP) is a remote procedure call standard that uses
XML to encode data (both parameters and results), and uses HTTP as the transport
protocof that is, a procedure call becomes an HTTP request. SOAP is backed by the
World Wide Web Consortium (WSC) and has gained wide acceptance in industry.
SOAP can be used in a variety of applications. For instance, in business-to-business e-
commerce/ applications running at one site can access data from and execute actions
at other sites through SOAP.

SOAP and Web services were described in more detail in Section 70.7.3.

23.4 Applicotion Migrotion
Legacy systems are older-generation application systems that are in use by an or-
ganization, but that the organization wishes to replace by a different application.
For example, many organizations developed applications in house, but may decide
to replace them by a commercial product. In some cases, a legacy system may use
old technology that is incompatible with current-generation standards and systems.
Some legacy systems in operation today are several decades old and are based on
technologies such as databases that use the network or hierarchical data models, or
use Cobol and file systems without a database. Such systems may still contain valu-
able data, and may support critical applications.

Replacing a legacy application by a new application is is often costly in terms
of both time and money, since they are often very large, consisting of millions of
lines of code developed by teams of programmers, often over several decades. They
contain large amounts of data that must be ported to the new application, which
may use a completely different schema. Switchover from an old to a new application
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involves retraining large numbers of staff. Switchover must usually be done without
any disruption, with data entered in the old system available through the new system
as well.

Many organizations attempt to avoid replacing legacy systems/ and instead try to
interoperate them with newer systems. One approach used to interoperate between
relational databases and legacy databases is to build a layer, called a wrapper/ on
top of the legacy systems that can make the legacy system appear to be a relational
database. The wrapper may provide support for ODBC or other interconnection stan-
dards such as OLE-DB, which canbe used to quely and update the legacy system. The
wrapper is responsible for converting relational queries and updates into queries and
updates on the legacy system.

When an organization decides to replace a legacy system by a new system, it may
follow a process called reverse engineering, which consists of going over the code
of the legacy system to come up with schema designs in the required data model
(such as an E-R model or an object-oriented data model). Reverse engineering also
examines the code to find out what procedures and processes were implemented, in
order to get a high-level model of the system. Reverse engineering is needed because
legacy systems usually do not have highJevel documentation of their schema and
overall system design. When coming up with the design of a new system, developers
review the design, so that it can be improved rather than just reimplemented as is.
Extensive coding is required to support all the functionality (such as user interface
and reporting systems) that was provided by the legacy system. The overall process
is called re-engineering.

When a new system has been built and tested, the system must be populated
with data from the legacy system, and all further activities must be carried out on
the new system. However, abruptly transitioning to a new system, which is called
the big-bang approach, carries several risks. First, users may not be familiar with the
interfaces of the new system. Second, there may be bugs or performance problems
in the new system that were not discovered when it was tested. Such problems may
lead to great losses for companies, since their ability to carry out critical transactions
such as sales and purchases may be severely affected. In some extreme cases the new
system has even been abandoned, and the legacy system reused, after an attempted
switchover failed.

An alternative approach, called the chicken-little approach, incrementally replaces
the functionality of the legacy system. For example, the new user interfaces may be
used with the old system in the back end, or vice versa. Another option is to use
the new system only for some functionality that can be decoupled from the legacy
system. In either case, the legacy and new systems coexist for some time. There is
therefore a need for developing and using wrappers on the legacy system to provide
required functionality to interoperate with the new system. This approach therefore
has a higher development cost associated with it.

23.5 Summory
o Tuning of the database-system parameters, as well as the higher{evel database

design-such as the schema, indices, and transactions-is important for good
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performance. Tuning is best done by identifying bottlenecks and eliminating
them.

r Performance benchmarks play an important role in comparisons of database
systems, especially as systems become more standards compliant. The TpC
benchmark suites are widely used, and the different rpC benchmarks are use-
ful for comparing the performance of databases under different workloads.

e Standards are important because of the complexity of database systems and
their need for interoperation. Formal standards exist for sel. De facto stan-
dards, such as ODBC and ]DBC, and standards adopted by industry groups,
such as coRBA, have played an important role in the growth of client-server
database systems. Standards for object-oriented databases, such as ODMG, are
being developed by industry groups.

o Legacy systems are systems based on older-generation technologies such as
nonrelational databases or even directly on file systems. Interfacing legacy
systems with new-generation systems is often important when they run
mission-critical systems. Migrating from legacy systems to new-generation
systems must be done carefully to avoid disruptions, which can be very ex-
pensive.

Review Terms
o Performance tuning

o Bottlenecks

o Queueing systems

o Tunable parameters

o Tuning of hardware

o Five-minute rule

o One-minute rule

o Tuning of the schema

o Tuning of indices

o Materialized views

o Immediate view maintenance

o Deferred view maintenance

r Tuning of transactions

o Improving set orientedness

o Minibatch transactions

o Performance simulation

o Performancebenchmarks

o Service time

o Time to completion

o Database-application classes

o The TPC benchmarks

I TPC-A
N TPC-B
T TPC-C
tr TPC-D
N TPC-R
N TPC-H
N TPC-W

o Web interactions per second

o OODB benchmarks

r oo1
ll oo7

o Standardization

f Formal standards
n De facto standards
n Anticipatory standards
tr Reactionary standards

o Database connectivity standards
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N ODBC
tr OLE-DB
tr X/Open XA standards

o Object database standards

I] ODMG

N CORBA

XMl-based standards

Legacy systems

Reverse engineering

Re-engineering

Prqctice Exercises
23.1 Many applications need to generate sequence numbers for each transaction.

a. If a sequence counter is locked in two-phase manner, it can become a con-
currency bottleneck. Explain why this may be the case.

b. Many database systems support built-in sequence counters, which are not
locked in two-phase manner; when a transaction requests a sequence num-
ber, the counter is locked, incremented and unlocked.

i. Explain how such counters can improve concurrency.
ii. Explain why there may be gaps in the sequence numbers belonging to

the final set of committed transactions.

23.2 Suppose you are given a relation r(a,b, c).

a. Give an example of a situation under which the performance of equality
selection queries on attribute a can be greatly affected by how r is clus-
tered.

b. Suppose you also had range selection queries on attribute b. Can you clus-
ter r in such a way that the equality selection queries on r.o and the range
selection queries on r.b can both be answered efficiently? Explain your an-
swer.

c. If clustering as above is not possible, suggest how both types of queries
can be executed efficiently by choosing appropriate indices, assuming your
database supports index-only plans (that is, if all information required for

a query is available in an index, the database can generate a plan that uses
the index but does not access the relation).

23.3 Suppose that a database application does not appear to have a single bottle-
neck, that is, CPU and disk utilization are both high, and all database queues
are roughly balanced. Does that mean the application cannot be tuned further?
Explain your answer.

23.4 Suppose a system runs three types of transactions. tansactions of type A run
at the rate of 50 per second, transactions of type B run at 100 per second, and
transactions of type C run at 200 per second. Suppose the mix of transactions
has 25 percent of type A,25 percent of type B, and 50 percent of type C.

a. What is the average transaction throughput of the system, assuming there
is no interference between the transactions?

b. What factors may result in interference between the transactions of differ-
ent types, Ieading to the calculated throughput being incorrect?

a

a

a

a
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23.5 List some benefits and drawbacks of an anticipatory standard compared to a
reactionary standard.

Exercises

23.6 Find out what all performance information your favorite database system pro-
vides. Look for at least the following: what queries are current$ executing or
executed recently, what resources each of them consumed (CPU and l/O),what
fraction of page requests resulted in buffer misses (for each query, if available),
and what locks have a high degree of contention. You may also be able to get
information about CPU and I/O utilization from the operating system.

23.7 a. What are the three broad levels at which a database system can be tuned
to improve performance?

b. Give two examples of how tuning can be done, for each of the levels.

23.8 When carrying out performance tuning, should you try to tune your hardware
(by adding disks or memory) first, or should you try to tune your transactions
(by adding indices or materialized views) first. Explain your answer.

23.9 Suppose that your application has transactions that each access and update
a single tuple in a very large relation stored in a B+-tree file organization. As-
sume that all internal nodes of the B+-tree are in memory,but only a very small
fraction of the leaf pages can fit in memory. Explain how to calculate the min-
imum number of disks required to support a workload of 1000 transactions
per second. Also calculate the required number of disks, using values for disk
parameters given in Section 11.2.

23.10 What is the motivation for splitting a long transaction into a series of small
ones? What problems could arise as a result, and how can these problems be
averted?

23.11 Suppose the price of memory falls by half, and the speed of disk access (num-
ber of accesses per second) doubles, while all other factors remain the same.
What would belhe effect of this change on the 5-minute and 1-minute rules?

23.12 List at least 4 features of the tpc benchmarks that help make them realistic and
dependable measures.

23.13 Why was the TPC-D benchmark replaced by the TPC-H and TPC-R benchmarks?

23.14 Explarn what application characteristics would help you decide which of fpC-
C, TPC-H, or TPC-R best models the apnlication.
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Business process re-engineering is covered by Cook 119961. Umar 11.9971 covers
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For most of the history of databases, the types of data stored in databases were rel-
atively simple, and this was reflected in the rather limited support for data types
in earlier versions of SQL. In the past few years, however, there has been increasing
need for handling new data types in databases, such as temporal data, spatial data,
and multimedia data.

Another major trend in the last decade has created its own issues: the growth of
mobile computers, starting with laptop computers and pocket organizers and ex-
tending in more recent years to mobile phones with built-in computers and a variety
of weqrable computers that are increasingly used in commercial applications.

In this chapter we study several new data types and also study database issues
dealing with mobile computers.

24.1 Motivqtion
Before we address each of the topics in detail, we summarize the motivation for, and
some important issues in dealing with, each of these types of data.

o Temporal data. Most database systems model the current state of the world,
for instance, current customers, current students, and courses currently being
offered. In many applications, it is very important to store and retrieve infor-
mation about past states. Historical information can be incorporated manu-
ally into a schema design. However, the task is greatly simplified by database
support for temporal data, which we study in Section 24.2.

r Spatial data. Spatial data include geographic data, such as maps and associ-
ated information, and computer-aided-design data, such as integrated-circuit
designs or building designs. Applications of spatial data initially stored data
as files in a file system, as did early-generation business applications. But as
the complexity and volume of the data, and the number of users, have grown,
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ad-hoc approaches to storing and retrieving data in a file system have proved
insufficient for the needs of many applications that use spatial data.

Spatial-data applications require facilities offered by a database system-
in particular, the ability to store and query large amounts of data efficiently.
Some applications may also require other database features, such as atomic
updates to parts of the stored data, durability, and concurrency control. In
Section 24.3, we study the extensions needed to traditional database systems
to support spatial data.

o Multimedia data. In Section 24.4, we study the features required in database
systems that store multimedia data such as image, video, and audio data. The
main distinguishing feature of video and audio data is that the display of the
data requires retrieval at a steady, predetermined rate; hence, such data are
called continuous-media data.

o Mobile databases. In Section 24.5,we study the database requirements of the
new generation of mobile computing systems, such as notebook computers
and palmtop computing devices, which are connected to base stations via
wireless digital communication networks. Such computers need to be able to
operate while disconnected from the network, unlike the distributed database
systems discussed in Chapter 2L.They also have limited storage capacity, and
thus require special techniques for memory management.

24.2 Time in Dotqboses
A database models the state of some aspect of the real world outside itself. Typically,
databases model only one state-the current state-of the real world, and do not
store information about past states, except perhaps as audit trails. When the state of
the real world changes, the database gets updated, and information about the old
state gets lost. However, in many applications, it is important to store and retrieve
information about past states. For example, a patient database must store informa-
tion about the medical history of a patient. A factory monitoring system may store
information about current and past readings of sensors in the factory, for analysis.
Databases that store information about steites of the real world across time are called
temporal databases.

When considering the issue of time in database systems, we must distinguish be-
tween time as ineasured by the system and time as observed in the real world. The
valid time for a fact is the set of time intervals during which the fact is true in the
real world. The transaction time for a fact is the time interval during which the fact
is current within the database system. This latter time is based on the transaction se-
rialization order and is generated automatically by the system. Note that valid-time
intervals, being a real-world concept, cannot be generated automatically and must be
provided to the system.

A temporal relation is one where each tuple has an associated time when it is
true; the time may be either valid time or transaction time. Of course, both valid
time and transaction time can be stored, in which case the relation is said to be a
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bitemporal relation. Figure 24.1 shows an example of a temporal relation. To simplify
the representation, each tuple has only one time interval associated with iU thus, a
tuple is represented once for every disjoint time interval in which it is true. Intervals
are shown here as a pair of attributes from and to; an actual implementation would
have a structured type, perhaps called lnteraal, that contains both fields. Note that
some of the tuples have a "*" in the /o time column; these asterisks indicate that the
tuple is true until the value in the /o time column is changed; thus, the tuple is true at
the current time. Although times are shown in textual form, they are stored internally
in a more compact form, such as the number of seconds since some fixed time on a
fixed date (such as 12:00 A.M., January 7,1,900) that can be translated back to the
normal textual form.

24.2.1 Time Specificotion in SQL
The SQL standard defines the types date, time, and timestamp. The type date con-
tains four digits for the year (7-9999), two digits for the month (1.-1.2), and two digits
for the date (1-31). The type time contains two digits for the hour, two digits for the
minute, and two digits for the second, plus optional fractional digits. The seconds
field can go beyond 60, to allow for leap seconds that are added during some years
to correct for small variations in the speed of rotation of Earth. The type timestamp
contains the fields of date and time, with six fractional digits for the seconds field.

Since different places in the world have different local times, there is often a need
for specifying the time zone along with the time. The Universal Coordinated Time
(UTC) is a standard reference point for specifying time, with local times defined as
offsets from UTC. (The standard abbreviation is UTC, rather than UCT, since it is an
abbreviation of "Universal Coordinated Time" written in French as uniaersel temps
coordonnd.) SQL also supports two types, time with time zone, and timestamp with
time zone, which specify the time as a local time plus the offset of the local time from
UTC. For instance, the time could be expressed in terms of U.S. Eastern Standard
Time, with an offset of -6;00, since U.S. Eastern Standard time is 6 hours behind
UTC.

SQL supports a type called interval, which allows us to refer to a period of time
such as "1 day" or "2 days and 5 hours," without specifying a particular time when
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Figure24.l A temporal account relation.
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this period starts. This notion differs from the notion of interval we used previously,
which refers to an interval of time with specific starting and ending times.l

24.2.2 Temporol Query Longuoges
A database relation without temporal information is sometimes called a snapshot
relation, since it reflects the state in a snapshot of the real world. Thus, a snapshot of
a temporal relation at a point in time t is the set of tuples in the relation that are true
at time t, with the time-interval attributes projected out. The snapshot operation on a
temporal relation gives the snapshot of the relation at a specified time (or the current
time, if the time is not specified).

A temporal selection is a selection that involves the time attributes; a temporal
projection is a projection where the tuples in the projection inherit their times from
the tuples in the original relation. A temporal join is a join, with the time of a tuple
in the result being the intersection of the times of the tuples from which it is derived.
If the times do not intersect, the tuple is removed from the result.

The predicates precedes, ouerlaps, and contains can be applied on intervals; their
meanings should be clear. The intersect operation can be applied on two intervals, to
give a single (possibly empty) interval. However, the union of two intervals may or
may not be a single interval.

Functional dependencies must be used with care in a temporal relation. Although
the account number may functionally determine the balance at any given point in
time, obviously the balance can change over time. A temporal functional depen-

dency X i Y holds on a relation schema R tf, for all legal instances r of R, all
snapshots of r satisfy the functional dependency X ---+ Y.

Several proposals have been made for extending SQL to improve its support of
temporal data, but at least until SQL:2003, SQL has not provided any special support
for temporal data beyond the time-related data types and operations.

24.3 Spotiol qnd Geogrophic Dqto
Spatial data support in databases is important for efficiently storing, indexing, and
querying of data on the basis of spatial locations. For example, suppose that we want
to store a set of polygons in a database and to query the database to find all polygons
that intersect a given polygon. We cannot use standard index structures, such as B-
trees or hash indices, to answer such a query efficiently. Efficient processing of the
above query would require special-purpose index structures, such as R-trees (which
we study later) for the task.

TWo types of spatial data are particularly important:

o Computer-aided-design (CAD) data, which includes spatial information
about how objects-such as buildings, cars, or aircraft-are constructed.
Other important examples of computer-aided-design databases are integrated-
circuit and electronic-device layouts.

1. Many temporal database researchers feel this type should have been called span since it does not
specify an exact start or end time, only the time span between the two.
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o Geographic data such as road maps,land-usage maps, topographic elevation
maps/ political maps showing boundaries, land-ownership maps, and so on.
Geographic information systems are special-purpose databases tailored for
storing geographic data.

Support for geographic data has been added to many database systems, such as the
IBM DB2 Spatial Extender, the Informix Spatial Datablade, and Oracle Spatial.

24.3.1 Representqtion of Geometric Informqtion
Figure 24.2illustrates how various geometric constructs can be represented in a data-
base, in a normalized fashion. We stress here that geometric information can be rep-
resented in several different ways, only some of which we describe.

Aline segment canbe represented by the coordinates of its endpoints. For example,
in a map database, the two coordinates of a point would be its latitude and longi-

. 2
line segment ,//

t//

triangle

a

, / \
, / \

, / \
t l z

polygon

I(x7,y7), (x2,y2))

1(x7,y 7), (x2,y2), (x3,y3) l

{ (x1,y1 ), (x2,y2), (x3,y3), (x4,y 4), (x5,y5) }

{(x1,y1), (x2,y2), (x3,y3), ID1}
{(x7,y7), (x3,y3), (x4,y 4), ID1}
{(x1,y1), (x4,y4), (x5,y5), ID1}

object representation

polygon

Figure24.2 Representation of geometric constructs.
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tude. A polyline (also called a linestring) consists of a connected sequence of line seg-

ments and can be represented by a list containing the coordinates of the endpoints

of the segments, in sequence. We can approximately represent an arbitrary curve by

polylines, by partitioning the curve into a sequence of segments. This representation

is useful for two-dimensional features such as roads; here, the width of the road is

small enough relative to the size of the full map that it can be considered two dimen-

sional. Some systems also support circular arcs as primitives, allowing curves to be

represented as sequences of arcs.
We can represent a polygon by listing its vertices in ordeg as in Figure 24.2.2 Tlne

list of vertices specifies the boundary of a polygonal region. In an alternative repre-

sentation, a polygon can be divided into a set of triangles, as shown inFigure 24.2.

This process is called triangulatiory and any polygon can be triangulated. The com-

plex polygon can be given an identifier, and each of the triangles into which it is

divided carries the identifier of the polygon. Circles and ellipses can be represented

by corresponding types, or can be approximated by polygons.
List-based representations of polylines or polygons are often convenient for query

processing. Such non-first-normal-form representations are used when supported by

the underlying database. So that we can use fixed-size tuples (in first normal form)

for representing polylines, we can give the polyline or curve an identifier, and can

represent each segment as a separate tuple that also carries with it the identifier of

the polyline or curve. Similarly, the triangulated representation of polygons allows a

first normal form relational representation of polygons.
The representation of points and line segments in three-dimensional space is sim-

ilar to their representation in two-dimensional space, the only difference being that

points have an extra z component. Similarly, the representation of planar figures-

such as triangles, rectangles, and other polygons-does not change much when we

move to three dimensions. Tetrahedrons and cuboids can be represented in the same

way as triangles and rectangles. We can represent arbitrary polyhedra by dividing

them into tetrahedrons, just as we triangulate polygons. We can also represent them

by listing their faces, each of which is itself a polygon, along with an indication of

which side of the face is inside the polyhedron.

24.3.2 Design Dqtqbqses
Computer-aided-design (CAD) systems traditionally stored data in memory during
editing or other processing, and wrote the data back to a file at the end of a session of
editing. The drawbacks of such a scheme include the cost (programming complexity,
as well as time cost) of transforming data from one form to another, and the need
to read in an entire file even if only parts of it are required. For large designs, such
as the design of a large-scale integrated circuit or the design of an entire airplane,
it may be impossible to hold the complete design in memory. Designers of object-
oriented databases were motivated in large part by the database requirements of CAD

2. Some references use the term closed polygon to refer to what we call polygons, and refer to polylines as
open polygons.
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systems. Object-oriented databases represent components of the design as objects,
and the connections between the objects indicate how the design is structured.

The objects stored in a design database are generally geometric objects. Simple
two-dimensional geometric objects include points, lines, triangles, rectangles, and,
in general, polygons. Complex two-dimensional objects can be formed from simple
objects by means of union, intersection, and difference operations. Similarly, com-
plex three-dimensional objects may be formed from simpler objects such as spheres,
cylinders, and cuboids, by union, intersection, and difference operations, as in Fig-
ure24.3. Three-dimensional surfaces may also be represented by wireframe models,
which essentially model the surface as a set of simpler objects, such as line segments,
triangles, and rectangies.

Design databases also store nonspatial information about objects, such as the ma-
terial from which the objects are constructed. We can usually model such information
by standard data-modeling techniques. We concern ourselves here with only the spa-
tial aspects.

Various spatial operations must be performed on a design. For instance, the de-
signer may want to retrieve that part of the design that corresponds to a particu-
lar region of interest. Spatial-index structures, discussed in Section 24.3.5, are useful
for such tasks. Spatial-index structures are multidimensional, dealing with two- and
three-dimensional data, rather than dealing with just the simple one-dimensional or-
dering provided by the B+-trees.

Spatial-integrity constraints, such as "two pipes should not be in the same loca-
tion," are important in design databases to prevent interference errors. Such errors
often occur if the design is performed manually, and are detected only when a proto-
type is being constructed. As a result, these errors can be expensive to fix. Database
support for spatial-integrity constraints helps people to avoid design errors, thereby
keeping the design consistent. Implementing such integrity checks again depends on
the availability of efficient multidimensional index structures.

(a) Difference of cylinders (b) Union of cylinders

Figure24.3 Complex three-dimensional objects.
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24.3.3 Geogrophic Dqtq
Geographic data are spatial in nature, but differ from design data in certain ways.
Maps and satellite images are typical examples of geographic data. Maps may
provide not only location information-about boundaries, rivers, and roads, for
example-but also much more detailed information associated with locations, such
as eleiation, soil type, land usage, and annual rainfall.

Geographic data can be categorized into two types:

o Raster data. Such data consist of bit maps or pixel maPS, in two or more di-
mensions. A typical example of a two-dimensional raster image is a satellite
image of cloud cover, where each pixel stores the cloud visibility in a partic-
ular area. Such data can be three-dimensional-for example, the temperature
at different altitudes at different regions, again measured with the help of a
satellite. Time could form another dimension-for example, the surface tem-
perature measurements at different points in time. Design databases generally
do not store raster data.

o Vector data. Vector data are constructed from basic geometric objects, such as
points, line segments, triangles, and other polygons in two dimensions, and
cylinders, spheres, cuboids, and other polyhedrons in three dimensions.

Map data are often represented in vector format. Rivers and roads may be
represented as unions of multiple line segments. States and countries may be
represented as polygons. Topological information, such as height, may be rep-
resented by a surface divided into polygons covering regions of equal height,
with a height value associated with each polygon.

24.3.3.1 Representqtion of Geogrophic Dotc

Geographical features, such as states and large lakes, are represented as complex
polygons. Some features, such as rivers, maybe represented either as complex curves
or as complex polygons, depending on whether their width is relevant.

Geographic information related to regions, such as annual rainfall, can be rePre-
sented as an array-that is, in raster form. For space efficiency, the array can be stored
in a compressed form. In Section 24.3.5.2, we study an alternative representation of
such arrays by adata structure called aquadtree.

As noted in Section 24.3.3, we can represent region information in vector form,
using polygons, where each polygon is a region within which the array value is the
same. The vector representation is more compact than the raster representation in
some applications. It is also more accurate for some tasks, such as depicting roads,
where dividing the region into pixels (which may be fairly large) leads to a loss of
precision in location information. However, the vector representation is unsuitable
for applications where the data are intrinsically raster based, such as satellite images.

24.3.3.2 Applicotions of Geogrophic Dqtq
Geographic databases have a variety of uses, including on-line map services; vehicle-
navigation systems; distribution-network information for public-service utilities such
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as telephone, electric-power, and water-supply systems; and land-usage information
for ecologists and planners.

Web-based road map services form a very widely used application of map data.
At the simplest level, these systems can be used to generate on-line road maps of
a desired region. An important benefit of on-line maps is that it is easy to scale the
maps to the desired size-that is, to zoom in and out to locate relevant features. Road
map services also store information about roads and services, such as the layout of
roads, speed limits on roads, road conditions, connections between roads, and one-
way restrictions. With this additional information about roads, the maps can be used
for getting directions to go from one place to another and for automatic trip planning.
Users can query on-line information about services to locate, for example, hotels, gas
stations, or restaurants with desired offerings and price ranges.

Vehicle-navigation systems are systems mounted in automobiles, which provide
road maps and trip-planning services. A useful addition to a mobile geographic infor-
mation system such as a vehicle-navigation system is a Global Positioning System
(GPS) unit, which uses information broadcast from GPS satellites to find the current
location with an accuracy of tens of meters. With such a system, a driver can nevet'
get lost-the GPS unit finds the location in terms of latitude, longitude, and elevation
and the navigation system can query the geographic database to find where and on
which road the vehicle is currently located.

Geographic databases for public-utility information are becoming increasingly im-
portant as the network of buried cables and pipes grows. Without detailed maps,
work carried out by one utility may damage the cables of another utility, result-
ing in large-scale disruption of service. Geographic databases, coupled with accurate
location-finding systems, can help avoid such problems.

So far, we have explained why spatial databases are useful. In the rest of the sec-
tion, we shall study technical details, such as representation and indexing of spatial
information.

24.3.4 Spotiol Queries
There are a number of types of queries that involve spatial locations.

o Nearness queries request objects that lie near a specified location. A query
to find all restaurants that lie within a given distance of a given point is an
example of a nearness query. The nearest-neighbor query requests the object
that is nearest to a specified point. For example, we may want to find the
nearest gasoline station. Note that this query does not have to specify a limit
on the distance, and hence we can ask it even if we have no idea how far the
nearest gasoline station lies.

o Region queries deal with spatial regions. Such a query can ask for objects that
lie partially or fully inside a specified region. A query to find all retail shops
within the geographic boundaries of a given town is an example.

3. Well, hardly ever!
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o Queries may also request intersections and unions of regions. For example,
given region information, such as annual rainfall and population density, a
query may request all regions with a low annual rainfall as well as a high
popuiation density.

Queries that compute intersections of regions can be thought of as computing the
spatial join of two spatial relations-for example, one representing rainfall and the
other representing population density-with the location playing the role of join at-
tribute. In general, given two relations, each containing spatial objects, the spatial join
of the two relations generates either pairs of objects that intersect, or the intersection
regions of such pairs.

Several join algorithms efficiently compute spatial joins on vector data. Although
nested-loop join and indexed nested-loop join (with spatial indices) can be used, hash
joins and sort-merge joins cannot be used on spatial data. Researchers have pro-
posed join techniques based on coordinated traversal of spatial index structures on
the two relations. See the bibliographical notes for more information.

In generaf queries on spatial data may have a combination of spatial and nonspa-
tial requirements. For instance, we may want to find the nearest restaurant that has
vegetarian selections, and that charges less than $10 for a meal.

Since spatial data are inherently graphical, we usually query them by using a
graphical query language. Results of such queries are also displayed graphically,
rather than in tables. The user can invoke various operations on the interface, such
as choosing an area to be viewed (for example, by pointing and clicking on suburbs
west of Manhattan), zooming in and out, choosing what to display on the basis of
selection conditions (for example, houses with more than three bedrooms), overlay
of multiple maps (for example, houses with more than three bedrooms overlayed
on a map showing areas with low crime rates), and so on. The graphical interface
constitutes the front end. Extensions of SQL have been proposed to permit relational
databases to store and retrieve spatial information efficiently, and also allow queries
to mix spatial and nonspatial conditions. Extensions include allowing abstract data

Wpes, such as lines, polygons, and bit maps, and allowing spatial conditions, such as
contains or ooeilaps.

24.3.5 Indexing of Spoticl Dqtq
Indices are required for efficient access to spatial data. Traditional index sttuctures,
such as hash indices and B-trees, are not suitable, since they deal only with one-
dimensional data, whereas spatial data are typically of two or more dimensions.

24.3.5.1 k-d Trees
To understand how to index spatial data consisting of two or more dimensions, we
consider first the indexing of points in one-dimensional data. Tiee structures, such
as binary trees and B-trees, operate by successively dividing space into smaller parts.
For instance, each internal node of a binary tree partitions a one-dimensional interval
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Figure24.4 Division of space by a k-d tree.

in two. Points that lie in the left partition go into the left subtree; points that lie in
the right partition go into the right subtree. In a balanced binary tree, the partition
is chosen so that approximately one-half of the points stored in the subtree fall in
each partition. Similarly, each level of a B-tree splits a one-dimensional interval into
multiple parts.

We can use that intuition to create tree structures for two-dimensional space, as
well as in higher-dimensional spaces. A tree structure called a k-d tree was one of
the early structures used for indexing in multiple dimensions. Each level of a k-d
tree partitions the space into two. The partitioning is done along one dimension at
the node at the top level of the tree, along another dimension in nodes at the next
level, and so on, cycling through the dimensions. The partitioning proceeds in such
a way that, at each node, approximately one-half of the points stored in the subtree
fall on one side and one-half fall on the other. Partitioning stops when a node has
less than a given maximum number of points. Figure 24.4 shows a set of points in
two-dimensional space, and a k-d tree representation of the set of points. Each line
corresponds to a node in the tree, and the maximum number of points in a leaf node
has been set at 1. Each line in the figure (other than the outside box) corresponds to
a node in the k-d tree. The numbering of the lines in the figure indicates the level of
the tree at which the corresponding node appears.

The k-d-B tree extends the k-d tree to allow multiple child nodes for each internal
node, just as a B-tree extends a binary tree, to reduce the height of the tree. k-d-B trees
are better suited for secondary storage than k-d trees.

24.3.5.2 Quodtrees
An alternative representation for two-dimensional data is a quadtree. An example
of the division of space by a quadtree appears in Figure 24.5.The set of points is the
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Figure24.S Division of space by a quadtree.

same as that in Figure 24.4.Each node of a quadtree is associated with a rectangular
region of space. The top node is associated with the entire target space. Each non-
leaf node in a quadtree divides its region into four equal-sized quadrants, and cor-
respondingly each such node has four child nodes corresponding to the four quad-
rants. Leaf nodes have between zero and some fixed maximum number of points.
Correspondingly,if the region corresponding to a node has more than the maximum
number of points, child nodes are created for that node. In the example in Figure 24.5,
the maximum number of points in a leaf node is set to 1.

This type of quadtree is called a PR quadtree, to indicate it stores points, and that
the division of space is divided based on regions, rather than on the actual set of
points stored. We can use region quadtrees to store array (raster) information. A
node in a region quadtree is a leaf node if all the array values in the region that it
covers are the same. Otherwise, it is subdivided further into four children of equal
area, and is therefore an internal node. Each node in the region quadtree corresponds
to a subarray of values. The subarrays corresponding to leaves either contain just
a single array element or have multiple array elements, all of which have the same
value.

Indexing of line segments and polygons presents new problems. There are exten-
sions of k-d trees and quadtrees for this task. However, a line segment or polygon
may cross a partitioning line. If it does, it has to be split and represented in each
of the subtrees in which its pieces occur. Multiple occurrences of a line segment or
polygon can result in inefficiencies in storage, as well as inefficiencies in querying.

24.3.5.3 R-Trees
A storage structure called an R-tree is useful for indexing of objects such as points,
line segments, rectangles, and other polygons. An R-tree is a balanced tree structure
with the indexed objects stored in leaf nodes, much like a B+-tree. However, instead
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Figure24.6 An R-tree.

of a range of values, a rectangular bounding box is associated with each tree node.
The bounding box of a leaf node is the smallest rectangle parallel to the axes that
contains all objects stored in the leaf node. The bounding box of internal nodes is,
similarly, the smallest rectangle parallel to the axes that contains the bounding boxes
of its child nodes. The bounding box of an object (such as a polygon) is defined,
similarly, as the smallest rectangle parallel to the axes that contains the object.

Each internal node stores the bounding boxes of the child nodes along with the
pointers to the child nodes. Each leaf node stores the indexed objects, and may op-
tionally store the bounding boxes of the objects; the bounding boxes help speed up
checks for overlaps of the rectangle with the indexed objects-if a query rectangle
does not overlap with the bounding box of an object, it cannot overlap with the ob-
ject either. (If the indexed objects are rectangles, there is of course no need to store
bounding boxes, since they are identical to the rectangles.)

Figure 24.6 shows an example of a set of rectangles (drawn with a solid line) and
the bounding boxes (drawn with a dashed line) of the nodes of an R-tree for the set of
rectangles. Note that the bounding boxes are shown with extra space inside them, to
make them stand out pictorially. In reality, the boxes would be smaller and fit tightly
on the objects that they contain; that is, each side of a bounding box B would touch
at least one of the objects or bounding boxes that are contained in B.

The R-tree itself is at the right side of Figure 24.6.The figure refers to the coordi-
nates of bounding box ri as BBi in the figure.

We shall now see how to implement search, insert, and delete operations on an
R-tree.

o Search. As the figure shows, the bounding boxes associated with sibling nodes
may overlap; in B+-trees, k-d trees, and quadtrees, in contrast, the ranges do
not overlap. A search for objects containing a point therefore has to follow aII
child nodes whose associated bounding boxes contain the point; as a result,
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multiple paths may have to be searched. Similarly, a query to find aII objects
that intersect a given object has to go down every node where the associated
rectangle intersects the given object.

o Insert. When we insert an object into an R-tree, we select a leaf node to hold
the object. Ideally we should pick a leaf node that has space to hold a new en-
try, and whose bounding box contains the bounding box of the object. How-
ever, such a node may not exist; even if it did, finding the node may be very
expensive, since it is not possible to find itby a single traversal down from
the root. At each internal node we may find multiple children whose bound-
ing boxes contain the bounding box of the object, and each of these children
needs to be explored. Therefore, as a heuristic, in a traversal from the root,
if any of the child nodes has a bounding box containing the bounding box
of the object, the R-tree algorithm chooses one of them arbitrarily. If none of
the children satisfy this condition, the algorithm chooses a child node whose
bounding box has the maximum overlap with the bounding box of the object
for continuing the traversal.

Once the leaf node has been reached, if the node is already full, the algo-
rithm performs node splitting (and propagates splitting upward if required) in
a manner very similar to B+-tree insertion. ]ust as with B+-tree insertion, the
R-tree insertion algorithm ensures that the tree remains balanced. Addition-
ally,ltensures that the bounding boxes of leaf nodes, as well as internal nodes,
remain consistent; that is, bounding boxes of leaves contain all the bounding
boxes of the objects stored at the leaf, while the bounding boxes for internal
nodes contain all the bounding boxes of the children nodes.

The main difference of the insertion procedure from the B+-tree insertion
procedure lies in how the node is split. In a B+-tree, it is possible to find a value
such that half the entries are less than the midpoint and half are greater than
the value. This property does not generalize beyond one dimension; that is,
for more than one dimension, it is not always possible to split the entries into
two sets so that their bounding boxes do not overlap. Instead, as a heuristic,
the set of entries ̂ 9 can be split into two disjoint sets ̂ 9r and Sz so that the
bounding boxes of ^9r and ,S2 have the minimum total area; another heuristic
would be to split the entries into two sets ̂ 91 and 52 in such a way that Sr
and 52 have minimum overlap. The two nodes resulting from the split would
contain the entries in ,51 and ,S2, respectively. The cost of finding splits with
minimum total area or overlap can itself be large, so cheaper heuristics, such
as the quadrntic split heuristic are used. (The heuristic gets is name from the
fact that it takes time quadratic in the number of entries.)

The quadratic split heuristic works this way: First, it picks a pair of entries
a and b from ,S such that putting them in the same node would result in a
bounding box with the maximum wasted sPace; that is, the area of the min-
imum bounding box of a and b minus the sum of the areas of a and b is the
largest. The heuristic places the entries a and b in sets 51 and ,S2, respectively.

It then iteratively adds the remaining entries, one entry per iteration, to one
of the two sets 51 or ,52. At each iteration, for each remaining entry e,let'i",1
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denote the increase in the size of the bounding box of ,S1 if e is added to ,S1 and
Let'i",2 denote the corresponding increase for ^92. In each iteration, the heuristic
chooses one of the entries with the maximum difference of ,i.1 and'is,2 arld
adds it to ,Sr if ri",1 is less than,i.,2, and to ,S2 otherwise. That is, an entry with
"maximum preference" for one of ^91 or ,92 is chosen at each iteration. The
iteration stops when all entries have been assigned, or when one of the sets
Sr or Sz has enough entries that all remaining entries have to be added to
the other set so the nodes constructed from ^91 and ,S2 both have the required
minimum occupancy. The heuristic then adds all unassigned entries to the set
with fewer entries.

o Deletion. Deletion can be performed like a B+-tree deletion, borrowing entries
from sibling nodes, or merging sibling nodes if a node becomes underfull. An
alternative approach redistributes all the entries of underfull nodes to sibling
nodes, with the aim of improving the clustering of entries in the R-tree.

See the bibliographical references for more details on insertion and deletion opera-
tions on R-trees, as well as on variants of R-trees, called R*-trees or R*-trees.

The storage efficiency of R-trees is better than that of k-d trees or quadtrees, since a
object is stored only once, and we can ensure easily that each node is at least half full.
However, querying may be slower, since multiple paths have to be searched. spatiat
joins are simpler with quadtrees than with R-trees, since all quadtrees on a region
are partitioned in the same manner. However, because of their better storage effi-
ciency, and their similarity to B-trees, R-trees and their variants have proved popular
in database systems that support spatial data.

24.4 Multimediq Dotqbqses
Multimedia data, such as images, audio, and video-an increasingly popular form
of data-are today almost always stored outside the database, in file systems. This
kind of storage is not a problem when the number of multimedia objects is relatively
small, since features provided by databases are usually not important.

However, database features become important when the number of multimedia
objects stored is large. Issues such as transactional updates, querying facilities, and
indexing then become important. Multimedia objects often have descriptive attri-
butes, such as those indicating when they were created, who created them, and to
what category they belong. One approach to building a database for such multimedia
objects is to use databases for storing the descriptive attributes and for keeping track
of the files in which the multimedia objects are stored.

However, storing multimedia outside the database makes it harder to provide
database functionality, such as indexing on the basis of actual multimedia data con-
tent. It can also lead to inconsistencies, such as a file that is noted in the database, but
whose contents are missing, or vice versa. It is therefore desirable to store the data
themselves in the database.

Several issues must be addressed if multimedia data are to be stored in a database.
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r The database must support large objects, since multimedia data such as videos

can occupy up to a few gigabytes of storage. Many database systems do not

support objects larger than a few gigabytes. Larger objects could be split into

smaller pieces and stored in the database. Alternatively, the multimedia object

may be stored in a file system, but the database may contain a pointer to the

object; the pointer would typically be a file name. The SQL/MED standard
(MED stands for Management of External Data) allows external data, such as

files, to be treated as if they are part of the database. With SQL/MED, the object

would appear to be part of the database, but can be stored externally'

We discuss multimedia data formats in Section 24.4.7.

o The retrieval of some types of data, such as audio and video, has the require-

ment that data delivery must proceed at a guaranteed steady rate. Such data

are sometimes called isochronous data, or continuous-media data. For exam-

ple, if audio data are not supplied in time, there will be gaps in the sound. If

the data are supplied too fast, system buffers may overflow, resulting in loss

of data. We discuss continuous-media data in Section 24.4'2.

o Similarity-based retrieval is needed in many multimedia database applica-

tions. For example, in a database that stores fingerprint images, a query finger-

print image is provided, and fingerprints in the database that are similar to

lh" qn"ty fit gerprint must be retrieved. Index structures such as B+-trees and

R-trees cannot be used for this purPose; special index structures need to be

created. We discuss similarity-based retrieval in Section 24.4.3

24.4.1 Multimediq Dotq Formqts
Because of the large number of bytes required to represent multimedia data, it is
essential that multimedia data be stored and transmitted in compressed form. For
image data, the most widely used format is IPEG, named after the standards body
that created it, the loint Picture Experts Group. We can store video data by encod-
ing each frame of video in JPEG format, but such an encoding is wasteful, since
successive frames of a video are often nearly the same. The Moaing Picture Experts
Group has developed the MPEG series of standards for encoding video and audio
data; these encodings exploit commonalities among a sequence of frames to achieve
a greater degree of compression. The MPEG-I standard stores a minute of 30-frame-
per-second video and audio in approximately 12.5 megabytes (compared to approxi-
mately Tsrnegabytes for video in onlyIPEG). Howevet MPEG-1 encoding introduces
some loss of video quality, to a level roughly comparable to that of VHS videotape.
The MpEG-2 standard is designed for digital broadcast systems and digital video
disks (DVDs); it introduces only a negligible loss of video quality. MPEG-2 compresses
1 minute of video and audio to approximately 17 megabytes. MPEG-4 provides tech-
niques for further compression of video, with variable bandwidth to support deliv-
ery of video data over networks with a wide range of bandwidths. Several compet-
ing standards are used for audio encoding, including MP3, which stands for MPEG-1
Layer 3, RealAudio, Windows Media Audio, and other formats.
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24.4.2 Continuous-Mediq Dqtq
The most important types of continuous-media data are video and audio data (for ex-
ample, a database of movies). Continuous-media systems are characterized by their
real-time information-delivery requirements:

o Data must be delivered sufficiently fast that no gaps in the audio or video
result.

o Data must be delivered at a rate that does not cause overflow of system buffers.

o Synchronization among distinct data streams must be maintained. This need
arises, for example, when the video of a person speaking must show lips mov-
ing sp:rchronously with the audio of the person speaking.

To supply data predictably at the right time to a large number of consumers of the
data, the fetching of data from disk must be carefully coordinated. Usually, data are
fetched in periodic cycles. In each cycle, say of n seconds, n seconds worth of data
is fetched for each consumer and stored in memory buffers, while the data fetched
in the previous cycle is being sent to the consumers from the memory buffers. The
cycle period is a compromise: A short period uses less memory but requires more
disk-arm movement, which is a waste of resources, while a long period reduces disk-
arm movement but increases memory requirements and may delay initial delivery
of data. When a new request arrives, admission control comes into play: That is, the
system checks if the request can be satisfied with available resources (in each period);
if so, it is admitted; otherwise it is reiected.

Extensive research on delivery of continuous-media data has dealt with such is-
sues as handling arrays of disks and dealing with disk failure. See the bibliographical
references for details.

Several vendors offer video-on-demand servers. Current systems are based on file
systems, because existing database systems do not provide the real-time response
that these applications need. The basic architecture of a video-on-demand system
comprises:

o Video server. Multimedia data are stored on several disks (usually in a naIO
configuration). Systems containing a large volume of data may use tertiary
storage for less frequently accessed data.

o Terminals. People view multimedia data through various devices, coilectively
referred to as terminals. Examples are personal computers and televisions at-
tached to a small, inexpensive computer called a set-top box.

o Network. Transmission of multimedia data from a server to multiple termi-
nals requires a high-capacity network.

Video-on-demand service over cable networks is available in many places today,
and will eventually become ubiquitous, just as cable and broadcast television are
now.
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24.4.3 Similority-Bqsed Retrievql
In many multimedia applications, data are described only approximately in the data-
base. An example is the fingerprint data in Section 24.4. Other examples are:

o Pictorial data. TWo pictures or images that are slightly different as represented
in the database may be considered the same by a user. For instance, a database
may store trademark designs. When a new trademark is to be registered, the
system may need first to identify all similar trademarks that were registered
previously.

o Audio data. Speech-based user interfaces are being developed that allow the
user to give a command or identify a data item by speaking. The input from
the user must then be tested for similarity to those commands or data items
stored in the system.

o Handwritten data. Handwritten input can be used to identify a handwritten
data item or command stored in the database. Here again, similarity testing is
required.

The notion of similarity is often subjective and user specific. Flowever, similarity
testing is often more successful than speech or handwriting recognition, because the
input can be compared to data already in the system and, thus, the set of choices
available to the system is limited.

Several algorithms exist for finding the best matches to a given input by similarity
testing. Some systems, including a dial-by-name, voice-activated telephone system/
have been deployed commercially. See'the bibliographical notes for references.

24.5 Mobility qnd Personql Datqbqses
Large-scale, commercial databases have traditionally been stored in central comput-
ing facilities. In distributed database applications, there has usually been strong cen-
tral database and network administration. TWo technology trends have combined to
create applications in which this assumption of central control and administration is
not entirely correct:

L. The increasingly widespread use of personal computers, and, more important,
of laptop or notebook comPuters.

2. The development of a relatively low-cost wireless digital communication in-
frastructure, based on wireless local-area networks, cellular digital packet net-
works, and other technologies.

Mobile computing has proved useful in many applications. Many business trav-
elers use laptop computers so that they can work and access data en route. Delivery
services use mobile computers to assist in package tracking. Emergency-resPonse ser-
vices use mobile computers at the scene of disasters, medical emergencies, and the
like to access information and to enter data pertaining to the situation. Cell phones
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are increasingly becoming devices that provide not only phone services, but are also
mobile computers allowing email and Web access. New applications of mobile com-
puters continue to emerge.

Wireless computing creates a situation where machines no longer have fixed loca-
tions and network addresses. Location-dependent queries are an interesting class of
queries that are motivated by mobile computers; in such queries, the location of the
user (computer) is a parameter of the query. The value of the location parameter is
provided either by the user or, increasingly,by a global positioning system (GpS). An
example is a traveler's information system that provides data on hotels, roadside ser-
vices, and the like to motorists. Processing of queries about services that are ahead
on the current route must be based on knowledge of the user's location, direction
of motion, and speed. Increasingly, navigational aids are being offered as a built-in
feature in automobiles.

Energy (battery power) is a scarce resource for most mobile computers. This limi-
tation influences many aspects of system design. Among the more interesting conse-
quences of the need for energy efficiency is that small mobile devices spend most of
their time sleeping, waking up for a fraction of a second every second or so to check
for incoming data and to send outcoming data. This behavior has a significant impact
on protocols used to communicate with mobile devices. The use of scheduled data
broadcasts to reduce the need for mobile systems to transmit queries is another way
to reduce energy requirements.

Increasing amounts of data may reside on machines administered by users, rather
than by database administrators. Furthermore, these machines may, at times, be dis-
connected from the network. In many cases, there is a conflict between the user's
need to continue to work while disconnected and the need for elobal data consis-
tency.

In Sections 24.5.1 through24.5.4,we discuss techniques in use and under develop-
ment to deal with the problems of mobility and personal computing.

24.5.1 A Model of Mobile Computing
The mobile-computing environment consists of mobile computers, referred to as mo-
bile hosts, and a wired network of computers. Mobile hosts communicate with the
wired network via computers referred to as mobile support stations. Each mobile
support station manages those mobile hosts within its cell-that is, the geograph-
ical area that it covers. Mobile hosts may move between cells, thus necessitating a
handoff of control from one mobile support station to another. Since mobile hosts
may, at times, be powered down, a host may leave one cell and remateriaLizelater at
some distant cell. Therefore, moves between cells are not necessarily between adja-
cent cells. Within a small area, such as a building, mobile hosts may be connected by a
wireless local-area network (LAN) that provides lower-cost connectivity than would
a wide-area cellular network, and that reduces the overhead of handoffs.

It is possible for mobile hosts to communicate directly without the intervention
of a mobile support station. F{owever, such communication can occur only between
nearby hosts. Such direct forms of communication are becoming more prevalent with
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the advent of the Bluetooth standard. Bluetooth uses short-range digital radio to
allow wireless connectivity within a 10-meter range at high speed (up to 727 kilo-
bits per second). Initiatly conceived as a replacement for cables, Bluetooth's greatest
promise is in easy ad-hoc connection of mobile computers, PDAs, mobile phones, and
so-called intelligent appliances.

Wireless local-area network systems based on the 801.11 (a/b/g) standards are
very widely used today, and systems based on the 802.76 (Wi-Max) are set to appear
in 2005.

The network infrastructure for mobile computing consists in large part of two tech-
nologies: wireless local-area networks and packet-based cellular telephony networks.
Early cellular systems used analog technology and were designed for voice commu-
nication. Second-generation digital systems retained the focus on voice applications.
Third-generation (3G) and so-called 2.5G systems use packet-based networking and
are more suited to data applications. In these networks, voice is just one of many
applications (albeit an economically important one).

Bluetooth, wireless LANs, and 2.5G and 3G cellular networks make it possible for
a wide variety of devices to communicate at low cost. While such communication
itself does not fit the domain of a usual database application, the accounting, mon-
itoring, and management data pertaining to this communication will generate huge
databases. The immediacy of wireless communication generates a need for real-time
access to many of these databases. This need for timeliness adds another dimension
to the constraints on the system-a matter we shall discuss further in Section 25.4.

The size and power limitations of many mobile computers have led to alternative
memory hierarchies. Instead of, or in addition to, disk storage, flash memory, which
we discussed in Section L1..7, may be included. If the mobile host includes a hard
disk, the disk may be allowed to spin down when it is not in use, to save energy. The
same considerations of size and energy limit the type and size of the display used
in a mobile device. Designers of mobile devices often create special-purpose user in-
terfaces to work within these constraints. However, the need to present Web-based
data has necessitated the creation of presentation standards. Wireless application
protocol (WAP) is a standard for wireless Internet access. WAP-based browsers ac-
cess special Web pages that use wireless markup langauge (WML), an XMl-based
language designed for the constraints of mobile and wireless Web browsing.

24.5.2 Routing ond Query Processing
The route between a pair of hosts may change over time if one of the two hosts is
mobile. This simple fact has a dramatic effect at the network level, since location-
based network addresses are no longer constants within the system.

Mobility also directly affects database query processing. As we saw in Chaptet 22,
we must consider the communication costs when we choose a distributed query-
processing strategy. Mobility results in dynamically changing communication costs,
thus complicating the optimization process. Furthermore, there are competing no-
tions of cost to consider:

o User time is a highly valuable commodity in many business applications.
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o Connection time is the unit by which monetary charges are assigned in some
cellular systems.

o Number of bytes, or packets, transferred is the unit by which charges are
computed in some digital cellular systems.

o Time-of-day-based charges vary, depending on whether communication oc-
curs during peak or off-peak periods.

o Energy is limited. Often, battery power is a scarce resource whose use must
be optimized. A basic principle of radio communication is that it requires less
energy to receive than to transmit radio signals. Thus, transmission and re-
ception of data impose different power demands on the mobile host.

24.5.3 Broqdcqst Dqtq
It is often desirable for frequently requested data to be broadcast in a continuous
cycle by mobile support stations, rather than transmitted to mobile hosts on demand.
A typical application of such broadcast data is stock-market price information. There
are two reasons for using broadcast data. First, the mobile host avoids the energy cost
for transmitting data requests. Second, the broadcast data can be received by a large
number of mobile hosts at once, at no extra cost. Thus, the available tranimission
bandwidth is utilized more effectively.

A mobile host can then receive data as they are transmitted, rather than consuming
energy by transmitting a request. The mobile host may have local nonvolatile storage
available to cache the broadcast data for possible later use. Given a query, the mobile
host may optimize energy costs by determining whether it can process that query
with only cached data. If the cached data are insufficient, there are two options: Wait
for the data to be broadcast, or transmit a request for data. To make this decision, the
mobile host must know when the relevant data will be broadcast.

Broadcast data may be transmitted according to a fixed schedule or a changeable
schedule. In the former case, the mobile host uses the known fixed schedule to de-
termine when the relevant data will be transmitted. In the latter case, the broadcast
schedule must itself be broadcast at a well-known radio frequency and at well-known
time intervals.

In effect, the broadcast medium can be modeled as a disk with a high latency.
Requests for data can be thought of as being serviced when the requested data are
broadcast. The transmission schedules behave like indices on the disk. The biblio-
graphical notes list recent research papers in the area of broadcast data management.

24.5.4 Disconnectivity qnd Consistency
Since wireless communication may be paid for on the basis of connection time, there
is an incentive for certain mobile hosts to be disconnected for substantial periods.
Mobile computers without wireless connectivity are disconnected most of the time
when they are being used, except periodically when they are connected to their host
computers, either physically or through a computer network.
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During these periods of disconnection, the mobile host may remain in operation.

The user of the mobile host may issue queries and updates on data that reside or are

cached locally. This situation creates several problems, in particular:

Recoverability: Updates entered on a disconnected machine may be lost if

the mobile host experiences a catastrophic failure. Since the mobile host rep-

resents a single point of failure, stable storage cannot be simulated well.

Consistency: Locally cached data may become out-of-date, but the mobile

host cannot discover this situation until it is reconnected. Likewise, updates

occurring in the mobile host cannot be propagated until reconnection occurs.

We explored the consistency problem in Chapter 22,where we discussed network
partitioning, and we elaborate on it here. In wired distributed systems, partitioning is
considered to be a failure mode; in mobile computing, partitioning via disconnection
is part of the normal mode of operation. It is therefore necessary to allow data access
to proceed despite partitioning, even at the risk of some loss of consistency.

For data updated by only the mobile host, it is a simple matter to propagate the
updates when the mobile host reconnects. However, if the mobile host caches read-
only copies of data that may be updated by other comPuters, the cached data may
become inconsistent. When the mobile host is connected, it can be sent invalidation
reports that inform it of out-of-date cache entries. Howevet, when the mobile host is
disconnected, it may miss an invalidation report. A simple solution to this problem is
to invalidate the entire cache on reconnection, but such an extreme solution is highly
costly. Several caching schemes are cited in the bibliographical notes.

If updates can occur at both the mobile host and elsewhere, detecting conflict-
ing updates is more difficult. Version-numbering-based schemes allow updates of
shared files from disconnected hosts. These schemes do not guarantee that the up-
dates will be consistent. Rather, they guarantee that, if two hosts independently up-
date the same version of a document, the clash will be detected eventually, when the
hosts exchange information either directly or through a common host.

The version-vector scheme detects inconsistencies when copies of a document are
independently updated. This scheme allows copies of a document tobe stored at mul-
tiple hosts. Although we use the term document, the scheme can be applied to any
other data items, such as tuples of a relation.

The basic idea is for each host i to store, with its copy of each document d, a version
vector-that is, a set of version numbers {Va,-}l}, with one entry for each other host
j on which the document could potentially be updated. When a host z updates a
document d, it increments the version number Va,ili']by one.

Whenever two hosts i, and j connect with each other, they exchange updated docu-
ments, so that both obtain new versions of the documents. However, before exchang-
ing documents, the hosts have to discover whether the copies are consistent:

1. If the version vectors are the same on both hosts-that is, for each k,V6,alk] :

Vailk]-then the copies of document d are identical.
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2. rf , for each k, va,rlk] 3 va,ifkl and the version vectors are not identical, then
the copy of document d at host z is older than the one at host 7. That is, the
copy of document d at host j was obtained by one or more modifications of
the copy of the document at host z. Host ii replaces its copy of d, as well as its
copy of the version vector for d, with the copies from host j.

3. If there are a pair of hosts k and m such that Va,ufkl < Va,ilk] and V6,ilml >
Va,il^], then the copies are inconsistent; that is, the copy of d at z contains up-
dates performed by host k that have not been propagated to host j, and, sim-
ilarly, the copy of d at j contains updates performed by host m that have not
been propagated to host z. Then, the copies of d are inconsistent, since two or
more updates have been performed on d independently. Manual intervention
may be required to merge the updates.

The version-vector scheme was initially designed to deal with failures in distrib-
uted file systems. The scheme gained importance because mobile computers often
store copies of files that are also present on server systems, in effect constituting a
distributed file system that is often disconnected. Another application of the scheme
is in groupware systems, where hosts are connected periodically, rather than contin-
uously, and must exchange updated documents. The version-vector scheme also has
applications in replicated databases.

The version-vector scheme, however, fails to address the most difficult and most
important issue arising from updates to shared data-the reconciliation of inconsis-
tent copies of data. Many applications can perform reconciliation automatically by
executing in each computer those operations that had performed updates on remote
computers during the period of disconnection. This solution works if update oper-
ations commute-that is, they generate the same result, regardless of the order in
which they are executed. Alternative techniques may be available in certain applica-
tions; in the worst case, howeve4, it must be left to the users to resolve the inconsisten-
cies. Dealing with such inconsistency automatically, and assisting users in resolving
inconsistencies that cannot be handled automaticallv remains an area of research.

Another weakness is that the version-vector scheme requires substantial commu-
nication between a reconnecting mobile host and that host's mobile support station.
Consistency checks can be delayed until the data are needed, although this detay
may increase the overall inconsistency of the database.

The potential for disconnection and the cost of wireless communication limit the
practicality of transaction-processing techniques discussed in Chapter 22 for dis-
tributed systems. Ofteru it is preferable to let users prepare transactions on mobile
hosts, but to require that, instead of executing the transactions locally, they submit
transactions to a server for execution. Transactions that span more than one computer
and that include a mobile host face long-term blocking during transaction commit,
unless disconnectivity is rare or predictable.

24.6 Summcry
o Time plays an important role in database systems. Databases are models of

the real world. Whereas most databases model the state of the real world at a
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point in time (at the current time), temporal databases model the states of the
real world across time.

o Facts in temporal relations have associated times when they are valid, which
can be represented as a union of intervals. Temporal query languages simplify
modeling of time, as well as time-related queries.

r Spatial databases are finding increasing use today to store computer-aided-
design data as well as geographic data.

o Design data are stored primarily as vector data; geographic data consist of a
combination of vector and raster data. Spatial-integrity constraints are impor-
tant for design data.

o Vector data can be encoded as first-normal-form data, or can be stored using
non-first-normal-form structures, such as lists. Special-purpose index struc-
tures are particularly important for accessing spatial data, and for processing
spatial queries.

o R-trees are a multidimensional extension of B-trees; with variants such as R*-
trees and R*-trees, they have proved popular in spatial databases. Index struc-
tures that partition space in a regular fashion, such as quadtrees, help in pro-
cessing spatial join queries.

o Multimedia databases are growing in importance. Issues such as similarity-
based retrieval and delivery of data at guaranteed rates are topics of current
research.

o Mobile computing systems have become common, leading to interest in data-
base systems that can run on such systems. Query processing in such systems
may involve lookups on server databases. The query cost model must include
the cost of communication, including monetary cost and battery-power cost,
which is relatively high for mobile systems.

r Broadcast is much cheaper per recipient than is point-to-point communica-
tion, and broadcast of data such as stock-market data helps mobile systems to
pick up data inexpensivelY.

o Disconnected operation, use of broadcast data, and caching of data are three
important issues being addressed in mobile computing.

Review Terms
o Temporal data

o Valid time

o Transaction time

o Temporal relation

o Bitemporal relation

o Universal coordinated time (UTC)

o Snapshot relation

o Temporal query languages

o Temporal selection

o Temporal projection
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o Spatial and geographic data

o Computer-aided-design (CAD)

data

o Ceographic data

o Geographic information systems

o Triangulation

o Design databases

o Geographic data

o Raster data

o Vector data

o Global positioning system (GPS)

o Spatial queries

o Nearness queries

o Nearest-neighbor queries

o Region queries

o Spatial join

o Indexing of spatial data

r k-d trees

o k-d-B trees

r Quadtrees
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n PR quadtree
n Region quadtree

o R-trees

n Boundingbox
n Quadratic split

o Multimedia databases

o Isochronous data

r Continuous-media data

o Similarity-based retrieval

o Multimedia data formats

o Video servers

o Mobile computing

I Mobile hosts
n Mobile support stations
tr Cell
n Handoff

o Location-dependent queries

o Broadcast data

o Consistency

n Invalidation reports
tr Version-vector scheme

Prqctice Exercises
24.1 What are the two types of time, and how are they different? Why does it make

sense to have both types of time associated with a tuple?

24.2 Suppose you have a relation containing the r, gr coordinates and names of
restaurants. Suppose also that the only queries that will be asked are of the
following form: The query specifies a point, and asks if there is a restaurant ex-
actly at that point. Which type of index would be preferable, R-tree or B-tree?
why?

24.3 Suppose you have a spatial database that supports region queries (with circu-
lar regions) but not nearest-neighbor queries. Describe an algorithm to find the
nearest neighbor by making use of multiple region queries.

24.4 Suppose you want to store line segments in an R-tree. If a line segment is not
parallel to the axes, the bounding box for it can be large, containing a large
empty area.

o Describe the effect on performance of having large bounding boxes on
queries that ask for line segments intersecting a given region.
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y describe a technique to improve performance for such queries and

an example of its benefit. Hint: You can divide segments into smaller

24.5 Give recursive procedure to efficiently compute the spatial join of two re-

with R-tree indices. (Hint: Use bounding boxes to check if leaf entries

a pair of internal nodes may intersect.)
lati

how the ideas behind the RAID organization (Section 11 .3) can be used

l n a t-data environment, where there may occasionally be noise that

reception of part of the data being transmitted.

a model of repeatedly broadcast data in which the broadcast medium is

as a virtual disk. Describe how access time and data-transfer rate for

this v I disk differ from the corresponding values for a typical hard disk.

24.8 Consi er a database of documents in which all documents are kept in a central

da . Copies of some documents are kept on mobile computers. Suppose
ile computer A updates a copy of document 1 while it is disconnected,

the same time, mobile computer B updates a coPy of document 2 while
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. Show how the version-vector scheme can ensure proPer up-
of the central database and mobile computers when a mobile computer

plement the following:

schema to represent the geographic location of restaurants along with
tures such as the cuisine served at the restaurant and the level of expen-

query to find moderately priced restaurants that serve Indian food and

within 5 miles of your house (assume any location for your house).
ouerv to find for each restaurant the distance from the nearest restaurant

the same cuisine and with the same level of expensiveness.

problems can occur in a continuous-media system if data are delivered
too slowly or too fast?

willl
poral
temn

L ^
1 5 .

ional dependencies be preserved if a relation is converted to a tem-
tion by adding a time attribute? How is the problem handled in a

I database?

two-dimensional vector data where the data items do not overlap.

Is it to convert such vector data to raster data? If so, what are the
draw of storing raster data obtained by such conversion, instead of the

vector data?

the support for spatial data offered by the database system that you use,

24.12 What
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24.13 List three main features of mobile computing over wireless networks that are
distinct from traditional distributed systems.

24.14 List three factors that need to be considered in query optimization for mobile
computing that are not considered in traditional query optimizers.

24.15 Give an example to show that the version-vector scheme does not ensure se-
rializability. (Hint: Use the example from Practice Exercise 24.8, with the as-
sumption that documents 1 and 2 are available on both mobile computers A
and B, and take into account the possibility that a document may be read with-
out being updated.)
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In Chapters 75,76, and17, we introduced the concept of a transaction, which is a
program unit that accesses-and possibly updates-various data items, and whose
execution ensures the preservation of the ACID properties. We discussed in those
chapters a variety of schemes for ensuring the ACID properties in an environment
where failure can occur/ and where the transactions may run concurrently.

In this chaptel, we go beyond the basic schemes discussed previously, and cover
advanced transaction-processing concepts, including transaction-processing moni-
tors, transactional workflows, and transaction processing in the context of electronic
commerce. We also cover main-memory databases, real-time databases, Iong-duration
transactions, nested transactions, and multidatabase transactions.

25.1 Ti'qnsqction-Processing Monitors
Transaction-processing monitors (Tp monitors) are systems that were developed in
the 1970s and 1980s, initially in response to a need to support a large number of
remote terminals (such as airline-reservation terminals) from a single computer. The
term TP monitor initially stood for teleprocessing monitor.

TP monitors have since evolved to provide the core support for distributed trans-
action processing, and the term TP monitor has acquired its current meaning. The
CICS TP monitor from IBM was one of the earliest TP monitors, and has been very
widely used. Current-generation TP monitors include Tuxedo and rop End (both
now from BEA Systems), Encina (from Transarc, which is now a part of IBM), and
Transaction Server (from Microsoft).

Web application server architectures, including servlets, which we studied ear-
lier in Section 8.4, support many of the features of TP monitors and are sometimes
referred to as "TP lite." web application servers are in widespread use, and have
supplanted traditional TP monitors for many applications. However, the concepts
underlying them, which we study in this section, are essentially the same.

933
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25.1.1 TP-Monitor Architectures
Large-scale transaction-processing systems are built around a client-server architec-
ture. One way of building such systems is to have a server process for each client; the
server performs authentication, and then executes actions requested by the client.
This process-per-client model is illustrated in Figure 25.1a. This model presents sev-
eral problems with respect to memory utilization and processing speed:

o Per-process memory requirements are high. Even if memory for program code
is shared by all processes, each process consumes memory for local data and
open file descriptors, as well as for operating-system overhead, such as page
tables to support virtual memory'

o The operating system divides up available CPU time among processes by
switching among them; this technique is called multitasking. Each context
switch between one process and the next has considerable CPU overhead;
even on today's fast systems, a context switch can take hundreds of microsec-
onds.

The above problems can be avoided by having a single-server process to which
all remote clients connect; this model is called the single-sewer model, illustrated in
Figure 25.1b. Remote clients send requests to the server process, which then executes
those requests. This model is also used in client-server environments, where clients

remote server
clients

(a) Process-per-client model

remote router servers files
clients

(c) Many-server, single-router model

remote server files
clients

(b) Single-server model

remote routers servers files
clients

(d) Many-server, many-router model

Figure 25.1 TP-monitor architectures.
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send requests to a single-server process. The server process handles tasks, such as
user authentication, that would normally be handled by the operating system. To
avoid blocking other clients when processing a long request for one client, the server
process is multithreaded: The server process has a thread of control for each client,
and, in effect, implements its own low-overhead multitasking. It executes code on
behalf of one client for a while, then saves the internal context and switches to the
code for another client. Unlike the overhead of full multitasking, the cost of switching
between threads is low (typicatly only a few microseconds).

Systems based on the single-server model, such as the original version of the IBM
CICS TP monitor and file servers such as Novel's NetWare, successfully provided
high transaction rates with limited resources. Howevel, they had problems, espe-
cially when multiple applications accessed the same database:

o Since all the applications run as a single process, there is no protection among
them. A bug in one application can affect all the other applications as well. It
would be best to run each application as a separate process.

o Such systems are not suited for parallel or distributed databases, since a server
process cannot execute on multiple computers at once. (Howeveq, concurrent
threads within a process can be supported in a shared-memory multiproces-
sor system.) This is a serious drawback in large organizations, where parallel
processing is critical for handling large workloads, and distributed data are
becoming increasingly common.

One way to solve these problems is to run multiple application-server processes
that access a common database, and to let the clients communicate with the appli-
cation through a single communication process that routes requests. This model is
called the many-server, single-router model, illustrated in Figure 25.1c. This model
supports independent server processes for multiple applications; further, each ap-
plication can have a pooi of server processes, any one of which can handle a client
session. The request can, for example, be routed to the most lightly loaded server in a
pool. As before, each server process can itself be multithreaded, so that it can handle
multiple clients concurrently. As a further generalization, the application servers can
run on different sites of a parallel or distributed database, and the communication
process can handle the coordination among the processes.

The above architecture is also widely used in Web servers. A Web server has a
main process that receives HTTP requests, and then assigns the task of handling each
request to a separate process (chosen from among a pool of processes). Each of the
processes is itself multithreaded, so that it can handle multiple requests. The use of
safe programming languages, such asJava, C#, or Visual Basic, allows Web applica-
tion servers to protect threads from errors in other threads. In contrast, with a lan-
Suage like C or C++, errors such as memory allocation errors in one thread can cause
other threads to fail.

A more general architecture has multiple processes, rather than just one, to com-
municate with clients. The client communication processes interact with one or more
router processes, which route their requests to the appropriate server. Later-
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generation TP monitors therefore have a different architecture, called the many-server,

many-router model, illustrated in Figure 25J,d. A controller process starts up the

other processes and supervises their functioning. Tandem Pathway is an example of

a TP monitor that uses this architecture. Very high performance Web server systems

also adopt such an architecture. The router processes are often network routers that

direct traffic addressed to the same Internet address to different server computers,

depending on where the traffic comes from. What looks like a single server with a

single address to the outside world may be a collection of servers.

The detailed structure of a TP monitor appears in Figure 25.2. A TP monitor does

more than simply pass messages to application servers. When messages arrive, they

may have to be queued; thus, there is a queue manager for incoming messages.

The queue may be a durable queue, whose entries survive system failures. Using a

durable queue helps ensure that once received and stored in the queue, the

messages will be processed eventually, regardless of system failures. Authorization

and application-server management (for example, server start-up and routing of mes-

sages to servers) are further functions of a TP monitor, TP monitors often provide

logging, recovery, and concurrency-control facilities, allowing application servers to

implement the ACID transaction properties directly if required.

Finally, TP monitors also provide support for persistent messaging. Recall that per-

sistent messaging (Section 22.4.3) provides a guarantee that the message will be de-

livered if (and only if) the transaction commits.

In addition to these facilities, many TP monitors also providedpresentation facilities
to create menus/forms interfaces for dumb clients such as terminals; these facilities

are no longer important since dumb clients are no longer widely used.

Figure25.2 TP-monitor components.
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25.1.2 Applicotion Coordinqtion Using TP monitors
Applications today often have to interact with multiple databases. They may also
have to interact with legacy systems, such as special-purpose data-storage systems
built directly on file systems. Finally, they may have to communicate with users or
other applications at remote sites. Hence, they also have to interact with commu-
nication subsystems. It is important to be able to coordinate data accesses, and to
implement ACID properties for transactions across such systems.

Modern TP monitors provide support for the construction and administration of
such large applications, built up from multiple subsystems such as databases,legacy
systems, and communication systems. A TP monitor treats each subsystem as a re-
source manager that provides transactional access to some set of resources. The in-
terface between the TP monitor and the resource manager is defined by a set of trans-
action primitives, such as begin-transaction, commit-transaction, abort-transaction, and
prepare-to-commit-transaction (for two-phase commit). Of course, the resource man-
ager must also provide other services, such as supplying data, to the application.

The resource-manager interface is defined by the X/Open Distributed Transaction
Processing standard. Many database systems support the X/open standards, and
can act as resource managers. TP monitors-as well as other products, such as sel-
systems, that support the X/Open standards-can connect to the resource managers.

In addition, services provided by a Tp monitol, such as persistent messaging and
durable queues, act as resource managers supporting transactions. The TP monitor
can act as coordinator of two-phase commit for transactions that access these ser-
vices as well as database systems. For example, when a queued update transaction
is executed, an output message is delivered, and the request transaction is removed
from the request queue. TWo-phase commit between the database and the resource
managers for the durable queue and persistent messaging helps ensure that, regard-
less of failures, either all these actions occur or none occurs.

We can also use TP monitors to administer complex client-server systems consist-
ing of multiple servers and a large number of clients. The TP monitor coordinates
activities such as system checkpoints and shutdowns. It provides security and au-
thentication of clients. It administers server pools by adding servers or removing
servers without interruption of the the database system. Finally, it controls the scope
of failures. If a server fails, the TP monitor can detect this failure, abort the trans-
actions in progress, and restart the transactions. If a node fails, the TP monitor can
migrate transactions to servers at other nodes, again backing out incomplete trans-
actions. When failed nodes restart, the TP monitor can govern the recovery of the
node's resource managers.

TP monitors can be used to hide database failures in replicated systems; remote
backup systems (Section 17.9) are an example of replicated systems. Transaction re-
quests are sent to the TP monitor, which relays the messages to one of the database
replicas (the primary site, in case of remote backup systems). If one site fails, the Tp
monitor can transparently route messages to a backup site, masking the failure of the
first site.

In client-server systems, clients often interact with servers via a remote-procedure-
call (RPC) mechanism, where a client invokes a procedure call, which is actually
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executed at the server, with the results sent back to the client. As far as the client

code that invokes the RPC is concerned, the call looks like a local procedure-call in-

vocation. TP monitor systems, such as Encina, provide a transactional RPC interface

to their services. In such an interface, the RPC mechanism provides calls that can be

used to enclose a series of RPC calls within a transaction. Thus, updates performed

by an RpC are carried out within the scope of the transaction, and can be rolled back

if there is any failure.

25.2 Trqnsoctionql Workflows
A workflow is an activity in which multiple tasks are executed in a coordinated way
by different processing entities. A task defines some work to be done and can be
specified in a number of ways, including a textual description in a file or electronic-
mail message, aform, a message, or a computer Proglam. The processing entity that
performs the tasks may be a person or a software system (for example, a mailer, an
application program, or a database-management system).

Figure 25.3 shows a few examples of workflows. A simple example is that of an
electronic-mail system. The delivery of a single mail message may involve several
mailer systems that receive and forward the mail message, until the message reaches
its destination, where it is stored. Each mailer performs a task-forwarding the mail
to the next mailer-and the tasks of multiple mailers may be required to route mail
from source to destination. Other terms used in the database and related literature to
refer to workflows include task flow and multisystem applications. Workflow tasks
are also sometimes called steps.

In general, workflows may involve one or more humans. For instance, consider
the processing of a loan. The relevant workflow appears in Figure 25.4.The person
who wants a loan fills out a form, which is then checked by a loan officer. An em-
ployee who processes loan applications verifies the data in the form, using sources
iuch as credit-reference bureaus. When all the required information has been col-
lected, the loan officer may decide to approve the loan; that decision may then have
to be approved by one or more superior officers, after which the loan can be made.
Each human here performs a task; in a bank that has not automated the task of loan
processing, the coordination of the tasks is typically carried out by passing of the
loan application, with attached notes and other information, from one employee to

Figure 25.3 Examples of workflows.
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Figure25.4 Workflow in loan processing.

the next. Other examples of workflows include processing of expense vouchers, of
purchase orders, and of credit card transactions.

Today, all the information related to a workflow is more than likely to be stored in
a digital form on one or more computers, and, with the growth of networking, infor-
mation can be easily transferred from one computer to another. Hence, it is feasible
for organizations to automate their workflows. For example, to automate the tasks
involved in loan processing, we can store the loan application and associated infor-
mation in a database. The workflow itself then involves handing of responsibility
from one human to the next, and possibly even to programs that can automatical$
fetch the required information. Humans can coordinate their activities by means such
as electronic mail.

Workflows are becoming increasingly important for multiple reasons within as
well as between organizations. Many organizations today have multiple software
systems that need to work together. For example, when an employee joins an orga-
nization, information about the employee may have to be provided to the payroll
system, to the library system, to authentication systems that allow the user to logon
to computers, to a system that manages cafeteria accounts, an so on. updates, such as
when the employee changes status or leaves the organization, also have to be propa-
gated to all the systems.

organizations are increasingly automating their services; for example, a supplier
may provide an automated system for customers to place orders. Several tasks may
need to be carried out when an order is placed, including reserving production time
to create the ordered product and delivery services to deliver the product.

We have to address two activities, in general, to automate a workflow. The first
is workflow specification: detailing the tasks that must be carried out and defining
the execution requirements. The second problem is workflow execution, which we
must do while providing the safeguards of traditional database systems related to
computation cortectness and data integrity and durability. For example, it is not ac-
ceptable for a loan application or a voucher to be lost, or to be processed more than
once, because of a system crash. The idea behind transactional workflows is to use
and extend the concepts of transactions to the context of workflows.
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Both activities are complicated by the fact that many organizations use several

independently managed information-processing systems that, in most cases, were

developed separately to automate different functions. Workflow activities may re-

quire interactions among several such systems, each performing a task, as well as

interactions with humans.
A number of workflow systems have been developed in recent years. Here, we

study properties of workflow systems at a relatively abstract level, without going

into the details of any particular system.

25.2.1 Workflow Specificqtion
Internal aspects of a task do not need to be modeled for the purpose of specification
and management of a workflow In an abstract view of a task, a task may use palam-
eters stored in its input variables, may retrieve and update data in the local system,
may store its results in its output variables, and may be queried about its execution
state. At any time during the execution, the workflow state consists of the collection
of states of the workflow's constituent tasks, and the states (values) of all variables in

the workflow specification.
The coordination of tasks can be specified either statically or dynamically. A static

specification defines the tasks-and dependencies among them-before the execu-
tion of the workflow begins. For instance, the tasks in an expense-voucher workflow
may consist of the approvals of the voucher by a secretary, a manager, and an accoun-
tant, in that order, and finally the delivery of a check. The dependencies among the
tasks may be simple-each task has to be completed before the next begins.

A generalization of this strategy is to have a precondition for execution of each
task in the workflow, so that all possible tasks in a workflow and their dependen-
cies are known in advance, but only those tasks whose preconditions are satisfied
are executed. The preconditions can be defined through dependencies such as the
following:

o Execution states of other tasks-for example, "taskti cannot start until task t7
has ended," or "task fa must abort if task ti has committed"

r Output values of other tasks-for example, "task ta can start if task t3 re-
turns a value greater than 25," or "the manager-approval task can start if the
secretary-approval task returns a value of OK"

o External variables modified by external events-for example, "task ti cannot
be started before 9 A.M.," or "task fi must be started within 24 hours of the
completion of task t3"

We can combine the dependencies by the regular logical connectors (ot, and, not) to

form complex scheduling preconditions.
An example of dynamic scheduling of tasks is an electronic-mail routing system.

The next task to be scheduled for a given mail message depends on what the desti-
nation address of the message is, and on which intermediate routers are functioning.
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25.2.2 Foilure-Atomicity Requirements of q Workflow
The workflow designer may specify the failure-atomicity requirements of a work-
flow according to the semantics of the workflow. The traditional notion of failure
atomicity would require that a failure of any task result in the failure of the workflow.
However, a workflow can, in many cases, survive the failure of one of its tasks-for
example, by executing a functionally equivalent task at another site. Therefore, we
should allow the designer to define failure-atomicity requirements of a workflow.
The system must guarantee that every execution of a workflow will terminate in a
state that satisfies the failure-atomicity requirements defined by the designer. We call
those states acceptable termination states of a workflow. All other execution states of
a workflow constitute a set of nonacceptable termination states, in which the failure-
atomicity requirements may be violated.

An acceptable termination state can be designated as committed or aborted. A
committed acceptable termination state is an execution state in which the objectives
of a workflow have been achieved. In contrast, an aborted acceptable termination
state is a valid termination state in which a workflow has failed to achieve its ob-
jectives. If an aborted acceptable termination state has been reached, all undesirable
effects of the partial execution of the workflow must be undone in accordance with
that workflow's failure-atomicity requirements.

A workflow must reach an acceptable termination state eaen in the presence of system
failures. Thus, if a workflow is in a nonacceptable termination state at the time of
failure, during system recovery it must be brought to an acceptable termination state
(whether aborted or committed).

For example, in the loan-processing workflow, in the final state, either the loan
applicant is told that a loan cannot be made or the loan is disbursed. In case of fail-
ures such as a long failure of the verification system, the loan application could be
returned to the loan applicant with a suitable explanation; this outcome would consti-
tute an aborted acceptable termination. A committed acceptable termination would
be either the acceptance or the rejection of the loan.

In general, a task can commit and release its resources before the workflow reaches
a termination state. However, if the multitask transaction later aborts, its failure atom-
icity may require that we undo the effects of already completed tasks (for example,
committed subtransactions) by executing compensating tasks (as subtransactions).
The semantics of compensation requires that a compensating transaction eventually
complete its execution successfully, possibly after anumber of resubmissions.

In an expense-voucher-processing workflow, for example, a department-budget
balance may be reduced on the basis of an initial approval of a voucher by the man-
ager. If the voucher is later rejected, whether because of failure or for other reasons,
the budget may have to be restoredby a compensating transaction.

25.2.3 Execution of Workflows
The execution of the tasks may be controlledby a human coordinator or by a soft-
ware system called a workflow-management system. A workflow-management sys-
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tem consists of a scheduler, task agents, and a mechanism to query the state of the
workflow system. A task agent controls the execution of a task by a processing en-
tity. A scheduler is a program that processes workflows by submitting various tasks
for execution, monitoring various events, and evaluating conditions related to inter-
task dependencies. A scheduler may submit a task for execution (to a task agent),
or may request that a previously submitted task be aborted. In the case of multi-
database transactions, the tasks are subtransactions, and the processing entities are
local database-management systems. In accordance with the workflow specifications,
the scheduler enforces the scheduling dependencies and is responsible for ensuring
that tasks reach acceptable termination states.

There are three architectural approaches to the development of a workflow-
management system. A centralized architecture has a single scheduler that sched-
ules the tasks for all concurrently executing workflows. The partially distributed
architecture has one scheduler instantiated for each workflow. When the issues of
concurrent execution can be separated from the scheduling function, the latter op-
tion is a natural choice. A fully distributed architecture has no schedulel but the

task agents coordinate their execution by communicating with one another to satisfy
task dependencies and other workflow execution requirements.

The iimplest workflow-execution systems follow the fully distributed approach
just described and are based on messaging. Messaging may be implemented by per-
sistent messaging mechanisms, to provide guaranteed delivery. Some implementa-
tions use email for messaging; such implementations provide many of the features
of persistent messaging, but generally do not guarantee atomicity of message deliv-
ery and transaction commit. Each site has a task agent that executes tasks received
through messages. Execution may also involve presenting messages to humans, who
have ihen to carry out some action. When a task is completed at a site, and needs
to be processed at another site, the task agent dispatches a message to the next site'
The message contains all relevant information about the task to be performed' Such
message-based workflow systems are particularly useful in networks that may be

disconnected for part of the time, such as dial-up networks.
The centralized approach is used in workflow systems where the data are stored

in a central database. The scheduler notifies various agents, such as humans or com-
puter programs, that a task has to be carried out, and keeps track of task completion.
It is easier to keep track of the state of a workflow with a centralized approach than
it is with a fully distributed approach.

The scheduler must guarantee that a workflow will terminate in one of the spec-
ified acceptable termination states. Ideally, before attempting to execute a workflow,
the scheduler should examine that workflow to check whether the workflow may ter-
minate in a nonacceptable state. If the scheduler cannot guarantee that a workflow
will terminate in an acceptable state, it should reject such specifications without at-
tempting to execute the workflow. As an example, let us consider a workflow consist-
ing of two tasks represented by subtransactions ,9r and Sz, with the failure-atomicity
requirements indicating that either both or neither of the subtransactions should be

committed. If ^9t and 52 do not provide prepared-to-commit states (for a two-phase
commit), and further do not have compensating transactions, then it is possible to

reach a state where one subtransaction is committed and the other aborted, and there
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is no way to bring both to the same state. Therefore, such a workflow specification is
unsafe, and should be rejected.

Safety checks such as the one just described may be impossible or impractical to
implement in the scheduler; it then becomes the responsibility of the person design-
ing the workflow specification to ensure that the workflows are safe.

25.2.4 Recovery of q Workflow
The objective of workflow recovery is to enforce the failure atomicity of the work-
flows. The recovery procedures must make sure that, if a failure occurs in any of the
workflow-processing components (including the scheduler), the workflow will even-
tually reach an acceptable termination state (whether aborted or committed). For ex-
ample, the scheduler could continue processing after failure and recovery, as though
nothing happened, thus providing forward recoverability. Otherwise, the scheduler
could abort the whole workflow (that is, reach one of the global abort states). In ei-
ther case, some subtransactions may need to be committed or even submitted for
execution (for example, compensating subtransactions).

We assume that the processing entities involved in the workflow have their own
local recovery systems and handle their local failures. To recover the execution-
environment context, the failure-recovery routines need to restore the state infor-
mation of the scheduler at the time of failure, including the information about the
execution states of each task. Therefore, the appropriate status information must be
logged on stable storage.

we also need to consider the contents of the message queues. when one agent
hands off a task to another, the handoff should be carried out exactly once: If the
handoff happens twice a task may get executed twice; if the handoff does not oc-
cur, the task may get lost. Persistent messaging (Section 22.4.3) provides exactly the
features to ensure positive, single handoff.

25.2.5 Workflow-Mqnogement Systems
Workflows are often hand coded as part of application systems. For instance, en-
terprise resource planning (ERP) systems, which help coordinate activities across an
entire enterprise, have numerous workflows built into them.

The goal of workflow-management systems is to simplify the construction of work-
flows and make them more reliable, by permitting them to be specified in a high-level
manner and executed in accordance with the specification. There are a large number
of commercial workflow-management systems; some, like FlowMark from IBM, are
general-purpose workflow-management systems, while others are specific to partic-
ular workflows, such as order processing orbug/Iai\ure reporting systems.

In today's world of interconnected organizations, it is not sufficient to manage
workflows only within an organization. Workflows that cross organizationaLbound-
aries are becoming increasingiy common. For instance, consider an order placed by
an organrzation and communicated to another organization that fulfills the order.
In each organization there may be a workflow associated with the order, and it is
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important that the workflows be able to interoperate, in order to minimize human

intervention.
The Workflow Management Coalition has developed standards for interoperation

between workflow systems. Current standardization efforts use XML as the under-

lying language for communicating information about the workflow. See the biblio-

graphical notes for more information.

25.3 E-Commerce
E-commerce refers to the process of carrying out various activities related to com-
merce, through electronic means, primarily through the Internet. The types of activi-
ties include:

o Presale activities, needed to inform the potential buyer about the product or
service being sold.

o The sale process, which includes negotiations on price and quality of service,
and other contractual matters'

o The marketplace: When there are multiple sellers and buyers for a product,
a marketplace, such as a stock exchange, helps in negotiating the price to be
paid for the product. Auctions are used when there is a single seller and mul-
tiple buyers, and reverse auctions are used when there is a single buyer and
multiple sellers.

r Payment for the sale.

o Activities related to delivery of the product or service. Some products and
services can be delivered over the Internet; for others the Internet is used only
for providing shipping information and for tracking shipments of products.

o Customer support and postsale service.

Databases are used extensively to support these activities. For some of the activ-
ities, the use of databases is straightforwatd, but there are interesting application
development issues for the other activities.

25.3.1 E-Cotologs
Any e-commerce site provides users with a catalog of the products and services that
the site supplies. The services provided by an e-catalog may vary considerably.

At the minimum, an e-catalog must provide browsing and search facilities to help

customers find the product they are looking for. To help with browsing, products
should be organized into an intuitive hierarchy, so a few clicks on hyperlinks can

lead customers to the products they are interested in. Keywords provided by the

customer (for example,"digitalcamera" or "computer") should speed up the process
of finding required products. E-catalogs should also provide a means for customers
to easily compare alternatives from which to choose among competing products'
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E-catalogs can be customized for the customer. For instance, a retailer may have
an agreement with a large company to supply some products at a discount. An em-
ployee of the company, viewing the catalog to purchase products for the company,
should see prices with the negotiated discount, instead of the regular prices. Because
of legal restrictions on sales of some types of items, customers who are underage, or
from certain states or countries, should not be shown items that cannot be legally sold
to them. Catalogs can also be personalized to individual users, on the basis of past
buying history. For instance, frequent customers may be offered special discounti on
some items.

Supporting such customization requires customer information as well as special
pricing/discount information and sales restriction information to be stored in a data,
base. There are also challenges in supporting very high transaction rates, which are
often tackled by caching of query results or generated Web pages.

25.3.2 Morketplqces
When there are multiple sellers or multiple buyers (or both) for a product, a market-
place helps in negotiating the price to be paid for the product. There are several dif-
ferent types of marketplaces:

o In a reverse auction system a buyer states requirements, and sellers bid for
supplying the item. The supplier quoting the lowest price wins. In a closed
bidding system, the bids are not made public, whereas in an open bidding
system the bids are made public.

o In an auction there are multiple buyers and a single seller. For simplicity, as-
sume that there is only one instance of each item being sold. Buyers bid for
the items being sold, and the highest bidder for an item gets to buy the item
at the bid price.

When there are multiple copies of an item, things become more compli-
cated: Suppose there are four items, and one bidder may want three copies
for $10 each, while another wants two copies for $13 each. It is not possible
to satisfy both bids. If the items will be of no value if they are not sold (for
instance, airline seats, which must be sold before the plane leaves), the seller
simply picks a set of bids that maximizes the income. Otherwise the decision
is more complicated.

o In an exchange, such as a stock exchange, there are multiple sellers and mul-
tiple buyers. Buyers can specify the maximum price they are willing to pay,
while sellers specify the minimum price they want. There is usually a market
maker who matches buy and sell bids, deciding on the price for each trade (for
instance, at the price of the sell bid).

There are other more complex types of marketplaces.
Among the database issues in handling marketplaces are these:

o Bidders need to be authenticated before they are allowed to bid.
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o Bids (buy or sell) need to be recorded securely in a database. Bids need to be

communicated quickly to other people involved in the marketplace (such as

all the buyers or all the sellers), who may be numerous.

o Delays in broadcasting bids can lead to financial losses to some participants.

o The volumes of trades may be extremely large at times of stock market volatil-

ity, or toward the end of auctions. Thus, very high performance databases with

large degrees of parallelism are used for such systems.

25.3.3 Order Settlement
After items have been selected (perhaps through an electronic catalog) and the price
determined (perhaps by an electronic marketplace), the order has to be settled. Set-
tlement involves payment for goods and the delivery of the goods.

A simple but unsecure w ay of payingelectronically is to send a credit card number.
There are two major problems. First, credit card fraud is possible. When a buyer pays
for physical goods, companies can ensure that the address for delivery matches the

catdholder's address, so no one else can receive the goods, but for goods delivered
electronically no such check is possible. Second, the seller has to be trusted to bill only
for the agreed-on item and to not pass on the card number to unauthorized people
who may misuse it.

Several protocols are available for secure payments that avoid both the problems
Iisted above. In addition, they provide for better privacy, whereby the seller may not

be given any unnecessary details about the buyer, and the credit card company is not
provided any unnecessary information about the items purchased. All information
iransmitted must be encrypted so that anyone intercepting the data on the network
cannot find out the contents. Public-/private-key encryption is widely used for this
task.

The protocols must also prevent person-in-the-middle attacks, where someone
can impersonate the bank or credit card company, oI even the seller, or buyer, and
steal seiret information. Impersonation can be perpetrated by passing off a fake key

as someone else's public key (the bank's or credit card company'S, or the merchant's
or the buyer's). Impersonation is prevented by a system of digital certificates, where-
by public keys are signed by a certification agency, whose public key is well known
(or which in turn has its public key certified by artother certification agency and so

on up to a key that is well known). From the well-known public key, the system can

auttrenticate the other keys by checking the certificates in reverse sequence. Digital
certificates were described earlier, in Section 8.8.3.3.

The Secure Electronic Transaction (SET) protocol is one such secure payment pro-

tocol. The protocol requires several rounds of communication between the buyer,

seller, and the bank, in order to guarantee safety of the transaction.
There are also systems that provide for greater anonymity, similar to that pro-

vided by physical cash. The DigiCash payment system is one such system. When

a payment is made in such a system, it is not possible to identify the purchaser. In

contrast, identifying purchasers is very easy with credit cards, and even in the case
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of SET, it is possible to identify the purchaser with the cooperation of the credit card
company or bank.

25.4 Mqin-Memory Dqtabqses
To allow a high rate of transaction processing (hundreds or thousands of transactions
per second), we must use high-performance hardware, and must exploit parallelism.
These techniques alone, however, are insufficient to obtain very low response times,
since disk I/O remains a bottleneck-about 10 milliseconds are required for each I/O,
and this number has not decreased at a rate comparable to the increase in processor
speeds. Disk I/O is often the bottleneck for reads, as well as for transaction commits.
The long disk latency (about 10 milliseconds average) increases not only the time to
access a data item, but also limits the number of accesses per second.

We can make a database system less disk bound by increasing the size of the
database buffer. Advances in main-memory technology let us construct large main
memories at relatively low cost. Today, commercial 64-bit systems can support main
memories of tens of gigabytes.

For some applications, such as real-time control, it is necessary to store data in
main memory to meet performance requirements. The memory size required for
most such systems is not exceptionally large, although there are at least a few appli-
cations that require multiple gigabytes of data to be memory resident. Since memory
sizes have been growing at a very fast rate, an increasing number of applications can
be expected to have data that fit into main memory.

Large main memories allow faster processing of transactions, since data are mem-
ory resident. However, there are still disk-related limitations:

o Log records must be written to stable storage before a transaction is commit-
ted. The improved performance made possible by ararge main memory may
result in the logging process becoming a bottleneck. We can reduce commit
time by creating a stable log buffer in main memory, using nonvolatile RAM
(implemented, for example, by battery-backed-up memory). The overhead
imposed by logging can also be reduced by the group-commif technique dis-
cussed later in this section. Throughput (number of transactions per second)
is still limited by the data-transfer rate of the log disk.

o Buffer blocks marked as modified by committed transactions still have to be
written so that the amount of log that has to be replayed at recovery time is
reduced. If the update rate is extremely high, the disk data-transfer rate may
become a bottleneck.

o If the system crashes, all of main memory is lost. on recovery, the system has
an emPty database buffer, and data items must be input from disk when they
are accessed. Therefore, even after recovery is complete, it takes some time be-
fore the database is fully loaded in main memory and high-speed processing
of transactions can resume.

On the other hand, a main-memory database provides opportunities for optimiza-
tions:
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o Since memory is costlier than disk space, internal data structures in main-
memory databases have to be designed to reduce space requirements. How-
ever, data structures can have pointers crossing multiple pages unlike those in
disk databases, where the cost of the I/Os to traverse multiple pages would be
excessively high. For example, tree structures in main-memory databases can
be relatively deep, unlike B+-trees, but should minimize space requirements.

o There is no need to pin buffer pages in memory before data are accessed, since
buffer pages will never be replaced.

o Query-processing techniques should be designed to minimize sPace over-
head, so that main-memory limits are not exceeded while a query is being
evaluated; that situation would result in paging to swap area, and would slow
down query processing.

o Once the disk I/O bottleneck is removed, operations such as locking and latch-
ing may become bottlenecks. Such bottlenecks must be eliminated by im-

provements in the implementation of these operations.

r Recovery algorithms can be optimized, since pages rarely need to be written
out to make space for other Pages.

TimesTen and DataBlitz aretwo main-memory database products that exploit sev-

eral of these optimizations, while the Oracle database has added special features to

support very large main memories. Additional information on main-memory data-

bases is given in the references in the bibliographical notes.
The process of committing a transaction T requires these records to be written to

stable storage:

o All log records associated with T that have not been output to stable storage

r The <T commit> log record

These output operations frequently require the output of blocks that are only par-

tially fitled. To ensure that nearly full blocks are output, we use the group-commit
technique. Instead of attempting to commit T when T completes, the system waits un-

til several transactions have completed, or a certain period of time has passed since

a transaction completed execution. It then commits the group of transactions that are

waiting, together. Blocks written to the log on stable storage would contain records

of several transactions. By careful choice of group size and maximum waiting time,

the system can ensure that blocks are full when they are written to stable storage

without making transactions wait excessively. This technique results, on average, in

fewer output operations per committed transaction.
Atthough gtoup commit reduces the overhead imposed by logging, it results in a

slight delay in commit of transactions that perform updates. The delay can be made

quite smali (say, 10 milliseconds), which is acceptable for many applications. These

delays can be eliminated if disks or disk controllers support nonvolatile RAM buffers

for write operations. Transactions can commit as soon as the write is performed on

the nonvolatile RAM buffer. In this case, there is no need for group commit.
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Note that group commit is useful even in databases with disk-resident data.

25.5 ReqlrTime Trsnsqction Systems
The integrity constraints that we have considered thus far pertain to the values stored
in the database. In certain applications, the constraints include deadlines by which a
task must be completed. Examples of such applications include plant management,
traffic control, and scheduling. When deadlines are included, correctness of an exe-
cution is no longer solely an issue of database consistency. Rather, we are concerned
with how many deadlines are missed, and b1r how much timd they are missed. Dead-
lines are characterized as follows:

o Hard deadline. Serious problems, suqh as system crash, may occur if a task is
not completed by its deadline.

o Firm deadline. The task has zero vahie if it is completed after the deadline.

o Soft deadlines. The task has diminishing value if it is completed after the
deadline, with the value approaching zero as the degree of lateness increases.

Systems with deadlines are called real-time $ystems.
Transaction management in real-time systems must take deadlines into account. If

the concurrency-control protocol determines that a transaction fr must wait, it may
cause fr to miss the deadline. In such cases, it may be preferable to pre-empt the
transaction holding the lock, and to allow ?-ll to proceed. Pre-emption must be used
with care, howevel, because the time lost by the pre-empted transaction (due to roll-
back and restart) may cause the transaction to miss its deadline. Unfortunately, it is
difficult to determine whether rollback or waiting is preferable in a given situation.

A major difficulty in supporting real-time constraints arises from the variance in
transaction execution time. In the best case, all data accesses reference data in the
database buffer. In the worst case, each accebs causes a buffer page to be written to
disk (preceded by the requisite log records)i followed by the reading from disk of
the page containing the data to be accessed. Because the two or more disk accesses
required in the worst case take several orders of magnitude more time than the main-
memory references required in the best case; transaction execution time can be esti-
mated only very poorly if data are resident on disk. Hence, main-memory databases
are often used if real-time constraints have to be met.

Howevet, even if data are resident in main memory, variances in execution time
arise from lock waits, transaction aborts, and so on. Researchers have devoted con-
siderable effort to concurrency control for real-time databases. They have extended
locking protocols to provide higher priority for transactions with early deadlines.
They have found that optimistic concurrency protocols perform well in real-time
databases; that is, these protocols result in fewer missed deadlines than even the
extended locking protocols. The bibliographigal notes provide references to research
in the area of real-time databases.

In real-time systems, deadlines, rather than absolute speed, are the most important
issue. Designing a real-time system involves qnsuring that there is enough processing
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power to meet deadlines without requiring excessive hardware resources. Achieving

this objective, despite the variance in execution time resulting from transaction man-

agement, remains a challenging problem.

25.6 Long-Durqtion Trqnsqctions
The transaction concept developed initially in the context of data-processing applica-
tions, in which most transactions are noninteractive and of short duration. Although
the techniques presented here and earlier in Chapters 75, 1,6, and 17 work well in

those appliiations, serious problems arise when this concept is applied to database
systems that involve human interaction. Such transactions have these key properties:

o Long duration. Once a human interacts with an active transaction, that trans-
action becomes a long-duration transaction from the perspective of the com-
puter, since human response time is slow relative to computer speed. Further-
more, in design applications, the human activity may involve hours, days, or

an even longer period. Thus, transactions may be of long duration in human

terms, as well as in machine terms.

r Exposure of uncommitted data. Data generated and displayed to a user by a

long-duration transaction are uncommitted, since the transaction may abort.
Thus, users-and, as a result, other transactions-may be forced to read un-

committed data. If several users are cooperating on a project, user transactions
may need to exchange data prior to transaction commit'

o Subtasks. An interactive transaction may consist of a set of subtasks initiated
by the user. The user may wish to abort a subtask without necessarily causing
the entire transaction to abort.

o Recoverabitity. It is unacceptable to abort a long-duration interactive transac-

tion because of a system crash. The active transaction must be recovered to a

state that existed shortly before the crash so that relatively little human work

is lost.

o Performance. Good performance in an interactive transaction system is de-
fined as fast response time. This definition is in contrast to that in a nonin-
teractive system, in which high throughput (number of transactions per sec-
ond) is the goal. Systems with high throughput make efficient use of system

resources. However, in the case of interactive transactions, the most costly
resource is the user. If the efficiency and satisfaction of the user is to be op-
timized, response time should be fast (from a human perspective). In those

cases where a task takes a long time, response time should be predictable (that

is, the variance in response times should be low), so that usels can manage

their time well.

In Sections 25.6.1 throu gh25.6.5, we shall see why these five properties are incompat-

ible with the techniques presented thus far and shall discuss how those techniques

can be modified to accommodate long-duration interactive transactions.
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25.6.1 Nonseriqlizqble Executions
The properties that we discussed make it impractical to enforce the requirement
used in earlier chapters that only serializable schedules be permitted. Each of the
concurrency-control protocols of Chapter 16 has adverse effects on long-duration
transactions:

o TWo-phase locking. When a lock cannot be granted, the transaction request-
ing the lock is forced to wait for the data item in question to be unlocked. The
duration of this wait is proportional to the duration of the transaction holding
the lock. If the data item is locked by a short-duration transaction, we expect
that the waiting time will be short (except in case of deadlock or extraordinary
system load). However, if the data item is locked by a long-duration transac-
tion, the wait will be of long duration. Long waiting times lead to both longer
response time and an increased chance of deadlock.

o Graph-based protocols. Graph-based protocols allow for locks to be released
earlier than under the two-phase locking protocols, and they prevent dead-
lock. Howevel, they impose an ordering on the data items. Tiansactions must
lock data items in a manner consistent with this ordering. As a result, a trans-
action may have to lock more data than it needs. Furthermore, a transaction
must hold a lock until there is no chance that the lock will be needed again.
Thus, long-duration lock waits are likely to occur.

o Timestamp-based protocols. Timestamp protocols never require a transac-
tion to wait. However, they do require transactions to abort under certain cir-
cumstances. If a long-duration transaction is aborted, a substantial amount of
work is lost. For noninteractive transactions, this lost work is a performance
issue. For interactive transactions, the issue is also one of user satisfaction. It
is highly undesirable for a user to find that several hours'worth of work have
been undone.

r Validation protocols. Like timestamp-based protocols, validation protocols
enforce serializability by means of transaction abort.

Thus, it appears that the enforcement of serializability results in long-duration waits,
in abort of long-duration transactions, or in both. There are theoretical results, cited
in the bibliographical notes, that substantiate this conclusion.

Further difficulties with the enforcement of serializability arise when we consider
recovery issues. We previously discussed the problem of cascading rollback, in which
the abort of a transaction may lead to the abort of other transactions. This phe-
nomenon is undesirable, particularly for long-duration transactions. If locking is
used, exclusive locks must be held until the end of the transaction, if cascading roll-
back is to be avoided. This holding of exclusive locks, howevel, increases the length
of transaction waiting time.

Thus, it appears that the enforcement of transaction atomicity must either lead to
an increased probability of long-duration waits or create a possibility of cascading
rollback.
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These considerations are the basis for the alternative concepts of correctness of

concurrent executions and transaction recovery that we consider in the remainder of

this section.

25.6.2 Concurrency Control
The fundamental goal of database concurrency control is to ensure that concurrent
execution of transactions does not result in a loss of database consistency. The con-
cept of serializability can be used to achieve this goal, since all serializable schedules
preserve consistency of the database. However, not all schedules that preserve consis-
tency of the database are serializable. For an example, consider again a bank database
consisting of two accounts A and B, with the consistency requirement that the sum
A + Bbe preserved. Although the schedule of Figure 25.5 is not conflict serializable,
it nevertheless preserves the sum of A + B. It also illustrates two important points
about the concept of correctness without serializability.

e Correctness depends on the specific consistency constraints for the database.

o Correctness depends on the properties of operations performed by each trans-
action.

In general it is not possible to perform an automatic analysis of low-level operations
by transactions and check their effect on database consistency constraints. However,
there are simpler techniques. One is to use the database consistency constraints as
the basis for a split of the database into subdatabases on which concurrency can be
managed separately. Another is to treat some operations besides read and write as
fundamental low-level operations and to extend concurrency control to deal with
them.

The bibliographical notes reference other techniques for ensuring consistency with-
out requiring serializability. Many of these techniques exploit variants of multiver-

A

read(B)
B : = B  - 7 0

write(B)

Figure 25.5 A non-conflict-serializable schedule,



25.6 Long-Duration Transactions 953

sion concurrency control (see Section 17.5). For older data-processing applications
that need only one version, multiversion protocols impose a high space overhead
to store the extra versions. Since many of the new database applications require the
maintenance of versions of data, concurrency-control techniques that exploit multi-
ple versions are practical.

25.5.3 Nested qnd Multilevel Trqnsoctions
A long-duration transaction can be viewed as a collection of related subtasks or sub-
transactions. By structuring a transaction as a set of subtransactions, we are able to
enhance parallelism, since it may be possible to run several subtransactions in paral-
lel. Furthermore, it is possible to deal with failure of a subtransaction (due to abort,
system crash, and so on) without having to roll back the entire long-duration trans-
action.

A nested or multilevel transaction 7 consists of a set T : {tt, t2, ...,tr} of sub-
transactions and a partial order P on 7. A subtransaction f1 in T may abort without
forcing T to abort. Instead, T may either restart ti or simply choose not to run fa. If
l; commits, this action does not make ti permanent (unlike the situation in Chap-
ter 77).Instead, ti commits to T, and may still abort (or require compensation-see
Section 25.6.4) if T aborts. An execution of T must not violate the partial order P. That
is, if an edge ti + tj appears in the precedence graph, then li ---+ li filust not be in
the transitive closure of P.

Nesting may be several levels deep, representing a subdivision of a transaction
into subtasks, subsubtasks, and so on. At the lowest level of nesting, we have the
standard database operations read and write that we have used previously.

If a subtransaction of ? is permitted to release locks on co#pletion, i is called
a multilevel transaction. When a multilevel transaction represents a long-duration
activity, the transaction is sometimes referred to as a saga. Alternatively, if locks held
by a subtransaction tt. of T are automatically assigned to ? on completi on of ti, T is
called a nested transaction.

Although the main practical value of multilevel transactions arises in complex,
long-duration transactions, we shall use the simple example of Figure 25.5 to show
how nesting can create higher-level operations that may enhance concurrency. We
rewrite transaction ft, using subtransactions ft,1 andT1,2,which perform increment
or decrement operations:

o fi consists of

Z TtJ, which subtracts 50 from A
J Tr,z, which adds 50 to B

Similarly, we rewrite transaction 72, using subtransactions ?2,1 andT2,2, which also
perform increment or decrement operations:

o 72 consists of

Z TzJ, which subtracts 10 from B
Z Tz.z, which adds 10 to A
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No ordering is specified on ?r,r, Tt,z, TzJ, andT2,2. Any execution of these subtrans-
actions will generate a correct result. The schedule of Figure 25.5 corresponds to the
schedule (  Tr  r .  Tq t ,  Tt  >,  Tt  t  ) .

25.6.4 Compensoting Trqnsqctions
To reduce the frequency of long-duration waiting, we arrange for uncommitted up-
dates to be exposed to other concurrently executing transactions. Indeed, multilevel
transactions may allow this exposure. However, the exposure of uncommitted data
creates the potential for cascading rollbacks. The concept of compensating transac-
tions helps us to deal with this problem.

Let transaction 7 be divided into several subtransactions 11 , t2, . . . ,tn. After a sub-
transaction ta commits, it releases its locks. Now, if the outer-level transaction 7 has to
be aborted, the effect of its subtransactions must be undone. Suppose that subtrans-
actions tr,. . .rf7, have committed, and that f7611 was executing when the decision to
abort is made. We can undo the effects of tpal by aborting that subtransaction. How-
ever, it is not possible to abort subtransactions f1, ...,tk, since they have committed
already.

Instead, we execute a new subtransaction cti, called a compensating transaction, to
undo the effect of a subtransaction fi. Each subtransaction li is required to have a
compensating transaction cfi. The compensating transactions must be executed in
the inverse order ctp, . . . , ctr.Here are several examples of compensation:

o Consider the schedule of Figure 25.5, which we have shown to be correct,
although not conflict serializable. Each subtransaction releases its locks once
it completes. Suppose that Tz fails just prior to termination, after 72,2 has re-
leased its locks. We then run a compensating transaction for ?.2,2 that subtracts
10 from A and a compensating transaction for T2l that adds 10 to B.

o Consider a database insert by transaction Tt that, as a side effect, causes a
B+-tree index to be updated. The insert operation may have modified several
nodes of the B+-tree index. Other transactions may have read these nodes in
accessing daia other than the record inserted by Ti. As in Section 17.8, we can
undo the insertion by deleting the record inserted by 4. The result is a correct,
consistent B+-tree, but is not necessarily one with exactly the same structure
as the one we had before fr started. Thus, deletion is a compensating action
for insertion.

o Consider a long-duration transaction 4 representing a travel reservation.
Transaction ? has three subtransactions: fr,1, which makes airline reserva-
tions; Ta,2, which reserves rental cars; and [,3, which reserves a hotel room.
Suppose that the hotel cancels the reservation. Instead of undoing alI of Ti,
we compensate for the failure of Ti3 by deleting the old hotel reservation and
making a new one.

If the system crashes in the middle of executing an outer-level transaction, its sub-
transactions must be rolled back when it recovers. The techniques described in Sec-
tion 17.8 can be used for this purpose.



25.6 Long-Duration Transactions

Compensation for the failure of a transaction requires that the semantics of the
failed transaction be used. For certain operations, such as incrementation or insertion
into a B+-tree, the corresponding compensation is easily defined. For more complex
transactions, the application programmers may have to define the correct form of
compensation at the time that the transaction is coded. For complex interactive trans-
actions, it may be necessary for the system to interact with the user to determine the
proper form of compensation.

25.6.5 lmplementqtion lssues
The transaction concepts discussed in this section create serious difficulties for im-
plementation. We present a few of them here, and discuss how we can address these
problems.

Long-duration transactions must survive system crashes. We can ensure that they
will by performing a redo on committed subtransactions, and by performing either
an undo or comPensation for any short-duration subtransactions that were active at
the time of the crash. However, these actions solve only part of the problem. In typ-
ical database systems, such internal system data as lock tables and transaction time-
stamps are kept in volatile storage. For a long-duration transaction to be resumed
after a crash, these data must be restored. Therefore, it is necessary to log not only
changes to the database, but also changes to internal system data pertaining to long-
duration transactions.

Logging of updates is made more complex when certain types of data items exist
in the database. A data item may be a CAD design, text of a document, or another
form of composite design. such data items are physically large. Thus, storing both
the old and new values of the data item in a log record is undesirable.

There are two approaches to reducing the overhead of ensuring the recoverability
of large data items:

o operation logging. only the operation performed on the data item and the
data-item name are stored in the log. Operation logging is also called logi-
cal logging. For each operation, an inverse operation must exist. We perform
undo using the inverse operation and redo using the operation itself. Recov-
ery through operation logging is more difficult, since redo and undo are not
idempotent. Further, using logical logging for an operation that updates mul-
tiple pages is greatly complicated by the fact that some, but not all, of the
updated pages may have been written to the disk, so it is hard to apply either
the redo or the undo of the operation on the disk image during recovery.

Using physical redo logging and logical undo logging, as described in Sec-
tion L7 .8, provides the concurrency benefits of logical logging while avoiding
the above pitfalls.

o Logging and shadow paging. Logging is used for modifications to small data
items, but large data items are often made recoverable via a shadow-copy
technique (see Section 15.3). When we use shadowing, it is possible to reduce
the overhead by keeping copies of only those pages that are actually modified.
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Regardless of the technique used, the complexities introduced by long-duration trans-
actions and large data items complicate the recovery process. Thus, it is desirable to

allow certain noncritical data to be exempt from logging, and to rely instead on of{-
line backups and human intervention.

25.7 Trqnsqction Monogementin Multidqtobqses
Recall from Section 22.8 that a multidatabase system creates the illusion of logical
database integration, in a heterogeneous database system where the local database
systems may employ different logical data models and data-definition and data-
manipulation languages, and may differ in their concurrency-control and transac-
tion-mana gement mechanisms.

A multidatabase system supports two tlpes of transactions:

1. Local transactions. These transactions are executed by each local database
system outside of the multidatabase system's control.

2. Global transactions. These transactions are executed under the multidatabase
system's control.

The multidatabase system is aware of the fact that local transactions may run at the
local sites, but it is not aware of what specific transactions are being executed, or of
what data they may access.

Ensuring the local autonomy of each database system requires that no changes be
made to its software. A database system at one site thus is not able to communicate
directly with one at any other site to synchronize the execution of a global transaction
active at several sites.

Since the multidatabase system has no control over the execution of local transac-
tions, each local system must use a concurrency-control scheme (for example, two-
phase locking or timestamping) to ensure that its schedule is serializable. In addition,
in case of locking, the local system must be able to guard against the possibility of lo-
cal deadlocks.

The guarantee of local serializability is not sufficient to ensure global serializabil-
ity. As an illustration, consider two global transactions 7r and 72, each of which ac-
cesses and updates two data items, A and B, located at sites ̂ 91 and 52, respectively.
Suppose that the local schedules are serializable. It is still possible to have a situation
where, at site St, Tz follows 7r, whereas, at 52, fi follows 72, resulting in a non-
serializable global schedule. Indeed, even if there is no concurrency among global
transactions (that is, a global transaction is submitted only after the previous one
commits or aborts),local serializability is not sufficient to ensure global serializabil-
ity (see Practice Exercise 25.7).

Depending on the implementation of the local database systems, a global trans-
action may not be able to control the precise locking behavior of its local subtrans-
actions. Thus, even if all local database systems follow two-phase locking, it may
be possible only to ensure that each local transaction follows the rules of the pro-
tocol. For example, one local database system may commit its subtransaction and
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release locks, while the subtransaction at another local system is still executing. If the
local systems permit control of locking behavior and all systems follow two-phase
locking, then the multidatabase system can ensure that global transactions lock in a
two-phase manner and the lock points of conflicting transactions would then define
their global serialization order. If different local systems follow different concurrency-
control mechanisms, however, this straightforward sort of global control does not
work.

There are many protocols for ensuring consistency despite concurrent execution
of global and local transactions in multidatabase systems. Some are based on impos-
ing sufficient conditions to ensure global serializability. Others ensure only a form of
consistency weaker than serializability, but achieve this consistency by less restric-
tive means. We consider one of the latter schemes: trno-leoel serializnbility. Section 25.6
describes further approaches to consistency without serializabilitli other approaches
are cited in the bibliographical notes.

A related problem in multidatabase systems is that of global atomic commit. If
all local systems follow the two-phase commit protocol, that protocol can be used
to achieve global atomicity. Howevel, local systems not designed to be part of a dis-
tributed system may not be able to participate in such a protocol. Even if a local sys-
tem is capable of supporting two-phase commit, the organization owning the system
may be unwilling to permit waiting in cases where blocking occurs. In such cases,
compromises may be made that allow for lack of atomicity in certain failure modes.
Further discussion of these matters appears in the literature (see the bibliographical
notes).

25.7.1 Two-Level Seriqlizobility
TWo-level serializability (2LSR) ensures serializability at two levels of the system:

o Each local database system ensures local serializability among its local trans-
actions, including those that are part of a global transaction.

o The multidatabase system ensures serializability among the global transac-
tions alone- ignoring the orderings induced by local transnctions.

Each of these serializabllity levels is simple to enforce. Local systems already offer
guarantees of serializability; thus, the first requirement is easy to achieve. The sec-
ond requirement applies to only a projection of the global schedule in which local
transactions do not appear. Thus, the multidatabase system can ensure the second
requirement by using standard concurrency-control techniques (the precise choice of
technique does not matter).

The two requirements of 2LSR are not sufficient to ensure global serializability.
However, under the 2lSR-based approach, we adopt a requirement weaker than se-
rializability, called strong correctness:

1. Preservation of consistency as specified by a set of consistency constraints

2. Guarantee that the set of data items read by each transaction is consistent
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It can be shown that certain restrictions on transaction behavior, combined with 2LSR,
are sufficient to ensure strong coffectness (although not necessarily to ensure serial-
izability). We list several of these restrictions.

In each of the protocols, we distinguish between local data and global data. Local
data items belong to a particular site and are under the sole control of that site. Note
that there cannot be any consistency constraints between local data items at distinct
sites. Global data items belong to the multidatabase system, and, though they may
be stored at a local site, are under the control of the multidatabase system.

The global-read protocol allows global transactions to read, but not to update,
local data items, while disallowing all access to global databy local transactions. The
global-read protocol ensures strong correctness if all these conditions hold:

1. Local transactions access only local data items.

2. Global transactions may access global data items, and may read local data
items (although they must not write local data items).

3. There are no consistency constraints between local and global data items.

The local-read protocol grants local transactions read access to global data, but
disallows all access to local data by global transactions. In this protocol, we need to
introduce the notion of a value dependency. A transaction has a value dependency
if the value that it writes to a data item at one site depends on a value that it read for
a data item on another site.

The local-read protocol ensures strong correctness if all these conditions hold:

1. Local transactions may access local data items, and may read global data items
stored at the site (although they must not write global data items).

2. Global transactions access only global data items.

3. No transaction may have a value dependency.

The global-read-write/local-read protocol is the most generous in terms of data
access of the protocols that we have considered. It allows global transactions to read
and write local data, and allows local transactions to read global data. However, it
imposes both the value-dependency condition of the local-read protocol and the con-
dition from the global-read protocol that there be no consistency constraints between
local and global data.

The global-read-write/local-read protocol ensures strong cortectness if all these
conditions hold:

Local transactions may access local data items, and may read global data items
stored at the site (although they must not write global data items).

Global transactions may access global data items as well as local data items
(that is, they may read and write all data).

1..
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Summary

There are no consistency constraints between local and global data items.

No transaction may have a value dependency.

25.7.2 Ensuring Globql Seriqlizqbility
Early multidatabase systems restricted global transactions to be read only. They thus
avoided the possibility of global transactions introducing inconsistency to the data,
but were not sufficiently restrictive to ensure global serializability. It is indeed pos-
sible to get such global schedules and to develop a scheme to ensure global serializ-
ability, and we ask you to do both in Practice Exercise 25.8.

There are a number of general schemes to ensure global serializability in an envi-
ronment where update as well read-only transactions can execute. Several of these
schemes are based on the idea of a ticket. A special data item called a ticket is created
in each local database system. Every global transaction that accesses data at a site
must write the ticket at that site. This requirement ensures that global transactions
conflict directly at every site they visit. Furthermore, the global transaction manager
can control the order in which global transactions are serialized, by controtling the
order in which the tickets are accessed. References to such schemes appear in the
bibliographical notes.

If we want to ensure global serializability in an environment where no direct lo-
cal conflicts are generated in each site, some assumptions must be made about the
schedules allowed by the local database system. For example, if the local schedules
are such that the commit order and serialization order are always identical, we can
ensure serializability by controlling only the order in which transactions commit.

The problem with schemes that ensure global serializability is that they may re-
strict concuffency unduly. They are particularly likely to do so because most trans-
actions submit SQL statements to the underlying database system, instead of submit-
ting individual read, write, commit, and abort steps. Although it is still possible to
ensure global serializability under this assumption, the level of concurrency may be
such that other schemes, such as the two-level serializability technique discussed in
Section 25.7.1., are attractive alternatives.

25.8 Summory
o Workflows are activities that involve the coordinated execution of multiple

tasks performed by different processing entities. They exist not just in com-
puter applications, but also in almost all organizational activities. With the
growth of networks, and the existence of multiple autonomous database sys-
tems, workflows provide a convenient way of carrying out tasks that involve
multiple systems.

o Although the usual ACID transactional requirements are too strong or are
unimplementable for such workflow applications, workflows must satisfy a
limited set of transactional properties that guarantee that a process is not left
in an inconsistent state.
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o Transaction-processing monitors were initially developed as multithreaded
servers that could service large numbers of terminals from a single process.
They have since evolved, and today they provide the infrastructure for build-
ing and administering complex transaction-processing systems that have a
large number of clients and multiple servers. They provide services such as
durable queueing of client requests and server resPonses, routing of client
messages to servers, persistent messaging, load balancing, and coordination
of two-phase commit when transactions access multiple servers.

o E-commerce systems have become a core part of commerce. There are several
database issues in e-commerce systems. Catalog management, especially per-
sonalization of the catalog, is done with databases. Electronic marketplaces
help in pricing of products through auctions, reverse auctions, or exchanges.
High-performance database systems are needed to handle such trading.
Orders are settled by electronic payment systems, which also need high-
performance database systems to handle very high transaction rates.

o Large main memories are exploited in certain systems to achieve high system
throughput. In such systems,logging is a bottleneck. Under the group-commit
concept, the number of outputs to stable storage can be reduced, thus releas-
ing this bottleneck.

o The efficient management of long-duration interactive transactions is more
complex, because of the long-duration waits and because of the possibility of
aborts. Since the concurrency-control techniques used in Chapter 16 use waits,
aborts, or both, alternative techniques must be considered. These techniques
must ensure correctness without requiring serializability.

o A long-duration transaction is represented as a nested transaction with atomic
database operations at the lowest level. If a transaction fails, only active short-
duration transactions abort. Active long-duration transactions resume once
any short-duration transactions have recovered. A compensating transaction
is needed to undo updates of nested transactions that have committed, if the
outer-level transaction fails.

o In systems with real-time constraints, correctness of execution involves not
only database consistency but also deadline satisfaction. The wide variance
of execution times for read and write operations complicates the transaction-
management problem for time-constrained systems.

o A multidatabase system provides an environment in which new database aP-
plications can access data from a variety of pre-existing databases located in
various heterogeneous hardware and software environments'

The local database systems may employ different logical models and data-
definition and data-manipulation languages, and may differ in their concur-
rency-control and transaction-management mechanisms. A multidatabase
system creates the illusion of logical database integration, without requiring
phvsical database integration.
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Prqctice Exercises
25.1 Like database systems, workflow systems also require concurrency and recov-

ery management. List three reasons why we cannot simply apply a relational
database system using2PL, physical undo logging, and2PC.

25.2 Consider a main-memory database system recovering from a system crash.
Explain the relative merits of

o Loading the entire database back into main memory before resuming trans-
action processing

o Loading data as it is requested by transactions

25.3 Is a high-performance transaction system necessarily a real-time system? Why
or why not?

25.4 Explain why it may be impractical to require serializability for long-duration
transactions.

25.5 Consider a multithreaded process that delivers messages from a durable queue
of persistent messages. Different threads may run concurrently, attempting to
deliver different messages. In case of a delivery failure, the message must be
restored in the queue. Model the actions that each thread carries out as a mul-
tilevel transaction, so that locks on the queue need not be held till a message is
delivered.

25.5 Discuss the modifications that need to be made in each of the recovery schemes
covered in Chapter 77 if we allow nested transactions. Also, explain any differ-
ences that result if we allow multilevel transactions.

25.7 Consider a multidatabase system in which it is guaranteed that at most one
gtobal transaction is active at any time, and every local site ensures local seri-
alizabillty.

a. Suggest ways in which the multidatabase system can ensure that there is
at most one active global transaction at any time.

b. Show by example that it is possible for a nonserializable global schedule
to result despite the assumptions.

25.8 Consider a multidatabase system in which every local site ensures local serial-
izablllty, and all global transactions are read only.

a. Show by example that nonserializable executions may result in such a sys-
tem.

b. Show how you could use a ticket scherne to ensure global serializability.

Exercises

25.9 Exptain how a TP monitor manages memory and processor resources more
effectively than a typical operating system.



Exercises

25.10 Compare TP-monitor features with those provided by Web servers supporting
servlets (such servers have been nicknamedTP-Iite).

25.11 Consider the process of admitting new students at your university (or new
employees at your organization).

a. Give a high-level picture of the workflow starting from the student appli-
cation procedure.

b. Indicate acceptable termination states and which steps involve human in-
tervention.

c. Indicate possible errors (including deadline expiry) and how they are dealt
with.

d. Study how much of the workflow has been automated at your university.

25.L2 Answer the following questions regarding electronic payment systems.
a. Explain why electronic transactions carried out using credit card numbers

are insecure.
b. An alternative is to have an electronic payment gateway maintained by the

credit card company, and the site receiving payment redirects customers to
the gateway site to make the payment.
i. Explain what benefits such a system offers if the gateway does not au-

thenticate the user
ii. Explain what further benefits are offered if the gateway has a mecha-

nism to authenticate the user.
c. Some credit card companies offer a one-time-use credit card number as

a more secure method of electronic payment. Customers connect to the
credit card companys web site to get the one-time-use number. Explain
what benefit such a system offers, as compared to using regular credit card
numbers. Also explain its benefits and drawbacks as compared to elec-
tronic payment gateways with authentication.

d. Does either of the above systems guarantee the same privacy that is avail-
able when payments are made in cash? Explain your answer.

25.13 If the entire database fits in main memory, do we still need a database system
to manage the data? Explain your answer.

25.14 rn the group-commit technique, how many transactions should be part of a
group? Explain your answer.

25.15 In a database system using write-ahead logging, what is the worst-case num-
ber of disk accesses required to read a data item from a specified disk page.
Explain why this presents a problem to designers of real-time database sys-
tems. Hint: consider the case when the disk buffer is full.

25.16 What is the purpose of compensating transactions? Present two examples of
their use.

25.17 Explain the connections between a workflow and a long duration transaction.
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This part describes how different database systems integrate the various concepts de-
scribed earlier in the book. We begin by covering a widely used open-source database
system, PostgresQL, in Chapter 26. Three widely used commerial database systems-
IBM DB2, oracle, and Microsoft sgl server-are covered in Chapters 27,29, and 29.
These three rePresent three of the most widely used commercial database systems.

Each of these chapters highlights unique features of each daiabase system: tools,
S.QL variations and.extensions, and system architecture, including storage organiza-
tron, query processing, concurrency control and recovery, and replication.

The chapters cover only key aspects of the database products they describe, and
therefore should not be regarded as a comprehensive coverage of the product. Fur-
thermore, since products are enhanced regularly, details of the product may change.
When using a particular product version, be sure Lo consult the user manuals ior
specific details.

Keep in mind that the chapters in this part often use industrial rather than aca-
demic ferminology. For instance, they use table instead of relation, row instead of
tuple, and column instead of attribute.





PostgreSQl is an open-source object-relational database management system. It is a
descendant of one of the earliest such systems, the Postgres system developed un-
der Professor Michael Stonebraker at the University of California at Berkeley. The
name "Postgres" is derived from the name of a pioneering relational database sys-
tem, Ingres, also developed under stonebraker at Berkeley. Currently, postgresel
supports SQL92 and SQL:1999 and offers features such as complex queries, foreign
keys, triggers, views, transactionat integrity, and multiversion concurrency control.
In addition, users can extend PostgresQl with new data types, functions, operators or
index methods. PostgresQl works with a variety of programming languages (includ-
ing C, C++, Java, Perl, Tcl, and Python). Perhaps the strongest point of postgreSel
is that it, along with MysQL, are the two most widely used open-source relational
database systems. The PostgresQl license is the BSD license, which grants permis-
sion to anyone for the use, modification, and distribution of the PostgreSQl code and
documentation for any purpose without fee.

26.1 Introduction
In the course of over a decade, PostgreSQl has undergone several major releases.
The first prototype system, under the name Postgres, was demonstrated at the 1988
ACM SIGMOD conference. Version 1 was distributed to users in 1989. After the sub-
sequent versions added a new rule system, support for multiple storage managers,
and an improved query executor, the system developers focused on portability and
performance until 1.994, when an sQL language interpreter was added. Under a new
name, Postgres95, the system was released to the Web and later commercializedby

967
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Illustra Information Technologies (later merged into Informix, which is now owned

by iBM). By 7996, the name Postgres95 was was replaced by PostgreSQl, to reflect

the relationship between the original Postgres and the more recent versions with SQL

capability.
PostgreSQl runs under virtually all Unix-like operating systems, including Linux

and Apple Macintosh OS X. PostgreSQl can be run under Microsoft Windows in the

Cygwin environment, which provides Linux emulation under Windows. The most

recent version, 8.0, released in January 2005 offers native Microsoft Windows sup-

port.
Today, PostgreSQl is used to implement several different research and production

applications (such as the Sequoia 2000 scientific computing project) and an educa-

tional tool at several universities. The system continues to evolve through the contri-

butions of a community of about 1000 developers. In this chapter, we explain how the

PostgreSQl works, starting from user interfaces and languages and continuing into

the heart of the system (the data structures and the concurrency-control mechanism).

26.2 User Interfqces
The standard distribution of PostgreSQl comes with commandline tools for admin-
istrating the database. However, there is a wide range of commercial and open-source

Figure26.1 pgAdmin III: An open-source database administration GUI.
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Figure26.2 Data Architect: A multiplatform database design GUI.

graphical administration and design tools that support PostgreSQl. PostgreSQl offers
a comprehensive set of programming interfaces.

26.2.1 lnterqctive Terminql lnterfqces
Like most database systems, PostgreSQl offers command-line tools for database ad-
ministration. The main interactive terminal client is psql, which is modeled after the
Unix shell and allows execution of SQL commands on the server, as well as several
other operations (such as client-side copying). Some of its features are:

o Variables. psql provides variable substitution features, similar to common
Unix command shells.

o SQL interpolation. The user can substitute ("interpolate") psql variables into
regular SQL statements by placing a colon in front of the variable name.

o Command-line editing. psql uses the GNU readline library for convenient line
editing, with tab-completion support.

PostgresQl also features pgtksh and pgtclsh, which are versions of the Tk and Tcl
(wish) shells that additionally include PostgreSQl bindings. TcllTk is a flexible script-
ing language, commonly used for rapid prototyping.
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26.2.2 Grophicol Interfqces
The standard distribution of PostgreSQl does not contain any graphical tools. How-

ever, several graphical user interface tools exist, and users can choose among com-
mercial and open-source alternatives. Many of these go through rapid release cycles;
the following list reflects the state of affairs at the time of this writing.

There are graphical tools for administration, including pgAccess and pgAdmin,
the latter of which is shown in Figure 26.1. Tools for database design include TORA

and Data Architect, the latter of which is shown inFigure26.2.
PostgreSQl works with several commercial forms-design and report-generation

tools. Open-source alternatives include Rekall (shown in Figures 26.3 and26.4), GNU
Report Generator, and a more comprehensive tool suite, GNU Enterprise.

26.2.3 Progromming Longuoge Interfqces
PostgreSQl provides native interfaces for ODBC and JDBC, as well as bindings for
most programming languages, including C, C++, PHP, Perl, Tcl/Tk, ECPG, Python,
and Ruby.

Figure 26.3 Rekall: Form-design GUI.
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Figure26.4 Rekall: Report-designGUL

The C application programmer interface for PostgreSQl is libpq, which is also the
underlying engine for most programming-language bindings (thus, all of its features
are also available in the other supported languages). The libpq library supports both
synchronous and asynchronous execution of sQL commands and prepared state-
ments. It is re-entrant and thread-safe. It uses environment variables for certain pa-
rameters and an optional password file for connections that require authentication.

26.3 SQL Vqriqtions ond Extensions
PostgreSQl is ANSI SQL compliant. It supports almost all entry-level SQL92 features
(which is what most relational database system vendors mean by seL92 confor-
mance) and many of the intermediate- and full-level features. Finally, it supports
several of the SQL:1999 features (including most object-relational features described
in Chapter 9); in fact, some of those (such as arrays, functions, and inheritance) were
pioneered by PostgreSQl or its ancestors. It lacks OLAP features (most notably, cube
and rollup), but data from PostgreSQl can be easily loaded into open-source external
OLAP servers (such as Mondrian) as well as commercial products.

25.3.1 PostgreSQL Types
PostgreSQl has support for several nonstandard types, useful for specific application
domains. Furthermore, users can define new types with the create type command.
This includes new low-level base types, typically written in C (see Section 26.3.9.7).
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26.3.1.1 The PostgreSQL Type System
PostgreSQl types fall into the following categories:

o Base types. Base types are also known as abstract data types; that is, modules
that encapsulate both state and a set of operations. These are implemented
below the SQL level, typically in a language such as C (see Section 26.3.3.1).
Examples are int4 (already included in PostgreSQl) or complex (included as
an optional extension type). A base type in PostgreSQl is automatically accom-
panied by an array type that can store variable-Iength arrays of the particular
base type.

o Composite types. These correspond to table rows; that is, they are a list of field
names and their respective base types. A composite type is created implicitly
whenever a table is created, but users may also construct them explicitly.

o Domains. These are very much like base types (and often the two are inter-
changeable), but may have constraints on allowed values.

o Pseudotypes. Currently, PostgreSQl supports the following pseudotyPes:
anyt anyarray, anyelement, cstring, internal,lnnguage-handler, record, trigger, and
aoid. These cannot be used in composite types (and thus cannot be used for
table columns), but can be used as argument and return types of user-defined
functions.

r Polymorphic types. The two pseudotypes anyelement and anyarray are collec-
tively known as polymorphic. Functions with arguments of these types (cor-

respondingly called polymorphic functions) may operate on any actual type.
PostgreSQl has a simple type-resolution scheme that requires that: (1) in any
particular invocation of a polymorphic function, all occurrences of a polymor-
phic type must be bound to the same actual type (that is, a function defined as

f (anyelement, anyelement) may operate only on pairs of the same actual type),
and (2) if the return type is polymorphic, then at least one of the arguments
must be of the same polymorphic type.

26.3.1.2 Nonstqndsrd Types
The types described in this section are included in the standard distribution. Further-
more, thanks to the open nature of PostgreSQl, there are several contributed exten-
sion types, such as complex numbers, and ISBN/ISSNs (see Section 26.3.3).

Geometric data types (point, line, lseg, box, polygon, path, circle) are used in geo-
graphic information systems to represent two-dimensional spatial objects such as
points, line segments, polygons, paths, and circles. Numerous functions and opera-
tors are available in PostgreSQl to perform various geometric operations such as scal-
ing, translation, rotation, and determining intersections. Furthermore, PostgreSQl
supports indexing of these types using R-trees (Sections 24.3.5.3 and26.5.2.1).

PostgreSQl offers data types to store network addresses. These data types allow
network-management applications to use a PostgreSQl database as their data store.
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For those familiar with computer networking, we provide abrief summary of this
feature here. separate types exist for rPv4,rPv6, and Media Access Control (MAC)
addresses (cidr, inet and macaddr, respectively). Both inet and cidr types can store
IPv4 and IPv6 addresses, with optional subnet masks. Their main difference is in
input/output formatting, as well as the restriction that classless Internet domain
routing (CIDR) addresses do not accept values with nonzero bits to the right of the
netmask. The macaddr type is used to store MAC addresses (typically, Ethernet card
hardware addresses). PostgresQl supports indexing and sorting on these types, as
well as a set of operations (including subnet testing, and mapping MAC addresses to
hardware manufacturer names). Furthermore, these types offer input-error checking.
Thus, they are preferable over plain text fields.

PostgreSQl bit type can store both fixed and variable-length strings of 1s and 0s.
PostgreSQl supports bit-logical operators and string-manipulation functions.

26.3.2 Rules qnd Other Active-Dqtqbqse Feqtures
PostgreSQl supports SQL constraints and triggers (and stored procedures; see Sec-
tion 26.3.3). Furthermore, it features query-rewriting rules that can be declared on
the server.

PostgreSQl allows check constraints, not-null constraints, and primary-key and
foreign-key constraints (with restricting and cascading deletes).

Like many other relational database systems, PostgreSQl supports triggers, wh-
ich are useful for nontrivial constraints and consistency checking or enforcement.
Trigger functions can be written in a procedural language such as pl/pgsel(see Sec-
tion26.3.3.4) or in C, but not in plain SQL. Triggers can execute before or after insert,
update, or delete operations and either once per modified row or once per sel- state-
ment.

The PostgreSQl rules system allows users to define query-rewrite rules on the
database server. Unlike stored procedures and triggers, the rule system intervenes
between the query parser and the planner and modifies queries on the basis of the
set of rules. After the original query tree has been transformed into one or more trees,
they are passed to the query planner. Thus, the planner has all the necessary infor-
mation (tables to be scanned, relationships between them, qualifications, join infor-
mation, and so forth) and can come up with an efficient execution plan, even when
complex rules are involved.

The general syntax for declaring rules is:

create rule rule_name as
on { select I insert I update I delete }
to table I where rule4ualificationl
do I instead I { nothing I command | ( command ; commnnd ... ) }

The rest of this section provides examples that illustrate the rule system's capabil-
ities. More details on how rules are matched to query trees and how the latter are
subsequently transformed can be found in the PostgreSQl documentation (see the
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bibliographic notes). The rule system is implemented in the rewrite phase of query
processing and explained in Section 26.6.1'.

First, PostgreSQl uses rules to implement views. A view definition such as:

create view myaiew as select * from mytab;

is converted into the following rule definition:

create table myzsiew (same column list as mytab);
create rule return as on select to mvaiew do instead

select * frommytab;

Queries on myaiew are transformed before execution to queries on the underlying
table mytab. The create view syntax is considered better programming form in this
case, since it is more concise and it also prevents creation of views that reference
each other (which is possible if rules are carelessly declared, resulting in potentially
confusing runtime errors). However, rules can be used to define update actions on
views explicitly (create view statements do not allow this).

As another example, consider the case where the user wants to audit table updates.
Something like this could be achieved by a rule such as:

create nl.le salnry-nudit as on update to employee
where new.salary <> old.salarY
do insert into salarY-nudit
values (currenltimestamp, currenluser,

new.emp-name, old.salary, new.salary ) )

Finally, we give a stightly more complicated insert/update rule. Assume that pend-
ing salary increases are stored in a table salary-increnses(emp-name,increase). We can
declare a "dummy" table approaed-increases with the same fields and then define the
following rule:

create rule npproa edincreasesjnsert
as on insert to appror:edjncrenses
do instead
update employee

setsalary: salarA I new.inuense
where emp:name : rl.ew.emP-fi.aflv)

Then the following query:

insert into approa edjncreases select * ftom salary -incr e nses;

will update all salaries inthe employee table at once.
The PostgreSQl rule system can be used to implement most triggers. Some kinds

of constraints (especially foreign keys) cannot be implemented by rules. Also, if vi-
olation of a constraint generates an error message (as opposed to silently throwing
away the invalid values, by declaring a "... do instead nothing" rule), then triggers
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have to be used. tiggers cannot be used for update or delete actions on views. Since
there is no real data in a view relation, the trigger would never be called.

Finally, a trigger is fired once for every affected row. A rule, on the other hand,
manipulates the query tree before query planning. So if a statement affects many
rows, a rule is far more efficient than a trigger.

The implementation of triggers and constraints in PostgreSQl is outlined briefly
in Section 26.6.4.

26.3.3 Extensibility
Like most relational database systems, PostgreSQl stores information about data-
bases, tables, columns, and so forth, in what are commonly known as system cat-
alogs, which appear to the user as normal tables. Other relational database systems
are typically extended by changing hard-coded procedures in the source code or by
loading special extension modules written by the vendor.

However, unlike most relational database systems, PostgreSQl goes one step fur-
ther and stores much more information in its catalogs: not only information about
tables and columns, but also information about data types, functions, access meth-
ods, and so on. Therefore, PostgreSQl is easy for users to extend and facilitates rapid
prototyping of new applications and storage structures. PostgreSQl can also incor-
porate user-written code into the server, through dynamic loading of shared objects.
This provides an alternative approach to writing extensions that can be used when
catalog-based extensions are not sufficient.

Furthermore, the contrib module of the PostgreSQl distribution includes numer-
ous user functions (for example , array iterators, fuzzy string matching, crlptographic
functions), base types (for example, encrypted passwords, ISBN/ISSNs, n-dimensional
cubes) and index extensions (for example, RD-trees, full-text indexing). Thanks to the
open nature of PostgreSQl, there is a large community of PostgreSQl professionals
and enthusiasts who also actively extend PostgreSQl on an almost daily basis. Exten-
sion types are identical in functionality to the built-in types (see also Section 26.3.7.2);
the latter are simply already linked into the server and pre-registered in the system
catalog. Similarly, this is the only differencebetweenbuilt-in and extension functions.

26.3.3.1 Types
PostgreSQl allows users to define composite types, as well as to extend the available
base types.

A composite-type definition is similar to a table definition (in fact, the latter implic-
itly does the former). Stand-alone composite types are typically useful for function
arguments. For example, the definition

create type city-t as (namevarchar(80), state char;(2))

allows functions to accept and return city-t tuples, even if there is no table that explic-
itly contains rows of this type.
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Adding base types to PostgreSQl is straightforward; an example can be found in

complex.sql and complex.c in the tutorials of the PostgreSQl distribution. The base
type can be declared in C, for example:

typedef struct Complex {
double x;
double Y;

) Complex;

Then, the user has to define functions to read and write values of the new type in
text format (see Section 26.3.3.2). Subsequently, the new type can be registered using
the statement:

create type complex {
internallength = 76,
input = complex-in,
output = complex-out,

- alignment = double

J;

assuming the text I/O functions have been registered as complex-in and complex-out.
The user has the option of defining binary I/O functions as well (for more ef-

ficient data dumping). Extension types can be used like the existing base types of
PostgreSQl. In fact, their only difference is that the extension types are dynamically
loaded and linked into the server. Furthermore, indices may be extended easily to
handle new base types; see Section 26.3.3.3.

26.3.3.2 Functions
PostgreSQl allows users to define functions that are stored and executed on the
server. PostgreSQl also supports function overloading (that is, functions may be de-
clared by using the same name but with arguments of different types). Functions can
be written as plain SQL statements. Also, several procedural languages are supported
(covered in Section 26.3.3.4). Finally, PostgreSQl has an application programmer in-
terface for adding functions written in C (explained in this section).

User-defined functions can be written in C (or a language with compatible calling
conventions, such as C++). The actual coding conventions are essentially the same for
dynamically loaded, user-defined functions, as well as for internal functions (which

are statically linked into the server). Hence, the standard internal function library is a
rich source of coding examples for user-defined C functions. Once the shared library
containing the function has been created, a declaration such as the following registers
it on the server:

create function complex-out(complex)
returns cstring
as'shareilobjeclfilename'
language C immutable strict;
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The entry point to the shared object file is assumed to be the same as the SQL function
name (here, complex-out), unless otherwise specified.

The example here continues the one from Section26.3.3.1. The application pro-
gram interface hides most of PostgreSQl's internal details. Hence, the actual C code
for the above text output function of complex values is quite simple:

pg-function-inf o*v1 (complex_out);
Datum complex-out(pg_function-args) {

Complex *complex = (Complex *) pg_getarg-pointer(0);
char *result;

result = (char *) palloc(loo);
snprintf (result, 1 00, " (Vo g,Vo g)", complex - >x, complex - )y);

. 
P8-return-cstring(result);

Aggregate functions in PostgreSQl operate by updating a state value via a state
transition function which is called for each tuple value in the aggregation group. For
example, the state for the avg operator consists of the running sum and the count of
values. As each tuple arrives, the transition function should simply add its value to
the running sum and increment the count by one. Optionally, a final function may be
called to compute the return value based on the staie information. For example, the
final function for avg would simply divide the running sum by the count and return
it.

Thus, defining a new operator is as simple as defining these two functions. For the
complextype example, if complex-addis a user-defined function that takes two complex
arguments and returns their sum, then the sum aggregate operator can be extended
to complex numbers using the simple declaration:

create aggregate sum (
sfunc = complex-add,
basetype = complex,
stype = complex,
initcond ='(0,0)'

);

Note the use of function overloading: PostgreSQl will call the appropriate sum ag-
gregate function, on the basis of the actual type of its argument during invocation.
The basetype is the argument tlpe and stype is the state value type. In this case, a fi-
nal function is unnecessary, since the return value is the state value itself (that is, the
running sum in both cases).

User-defined functions can also be invoked by using operator syntax. Beyond sim-
ple "syntactic sugar" for function invocation, operator declarations can also provide
hints to the query optimizer in order to improve performance. These hints may in-
clude information about commutativity, restriction and join selectivity estimation,
and various other properties related to join algorithms.
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26.3.3.3 Index Extensions
PostgreSQl supports the usual B-tree and hash indices, as well as R-tree indices
(for two-dimensional spatial objects) and generic GiST indices (which are unique to
PostgreSQl, and explained in Section 26.5.2.7). All of these can be easily extended to
accommodate new base types.

Adding index extensions for a type requires definition of an operator class, that
encapsulates the following:

o Index-method strategies. These are a set of operators that can be used as qual-
ifiers in where clauses. The particular set depends on the index type. For ex-
ample, B-tree indices can retrieve ranges of objects, so the set consists of five
operators (1, 1:, :, ):, and )), all of which can appear in a where clause
involving a B-tree index). A hash index allows only equality testing and an
R-tree index allows a number of spatial relationships (for example contained,
to-the-left, and so forth).

o Index-method support routines. The above set of operators is typically not
sufficient for the operation of the index. For example, a hash index requires
a function to compute the hash value for each object. An R-tree index needs
to be able to compute intersections and unions and to estimate the size of
indexed objects.

For example, if the following functions and operators are defined to compare the
magnitude of complex numbers (see Section 26.3.3.1), then we can make such objects
indexable by the following declaration:

create operator class complex-abs-ops
default for type complex using btree as

operator 1, <(complex, complex),
operator 2.--: @omplex, complex),
operator J : (complex, complex),
operator 4 >: (complex, complex),
operator 5 > (complex, complex),
function 1, complex-nbstmp(complex, complex) ;

The operator statements define the strategy methods and the function statements
define the support methods.

26.3.3.4 Procedurql Longuoges
Stored functions and procedures can be written in a number of procedural languages.
Furthermore, PostgreSQl defines an application programmer interface for hooking
up any programming language for this PurPose. Programming languages can be
registered on demand and are either trusted or untrusted. The latter allow unlim-
ited access to the DBMS and the file system, and writing stored functions in them
requires superuser privileges.
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o PLlpqSQL. This is a trusted language that adds procedural programming ca-
pabilities (for example, variables and control flow) to sQL. It is very similar to
Oracle's PLISQL. Even though code cannot be transferred verbatim from one
to the other, porting is usually simple.

o PL/Tcl, PL/Perl, and f,f/Python. These leverage the power of Tcl, perl and
Python to r,rrite stored functions and procedures on the server. The first two
come in both trusted and untrusted versions (PL/Tcl, pl/Perl and pLlTclU,
PL/PerlU, respectively), while PllPython is untrusted at the time of this writ-
ing. Each of these has bindings that allow access to the database system via a
language-specific interface.

26.3.3.5 Server Progromming Interfqce
The server programming interface (SpD is an application programmer interface that
allows user-defined C functions (see Section 26.3.3.2) to run arbitrary SQL commands
inside their functions. This gives writers of user-defined functions the ability to im-
plement only essential parts in C and easily leverage the full power of the relational
database system engine to do most of the work.

26.4 Trqnsqction Monogement in PostgresQL
The PostgreSQl concurrency control implements both multiversion concurrency con-
trol (MVCC) and two-phase locking. Which one of the two protocols is used depends
on the type of statement being executed. For DML statements 1 a MVCC scheme sim-
ilar to the one presented in Section 16.5.1 is used. Concurrency control for DDL state-
ments, on the other hand, is based on standard two-phase locking.

25.4.1 PostgreSQl Concurrency Control
Since the details of the PostgreSQl MVCC protocol depend on the isolation leael re-
quested by the application, we begin with an overview of the isolation levels offered
by PostgreSQl. We then describe the key ideas behind the PostgreSQl MVCC scheme,
followed by discussion of their implementation in postgresel MVCC and some im-
plications regarding the PostgresQl storage management, the design of user appti-
cations for PostgreSQl, and the performance of a PostgreSQl database. We conclude
this section with an overview of locking for DDL statements and a discussion of con-
currency control for indices.

26.4.1.1 PostgreSQL lsolotion Levels
The SQL standard defines three weak levels of consistency, in addition to the seri-
alizable level of consistency, on which most of the discussion in this book is based.

1. A DML statement is any statement that updates or reads data within a table, that is, select, insert,
update, fetch, and copy. DDL statements affect entire tables; they can remove a table or change the schema
of a table, for example. DDL statements and some other PostgreSQl specific-statements will be discussed
later in this section.
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Figure 26.5 Definition of the four standard SQL isolation levels.

The purpose of providing the weak consistency levels is to allow a higher degree of

concurrency for applications that don't require the strong guarantees that serializ-

ability provides. Examples for such applications include long-running transactions

that collect statistics over the database and whose results do not need to be precise.

The SQL standard defines the different isolation levels in terms of three phenom-

ena that violate serializabitity. The three phenomena are called nonrepeatnble read, dirty

read, and phantom read, and are defined as follows:

o Nonrepeatable read. A transaction reads the same object twice during execu-

tion and finds a different value the second time, although the transaction has

not changed the value in the meantime.

o Dirty read. The transaction reads values written by another transaction that

hasn't committed yet.

o Phantom read. A transaction re-executes a query returning a set of rows that

satisfy a search condition and finds that the set of rows satisfying the condition

has changed as a result of another recently committed transaction (a more

detailed explanation of this phenomenon can be found in Section "16.7'3).

It should be obvious that each of the above phenomena violates transaction isola-

tion, and hence violates serializability. Figure 26.5 shows the definition of the four

SQL isolation levels specified in the SQL standard - read uncommitted, read com-

mitted, repeatable read, and serializable - in terms of these phenomena. PostgreSQl

supports two of the four different isolation levels, read committed and serializable.

26.4.1.2 Concurrency Control for DML Commqnds

The key idea behind MVCC is to maintain different versions of a row that corre-
spond to different instances of the row at different points in time. The MVCC protocol
makes sure that every transaction sees only the versions of the data that are consis-
tent with the transaction's view of the database: Each transaction sees a snapshot of
the data, consisting of only the data that were committed at the time the transaction
was started.2 This snapshot is not necessarily equal to the current state of the data.

The motivation for using MVCC is that readers never block writers and vice versa.
Readers access the most recent version of a row that is part of the transaction's snap-

2. In addition, multiquery transactions also see data from previous queries in the same transaction.
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shot. Writers create their own separate copy of the row to be updated. Section 26.4.7.3
shows that the only conflict that causes a transaction to be blocked arises if two writ-
ers try to update the same row In contrast. under the standard two-phase-locking
approach, both readers and writers might be blocked, since there is only one version
of each data object and both read and write operations are required to obtain a lock
before accessing any data.

The PostgresQl MVCC is very similar in spirit to the multiversion timestamp or-
dering scheme described in Section L6.5.1.. PostgreSQl never explicitly employs locks
for DML commands, and therefore no interaction with a lock manager is necessary.
This differs from the MVCC scheme employed by Oracle, the only commercial database
system using MVCC instead of two-phase locking. The Oracle MVCC scheme is basi-
cally the multiversion two-phase locking protocol described in Section 76.5.2.

26.4.1.3 PostgreSQL lmplementqtion of MVCC
At the core of PostgreSQl MVCC is the notion of tuple oisibility. A PostgreSQl tuple
refers to a version of a row. Tuple visibility defines which of the potentially many
versions of a row in a table is valid within the context of a given statement or trans-
action.

A tuple is visible for a transactionTa if the following two conditions hold:

1. The tuple was created by a transactionTp that started running and was com-
mitted before transaction Tn started running.

2. Updates to the tuple (if any) were executed by a transaction 76r that either
o Is aborted or
o Started running after transactionT1 or
r Was in process at the start of 7a.

The goal of the above conditions is to ensure that each transaction accesses only
data that have been committed at the time the transaction started running. PostgreSQl
maintains the following data structures to check these conditions efficiently:

o A transaction ID, which at the same time serves as a timestamp, is assigned to
every transaction at transaction start time. PostgreSQl uses a logical counter
(as described in Section 16.2.7) for assigning transaction IDs.

o A log file called pg-clog contains the current status of each transaction. The
status can be either in progress, committed, or aborted.

o Each tuple in a table has a header with three fields: xmin, which contains the
transaction ID of the transaction that created the tuple and which is there-
fore also called the creation-transaction ID; xmax, which contains the transac-
tion ID of the replacing/deleting transaction (or null if not deleted/replaced)
and which is also referred to as the expire-transaction ID; and a forward iink to
new versions of the same logical row, if there are any.
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c A SnapshotData data structure is created either at transaction start time or at
query start time, depending on the isolation level (described in more detail
below). Tlne SnapshotData data structure contains, among other things, a list of
all transactions that are active at the time the snapshot is taken.

Figure 26.6 illustrates these data structures through a simple example involving a
database with only one table, thebranch table from Figure 2.3. The branch table con-
tains three attributes, the name of the branch, the city where the branch is located,
and the assets of the branch. Figure 26.6 shows a fragment of the branch table con-
taining only the (versions of) the row corresponding to the "Brighton" branch. The
tuple headers indicate that the row was originally created by transaction 100, and
later updated by transaction 102 and transaction 106. Figure 26.6 also shows a frag-
ment of the corresponding pgfog file. On the basis of the pg-log file, transactions 100
and 102 are committed, while transaction 104 and 106 are in progress.

Given the above data structures, the two conditions that need to be satisfied for a
tuple to be visible can be rewritten as follows:

L. The creation-transaction ID in the tuple header

o Is a committed transaction according to the pg-log hle and
o Is less than the transaction counter stored at query start in SnnpshotData

snd
o Was not in process at query start accordingto SnapshotData.

2. The expire-transaction ID

o Is blank or aborted or
o Is greater than the transaction counter stored at query start in Snapshot-

Data or
o Was in process at query start accordingto SnapshotDstn.

For example, the only version of the row corresponding to the "Brighton" branch
that is visible to transaction 104 in Figure 26.6, is the second version in the table, cre-
ated by transaction 102. The first version, created by transaction 100 is not visible,
since it violates condition 2: The expire-transaction ID of this tuple is 102, which cor-
responds to a transaction that is not aborted and that has a transaction ID smaller
than transaction 104. The third version of the "Brighton" branch is not visible, since
it was created by transaction 106, which has a transaction ID larger than transaction
104, implying that this version had not been committed at the time transaction 104
started running. Moreover, transaction 106 is still in progress, which violates another
one of the conditions. The second version of the row meets all the conditions for tuple
visibility.

The details of how PostgreSQl MVCC interacts with the execution of SQL state-
ments depends on whether the statement is an insert, select, update, or delete state-
ment. The simplest case is the insert statement. Unlike the case of two-phase locking,
for an insert statement there is basically no interaction with the concurrency-control
protocol during statement execution: An insert statement simply creates a new tuple
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based on the data in the statement, initializes the tuple header (the creation ID), and
inserts the new tuple into the table.

When the system executes a select, update, or delete statement the interaction
with the MVCC protocol depends on the isolation level specified by the application. If
the isolation level is read committed, the processing of a new statement 6egins with
creating a new SnnpshotData data structure (independent of whether the statement
starts a new transaction or is part of an existing transaction). Next, the system iden-
tifies target tuples; that is the tuples that are visible with respect to the SnapshotData
and that match the search criteria of the statement. In the case of a select statement
the set of target tuples make up the result of the query.

In the case of an update or delete statement, an extra step is necessary after iden-

lffinS the target tuples, before the actual update or delete operation can take place.
The reason is that visibility of a tuple ensures only that the tuple has been creatid by
a transaction that committed before the update/delete statement in question started.
Flowevel, it is possible that, since query start, this tuple has been updated or deleted
by another concurrently executing transaction. This can be detected by looking at
the expire-transaction ID of the tuple. If the expire-transaction ID corresponds io a
transaction that is still in progress, it is necessary to wait for the completion of this
transaction first. If the transaction aborts, the update or delete statement can pro-
ceed and perform the actual update/delete operation. If the transaction commits, the
search criteria of the update/delete statement need to be evaluated again, and only
if the tuple still meets these criteria can the update/delete be performed. Performing
the update/delete operation includes creating a new tuple (with the correspondin[
header containing the creation ID), and also updating the header information of the
old tuple (that is, the expire-transaction ID).
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Going back to the example from Figure 26.6, transaction 104, which consists of
a select statement only, identifies the second version of the Brighton row as a target
tuple and returns it immediately. If transaction 104 were an update statement instead,
for example, trying to increment the assets of the Brighton branch by some amount,
it would have to wait for transaction 106 to complete. It would then re-evaluate the

search condition and, only if it is still met, proceed with its update.
Using the protocol described above for update and delete statements provides

onty the read-committed isolation level. Serializability can be violated in several
ways. First, nonrepeatable reads are possible. Since each query within a transaction
starts with a new snapshot, a query in a transaction might see the effect of trans-
actions completed in the meantime that weren't visible to earlier queries within the

same transaition. Following the same line of thought phantom reads are possible.
Moreovet an update query can see the effects of concurrent updates by other queries
to the same row, but it doesn't see the effect of those concurrent queries on other rows
in the database.

In order to provide the PostgreSQl serializable isolation level, PostgreSQl MVCC

eliminates violations of serializability in two ways: First, when it is determining tuple

visibitity, all queries within a transaction use a snapshot as of the start of the transac-
tion, rather than the start of the individual query. This way successive queries within

a transaction always see the same data.
Second, the way updates and deletes are processed is different in serializable mode

compared to read-committed mode. As in read-committed mode transactions wait,

afteiidentifying a visible target row that meets the search condition and is currently

updated or deleted by another concurrent transaction. If the concurrent transaction
that executes the update/delete aborts, the waiting transaction can proceed with its

own update. However, if the concurrent transaction commits, there is no way for
postgreSel to ensure serializability for the waiting transaction. Therefore, the waiting
transaction is rolled back and returns with the error message "Can't serialize access
due to concurrent update."

It is up to the application to handle an error message like the above appropri-
ately, byiborting the current transaction and restarting the entire transaction from

the-beginning. Obr"trr" that rollbacks due to serializability issues are possible only

for update stitements. It is still the case that read-only transactions never conflict
with any other transactions.

26.4.1.4 lmplicotions of Using MVCC

Using the postgreSQl MVCC scheme has implications in three different areas: (1) ex-

tra burden is placed on the storage manager, since it needs to maintain different ver-

sions of tuples; (2) developing concurrent applications takes some extra care, since
postgreSel MVCC can lead to subtle, but important, differences in how concurrent

tranJactions behave, compared to systems where standard two-phase locking is used;
(3) postgreSQl performance depends on the characteristics of the workload running

on it. The implications of PostgreSQl MVCC are described in more detail below.

Creating and storing multiple versions of every row can lead to excessive storage

consumption. To alleviate this problem, PostgreSQl periodically frees up space by
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identifying and deleting versions of rows that are not needed any more. This func-
tionality is implemented in form of the vacuum command. The vacuum command
runs as a daemon in the background, but can also be called by the user directly.

The vacuum command offers different modes of operations: Plain vacuum simply
reclaims space occupied by rows not used any more, and makes this space available
for reuse. This form of the command can operate in parallel with normal reading and
writing of the table. Vacuum full does more extensive processing, including moving
of tuples across blocks to try to compact the table to the minimum number of disk
blocks. This form is much slower and requires an exclusive lock on each table while
it is being processed. When called with the optional parameter analyze, vacuum will
collect statistics about the contents of tables it is vacuuming. The results are then
used to update the pg-statistlc system table, allowing the PostgreSQl query planner
to make better choices in planning queries.

Because of the use of multiversion concurrency control in PostgreSQl, porting ap-
plications from other environments to PostgreSQl might require some extra care to
ensure data consistency. As an example, consider a transaction ?a executing a select
statement. Since readers in PostgreSQl don't lock data, data read and selected by Ta
can be overwritten by another concurrent transaction 76, while ?a is still running.
As a result some of the data that ?a returns might not be current any more at the time
of completion of Ta.Za might return rows that in the meantime have been changed
or deleted by other transactions. To ensure the current validity of a row and protect
it against concurrent updates, an application must either use select for update or
explicitly acquire a lock with the appropriate lock table command.

PostgreSQl's approach to concurrency control provides optimal performance for
workloads containing many more reads than updates, since in this case the chances
that two updates will conflict resulting in the rollback of a transaction, are very low.

26.4.1.5 DDL Concurrency Control
The MVCC mechanisms described in the previous section do not protect transactions
against operations that affect entire tables, for example transactions that drop a ta-
ble or change the schema of a table. Toward this end, PostgreSQl provides explicit
locks that DDL commands are forced to acquire before starting their execution. These
locks are always table based (rather than row based) and are acquired and released
in accordance with the strict two-phase locking protocol.

Figure 261 Lists all types of locks offered by PostgreSQl, the commands that use
them, and the compatibility with other lock modes. The names of the lock tlpes are
often historical and don't necessarily reflect the use of the lock. For example, all the
locks are table-level locks, although some contain the word "row" in the name. DML
commands acquire only locks of types 1,2, or 3. These three lock types are compat-
ible with each other, since MVCC takes care of protecting these operations against
each other. DDL commands acquire these locks only for protection against DDL com,
mands.

While their main purpose is providing PostgreSQl internal concurrency control for
DDL commands, all locks in Figure 26.7 canalso be acquired explicitly by postgreSel
applications through the lock table command.
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Figure26.7 Table-level lock modes.

Locks are recorded in a lock table that is implemented as a shared-memory hash
table keyed by kind and ID of object being locked. If a transaction wants to acquire a
lock on an object that is held by another transaction in noncompatible mode, it needs
to wait until the lock is released. Lock waits are implemented through semaphores.
Each transaction has a semaphore associated with it. When waiting for a lock, a
transaction actually waits on the semaphore associated with the transaction holding
the lock. Once the lock holder releases the lock, it will signal the waiting transac-
tion(s) through the semaphore. By implementing lock waits on a per-lock-holder ba-

sis, rather than on a per-lock-object basis, PostgreSQl requires at most one semaphore
per concurrent tlansaction, rather than one semaphore per lockable object.

Deadlock detection in PostgreSQl is based on time-outs. By default, deadlock de-
tection is triggered if a transaction has been waiting for a lock for more than one
second. The deadlock detection algorithm constructs a wait-for graph based on the
information in the lock table and searches this graph for circular dependencies. If it

finds any, meaning a deadlock was detected, the transaction that triggered the dead-
lock detection aborts and returns an error to the user. If no cycle is detected, the trans-
action continues waiting on the lock. Unlike some commercial systems, PostgreSQl
does not dynamically tune the lock time-out parameter, but it allows the adminis-
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trator to tune it manually. Ideally, this parameter should be chosen on the order of
a transaction lifetime, in order to optimize the trade-off between the time it takes to
detect a deadlock and the work wasted for running the deadlock detection algorithm
when there is no deadlock.

26.4.1.6 Locking qnd Indices
The locking performed for index accesses depends on the index type. For GiST and
R-trees simple index-level locks are used that are held for the entire duration of the
command. Hash index accesses allow for higher concurrency by using page-level
locks that are released after the page is processed. Howevel, page-level locking for
hash indices is not deadlock free. The recommended index type for applications with
a high degree of concurrency is B-tree indices, since they provide fine-grained locking
without deadlock conditions: Accesses to B-trees are protected through short-term
share/exclusive page-level locks. Locks are released immediately after each index
tuple is fetched or inserted.

25.4.2 Recovery
Historically, PostgreSQl did not use write-ahead logging for recovery, and therefore
was not able to guarantee consistency in the case of crash. A crash could poten-
tially result in inconsistent index structures oL worse, totally corrupted table con-
tents, because of partially written data pages. As a result, starting with version 7.1,
PostgresQl employs standard write-ahead-log-based recovery with a redo and an
undo phase similar to ARIES. Section 17.6.7 provides an introduction of redo and
undo and the write-ahead logging concept, and Section 17.8.6 gives an overview of
ARIES. The main difference in the PostgreSQl implementation of recovery is that the
PostgreSQl MVCC allows for some simplifications compared to standard log-based
recovery.

First, under PostgreSQl, recovery doesn't have to undo the effects of aborted trans-
actions: An aborting transaction makes an entry in the pg-clog file, recording the fact
it is aborting. Consequently, all versions of rows it leaves behind will never be vis-
ible to any other transactions. The only case where this approach could potentially
lead to problems is when a transaction aborts because of a crash of the correspond-
ing PostgreSQl process and the PostgreSQl process doesn't have a chance to create
the pg-clog entry before the crash. PostgreSQl handles this as follows: Whenever a
transaction checks the status of another transaction in the pgclog file and finds the
status to be "in progress," it checks whether the transaction is really running on any
of the PostgreSQl processes. If no PostgreSQl process is currently running the trans-
action, it is deduced that the corresponding process crashed and the transaction's pg
-clog entry is updated to "aborted."

Second, PostgreSQl write-ahead-log-based recovery is simplified by the fact that
PostgresQl MVCC already keeps track of some of the information required by WAL
logging. More precisely, there is no need for logging the start, commit, and abort of
transactions, since MVCC logs the status of every transaction inthe pg_clog.
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26.5 Storoge qnd Indexing
In keeping with the rest of PostgreSQl, the design philosophy of data layout and stor-
age is aimed at the twin goals of (1) a simple and clean implementation and (2) ease of
administration. The databases managed by a PostgreSQl server are partitioned by the
administrator into database clusters, where all the data and meta data associated with
a cluster is stored in the same directory in the file system. Unlike commercial sys-
tems, PostgreSQl does not support "tablespaces," 3 which would allow the database
administrator accurate control of the storage location of each individual physical ob-
ject. Also, PostgreSQl supports only "cooked file systems," precluding the use of raw
disk partitions.

The simplicity in the design of the PostgreSQl storage system potentially leads
to some petfor-an.e limitations. The lack of support for tablespaces limits the pos-
sibilities of efficiently using the available storage resources, in particular multiple
disks operating in parallel. Moreover, the block size of all database objects is hard-
wired (ihe default is 8 kilobytes and can be changed by recompiling the code), which
can give sub-par performance when dealing with storage that handles larger data
blocks. The use of cooked file systems results in double buffering, where a block is
first fetched from disk onto the file system's cache (in kernel space) before it is copied
into PostgreSQl's buffer pool.

On the other hand, modern enterprises increasingly use storage systems, such as
network-attached storage and storage-area networks, instead of disks attached to

servers. The philosophy here is that storage is a service that is easily administered
and tuned for performance separately. The use of RAID to accomplish both paral-
lelism and redundant storage is explained in Section 11.3.

Thus, the feeling of many PostgreSQl developers is that, for a vast majority of ap-

plications, and indeed PostgreSQl's audience, the performance limitations are mini-
mal and justified by the ease of administration and management, as well as simplicity
of implementation.

26.5.1 Tqbles
The primary unit of storage in PostgreSQl is a table. In PostgreSQl, tables are stored
in "heap files." These files use a form of the standard "slotted-page" format described
in Section 71..6.2.1,. The PostgreSQl format is shown in Figure 26.8.In each page, a
header is followed by an anay of "line pointers." A line pointer holds the offset (rel-

ative to the start of the page) and length of a specific tuple in the page. The actual
tuples are stored in reverse order of line pointers from the end of the page.

A record in a heap file is identified by its tuple ID (TID). The TID consists of a 4-
byte block ID that specifies the page in the file containing the tuple and a2 byte slot
ID. The slot ID is an index into the line pointer array that in turn is used to access the

tuple.
Although this infrastructure permits tuples in a page to be deleted or updated, un-

der postgreSQl's MVCC approach, neither operation actually takes place physically

3. Active development of tablespaces is ongoing and wili be part of a future release
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Figure 26.8 Slotted-page format for PostgreSQl tables.

during normal processing. When a page is aacuumed, however, expired tuples are
physically deleted, causing holes to be formed in a page. The indirection of accessing
tuples through the line pointer array permits the reuse of such holes.

The length of a tuple is normally limited by the length of a data page. This makes
it difficult to store very long tuples. When PostgreSQl encounters such a large tuple,
it tries to toast individual large columns. The data in a toasted column are replaced
with a pointer that locates a compressed version of the data that is stored outside the
Page'

26.5.2 Indices
PostgreSQl supports several different indices, including those that are based on user-
extensible access methods. Although an access method may use a different page for-
mat, all the indices available in PostgresQl use the same slotted-page format de-
scribed above in Section 26.5.1.

26.5.2.1 lndex Types
PostgreSQl supports the following types of indices:

o B-tree: The default index type is a B-tree method that is an implementation
of Lehman-Yao's high-concurrency B-trees (this is explained in detail in Sec-
tion 16.9). These indices are useful for equality and range queries on sortable
data and also for certain pattern-matching operations such as the like expres-
sion.

o Hash: PostgreSQl's hash indices are an implementation of linear hashing (for
more information on hash indices, see Section 72.6.3). Such indices are useful
only for simple equality operations. A hash index may be created with the
following DDL statement:

create indexhndxnaftrc orrtabname using hash (colnqme)
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The PostgreSQl hash indices have been shown to have lookup performance no
better than that of B-trees, but have considerably larger size and maintenance
costs. Thus it is almost always preferable to use B-tree indices to hash indices.

o R-tree: For operations such as oaeilap on the built-in spatial data types (box,

circle, point, and so forth) PostgreSQl provides R-tree indices. These imple-
ment the quadratic split algorithm (Section 24.3.5.3). An R-tree index can be
created with the following DDL statement:

create index rndxname orr tabname using rtree (colname)

Spatial-data management was discussed in Section 24.3, wlth information on
R-trees and other indexing techniques'

o GiST Finally, PostgreSQl supports a fourth extensible tree-based index called
GiST or Generalized Search Trees. GiST is a balanced, tree-structured access
method that can be used to implement a whole family of different indices -

for instance, the default B-tree and R-tree indices can be implemented using
GiST. GiST indices make it easy for a domain expert who is well versed in a
particular data type (such as image data) to develop performance-enhancing
indices without having to deal with the internal details of the database system.
Examples of some indices built by using GiST include indexing for multidi-
mensional cubes and full text indexing for information-retrieval queries. See
the bibliographic notes for references to more information on the GiST index.

26.5.2.2 Other Index Vqriqtions
For some of the index types described above, PostgreSQl supports more complex
variations such as:

o Multicolumn indices. These are useful for conjuncts of predicates over multi-
ple columns of a table. Multicolumn indices are only supported for B-tree and
GiST indices.

o Unique indices. Unique and primary-key constraints can be enforced by us-
ing unique indices in PostgreSQl. Only B-tree indices may be defined as being
unique.

o Indices on expressions. In PostgreSQl, it is possible to create indices on ar-
bitrary scalar expressions of columns, and not just specific columns, of a ta-
bte. This is especially useful when the expressions in question are "expensive"
- say, involving complicated user-defined computation. An example is to
support case-insensitive comparisons by defining an index on the expression
lower(column) and using the predicatelower(column) ='value' in queries. One
disadvantage is that the maintenance costs of indices on expressions is high.

o Operator classes. The specific comparison functions used to build, maintain,
and use an index on a column is tied to the data type of that column. Each
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data type has associated with it a default "operator class" (described in Sec-
tion26.3.3.3) that identifies the actual operators that would normally be used
for it. While this default operator class is normally sufficient for most uses,
some data types might possess multiple "meaningful" classes. For instance, in
dealing with complex numbers, it might be desirable to index either the real
or imaginary component. PostgresQl provides some built-in operator classes
for pattern-matching operations (such as like) on text data that do not use the
standard locale-specific collation rules.

o Partial indices. These are indices built over a subset of a table defined by a
predicate. The index contains only entries for tuples that satisfy the predicate.
Partial indices are suited for cases where a column might contain a large num-
ber of occurrences of a very small number of values. In such cases, without
a partial index, a "needle in a haystack" query that looks for an uncommon
value would end up scanning the entire index. A partial index that excludes
the common values is small and incurs less I/o. The partial indices are less
expensive to maintain, as a large fraction of inserts do not participate in the
index.

25.6 Query Processing ond Optimizqtion
When PostgreSQl receives a q.oery, it is first parsed into an internal representation,
that goes through a series of transformations, resulting in a query plan that is used
by the executor to process the query.

25.6.1 Query Rewrite
The first stage of a query's transformation is rewrite and it is this stage that is respon-
sible for the PostgresQl rules system. As explained in Section 26.3.2, in postgresel,
users can create rules that are fired on different events such as update, delete, insert,
and select statements. A view is implemented by the system by converting a view
definition into a select rule. When a query involving a select statement on the view
is received, the select rule for the view is fired, and the query is rewritten using the
definition of the view.

A rule is registered in the system using the create rule command, at which point
information on the rule is stored in the catalog. This catalog is then used during query
rewrite to uncover all candidate rules for a given query.

The rewrite phase first deals with all update, delete, and insert statements by
firing all appropriate rules. Notice that such statements might be complicated ani
contain select clauses. Subsequently, all the remaining rules involving only select
statements are fired. Since the firing of a rule may cause the query to be rewritten
to a form that may require another rule to be fired, the rules are repeatedly checked
on each form of the rewritten query until a fixed point is reached atrd no rnore ruIes
need to be fired.

There exist no default rules in PostgreSQl - only those defined explicitly by users
and implicitly by the definition of views.
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26.6.2 Query Plonning ond Optimizqtion

Once the query has been rewritten, it is subject to the planning and optimization
phase. Here, each query block is treated in isolation and a plan is generated for it.
This planning begins bottom-uP from the rewritten query's innermost subquery, pro-
ceeding to its outermost query block.

The optimizer in PostgreSQl is, for the most part, cost based. The ideal is to gen-
erate an access plan whose estimated cost is minimal. The cost model includes as
parameters both the I/O cost of a nonsequential page fetch as well as the CPU costs
of processing heap tuples, index tuples, and simple predicates.

The actual process of optimization is based on one of the following two forms:

o Standard planner. This is a traditional optimization approach as used in Sys-
tem R, a pioneering relational system developed by IBM research in the 1970s.
This is a dynamic programming algorithm where, for each block, all two-way
join possibilities are enumerated, planned, and estimated for access cost. Then
all three-way join possibilities are enumerated and estimated, using the best
two-way join estimates. This Process continues until a "good" plan for the

query block is produced. More details on this approach are in Chapter 14.

o Genetic Query Optimizer. When the number of tables in a query block is very

large, System R's dynamic programming algorithm becomes very expensive.

Unllke other commercial systems that default to greedy or rule-based tech-
niques, PostgreSQl uses a more radical approach: a genetic algorithm that was
developed initially to solve traveling-salesman problems. There exists anecdo-
tal evidence of the successful use of genetic query optimization in production
systems for queries with around 45 tables.

Since the planner operates in a bottom-up fashion, it is able to perform certain

transformations on the query plan as it is being built. One example is the common
subquery-to-join transformation that is present in many commercial systems (usually

implemented in the rewrite phase). When PostgreSQl encounters a non-correlated
rn6qnety (such as one caused by a query on a view), it is generally possible to "pull

up" the planned subquery and merge it into the upper-level query block. However,
transformations that push distinct elimination into lower-level query blocks are gen-
erally not possible in PostgreSQl.

The query-optimization phase results in a query plan that is a tree of relational

operatois. Each operator represents a specific operation on one or more sets of tuples.
The operators can be unary (for example, sort, aggregation), binary (for example,
nested-loop join), or n-ary (for example, set union).

Crucial io the cost model is an accurate estimate of the total number of tuples that

will be processed at each operator in the plan. This is inferred by the optimizer on the

basis oi statistics that are maintained on each relation in the system. These indicate

the total number of tuples for each relation and specific information on each column

of a relation, such as the column cardinality, a list of most common values in the table

and the number of occurrences, and a histogram that divides the column's values

into groups of equal population. In addition, PostgreSQl also maintains a statistical
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correlation between the physical and logical row orderings of a column's values -
this indicates the cost of an index scan to retrieve tuples that pass predicates on the
column. The DBA must ensure that these statistics are current by running the analyze
command periodically.

26.6.3 Query Executor
The executor module is responsible for processing a query plan produced by the
optimizer. The executor follows the iterator model with a set of four functions imple-
mented for each operator (open,next,rescan, and close). Iterators are also discussed
as part of demand-driven pipelining in Section 1.3.7.2.1.. PostgreSQl iterators have an
extra function, rescan, that is used to reset a subplan (say for an inner loop of a join)
with parameters such as index key ranges.

Some of the important operators of the executor can be categorized as follows:

1. Access methods. The actual access methods that are used to retrieve data from
on-disk objects in PostgreSQl are sequential scans from the heap and index
scans.

o Sequential scans. The tuples of a relation are scanned sequentially from
the first to last blocks of the file. Each tuple is returned to the caller onty if
it is "visible" according to the transaction isolation rules in Section 26.4.1.3.

o Index scans. Given an index range (or a specific key in the case of a heap
index), this access method returns a set of matching tuples from the as-
sociated heap file. There is no provision to separate accessing the tuple
IDs from the index and fetching the actual tuples. This prevents sorting
the TIDs and ensures that the heap file is accessed in a sequential manner,
minimizing the number of page fetch operations.

2. foin methods. PostgreSQl supports three join methods: sorted merge joins,
nested-loop joins (including index-nested loop variants for the inner), and a
hybrid hash join.

3. Sort. External sorting is implemented in PostgreSQl by algorithms explained
in Section 13.4. The input is divided into sorted runs that are then merged in a
polyphase merge. Although the initial runs are formed using replacement se-
Iection, a priority tree is used instead of a data structure that fixes the number
of in-memory records. This is because PostgreSQl may deal with tuples that
vary considerably in size and tries to ensure full utilization of the configured
sort memory space.

4. Aggregation. Grouped aggregation in PostgreSQl can be either sort-based or
hash-based. When the estimated number of distinct groups is very large the
former is used and otherwise the hash-based approach is preferred.

26.6.4 Triggers qnd Constrqints
In PostgreSQl (unlike some commercial systems) active-database features such as
triggers and constraints are not implemented in the rewrite phase. Instead they are
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Figure 25.9 The PostgreSQl system architecture.

implemented as part of the query executor. When the triggers and constraints are
registered by the user, the details are associated with the catalog information for each
appropriate relation and index. The executor processes an update, delete, and insert
statement by repeatedly generating tuple changes for a relation. For each such change
(an update, delete, or insert operation) the executor explicitly checks for, and fires and
enforces, candidate triggers and constraints, before or after the change as required.

26.7 System Architecture
The PostgreSQl system architecture follows the process-per-transaction model. A
running PostgreSQl site is managed by a central coordinating process, called the
postmaster. The postmaster process is responsible for initializing and shutting down
the server and also for handling connection requests from new clients. The postmas-
ter assigns each new connecting client to a back-end server process that is responsible
for executing the queries on behalf of the client and for returning the results to the

client. This architecture is depicted in Figure 26.9.
Client applications can connect to the PostgreSQl server and submit queries

through one of the many database application ploglammer interfaces supported by
postgreSQl [ibpq,IDBC, ODBC, Perl DBD) that are provided as client-side libraries.
An example client application is the command-Iine psql program, included in the

standard PostgreSQl distribution. The postmaster is responsible for handling the ini-
tial client connections. For this, it constantly listens for new connections on a known
port. After performing initialization steps such as user authentication, the postmaster
will spawn a new back-end server process to handle the new client. After this initial
connection, the client iriteracts only with the back-end server Process, submitting
queries and receiving query results. This is the essence of the process-per-connection
model adopted by PostgreSQl.

The back-end server process is responsible for executing the queries submitted
by the client by performing the necessary quely-execution steps, including parsing,
optimization, and execution. Each back-end server process can handle only a single
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query at a time. In order to execute more than one query in parallef an application
must maintain multiple connections to the server.

At any given time, there may be multiple clients connected to the system and thus
multiple back-end server processes may be executing concurrently. The back-end
server processes access database data through the main-memory buffer pool, which
is placed in shared memory, so that all the processes have the same view of the data.
Shared memory is also used to implement other forms of synchronization between
the server processes, for example, the locking of data items. The use of shared mem-
ory as a communication medium requires that a PostgreSQl server run on a single
machine; a single-server site cannot be spread across multiple machines.

Bibliogrophicol Notes
There is extensive on-line documentation of Postgresel at www.postgresql.org. This
Web site is the authoritative source for information on new releases of PostgreSel,
which occnr on a frequent basis. Until postgresel version 8, the only way to run
PostgresQl under Microsoft windows was by using Cygwin. Cygwin is a Linux-like
envitonment that allows rebuilding of Linux applications from source to run under
Windows. Details are at www.cygwin.com.

Books on PostgresQl include Douglas and Douglas [2003] and stinson l2o02l.
Rules as used in PostgreSQl were presented in Stonebraker et al. [1990]. The GiST
structure is described in Hellerstein et al. [7995].

The PostgreSQl administration tools, pgAccess and pgAdmin are described on the
Web at www. pgaccess.org and www. pgad m in. org, respectively.

The PostgreSQl database-design tools, TOITA and Data Architect are described
at www.globecom.se/tora and www.thekompany.com/products/dataarchitect, respec-
tively.

The report-generation tools GNU Report Generator and GNU Enterprise are de-
scribed at wwwgnu.org/software/grg and www.gnuenterprise.org, respectively.

The Mondrian OLAP server is described at mondrian.sourceforge.net. It is open-
source/ like PostgreSQl.

An open-source alternative to PostgreSQl is MySQL, which is available for non-
commercial use under the GNU General Public License, but requires payment for
commercial uses. Comparisons between the most recent versions of the two systems
are readily available on the Web.





When Oracle was founded in 7977 as Software Development Laboratories by Larry
Ellison, Bob Mine1, and Ed Oates, there were no commercial relational database prod-
ucts. The comPany, which was later renamed Oracle, set out to build a relatiional
database-management system as a commercial product, and was the first to reach
the market. Since then, Oracle has held a leading position in the relational database
market, but over the years its product and service offerings have grown beyond the
relational database server. In addition to tools directly related to database develop-
ment and management, Oracle sells business intelligence tools, including query and
analysis tools, data-mining products, and an application server with close integration
to the database server.

In addition to database-related servers and tools, the company also offers appli-
cation software for enterprise resource planning and customer-relationship manage-
ment, including areas such as financials, human resources, manufacturing, market-
ing, sales, and supply-chain management. oracle's on Demand unit offers services
in these areas as an application service provider.

This chapter surveys a subset of the features, options, and functionality of Oracle
products. New versions of the products are being developed continually, so all prod-
uct descriptions are subject to change. The feature set described here is based on the
first release of Oraclel0q.

27.1 Dqtqbqse Design qnd Querying Tools
oracle provides a variety of tools for database design, querying, report generation,
and data analysis, including OLAP.

997
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27.1.1 Dqtqbqse Design Tools

Most of Orac1e's design tools are included in the Oracle Developer Suite. This is
a suite of tools for various aspects of application development, including tools for
forms development, data modeling, reporting, and querying. The suite supports the
UML standard (see Section 6.11) for development modeling. It provides class model-
ing to generate code for the business components for ]ava framework as well as ac-
tivity modeling for general-purpose control flow modeling. The suite also supports
XML for data exchange with other UML tools.

The major database design tooi in the suite is Oracle Designer, which translates
business logic and data flows into schema definitions and procedural scripts for ap-
plication logic. It supports such modeling techniques as E-R diagrams, information
engineering, and object analysis and design. Oracle Designer stores the design in
Oracle Repository, which serves as a single point of metadata for the application.
The metadata can then be used to generate forms and reports. Oracle Repository
provides configuration management for database objects, forms applications, Java
classes, XML files, and other tlpes of files.

The suite also contains application development tools for generating forms, re-

ports, and tools for various aspects of Java and XMl-based development, including

JDeveloper, which provides a complete environment for end-to-end development of

]2EE apptications. The business intelligence component provides ]avaBeans for ana-
lytic functionality such as data visualizatiorL querying, and analytic calculations.

Oracle also has an application development tool for data warehousing, Oracle
Warehouse Builder. Warehouse Builder is a tool for design and deployment of all as-
pects of a data warehouse, including schema design, data mapping and transforma-
iions, data load processing, and metadata management. Oracle Warehouse Builder

supports both 3NF and star schemas and can also import designs from Oracle De-

signer. This tool, in conjunction with database features, such as external tables and
taLle functions, typically eliminates the need for third-party extract, transform, and
load tools.

27.1.2 Querying Tools
Oracle provides tools for ad-hoc querying, report generation. and data analysis, in-
cluding OLAP.

Oracle Application Server Discoverer is a Web-based, ad-hoc quety, reporting,
analysis, and Web publishing tool for end-users and data analysts. It allows users

to drill up and down on result sets, pivot data, and store calculations as reports that

can be published in a variety of formats such as spreadsheets or HTML. Discoverer

has wiiards to help end-users visualize data as graphs. Oracle supports a rich set of

analytical functions, such as ranking and moving aggregation in SQL' Discoverer's
ad-hoc query interface can generate SQL that takes advantage of this functionality
and can provide end-users with rich analytical functionality. Since the processing
takes pla-e in the relational database management system, Discoverer typically does
not require a complex client-side calculation engine and there is a version of Discov-

erer that is browser based.
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27.2 SQL Vqriqtions qnd Extensions
Oracle suppofts all core SQL:1999 features fully or parttally, with some minor ex-
ceptions such as distinct data types. In addition, Oracle supports a large number of
other language constructs, some of which conform with sel:1999, while others are
oracle-specific in syntax or functionality. For example, Oracle supports the oLAp
operations described in section 18.2, including ranking, moving aggregation, cube,
and rollup.

A few examples of Oracle SQL extensions are:

o connect by, which is a form of tree traversal that allows transitive closure-
style calculations in a single SQL statement. It is an Oracle-specific syntax for
a feature that Oracle has had since the 1980s.

r upsert and multitable inserts. The upsert operation combines update and in-
sert, and is useful for merging new data with old data in data iarehousing
applications. If a new row has the same key value as an old row, the old row is
updated (for example, by adding the measure values from the new row), oth-
erwise the new row is inserted into the table. Multitable inserts allow multiple
tables to be updated based on a single scan of new data.

o with clause, which is described in Section 3.8.2.

o model clause, which allows array algebra calculations on relational data. For
some applications, the model clause can be an alternative to using PC-based
spreadsheets.

27.2.1 Object-Relqtionql Feqtures
Oracle has extensive support for object-relational constructs, including:

o Obiect tyPes.A single-inheritance model is supported for type hierarchies.

o Collection types. Oracle supports varrays, which are variable-length afrays,
and nested tables.

o Object tables. These are used to store objects while providing a relational
view of the attributes of the objects.

r Table functions. These are functions that produce sets of rows as output, and
can be used in the from clause of a query. Table functions in Oracle can be
nested. If a table function is used to express some form of data transformation,
nesting multiple functions allow multiple transformations to be expressed in
a single statement.

o Object views. These provide a virtual object table view of data stored in a
regular relational table. They allow data to be accessed or viewed in an object-
oriented style even if the data are really stored in a traditional relational for-
mat.

o Methods. These can be written in pLlSeL, Java, or C.
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o User-defined aggregate functions. These canbe used in SQL statements in the

same way as built-in functions such as sum and count.

o XML as a native data type. Can be used to store and index XML documents.

Oracle can also automatically convert the result of any SQL query into XML.

Oracle has two main procedural languages, PLISQL and Java. PLISQL was Oracle's

original language for stored procedures and it has syntax similar to that used in the

Ada language.Javais supported through aJava virtual machine inside the database

engine. Oracle provides a package to encapsulate related procedures, functions, and

variables into single units. Oracle suPports SQLI (SQL embedded in Java) and JDBC,
and provides a tool to generate Java class definitions corresponding to user-defined

database types.

27.2.2 oLAP
In the past, Oracle's OLAP product was a separate multidimensional database server.
Now, OLAP processing is done inside the relational database. There were many rea-
sons for moving away from a separate multidimensional storage engine:

o A relational engine can scale to much larger data sets.

o A common security model can be used for the analytical applications and the
data warehouse.

o Multidimensional modeling can be integrated with data warehouse modeling.

o The relationai database-management system has a larger set of features and
functionality in many areas such as high availabllity, backup and recovery,
and third-party tool support.

o There is no need to train database administrators for two database engines.

The main challenge with moving away from a separate multidimensional database
engine is to provide the same performance. A multidimensional database-manage-
ment system that materializes all or large parts of a data cube can offer very fast
response times for many calculations. Oracle has approached this problem in several
ways:

o Oracle has added SQL support for a wide range of analytical functions, in-
cluding cube, rollup, grouping sets, ranks, moving aggregation, lead and lag

functions, histogram buckets, linear regression, and standard deviation, along
with the ability to optimize the execution of such functions in the database en-
gine.

o Oracle has extended materialized views to permit analytical functions-in
particular, grouping sets. The ability to materialize parts or all of the cube
is key to the performance of a multidimensional database-management sys-
tem, and materialized views give a relational database-management system
the ability to do the same thing.



27.3 Storage and Indexing 1001

r Oracle has introduced nnalyticnl workspaces, which store data in multidimen-
sional format inside a relational table and have associated methods for OLAp
operations like modeling, allocation, aggregation, forecasting, and what-if
analysis. An analytic workspace can be accessed as a table function in SQL.

27.2.3 Tiiggers
Oracle provides several types of triggers and several options for when and how they
are invoked. (See Section 8.6 for an introduction to triggers in SQL.) Triggers can be
written in PLISQL or ]ava or as C callouts.

For triggers that execute on DML statements such as insert, update, and delete,
Oracle supports row triggers and statement triggers. Row triggers execute once for
every row that is affected (updated or deleted, for example) by the DML operation.
A statement trigger is executed just once per statement. In each case, the trigger can
be defined as either abefore or at'ter trigger, depending on whether it is to be invoked
before or after the DML operation is carried out.

Oracle allows the creaiion of instead of triggers for views that cannot be subject
to DML operations. Depending on the view definition, it may not be possible for Or-
acle to translate a DML statement on a view to modifications of the underlying base
tables unambiguously. Hence, DML operations on views are subject to numerous re-
strictions. A user can create an instead of trigger on a view to specify manually what
operations on the base tables are to occur in response to the DML operation on the
view. Oracle executes the trigger instead of the DML operation and therefore pro-
vides a mechanism to circumvent the restrictions on DMi operations against views.

Oracle also has triggers that execute on a variety of other events, like database
start-up or shutdown/ server error messages/ user logon or logoff, and DDL state-
ments such as create, alter, and drop statements.

27.3 Storoge qnd Indexing
In Oracle parlance, a datqbase consists of information stored in files and is accessed
through aninstance, which is a shared-memory area and a set of processes that inter-
act with the data in the files.

27.3.1 Toblespoces
A database consists of one or more logical storage units called tablespaces. Each
tablespace, in turn, consists of one or more physical structures called data files. These
may be either files managed by the operating system or raw devices.

Usually, an Oracle database will have the following tablespaces:

o The system tablespace, which is always created. It contains the data-dictionary
tables and storage for triggers and stored procedures.

o Tablespaces created to store user data. While user data can be stored in the
system tablespace, it is often desirable to separate the user data from the
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system data. Usually, the decision about what other tablespaces should be cre-
ated is based on performance, availability, maintainability, and ease of admin-
istration. For example, having multiple tablespaces can be useful for partial
backup and recovery operations.

o Temporary tablespaces. Many database operations require sorting the data,
and the sort routine may have to store data temporarily on disk if the sort
cannot be done in memory. Temporary tablespaces are allocated for sorting
and hashing to make the space management operations involved in spilling
to disk more efficient.

Tablespaces can also be used as a means of moving data between databases. For
example, it is common to move data from a transactional system to a data warehouse
at regular intervals. Oracle allows moving all the data in a tablespace from one sys-
tem to the other by simply copying the files and exporting and importing a small
amount of data-dictionary metadata. These operations can be much faster than un-
loading the data from one database and then using a loader to insert it into the other.

27.3.2 Segments
The space in a tablespace is divided into units, called segments, that each contain
data for a specific data structure. There are four types of segments'

r Data segments. Each table in a tablespace has its own data segment where
the table data are stored unless the table is partitioned; if so, there is one data
segment per partition. (Partitioning in Oracle is described in Section 27.3.70.)

r Index segments. Each index in a tablespace has its own index segment, except
for partitioned indices, which have one index segment per partition.

o Temporary segments. These are segments used when a sort operation needs
to write data to disk or when data are inserted into a temporary table'

o Rollback segments. These segments contain undo information so that an un-
committed transaction can be rolled back. They also play an important roll in
Oracle's concurrency-control model and for database recovery, described in
Sections 27.5.1. and 27.5.2.

Below the level of segment, space is allocated at a level of granularity called extent.
Each extent consists of a set of contiguous database blocks. A database block is the

lowest level of granularity at which Oracle performs disk I/O. A database block does
not have to be the same as an operating system block in size, but should be a multiple

thereof.
Oracle provides storage parameters that allow for detailed control of how space is

allocated and managed, parameters such as:

o The size of a new extent that is to be allocated to provide room for rows that
are inserted into a table.
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r The percentage of space utilizationat which a database block is considered full
and at which no more rows will be inserted into that block. (Leaving some free
space in a block can allow the existing rows to grow in size through updates,
without running out of space in the block.)

27.3.3 Tqbles
A standard table in Oracle is heap organized; that is, the storage location of a row in
a table is not based on the values contained in the row, and is fixed when the row
is inserted. However, if the tabte is partitioned, the content of the row affects the
partition in which it is stored. There are several features and variations.

Heap tables can optionally be compressed. Oracle uses a lossless, dictionary-based
compression algorithm that is applied to each data block individually. For tables that
contain large amounts of repeated values, the savings in disk space and, hence, disk
I/O can be very large, but compressing and uncompressing the data incurs a slight
CPU overhead.

oracle supports nested tables; that is, a table can have a column whose data type
is another table. The nested table is not stored in line in the parent table, but is stored
in a separate table.

Oracle supports temporary tables where the duration of the data is either the trans-
action in which the data are inserted or the user session. The data are private to the
session and are automatically removed at the end of its duration.

A cluster is another form of organization for table data (see Section 1.7.7). The
concept, in this context, should not be confused with other meanings of the word clzs-
ter, such as those relating to hardware architecture. In a cluster, rows from different
tables are stored together in the same block on the basis of some common columns.
For example, a department table and an employee table could be clustered so that
each row in the department table is stored together with all the employee rows for
those employees who work in that department. The primary-key/foreign-key values
are used to determine the storage location. This organization gives performance ben-
efits when the two tables are joined, but without the space penalty of a denorm altzed
schema, since the values in the department table are not repeated for each employee.
As a trade-off, a query involving only the department table may have to involve a
substantially larger number of blocks than if that table had been stored on its own.

The cluster organization implies that a row belongs in a specific place; for example,
a new employee row must be inserted with the other rows for the same department.
Therefore, an index on the clustering column is mandatory. An alternative organiza-
tion is ahash cluster.Here, Oracle computes the location of a row by applying a hash
function to the value for the cluster column. The hash function maps the row to a
specific block in the hash cluster. Since no index traversal is needed to access a row
according to its cluster column value, this organization can save significant amounts
of disk I/o. Howevel, the number of hash buckets and other storage parameters must
be set carefully to avoid performance problems due to too many collisions or space
wastage due to empty hash buckets.

Both the hash cluster and regular cluster organization can be applied to a single
table. Storing a table as a hash cluster with the primary-key column as the cluster key
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can allow an access based on a primary-key value with a single disk I/O provided

that there is no overflow for that data block'

27.3.4 Index-Org snized Tqbles

In an index-organized table, records are stored in an Oracle B-tree index instead of in a
heap. An index-organized table requires that a unique key be identified for use as the
index key. While an entry in a regular index contains the key value and row-id of the
indexed row an index-organized table replaces the row-id with the column values
for the remaining columns of the row. Compared to storing the data in a regular
heap table and creating an index on the key columns, an index-organized table can
improve both performance and space utilization. Consider looking up all the column
values of a row, given its primary-key value. For a heap table, that would require an
index probe followed by a table access by rowid. For an index-organized table, only
the index probe is necessary.

Secondary indices on nonkey columns of an index-organized table are different
from indices on a regular heap table. In a heap table, each row has a fixed row-id
that does not change. However, a B-tree is reorganized as it grows or shrinks when
entries are inserted or deleted, and there is no guarantee that a row wiII stay in a
fixed place inside an index-organized table. Hence, a secondary index on an index-
organized table contains not normal row-ids, but logical row-ids instead. A logical
row-id consists of two parts: a physical row-id corresponding to where the row was

when the index was created or last rebuilt and a value for the unique key. The phys-
ical row-id is referred to as a "guess" since it could be incorrect if the row has been
moved. If so, the other part of a logical row-id, the key value for the row, is used to

access the row; however, this access is slower than if the guess had been correct, since
it involves a traversal of the B-tree for the index-organized table from the root all the

way to the leaf nodes, potentially incurring several disk I/Os. However, if a table is

highly voiatile and a large percentage of the guesses are likely to be wrong, it can be

better to create the secondary index with only key values, since using an incorrect
guess may result in a wasted disk I/O.

27.3.5 Indices
Oracle supports several different types of indices. The most commonly used type
is what Oracle (and several other vendors) call a B-tree index (though it is actually
what we call a B+-tree index in Chapter 12), created on one or multiple columns.

Index entries have the following format: For an index on columns col1, col2, and coQ,

each row in the table where at least one of the columns has a nonnull value would

result in the index entry

1 col t) { col 2} I cofu} 1r ow -'i d>

where lcol;) denotes the value for column e and < row-'id > is the row-id for the

row. Oracle can optionally compress the prefix of the entry to save space. For exam-

ple, if there are many repeated combinations of (col1)( col2) values, the represen-

lation of each distinct .-col1><,col2) prefix can be shared between the entries that
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have that combination of values, rather than stored explicitly for each such entry.
Prefix compression can lead to substantial space savings.

27.3.6 Bitmop Indices
Bitmap indices (described in Section 12.9) use a bitmap representation for index en-
tries, which can lead to substantial space saving (and therefore disk I/o savings),
when the indexed column has a moderate number of distinct values. Bitmap indices
in Oracle use the same kind of B-tree structure to store the entries as a regular in-
dex. However, where a regular index on a column would have entries of the form
1col1)lrow-,id>, abitmap index entry has the form

lcol 1) { startr ow -'id,> lendr ow -'id,> <compr e s s edbitmap}

The bitmap conceptually represents the space of all possible rows in the table be-
tween the start and end row-id. The number of such possible rows in a block depends
on how many rows can fit into a block, which is a function of the number of columns
in the table and their data types. Each bit in the bitmap represents one such possible
row in a block. If the column value of that row is that of the index entry, the 6it is set
to 1. If the row has some other value, or the row does not actually exist in the table,
the bit is set to 0. (It is possible that the row does not actually exist because a table
block may well have a smaller number of rows than the number that was calculated
as the maximum possible.) If the difference is large, the result may be long strings
of consecutive zeros in the bitmap, but the compression algorithm deals with such
strings of zeros, so the negative effect is limited.

The compression algorithm is a variation of a compression technique called byte-
aligned bitmap compression (snc). Essentiatly, a section of the bitmap where the dis-
tance between two consecutive ones is small enough is stored as verbatim bitmaps.
If the distance between two ones is sufficiently large-that is, there is a sufficient
number of adjacent zeros between them-a runlength of zeros that is the number of
zeros is stored.

Bitmap indices allow multiple indices on the same table to be combined in the
same access path if there are multiple conditions on indexed columns in the where
clause of a query. For example, for the condition

(co\ : I or coll : 2) and col2 ) 5 and, cofu <> 10

Oracle would be able to calculate which rows match the condition by performing
Boolean operations on bitmaps from indices on the three columns. In this case, these
operations would take place for each index:

o For the index on co\, the bitmaps for key values 1 and2 would be ored.

o For the index on col2, arr the bitmaps for key values > 5 would be merged in
an operation that corresponds to a logical or.

o For the index on cols,tk.e bitmaps for key values 10 and null would be re-
trieved. Then, a Boolean and would be performed on the results from the first
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two indices, followed by two Boolean minuses of the bitmaps for values 10

and null for cols.

All operations are performed directly on the compressed representation of the bit-

maps-no decompression is necessary-and the resulting (compressed) bitmap rep-

resents those rows that match all the logical conditions.

The ability to use the Boolean operations to combine multiple indices is not lim-

ited to bitmap indices. Oracle can convert row-ids to the compressed bitmap repre-

sentation, so it can use a regular B-tree index anywhere in a Boolean tree of bitmap

operation simply by putting a row-id-to-bitmap operator on top of the index access

in the execution plan.
As a rule of thumb, bitmap indices tend to be more space efficient than regular

B-tree indices if the number of distinct key values is less than half the number of

rows in the table. For example, in a table with 1 million rows, an index on a column

with less than 500,000 distinct values would probably be smaller if it were created as

a bitmap index. For columns with a very small number of distinct values-for ex-

ample, iolumns referring to properties such as country, state, gender, marital status,

and various status flags-a bitmap index might require only a small fraction of the

space of a regular B-tree index. Any such space advantage can also give rise to corre-

sponding p"ifor*utrce advantages in the form of fewer disk I/Os when the index is

scanned.

27.3.7 Function-Bqsed lndices

In addition to creating indices on one or multiple columns of a table, Oracle allows

indices to be created on expressions that involve one or more columns, such as coh *
col2*5.For example, by creating an index on the expression upper(name),where upper

is a function that returns the uppercase version of a string, and name is a column, it is

possible to do case-insensitive searches on the name column. In order to find all rows

with name "van Gogh" efficiently, the condition

upper(nnme) = 'VAN GOGH'

would be used in the where clause of the query. Oracle then matches the condition

with the index definition and concludes that the index can be used to retrieve all the

rows matching "van Gogh" regardless of how the name was capitalized when it was

stored in the database. A function-based index can be created as either a bitmap or a

B-tree index.

27.3.8 Join Indices
A join index is an index where the key columns are not in the table that is referenced

by the row-ids in the index. Oracle supports bitmap join indices primarily for use

with star schemas (see Section 78.3.2). For example, if there is a column for product

names in a product dimension table, a bitmap join index on the fact table with this key

column could be used to retrieve the fact table rows that correspond to a product with

a specific name, although the name is not stored in the fact table. How the rows in
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the fact and dimension tables correspond is based on a join condition that is specified
when the index is created, and becomes part of the index metadata. When a query is
processed, the optimizer will look for the same join condition in the where clause of
the query in order to determine if the join index is applicable.

oracle allows bitmap join indices to have more than one key column, and these
columns can be in different tables. In all cases, the join conditions between the fact
table on which the index is built and the dimension tables must refer to unique keys
in the dimension tables; that is, an indexed row in the fact table must correspond to
a unique row in each of the dimension tables.

Oracle can combine a bitmap join index on a fact table with other indices on the
same table-whether join indices or not-by using the operators for Boolean bitmap
operations. For example, consider a schema with a fact table for sales and dimension
tables for customets, products, and time. Suppose a query requests information about
sales to customers in a certain zip code who bought products in a certain product cat-
egory during a certain time period. If a multicolumn bitmap join index exists where
the key columns are the constrained dimension table columns (zip code, product cat-
egory, and time), Oracle can use the join index to find rows in the fact table that match
the constraining conditions. Howevel, if individuaf single-column indices exist for
the key columns (or a subset of them), Oracle can retrieve bitmaps for fact table rows
that match each individual condition and use the Boolean and operation to generate
a fact table bitmap for those rows that satisfy all the conditions. If the query iontains
conditions on some columns of the fact table, indices on those columns could be in-
cluded in the same access path, even if they were regular B-tree indices or domain
indices (domain indices are described below in Section 27.9.q.

27.3.9 Domqin Indices
Oracle allows tables to be indexed by index structures that are not native to Oracle.
This extensibility feature of the Oracle server allows software vendors to develop
so-called cartridges with functionality for specific application domains, such as text,
spatial data, and images, with indexing functionality beyond that provided by the
standard Oracle index types. In implementing the logic for creating, maintaining,
and searching the index, the index designer must ensure that it adheres to a specific
protocol in its interaction with the Oracle server.

A domain index must be registered in the data dictionary, together with the oper-
ators it supports. Oracle's optimizer considers domain indices as one of the possible
access paths for a table. Oracle allows cost functions to be registered with the opera-
tors so that the optimizer can compare the cost of using the domain index to those of
other access paths.

For example, a domain index for advanced text searches may support an operator
contains. Once this operator has been registered, the domain index will be considered
as an access path for a query like

select *

from employees
where cont sins (r esume,' LINIJX' )
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where resume is a text column in tlne employee table. The domain index can be stored

in either an external data file or inside an Oracle index-organizedtable.

A domain index can be combined with other (bitmap or B-tree) indices in the same

access path by converting between the row-id and bitmap representation and using

Boolean bitmap operations.

27.3.1O Portitioning
Oracle supports various kinds of horizontal partitioning of tables and indices, and
this feature plays a major role in Oracle's ability to support very large databases. The
ability to partition a table or index has advantages in many areas'

o Backup and recovery are easier and faster, since they can be done on individ-
ual partitions rather than on the table as a whole.

o Loading operations in a data warehousing environment are less intrusive:
Data can be added to a partition, and then the partition added to a table, which
is an instantaneous operation. Likewise, dropping a partition with obsolete
data from a table is very easy in a data warehouse that maintains a rolling
window of historical data.

e Query performance benefits substantially, since the optimizer can recognize
that only a subset of the partitions of a table need to be accessed in order to

resolve a query (partition pruning). AIso, the optimizer can recognize that in

a join, it is not necessary to try to match all rows in one table with all rows in

the other, but that the joins need to be done only between matching pairs of

partitions (partitionwise join).

Each row in a partitioned table is associated with a specific partition. This associa-
tion is based on the partitioning column or columns that are part of the definition of a

partitioned table. There are several ways to map column values to partitions, giving
iise to several types of partitioning, each with different characteristics: range, hash,

list, and composite partitioning.

27.3.10.1 Ronge Portitioning
In range partitioning, the partitioning criteria are ranges of values. This tlpe of par-

titioning is especially well suited to date columns, in which case all rows in the same
date range, say a day or a month, belong in the same partition. In a data warehouse
where data are loaded from the transactional systems at regular intervals, range par-

titioning can be used to implement a rolling window of historical data efficiently.
Each dita load gets its own new partition, making the loading Process faster and

more efficient. The system actually loads the data into a separate table with the same

column definition as the partitioned table. It can then check the data for consistency,
cleanse them, and index them. After that, the system can make the separate table a

new partition of the partitioned table,by a simple change to the metadata in the data

dictionarv- a nearlv instantaneous operation.
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Up until the metadata change, the loading process does not affect the existing
data in the partitioned table in any way. There is no need to do any maintenance
of existing indices as part of the loading. otd data can be removed from a table by
simply dropping its partition; this operation does not affect the other partitions.

In addition, queries in a data warehousing environment often contain conditions
that restrict them to a certain time period, such as a quarter or month. If date range
partitioning is used, the query optimizer can restrict the data access to those parti-
tions that are relevant to the query, and avoid a scan of the entire table.

27.3.10.2 Hqsh Portitioning
In hash partitioning, a hash function maps rows to partitions according to the values
in the partitioning columns. This type of partitioning is primarily useful when it is
important to distribute the rows evenly among partitions or when partitionwise joins
are important for query performance.

27.3.10.3 Composite Pqrtitioning
In composite partitioning, the table is range partitioned, but each partition is sub-
partitioned by using hash or list partitioning. This type of partitioning combines the
advantages of range partitioning and hash or list partitioning.

27.3.10.4 List Pqrtitioning
In list partitioning, the values associated with a particular partition are stated in a
list. This type of partitioning is useful if the data in the partitioning column have a
relatively small set of discrete values. For instance, a table with a state column can be
implicitly partitioned by geographical region if each partition list has the states that
belong in the same region.

27.3.11 Mqteriolized Views
The materialized view feature (see Section 3.9.1) allows the result of an SeL query to
be stored in a table and used for later query processing. In addition, Oracle miitrtiittt
the materialized result, updating it when the tables that were referenced in the query
are updated. Materialized views are used in data warehousing to speed up query
processing, but the technology is also used for replication in distributed and mobile
environments.

In data warehousing/ a common usage for materialized views is to summarize
data. For example, a common type of query asks for "the sum of sales for each quarter
during the last 2 years." Precomputing the result, or some partial result, of such a
query can speed up query processing dramatically compared to computing it from
scratch by aggregating all detail-level sales records.

Oracle supports automatic query rewrites that take advantage of any useful mate-
rialized view when resolving a query. The rewrite consists of changing the query to
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use the materialized view instead of the original tables in the query. In addition, the
rewrite may add additional joins or aggregate processing as may be required to get
the correct result. For example , if a query needs sales by quarter, the rewrite can take
advantage of a view that materializes sales by month, by adding additional aggre-
gation to roll up the months to quarters. Oracle has a type of metadata object called
dimension that allows hierarchical relationships in tables to be defined. For example,
for a time dimension table in a star schema, Oracle can define a dimension metadata
object to specify how days roll up to months, months to quarters, quarters to years,
and so forih. Likewise, hierarchical properties relating to geography can be specified
-for example, how sales districts roll up to regions. The query rewrite logic looks at
these relationships, since they allow a materialized view to be used for wider classes
of queries.

The container object for a materialized view is a table, which means that a mate-
rialized view can be indexed, partitioned, or subjected to other controls, to improve

query performance.- 
When there are changes to the data in the tables referenced in the query that de-

fines a materialized view the materialized view must be refreshed to reflect those

changes. Oracle supports both full refresh of a materialized view and fast, incremen-
tal refresh. In a full refresh, Oracle recomputes the materialized view from scratch,
which may be the best option if the underlying tables have had significant changes,
for example, changes due to a bulk load. In an incremental refresh, Oracle updates

the viewlsing the records that were changed in the underlying tables; the refresh to

the view is immediate-that is, it is executed as part of the transaction that changed

the underlying tables. Incremental refresh may be better if the number of rows that
were changed is low. There are some restrictions on the classes of queries for which

a materialized view can be incrementally refreshed (and others for when a material-
ized view can be created at all).

A materialized view is similar to an index in the sense that, while it can improve

query performance, it uses up space, and creating and maintaining it cdnsumes re-

sonti"t. To help resolve this trade-off, Oracle provides an advisor that can help a usel

create the mosi cost-effective materialized views, given a particular query workload

as input.

27.4 Query Processing ond Optimizqtion
Oracle supports a large variety of processing techniques in its query-processing en-

gine. Some of the more important ones are described here briefly.

27.4.1 Execution Methods

Data can be accessed through a variety of access methods:

o Full table scan. The query processor scans the entire table by getting informa-
tion about the blocks that make up the table from the extent map and scanning

those blocks.
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r Index scan. The processor creates a start and/or stop key from conditions
in the query and uses it to scan to a relevant part of the index. If there are
columns that need to be retrieved, and they are not part of the index, the index
scan would be followed by a table access by index row-id. If no start or stop
key is available, the scan would be a full index scan.

o Index fast full scan. The processor scans the extents in the same way as the
table extent in a full table scan. If the index contains all the table columns that
are needed for that table, and there are no good start/stop keys that would
significantly reduce that portion of the index that would be scanned in a reg-
ular index scan, this method may be the fastest way to access the data. This is
because the fast full scan can take full advantage of multiblock disk I/O. How-
eve1, unlike a regular full scan, which traverses the index leaf blocks in order,
a fast full scan does not guarantee that the output preserves the sort order of
the index.

o Index join. If a query needs only a small subset of the columns of a wide
table, but no single index contains all those columns, the processor can use an
index join to generate the relevant information without accessing the table, by
joining several indices that together contain the needed columns. It performs
the joins as hash joins on the row-ids from the different indices.

o Cluster and hash cluster access. The processor accesses the data by using the
cluster key.

Oracle has several ways to combine information from multiple indices in a single
access path. This ability allows multiple where-clause conditions to be used togetlier
to compute the result set as efficiently as possible. The functionality includes the
ability to perform Boolean operations and, or, and minus on bitmaps representing
row-ids. There are also operators that map a list of row-ids into bitmaps and vice
versa/ which allows regular B-tree indices and bitmap indices to be used together in
the same access path. In addition, for many queries involving count(*) on selections
on a table, the result can be computed by just counting the bits that are set in the
btrTup generated by applying the where-clause conditions, without accessing the
table.

Oracle supports several types of joins in the execution engine: inner joins, outer
joins, semijoins, and antijoins. (An antijoin in Oracle returns rows from the left-hand-
side input that do not match any row in the right-hand-side inpu! this operation is
called anti-semijoin in other literature.) It evaluates each type of join by one of three
methods: hash join, sort-merge join, or nested-loop join.

27.4.2 Optimizqtion
In Chapter 1,4,we discussed the general topic of query optimization. Here, we discuss
optimization in the context of Oracle.
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27.4.2.1 Query Tkqnsformqtions
Oracle does query optimization in several steps. One such step is to perform various
query transformations and rewrites that fundamentally change the structure of the

query. Another step is to perform access-path selection to determine access paths, join

methods, and join order. Since some transformations are not always beneficial, Ora-

cle supports cost-based query transformations where the transformations and access-
path selection are interleaved. For each transformation that is tried, access-path se-
iection is performed in order to generate a cost estimate, and the transformation is

accepted or rejected on the basis of the cost for the resulting execution plan.
Some of the major types of transformations and rewrites supported by Oracle are

as follows:

r View merging. A view reference in a query is replaced by the view definition.
This transformation is not applicable to all views.

r Complex view merging. Oracle offers this feature for certain classes of views
that are not subject to regular view merging because they have a group by

or select distinct in the view definition. If such a view is joined to other ta-

bles, Oracle can commute the joins and the sort or hash operation used for the

group by or distinct.

o Subquery flattening. Oracle has a variety of transformations that convert var-

ious classes of subqueries into joins, semijoins, or antijoins.

o Materialized view rewrite. Oracle has the ability to rewrite a query automati-

cally to take advantage of materialized views. If some part of the query can be

matched up with an existing materialized view, Oracle can replace that part

of the query with a reference to the table in which the view is materialized.

If need be, Oracle adds join conditions oI grouP by operations to preserve

the semantics of the query. If multiple materialized views are applicabie, Ora-

cle picks the one that gives the greatest advantage in reducing the amount of

dati that has to be processed. In addition, Oracle subjects both the rewritten

query and the original version to the full optimization process, producing an

execution plan and an associated cost estimate for each. Oracle then decides

whether to execute the rewritten or the original version of the query on the

basis of the cost estimates.

r Star transformation. Oracle has a special technique for evaluating queries

against star schemas, known as the star transformation. When a query con-

tains a join of a fact table with dimension tables, and selections on attributes

from the dimension tables, the query is transformed by deleting the join con-

dition between the fact table and the dimension tables, and replacing the se-

lection condition on each dimension table by a subquery of the form:

fact-tablefti in
(select pk from dimension -t able i
where <conditions on dimension-tnblet >)
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One such subquery is generated for each dimension that has some constrain-
ing predicate. If the dimension has a snowflake schema (see section 1g.3), the
subquery will contain a join of the applicable tables that make up the dimen-
sion.

Oracle uses the values that are returned from each subquery to probe an
index on the corresponding fact table column, getting a bitmap as a result.
The bitmaps generated from different subqueries are combined by a bitmap
and operation. The resultant bitmap can be used to access matching fact table
rows. Hence, only those rows in the fact table that simultaneously match the
conditions on the constrained dimensions will be accessed.

Both the decision on whether the use of a subquery for a particular dimen-
sion is cost-effective and the decision on whether the rewritten query is better
than the original are based on the optimizer's cost estimates.

27.4.2.2 Access-Pqth Selection
Oracle has a cost-based optimizer that determines join orde1, join methods, and ac-
cess paths. Each operation that the optimizer considers has an associated cost func-
tion, and the optimizer tries to generate the combination of operations that has the
lowest overall cost.

In estimating the cost of an operation, the optimizer relies on statistics that have
been computed for schema objects such as tables and indices. The statistics contain
information about the size of the object, the cardinality, data distribution of table
columns, and so forth. For column statistics, Oracle supports height-balanced and
frequency histograms. To facilitate the collection of optimizer statistics, Oracle can
monitor modification activity on tables and keep track of those tables that have been
subject to enough changes that recalculating the statistics may be appropriate. Oracle
also tracks what columns are used in where clauses of queries, which mike them po-
tential candidates for histogram creation. With a single command, a user can tel br-
acle to refresh the statistics for those tables that were marked as sufficiently changed.
Oracle uses sampling to speed up the process of gathering the new statistics and
automatically chooses the smallest adequate sample percentage. It also determines
whether the distribution of the marked columns merits the creation of histograms;
if the distribution is close to uniform, Oracle uses a simpler representation of the
column statistics.

In some cases, it may be impossible for the optimizer to accurately estimate the
selectivity of a condition in the where clause of a query just on the basis of the stored
statistics. For example, the condition may be an expression involving a column, like
f (col 13) > 5.Another class of problematic queries are those that have multiple
predicates on columns that have some form of correlation. Assessing the combined
selectivity of ,those predicates may be hard. Oracle addresses these issues through
dynamic sampling. The optimizer can randomly sample a small portion of a table and
apply all the relevant predicates to the sample to see what percentage of the rows
match.

Oracle uses both CpU cost and disk I/Os in the optimizer cost model. To balance
the two components, it stores measures about CpU speed and disk I/O performance
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as part of the optimizer statistics. Oracle's package for gathering optimizer statistics

computes these measures.
For queries involving a nontrivial number of joins, the search space is an issue for a

query optimizer. Oracle addresses this issue in several ways. The optimizer generates

in initiil join order and then decides on the best join methods and access paths for

that join order. It then changes the order of the tables and determines the best join

methods and access paths for the new join order and so forth, while keeping the best

plan that has been found so far. Oracle cuts the optimization short if the number of

different join orders that have been considered becomes so large that the time spent

in the optimir"r may be noticeable compared to the time it would take to execute

the best plan found so far. Since this cutoff depends on the cost estimate for the best

plan found so far, finding a good plan early is important so that the optimization can

be stopped after a smaller number of join orders, resulting in better response time.

Oracle uses several initial ordering heuristics to increase the likelihood that the first

join order considered is a good one.
For each join order that is considered, the optimizer may make additional passes

over the tabies to decide join methods and access paths. Such additional passes would

target specific global side effects of the access-path selection. For instance, a specific

.o*bitrutiotr of loit-r methods and access paths may eliminate the need to perform an

order by sort. Since such a global side effect may not be obvious when the costs of

the different join methods and access paths are considered locally, a separate pass

targeting a specific side effect is used to find a possible execution plan with a better

overall cost.

27.4.3 SQL Tuning Advisor
In addition to the regular optimization process, Oracle's optimizer can be used in

tuning mode as part of the SQL Tuning Advisor in order to generate more efficient

e*"c.tiion plans ihan it normally would. Oracle monitors the the database activity

and automltically stores information about high-load SQL statements in a workload

repository. High-Ioad SQL statements are those that use uP the most resources be-

calse they are executed a large number of times or because they are inherently ex-

pensive. 'itt" SQf Tuning Advisor can be used to improve the performance oJ these

itatements by making various kinds of recommendations that fall into the following

different categories:

o Statistics Analysis. Oracle checks whether statistics needed by the optimizer

are missing or stale and makes recommendations for collecting them.

o SQL Profiling. A profile for an SQL statement is a set of information that is

intended to help the optimizer make better decisions the next time the state-

ment is optimized. An optimizer can sometimes generate inefficient execution

plans if iiis unable to estimate cardinalities and selectivities accurately, some-

ihing that can happen as a result of data correlation or the use of certain types

of constructs. When running the optimizer in tuning mode to create a profile,

the optimizer tries to verify that its assumptions are correct by using dynamic

ruttrplitlg and partial evaluation of the SQI- statement. If it finds steps in the
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optimization process in which the optirnizer's assumptions are wrong, it will
generate a correction factor for that step that will become part of the profile.
Optimizing in tuning mode can be very time-consuming, but can be worth-
while if the use of the profile significantly improves the performance of the
statement. If a profile is created, it will be stored persistently and used when-
ever the statement is optimized in the future. Profiles can be used to tune SQL
statements without changing the text of the statement, something that is im-
portant since it is often impossible for the database administrator to modify
statements generated by an application.

o Access-Path Analysis. on the basis of an analysis by the optimizer, oracle
suggests the creation of additional indexes that could speed up the statement.

o SQL Structure Analysis. Oracle suggests changes in the structure of the SQL
statement that would allow for more efficient execution.

For partitioned tables, the optimizer tries to match conditions in the where clause
of a query with the partitioning criteria for the table, in order to avoid accessing
partitions that are not needed for the result. For example,if a table is partitioned
by date range and the query is constrained to data between two specific dates, the
optimizer determines which partitions contain data between the specified dates and
ensures that only those partitions are accessed. This scenario is very commory and
the speedup can be dramatic if only a small subset of the partitions are needed.

27.4.4 Pqrqllel Execution
Oracle allows the execution of a single SQL statement to be parallelized by dividing
the work between multiple processes on a multiprocessor computer. This feature is
especially useful for computationally intensive operations that would otherwise take
an unacceptably long time to perform. Representative examples are decision support
queries that need to process large amounts of data, data loads in a data warehouse,
and index creation or rebuild.

In order to achieve good speedup through parallelism, it is important that the
work involved in executing the statement be divided into granules that can be pro-
cessed independently by the different parallel processors. Depending on the type of
operation, Oracle has several ways to split up the work.

For operations that access base objects (tables and indices), Oracle can divide the
work by horizontal slices of the data. For some operations, such as a full table scan,
each such slice can be a range of blocks-each parallel query process scans the table
from the block at the start of the range to the block at the end. For other operations on
a partitioned table, like update and delete, the slice would be a partition. For inserts
into a nonpartitioned table, the data to be inserted are randomly divided across the
parallel processes.

Joins can be parallelized in several different ways. One way is to divide one of the
inputs to the join between parallel processes and let each process join its slice with
the other input to the join; this is the aslrmmetric fragment-and-replicate method
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of Section 21,.5.2.2. For example, if a large table is joined to a small one by a hash
join, Oracle divides the large table among the processes and broadcasts a copy of the
small table to each process, which then joins its slice with the smaller table. If both
tables are large, it would be prohibitively expensive to broadcast one of them to all
processes. In that case, Oracle achieves parallelism by partitioning the data among
processes by hashing on the values of the join columns (the partitioned hash-join
method of Section 21.5.2.1). Each table is scanned in parallel by a set of processes and
each row in the output is passed on to one of a set of processes that are to perform
the join. Which one of these processes gets the row is determinedby a hash function
on the values of the join column. Flence, each join process gets only rows that could
potentially match, and no rows that could match could end up in different processes'

Oracle parallelizes sort operations by value ranges of the column on which the
sort is performed (that is, using the range-partitioning sort of Section 21.5.1). Each
process participating in the sort is sent rows with values in its range, and it sorts the
rows in its range. To maximize the benefits of parallelism, the rows need to be di-
vided as evenly as possible among the parallel processes, and the problem of deter-
mining range boundaries that generate a good distribution then arises. Oracle solves
the problem by dynamically sampling a subset of the rows in the input to the sort
before deciding on the range boundaries.

The processes involved in the parallel execution of an SQL statement consist of
a coordinator process and a number of parallel server processes. The coordinator is
rbsponsible for assigning work to the parallel servers and for collecting and returning
dati to the user process that issued the statement. The degree of parallelism is the
number of parallel server processes that are assigned to execute a primitive operation
as part of the statement. The degree of parallelism is determined by the optimizer, but
can be throttled back dynamically if the load on the system increases.

The parallel selvers oPerate on a producer/consumer model. When a sequence
of operitions is needed to process a statement, the producer set of servers performs
the iirst operation and passes the resulting data to the consumer set. For example,
if a full table scan is followed by a sort and the degree of parallelism is 12, there
would be 12 producer servers performing the table scan and passing the result to 12

consumer servers that perform the sort. If a subsequent operation is needed, such
as another sort, the roles of the two sets of servers switch. The servers that origi-
nally performed the table scan take on the role of consumers of the output produced
by the the first sort and use it to perform the second sort. Hence, a sequence of op-

erations proceeds by passing data back and forth between two sets of servers that
alternate in their roles as producers and consumers. The servers communicate with

each other through memory buffers on shared-memory hardware and through high-
speed network connections on MPP (shared-nothing) configurations and clustered
(shared-disk) systems.

For shared-nothing systems, the cost of accessing data on disk is not uniform
among processes. A process running on a node that has direct access to a device
is able tb process data on that device faster than a process that has to retrieve the

data over a network. Oracle uses knowledge about device-to-node and device-to-
process affinity-that is, the ability to access devices directly-when distributing
work among parallel execution servers.
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27.5 Concurrency Control qnd Recovery
Oracle supports concurrency-control and recovery techniques that provide a number
of useful features.

27.5.1 Concurrency Control
Oracle's multiversion concurrency control differs from the concurrency mechanisms
used by most other database vendors. Read-only queries are given a read-consistent
snapshot, which is a view of the database as it existed at a specific point in time,
containing all updates that were committed by that point in time, and not containing
any updates that were not committed at that point in time. Thus, read locks are not
used and read-only queries do not interfere with other database activity in terms of
locking. (This is basically the multiversion two-phase locking protocol described in
Section 16.5.2.)

Oracle supports both statement- and transaction-level read consistency: At the be-
ginning of the execution of either a statement or a transaction (depending on what
level of consistency is used), Oracle determines the current system change number
(SCN). The SCN essentially acts as a timestamp, where the time is measured in terms
of transaction commits instead of wall-clock time.

If in the course of a query a data block is found that has a higher SCN than the one
being associated with the query, it is evident that the data block has been modified
after the time of the original query's sCN by some other transaction that may or may
not have committed. Hence, the data in the block cannot be included in a consistent
view of the database as it existed at the time of the query's SCN. Instead, an older ver-
sion of the data in the block must be used-specihcally, the one that has the highest
SCN that does not exceed the SCN of the query. Oracle retrieves that version of the
data from the rollback segment (rollback segments are described in Section 27.5.2).
F{ence, provided that the rollback segment is sufficiently Iarge, Oracle can return a
consistent result of the query even if the data items have been modified several times
since the query started execution. Should the block with the desired SCN no longer
exist in the rollback segment, the query will return an error. It would be an indica-
tion that the rollback segment has not been properly sized, given the activity on the
system.

In the Oracle concurrency model, read operations do not block write operations
and write operations do not block read operations, a property that allows a high
degree of concurrency. In particular, the scheme allows for long-running queries (for
example, reporting queries) to run on a system with a large amount of transactional
activity. This kind of scenario is often problematic for database systems where queries
use read locks, since the query may either fail to acquire them or lock large amounts
of data for a long time, thereby preventing transactional activity against that data
and reducing concurrency. (An alternative that is used in some systems is to use a
lower degree of consistency, such as degree-two consistency, but that could result in
inconsistent query results.)

Oracle's concurrency model is used as a basis for the Flnshback features. These
features allow a user to set a certain SCN number or wall-clock time in a session
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and perform operations on the data that existed at that point in time (provided that
the data still exist in the rollback segment). Normally in a database system/ once a
change has been committed, there is no way to get back to the previous state of the
data other than performing point-in-time recovery from backups. However/ recovery
of a very large database can be very costly, especially if the goal is just to retrieve
some data item that had been inadvertently deleted by a user. The Flashback Query
feature provides a much simpler mechanism to deal with user errors. The features
include the ability to restore a table or an entire database to an earlier point in time
without recovering from backups, the ability to perform queries on the data as the
data existed at an earlier point in time, the abiiity to track how one oI more rows
have changed over time, and the ability to examine changes to the database at the
transaction level.

Oracle supports two ANSI/ISO isolation levels, "read committed" and "serializ-
able." There is no support for dirty reads, since it is not needed. The two isolation
levels correspond to whether statement-level or transaction-level read consistency is
used. The level can be set for a session or an individual transaction. Statement-level
read consistency is the default.

Oracle uses row-level locking. Updates to different rows do not conflict. If two
writers attempt to modify the same row one waits until the other either commits or
is rolled back, and then it can either return a write-conflict error or go ahead and
modify the row. Locks are held for the duration of a transaction.

In addition to row-level locks that prevent inconsistencies due to DML activity,
Oracle uses table locks that prevent inconsistencies due to DDL activity. These locks
prevent one user from, say, dropping a table while another user has an uncommitted
transaction that is accessing that table. Oracle does not use lock escalation to convert
row locks to table locks for the purpose of its regulal concurrency control.

Oracle detects deadlocks automatically and resolves them by rolling back one of
the transactions involved in the deadlock'

Oracle supports autonomous transactions, which are independent transactions
generated within other transactions. When Oracle invokes an autonomous transac-
tion, it generates a new transaction in a separate context. The new transaction can
be either committed or rolled back before control returns to the calling transaction.
Oracle supports multiple levels of nesting of autonomous transactions.

27.5.2 Bosic Structures for Recovery
In order to understand how Oracle recovers from a failure, such as a disk crash, it
is important to understand the basic structures that are involved. In addition to the
data iiles that contain tables and indices, there are control files, redo logs, archived
redo logs, and rollback segments.

The control file contains various metadata that are needed to operate the database,
including information about backups.

Oracle records any transactional modification of a database buffer in the redo log,
which consists of two or more files. It logs the modification as part of the opera-
tion that causes it, regardless of whether the transaction eventually commits. It logs
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changes to indices and rollback segments as well as changes to table data. As the redo
logs fill up, they are archived by one or several background processes (if the database
is running in archivelog mode).

The rollback segment contains information'about older versions of the data (that
is, undo information). In addition to its role in Oracle's consistency model, the infor-
mation is used to restore the old version of data items when a transaction that has
modified the data items is rolled back.

To be able to recover from a storage failure, the data files and control files should be
backed up regularly. The frequency of the backup determines the worst-case recovery
time, since it takes longer to recover if the backup is old. Oracle supports hot backups
-backups performed on an on-line database that is subject to transactional activity.

During recovery from a backup, Oracle performs two steps to reach a consistent
state of the database as it existed just prior to the failure. First, Oracle rolls forward
by applying the (archived) redo logs to the backup. This action takes the database
to a state that existed at the time of the failure, but not necessarily a consistent state
since the redo logs include uncommitted data. Second, Oracle rolls back uncommit-
ted transactions by using the rollback segment. The database is now in a consistent
state.

Recovery on a database that has been subject to heavy transactional activity since
the last backup can be time-consuming. Oracle supports parallel recovery in which
several processes are used to apply redo information simultaneously. Oracle provides
a GUI tool, Recovery Manager, which automates most tasks associated with backup
and recovery.

27.5.3 Orqcle Dqtq Guqrd
To ensure high availability, Oracle provides a standby database feature, Data Guard.
(This feature is the same as remotebackups, described in Section 17.9.) A standby
database is a copy of the regular database that is installed on a separate system. If
a catastrophic failure occurs on the primary system, the standby system is activated
and takes over, thereby minimizing the effect of the failure on availability. Oracle
keeps the standby database up-to-date by constantly applying archived redo logs
that are shipped from the primary database. The backup database can be brought
online in read-only mode and used for reporting and decision support queries.

27.6 System Architecture
Whenever a database application executes an SQL statement, there is an operating
system process that executes code in the database server. Oracle can be configured
so that the operating system process is dedicated exclusively to the statement it is
processing or so that the process can be shared among multiple statements. The latter
configuration, known as the shared sener, has somewhat different properties with
regard to the process and memory architecture. We shall discuss the dedicated server
architecture first and the multithreaded server architecture later.
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27.6.1 Dedicqted Server: Memory Structures
The memory used by Oracle falls mainly into three categories: software code areas,
which are the parts of the memory where the Oracle server code resides, the system
global area (SGA), and the Program global area (PGA).

A pGA is allocated for each process to hold its local data and control informa-
tion. This area contains stack space for various session data and the private memory
for the SQL statement that it is executing. It also contains memory for sorting and
hashing operations that may occur during the evaluation of the statement. The per-
formance of such operations is sensitive to the amount of memory that is available.
For example, a hash join that can be performed in memory will be faster than if it is
necessary to spill to disk. Since there can be a large number of sorting and hashing
operations active simultaneously (because of multiple queries as well as multiple op-
eiations within each query), deciding how much memory should be allocated to each
operation is nontrivial, especially as the load on the system may fluctuate. Oracle lets
the database administrator specify a parameter for the total amount of memory that

should be considered available for these operations and will dynamically decide the
best way to divide the available memory between the active operations in order to
maximize throughput. The memory allocation algorithm knows the relationship be-
tween memory and performance for the different operations and seeks to ensure that
the available memory is used as efficiently as possible.

The SGA is a memory area for structures that are shared among users. It is made
up by several major structures, including:

o The buffer cache. This cache keeps frequently accessed data blocks (from ta-
bles as well as indices) in memory to reduce the need to perform physical
disk I/O. A least recently used replacement policy is used except for blocks ac-
cessed during a full table scan. However, Oracle allows multiple buffer pools
to be created that have different criteria for aging out data. Some Oracle oper-
ations bypass the buffer cache and read data directly from disk.

o The redo log buffer. This buffer contains the part of the redo log that has not
yet been written to disk.

r The shared pool. Oracle seeks to maximize the number of users that can
use the database concurrently by minimizing the amount of memory that is
needed for each user. One important concept in this context is the ability to
share the internal representation of SQL statements and procedural code writ-
ten in PLISQL. When multiple users execute the same SQL statement, they can
share most data structures that represent the execution plan for the statement.
Only data that are local to each specific invocation of the statement need to be
kept in private memory.

The sharable parts of the data structures representing the SQL statement are
stored in the shared pool, including the text of the statement. The caching of
SQL statements in the shared pool also saves compilation time, since a new in-
vocation of a statement that is already cached does not have to go through the
complete compilation process. The determination of whether an SQL state-
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ment is the same as one existing in the shared pool is based on exact text
matching and the setting of certain session parameters. Oracle can automati-
cally replace constants in an SQL statement with bind variables; future queries
that are the same except for the values of constants will then match the earlier
query in the shared pool. The shared pool also contains caches for dictionary
information and various control structures.

27.6.2 Dedicqted Server: Process Structures
There are two types of processes that execute Oracle server code: server processes
that process SQL statements and background processes that perform various admin-
istrative and performance-related tasks. Some of these processes are optional, and in
some cases, multiple processes of the same type can be used for performance reasons.
Some of the most important types of background processes are:

o Database writer. When a buffer is removed from the buffer cache, it must be
written back to disk if it has been modified since it entered the cache. This task
is performed by the database writer processes, which help the performance of
the system by freeing up space in the buffer cache.

o Log writer. The log writer process writes entries in the redo log buffer to the
redo log file on disk. It also writes a commit record to disk whenever a trans-
action commits.

o Checkpoint. The checkpoint process updates the headers of the data file when
a checkpoint occurs.

o System monitor. This process performs crash recovery if needed. It also per-
forms some space management to reclaim unused space in temporary seg-
ments.

o Process monitor. This process performs process recovery for server processes
that fail, releasing resources and performing various cleanup operations.

o Recoverer. The recoverer process resolves failures and conducts cleanup for
distributed transactions.

o Archiver. The archiver copies the on-line redo log file to an archived redo log
every time the on-line log file fills up.

27.5.3 Shqred Server
The shared server configuration increases the number of users that a given number of
server processes can support by sharing server processes among statements. It differs
from the dedicated server architecture in these major aspects:

o A background dispatch process routes user requests to the next available ser-
ver process. In doing so, it uses a request queue and a response queue in the
SGA. The dispatcher puts a new request in the request queue where it will
be picked up by a server process. As a server process completes a request, it
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puts the result in the response queue to be picked up by the dispatcher and

returned to the user.

o Since a server process is shared among multiple SQL statements, Oracle does

not keep private data in the PGA. Instead, it stores the session-specific data in

the SGA.

27.6.4 Orqcle Reql Applicotion Clusters
Oracle Real Application Clusters (RAC) is a feature that allows multiple instances
of Oracle to run against the same database. (Recall that, in Oracle terminology, an
instance is the combination of background processes and memory areas.) This fea-
ture enables Oracle to run on clustered and MPP (shared-disk and shared-nothing)
hardware architectures. The ability to cluster multiple nodes has important benefits
for scalability and availability that are useful in both OLIP and data warehousing
environments.

The scalability benefits of the feature are obvious, since more nodes mean more
processing power. On shared-nothing architectures, adding nodes to a cluster typi-
cally requires redistributing the data between the nodes. Oracle uses a shared-disk
architecture where all the nodes have access to all the data, and, as a result, more
nodes can be added to a RAC without worrying how the data should be divided be-
tween the nodes. Oracle further optimizes the use of the hardware through features
such as affinity and partitionwise joins.

RAC can also be used to achieve high availability. If one node fails, the remain-
ing ones are still available to the application accessing the database. The remaining
instances will automatically roll back uncommitted transactions that were being pro-
cessed on the failed node in order to prevent them from blocking activity on the
remaining nodes.

Having multiple instances run against the same database gives rise to some tech-
nical issues that do not exist on a single instance. While it is sometimes possible to
partition an application among nodes so that nodes rarely access the same data, there
is always the possibility of overlaps, which affects cache management. To address this
issue, Oracle uses the cache fusion feature, which allows data blocks to flow directly
among caches on different instances using the interconnect, without being written to
disk.

27.7 Replicotion, Distribution, snd Externql Dqtq
Oracle provides support for replication and distributed transactions with two-phase
commit.

27.7.1 Replicotion
Oracle supports several types of replication. (See Section 22.2.L for an introduction to
replication.) In its simplest form, data in a master site are replicated to other sites
in the form of snapshots. (The term snapshot in this context should not be con-
fused with the concept of a read-consistent snapshot in the context of the concurrency
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model.) A snapshot does not have to contain all the master data-it can, for example,
exclude certain columns from a table for security reasons. Oracle supports two types
of snapshots: read only and updatable. An updatable snapshot can be modified at a
slave site and the modifications propagated to the master table. Howevel, read-only
snapshots allow for a wider range of snapshot definitions. For instance, a read-only
snapshot can be defined in terms of set operations on tables at the master site.

Oracle also supports multiple master sites for the same data, where all master
sites act as peers. A replicated table can be updated at any of the master sites and
the update is propagated to the other sitesi The updates can be propagated either
asynchronously or synchronously.

For asynchronous replication, the update information is sent in batches to the other
master sites and applied. Since the same data could be subject to conflicting modi-
fications at different sites, conflict resolution based on some business rules might be
needed. Oracle provides a number of of built-in conflict resolution methods and al-
lows users to write their own if need be.

with synchronous replication, an update to one master site is propagated imme-
diately to all other sites. If the update transaction fails at any master site, the update
is rolled back at all sites.

27.7.2 Distributed Dqtqbqses
Oracle supports queries and transactions spanning multiple databases on different
systems. With the use of gateways, the remote systems can include non-Oracle data-
bases. Oracle has built-in capability to optimize a query that includes tables at differ-
ent sites, retrieve the relevant data, and return the result as if it had been a normal,
local query. Oracle also transparently supports transactions spanning multiple sites
by a built-in two-phase commit protocol.

27.7.3 Externol Dqto Sources
Oracle has several mechanisms for supporting external data sources. The most com-
mon usage is in data warehousing when large amounts of data are regularly loaded
from a transactional system.

27.7.3.1 SQL*Loqder
Oracle has a direct load utility, SQL*Loade1, that supports fast parallel loads of large
amounts of data from external files. It supports a variety of data formats and it can
perform various filtering operations on the data being loaded.

27.7.3.2 Externql Tqbles
Oracle allows external data sources, such as flat files, to be referenced in the from
clause of a query as if they were regular tables. An external table is defined by meta-
data that describe the Oracle column types arrrd the mapping of the external data into
those columns. An access driver is also needed to access the external data. Oracle
provides a default driver for flat files.
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The external table feature is primarily intended for extraction, transformation, and

loading (rTL) operations in a data warehousing environment. Data can be loaded into

the data warehouse from a flat file using

create table table as
select ... from ( external table >
where. . .

By adding operations on the data in either the select list or where clause, trans-

formations and filtering can be done as part of the same SQL statement. Since these

operations can be expressed either in native SQL or in functions written in PL/SQL or

fava, the external table feature provides a very powerful mechanism for expressing

all kinds of data transformation and filtering operations. For scalability, the access to

the external table can be parallelized by Oracle's parallel execution feature.

27.8 Dqtqbqse Administrqtion Tools
Oracle provides users a number of tools and features for system management and
applicaiion development. In the release Oracle10g, much emphasis was put on the

concept of managenbility, that is, reducing the complexity of all aspects of creating
and administering an Oracle database. This effort covered a wide variety of areas, in-

cluding database creation, tuning, space management, storage management, backup
and recovery, memory management, performance diagnostics, and workload man-
agement.

27.8.1 Automqtic Workloqd Repository
The Automatic Workload Repository (AWR) is one of the central pieces of infrastruc-
ture for Oracle's manageability effort. Oracle monitors the activity on the database
system and records a variety of information relating to workloads and resource con-
sumption. The recorded information is used for performance diagnostics and pro-
vides a basis for a variety of adoisors that provide analysis of various aspects the per-
formance of the system and advice for how it can be improved. Oracle has advisors
for SQL tuning, creating access structures, such as indexes and materialized views,
and memory sizing. Oracle also provides advisors for segment defragmentation and
undo sizing.

27.8.2 Dqtqbqse Resource Mqnqgement

A database administrator needs to be able to control how the processing power of
the hardware is divided among users oI grouPs of users. Some groups may execute
interactive queries where response time is critical; others may execute long-running
reports that can be run as batch jobs in the background when the system load is low.
It is also important to be able to prevent a user from inadvertently submitting an
extremely expensive ad-hoc query that will unduly delay other users.

Oracle's Database Resource Management feature allows the database administra-
tor to divide users into resource consumer groups with different priorities and prop-
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erties. For example, a group of high-priority, interactive users may be guaranteed at
least 60 percent of the cPU. The remainder, plus any part of the 60 percent not used
up by the high-priority groupz would be allocated among resource consumer groups
with lower priority. A really low-priority group could get assigned 0 percent, which
would mean that queries issued by this group would run only when there are spare
CPU cycles available. Limits for the degree of parallelism for parallel execution canbe
set for each group. The database administrator can also set time limits for how long
an SQL statement is allowed to run for each group. When a user submits a statement,
the Resource Manager estimates how long it would take to execute it and returns
an error if the statement violates the limit. The resource manager can also limit the
number of user sessions that can be active concurrently for each resource consumer
group. Other resources that can be controlled by the resource manager include undo
sDace.

27.8.3 Orqcle Enterprise Monoger
Orac1e Enterprise Manager is Oracle's main tool for database-system management. It
provides an easy-to-use graphical user interface (GUD for most tasks associated with
administering an Oracle database, including configuration, performance monitoring,
resource management, security management, and access to the various advisors.

27.9 Dqtq Mining
Oracle Data Mining provides a variety of algorithms that embed the data-mining
process inside the database both for building a model on a training set of data and
for applying the model for scoring the actual production data. The fact the the data
never need to leave the database is a significant advantage over use of a separate
data-mining engine. Having to extract and insert potentially very large data sets into
a separate engine is cumbersome and costly and may prevent new data from being
scored instantaneously as they are entered into the dalabase. Oracle provides funcl
tionality for both supervised and unsupervised learning, including:

o Classification

o Regression

r Attribute importance

o Clustering

o Market basket analysis

o Feature extraction

o Text mining

o Bioinformatics (BLAST)

Oracle provides two interfaces to the data-mining functionality, one Java interface
and one that is based on Oracle's procedural language pLlSeL. Once a model has
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been built on an Oracle database, it can be shipped to be deployed on other Oracle

databases. Oracle can import and export models by using a representation that is

based on either the native PLISQL representation or the industry standard Predictive

Model Markup Language (PMML). A PMML model generated by Oracle can also be

consumed by other tools that support PMML.
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IBM's DB2 Universal Database family of products consists of flagship database servers
and suites of related products for business intelligence, information integration, and
content management which are widely recognized for their comprehensive and ro-
bust features. The DB2 Universal Database Server is available on a variety of hard-
ware and operating system platforms. The list of server platforms supported in-
cludes high-end systems such as mainframes, massively-parallel processors (tvtrr;,
and large symmetric multiprocessors (SMp) serversi medium-scale systems such as
four-way and eight-way SMPs; workstations; and even small handheld devices. Op-
erating systems that are supported include Unix variants such as Linux, AIX, Solaris,
and HP-UX, as well as Windows 2000, Windows Xp, MVS, VM, OS/400, and a number
of others. The DB2 Everyplace edition supports operating systems such as palmos
and Windows CE. DB2 Cloudscape is a pure Java database engine that can be embed-
ded into application servers and other applications easily. Applications can migrate
seamlessly from the low-end platforms to high-end servers because of the portability
of the pnZ interfaces and services. Besides the core database engine, the DB2 family
consists of several other products that provide tooling, administration, replication,
distributed data access, pervasive data access, oLAp, and many other features. Fig-
ure 28.1 describes the different products in the family.

28.1 Overview
The origin of DB2 can be traced back to the system R project at IBM's Almaden
Research Center (then called the IBM San jose Research Laboratory). The first DB2
product was released in7984 on the IBM mainframe platform, and this was followed

1027
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oDatabase Servers

-DB2 UDB for Linux, Unix, Windows

-DB2UDBfor z/OS

-DB2 UDB for OS/400

-DB2 UDB for VM/VSE

.Business Intelligence

-DB2 Data Warehouse Edition

-DB2 OLAP Server

-DB2 Alphablox

-DB2 CubeViews

-DB2 Intelligent Miner

-DB2 Query Patroller

oTla t :  Tn feora f inn

-DB2 Inf ormation Integrator

-DB2 Replication

-DB2 Connect

-Qmnifind (Fer Enterprise Search)

ocontent Management

-DB2 Content Manager

-IBM Enterprise Content Manager

. Application Development

-IBM Rational Application Developer

Studio

-DB2 Forms for z/OS

_QMF

o D atabase-Management Tools

-DB2 Control Center

-DB2 Admin Toolfor z/OS

-DB2 Performance Ex pert

-DB2 Query Patroller

-DB2 Visual Explain

.Embedded and Mobile Database s

-DB2 Cloudscape

-DB2e (Everyplace)

Figure 28.1 The DB2 family of products.

over time with versions for the other platforms. IBM research contributions have con-

tinually enhanced the DB2 product in areas such as transaction processing (write-

ahead togging and ARIES lecovely algorithms), quely processing and optimization
(Starburst), parallel processing (ngZ Parallel Edition), active database suPPort (con-

straints, triggers), advanced query and warehousing techniques such as materialized
views, multidimensional clustering, "autonomic" features, and object-relational sup-
port (ADTS, UDFs).

Since IBM suppolts a number of server and operating system platforms, the DB2

database engine consists of four code base types: (1) Linux, Unix, and Windows,
(2) z/OS (3) VM, and (4) OS/400. All of these support a common subset of data-
definition language, SQL, and administration interfaces. However, the engines have
somewhat different features due to their platform origins. In this chapter, the focus
is on the DB2 Universal Database (UDB) engine that supports Linux, Unix, and Win-

dows. Specific features of interest in other DB2 systems are highlighted in approPdate
sections.

The latest version of DB2 UDB for Linux, Unix, and Windows is version 8.2. This
version contains several features that improve the scalability, availability, and general
robustness of the DB2 engine. In the scalability area, two significant features areffiate-
rialized query tables and multidimensionftI clustering. For availability, enhancements in

the areas of on-line utilities and replication will be described. In addition, this version
provides autonomic features such as the design adoisor and automatic memory tuning

and monitoring. These and additional features will be described in their respective

sections.
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28.2 Datqbqse-Design Tools
Most industry database design and CASE tools can be used to design a DB2 database.
In particular, data modeling tools such as ERWin and Rational Rose allow the de-
signer to generate DB2-specific DDL syntax. For instance, Rational Rose's UML Data
Modeler tool can generate DB2 specific create distinct type DDL statements for user-
defined types and use them subsequently in column definitions. Most design tools
also support a reverse-engineering feature that reads the DB2 catalog tables and builds
a logical design for additional manipulation. The tools support the generation of con-
straints and indices.

DB2 provides support for many logical and physical database features using SeL.
The features include constraints, triggers, and recursion using SQL constructs. Like-
wise, certain physical database features such as tablespaces, bufferpools, and par-
titioning are also supported by using SQL statements. The Control Center GUI tool
for DB2 allows a designer or an administrator to issue the appropriate DDL for these
features. Another tool, db2look, allows the administrator to obtain a full set of DDL
statements for a database including tablespaces, tables, indices, constraints, triggers,
and functions that can be used to create an exact replica of the database schema for
testing or replication.

The DB2 Control Center includes a variety of design- and administration-related
tools. For design, the control center provides a tree view of a server, its databases,
tables, views, and all other objects. It also allows users to define new objects, create
ad-hoc sQL queries, and view query results. Design tools for ETL, oLAp, replication,
and federation also integrate into the control center. The entire DB2 family supports
the Control Center for database definition as well as related tools. DB2 also provides
plug-in modules for application development in the IBM Rational Application Devel-
oper product as well as in the Microsoft Visual Studio product.

28.3 SQL Vqriqtions qnd Extensions
DB2 provides support for a rich set of SQL features for various aspects of database
processing. Many of the pnZ features and syntax have provided the basis for stan-
dards in sQL-92, or sQL-99. In this section, we highlight the XML object-relational
and application-integration features in DB2 UDB version 8.

28.3.1 XML feqtures
A rich set of XML functions have been included in DB2. The following is a list of
several important XML functions.

o xmlelement. constructs an element tag with given name. For example, xmle-
mement(book) creates the book element.

o xmlattributes. Constructs the set of attributes for an element.

o xmlforest. Constructs a sequence of XML elements from arguments.

o xmlconcat. Returns the concatenation of a variable number of XML arguments.
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select xmlemement(nam e'PO',
xmlattribut es(p oid, or der dnt e),
(select xmlagg(xmlelement(name'item',

xmlattribut es(itemid, qty, shipdate),
(select xmlelement(name'itemdesc',

xmlattribut es(name, price))
fromproduct
where product.itemid = lineitem.itemid)))

fuonlineitem
where lineitem.poid = orders.poid))

from orders
where orders.Poid= 349 ;

Figure28.2 DB2 SQL XML query.

o xmlserialize. Provides a character-oriented serialized version of the argument.

o xmlagg. Returns a concatenation of a set of XML values.

o xml2clob. constructs a character large object (clob) representation of the XML.
This clob can then be retrieved by SQL applications.

The XML functions can be incorporated into SQL effectively to provide extensive
XML manipulation capabilities. For instance, suppose that one needs to construct a

purchase-order XML document from relational tables orders,Iineitem, and product for

order numb er 349. In Figure 28.2 we show an SQL query with XML extensions that
can be used to create such a purchase order. The resultant output is as shown in

Figure 28.3.
DB2 ships an XML extender capability that provides users with stored procedures

and user-defined functions to store and manipulate XML either as large character
objects or as shredded attributes in tables. One can then access these XML objects
through SQL with the above-mentioned XVIL extensions or through the XML extender
functions.

28.3.2 Support for Dqtq TYPes

DB2 provides support for user-defined data types (UDTs). Users can define distinct

or structured data types. Distinct data types are based on DB2 built-in data types'

<PO poid ="349" orderdate = "2004-10-01">
<item itemid="1", qty="1 0", shipdate="2004-1 0-03">
<itemdesc fiarrTle = "lBM ThinkPadT41", Price = "1000.00 usD"/>
</item>

</PO>

Figure 28.3 Purchase order in )(ML for id=349.
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Howevel, the user can define additional or alternative semantics for these new types.
For example, the user can define a distinct data type called us-dollar,using

create distinct type us_dollar as decinal(9,2)

Subsequently, the user can create a field (e.g., price) in a table with type us_dollar.
Queries may now use the typed field in predicates such as the following:

select product from ussales
where price > us-dollar(1.000)

Structured data types are complex objects that usually consist of two or more at-
tributes. For example, one can use the following DDL to create a structured type called
department-t:

create type department-t as
(deptname varchar(32),
depthead varchar(32),
f aculty -count integer)

mode db2lsql

create type point-t as
(x-coord float,

^"u.!{;i:hu"^"
Structured types can be used to define typed tables.

create table dept of department-t

One can create a type hierarchy and tables in the hierarchy that can inherit specific
methods and privileges. Structured types can also be used to define nested attributes
inside a column of a table. Although such a definition would violate normalization
rules, it may be suitable for object-oriented applications that rely on encapsulation
and well-defined methods on objects.

28.3.3 User-Defined Functions qnd Methods
Another important feature is the ability for users to define their own functions and
methods. These functions can subsequently be included in SQL statements and queries.
Functions can generate scalars (single attribute) or tables (multiattribute row) as their
result. IJsers can register functions (scalar or table) using the create function state-
ment. The functions can be written in common programming languages such as C
or Java or scripts such as REXX or PERL. User-defined functions (UDFs) can operate
in fenced or unfenced modes. In fenced mode, the functions are executed by a sep-
arate thread in its own address space. In unfenced mode, the database-processing
agent is allowed to execute the function in the server's address space. UDFs can de-
fine a scratch pad (work) area where they can maintain local and static variables
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create function db2gse.GsegeFilterDist (
operation integer, glXMin double, glXMax double,
glYMin double, glYMax double, dist doablq
g2XMin double, g2.XMax double, g2YMin double,
g2YMax double )

returns integer
specific db2gse.GsegeFilterDist
external name' db2gsefn! gsegeFilterDist'
language C
parameter style db2 sql
deterministic
not fenced
threadsafe
called on null input
no sql
no external action
no scratchpad
no final call
allow parallel
no dbinfo;

Figure28.4 Definition of a UDF.

across different invocations. Thus, UDFs can p€rform powerful manipulations of in-
termediate rows that are its inputs. In Figure 28.4 we show a definition of a UDF,
db2gse.GsegeFilterDist, in DB2 pointing to a particular external method that performs
the actual function.

Methods are another feature that define the behavior of objects. Unlike UDFs, they
are tightly encapsulated with a particular structured data type. Methods are regis-
tered by using the create method statement,

28.3.4 Lorge Objects
New database applications require the ability to manipulate text, images, video, and
other types of data that are typically quite large in size. DB2 supports these require-
ments by providing three different large object (fOn) types. Each LOB can be as large
as two gigabytes in size. The large objects in DB2 are (1) binary large objects (blobs),
(2) single byte character large objects (clobs), and (3) double byte character large ob-
jects (dbclobs). pSZ organizes these LOBs as separate objects with each row in the
table maintaining pointers to its corresponding LOBs. Users can register UDFs that
manipulate these LOBs according to application requirements.

28.3.5 Indexing Extensions qnd Constrqints

A recent feature of DB2 enables users to create index extensions to generate keys from
structured data types by using the create index extension statement. For example,
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create index extension db2gse.spatiaUndex(
gSl double, gS2 double,gS3 double)

from source key(geometry db2gse.ST-Geometry)
generate key using

db2 gse.GseGridldxKey G en(geometry..srid,
geometry..xMin, geometry..xMax,
geometry..y Min, geometry..y Max,
gS1, gS2, gS3)

with target key(srsld integer,
Ial intege1, gX integer, gY integer, xMin double,
xMax double,yMin double, yMax double)

search methods <conditions> <actions>

Figure 28.5 Spatial index extension in DB2.

one can create an index on an attribute based on the department-t data type defined
earlier by generating keys, using the department name. DB2's spatial extender uses
the index extension method to create indices as shown in Figure 28.5.

Finally, users can take advantage of the rich set of constraint checking features
available in DB2 for enforcing object semantics such as uniqueness, validity, and in-
heritance.

28.3.6 Web Services
In Version 8,DB2 can integrate Web services as producer or consumer. A Web service
can be defined to invoke DB2, using SQL statements. The resultant Web-service call is
processed by an embedded Web-service engine in DB2 and the appropriate SOAP re-
sponse generated. For example, if there is a Web service called GetRecentActiaity(cust
-id) that invokes the following SQL, the result should be the last transaction for this
customer.

select trn-id, amount, date
from trnnsactions
where cust-id = {input)
orderby date
fetch first 1 row only;

The following SQL shows DB2 acting as a consumer of a Web service. In this exam-
ple, the GetQuote) user-defined function is a Web service. DB2 makes the Web-service
call using an embedded Web-service engine. In this case, GetQuole returns a numeric
quote value for each ticker-id in the portfolio table.

s ele ct ti cke r -i d, G e t Qu o t e (t i cker -i d)
frornoortfolio
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28.3.7 Messoge Queues
DB2 also supports IBM's Websphere MQ product by defining appropriate UDFs. UDFs
are defined for both read and write interfaces. These UDFs can be incorporated in SQL
for reading from or rvriting to message queues.

28.4 Storage qnd Indexing
The storage and indexing architecture in DB2 consists of the file-system or disk-
managementlayer, the services to manage the buffer pools, data objects such as ta-
bles, LOBs, index objects, and concurrency and recovery managers. We overview the
general storage architecture in this section. In addition, we describe a new feature in

DB2 version 8 called multi-dimensional clustering in the following section.

28.4.1 Storoge Architecture
DB2 provides storage abstractions for managing logical database tables usefully in
a multinode and multidisk environment. Nodegroups can be defined to support table
partitioning across a specific set of nodes in a multinode system. This allows complete
flexibility in allocating table partitions to different nodes in a system. For example,
large tables may be partitioned across all nodes in a system while small tables may
reside on a single node.

Within a node, DB2 uses tablespaces to organize tables. A tablespace consists of
one or more containers,whic}i. are references to directories, devices, or files. A ta-
blespace may contain zero or more database objects such as tables, indices, or LOBs.
Figure 28.6 illustrates these concepts. In this figure, two tablespaces have been de-

Nodegroup MyDepts

Containers

Figure 28.6 Tablespaces and containers in DB2.
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fined for a nodegroup. The humanres tablespace is assigned four containers, while
the sched tablespace has only one container. The employee and department tables arc
assigned to the humanres tablespace, while the project table is in the sched tablespace.
Striping is used to allocate fragments (extents) of the employee and department table to
the containers of the humanres tablespace. DB2 permits the administrator to create ei-
ther system-managed or DBMS-managed tablespaces. System-managed spaces (SMS)
are directories or file systems that are maintained by the underlying operating sys-
tem. In SMS, DB2 creates file objects in the directories and allocates data to each of the
files. Data-managed spaces (DMS) are raw devices or preallocated files that are then
controlled by DB2. The size of these containers can never grow or shrink. DB2 creates
allocation maps and manages the DMS tablespace itself. In both cases, an extent of
pages is the unit of space management. The administrator can choose the extent size
for a tablespace.

DB2 supports striping across the different containers as a default behavior. For
example, when data are inserted into a newly created table, the first extent is assigned
to a container. Once the extent is full, the next data items are allocated to the next
container in round-robin fashion. Striping provides two significant benefits: parallel
I/O and load balancing.

28.4.2 Buffer Pools
One or more buffer pools may be associated with each tablespace for managing dif-
ferent objects such as data and indices. The buffer pool is a common shared data
area that maintains memory copies of objects. These objects are typically organized
as pages for management in the buffer pool. DB2 allows buffer pools to be defined by
SQL statements. DB2 version 8 has the ability to grow or shrink buffer pools online
and also automatically by choosing the automatic setting for the buffer pool configu-
ration parameter. An administrator can add more pages to a buffer pool or decrease
its size without quiescing the database activity.

create bufferpool <buffer-pool> ....
alter bufferpool <buffer-pool> size <n>

DB2 also supports prefetching and asynchronous writes using separate threads.
The data manager component triggers prefetch of data and index pages based on
the query access patterns. For instance , a table scan always triggers prefetch of data
pages. Index scans can trigger prefetch of index pages as well as data pages if they
are being accessed in a clustered fashion. The number of prefetchers and the prefetch
size are configurable parameters that need to be initialized according to the number
of disks or containers in the tablespace.

28.4.3 Tobles, Records, ond Indices
DB2 organizes the relational data as records in pages. Figure 28.7 shows the logical
view of a table and an associated index. The table consists of a set of pages. Each page
consists of a set of records that are either user data records or special system records.
Page zero of the table contains special system records about the table and its status.
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Logical Table View Logical Index View

page0conta insaset
of internal records (e.g., rscn)

user Records

nro (Record ID) = Page 3, SIot 2

Figure28.7 Logical view of tables and indices in DB2.

DB2 uses a space map record called free space control record (FSCR) to find free space
in the table. The FSCR record usually contains a space map for 500 pages. The FSCR
entry is a bit mask that provides a rough indication of the possibility of free space in
apage. The insert or update algorithm must validate the FSCR entries by performing
a physical check of the available space in a page.

Indices are also organized as pages containing index records and pointers to chiid
and sibling pages. DB2 provides support for the B+-tree index mechanisms inter-
nally. The B+-tree index contains internal pages and leaf pages. The indices have
bi-directional pointers at the leaf level to support forward and reverse scans. Leaf
pages contain index entries that point to records in the table. Each record in the table
can be uniquely identified by using its page and slot information, which are called
the record /D or RID.

DB2 supports "include columns" in the index definition, as:

create unique index 11 on T1 (C1) include (C2)

The included index columns enable DB2 to extend the use of "index-only" query-
processing techniques whenever possible. Additional directives such as minpctused
and pctfree can be used to control the merge and initial space allocation of index
pages.

Figure 28.8 shows the typical data page format in DB2. Each data page contains a
header and a slot directory. The slot directory is an array of 255 entries that points
to record offsets in the page. The figure shows that page number 473 contains record
zero at offset 3800 and record 2 at offset 3400. Page 1056 contains record 1 at offset
3700, which is a forward pointer to the record <473,2>. Hence, record <473,2> is
an overflow record that was created as a result of an update operation of the origi-
nal record <1056,1>. DB2 supports different page sizes such as 4,8,16, and 32 kilo-
bytes. However, each page may contain only 255 user records in it. Larger page sizes
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Figure 28.8 Data page and record layout in DB2.

are useful in applications such as data warehousing, where the table contains many
columns. Smaller page sizes are useful for operational data with frequent updates.

28.5 Multidimensionql Clustering
This section provides a brief overview of the main features of MDC. With this fea-
ture, a DB2table may be created by specifying one or more keys as dimensions along
which to cluster the table's data. We have created a ni:w clause called organize by
dimensions for this purpose. For example, the following DDL describes a sales table
organized by storeld, yenr(orderDate), and itemld attributes as dimensions.

create table snlesGtoreld int.
orderDnte date,
shipDate date,
receiptDate date,
region int,
itemld int,
price float
yearod int generated always as year(orderDate))

organized by dimensions (region, yearod, itemld)

Each of these dimensions may consist of one or more columns, similar to index
keys. In fact, a'dimension block index' (described below) is automatically created
for each of the dimensions specified and is used to access data quickly and effi-
ciently. A composite block index, containing all dimension key columns, is created
automatically if necessary, and is used to maintain the clustering of data over insert
and update activity.
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Canada

Figure 28.9 Logical view of physical layout of an MDC table.

Every unique combination of dimension values forms a logical "cell," which is

physically organized as blocks of pages, where a block is a set of consecutive pages

on disk. The set of blocks that contain pages with data having a certain key value of

one of the dimension block indices is called a "slice." Every page of the table is part

of exactly one block, and all blocks of the table consist of the same number of pages,

namely, the block size. DB2 has associated the block size with the extent size of the

tablespace so that block boundaries line up with extent boundaries.

Figure 28.9 illustrates these concepts. This MDC table is clustered along the dimen-

sionsyear(orderDate),1 region, anditemld. The figure shows a simple logical cube with

only two values for each dimension attribute. In reality, dimension attributes can eas-

ily extend to large numbers of values without requiring any administration. Logical

cells are represented by the subcubes in the figure. Records in the table are stored in

blocks, which contain an extent's worth of consecutive pages on disk. In the diagram,

a block is representedby a shaded oval, and is numbered according to the logical or-

der of allocated extents in the table. We show only a few blocks of data for the cell

identified by the dimension values <1997,Canada,2>. A column or row in the grid

represents a slice for a particular dimension. For example, all records containing the

value "Canada" in theregion dimension are found in the blocks contained in the slice

defined by the "Canada" column in the cube. In fact, each block in this slice only

contains records having "Canada" inthe region field.

,@

1. Dimensions can be created by using a generated function
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(a) Dimension block index entry for Region'Canada'

(b) Dimension block index entry for item Id = 1

Figure 2a.1O Block index key entries.

28.5.1 Block Indices
In our example, a dimension block index is created on each of the year(orderDate),
region, and itemld attributes. Each dimension block index is structured in the same
manner as a traditional B-tree index except that, at the leaf level, the keys point to
a block identifier (BID) instead of a record identifier (RID). Since each block contains
potentially many pages of records, these block indices are much smaller than RID
indices and need be updated only when a new block is added to a cell or existing
blocks are emptied and removed from a cell. A slice, or the set of blocks containing
pages with all records having a particular key value in a dimension, are represented
in the associated dimension block index by a BID list for that key value. Figure 28.10
illustrates slices of blocks for specific values of region and itemld dimensions, respec-
tively.

In the example above, to find the slice containing all records with "Canada" for
the region dimension, we would look up this key value in the region dimension block
index and find a key as shown in Figure 28.10a. This key points to the exact set of
BIDs for the particular value.

28.5.2 Block Mqp
A block map is also associated with the table. This map records the state of each
block belonging to the table. A block may be in a number of states such as in use,
free, loaded, requiring constraint enforcement. The states of the block are used by
the data-management layer in order to determine various processing options. Fig-
ure 28.11 shows an example block map for a table.

Element 0 in the block map represents block 0 in the MDC table diagram. Its avail-
ability status is "U," indicating that it is in use. However, it is a special block and
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Figure 28.11 Block map entries.

does not contain any user records. Blocks 2,3,9,70,73,74, and 17 are not being used
in the table and are considered *F," or free, in the block map. Blocks 7 and 18 have
recently been loaded into the table. Block 1.2was previously loaded and requires that
a constraint check performed on it.

28.5.3 Design Considerqtions
A crucial aspect of MDC is to choose the right set of dimensions for clustering a table
and the right block size parameter to minimize the space utilization. If the dimen-
sions and block sizes are chosen appropriately, then the clustering benefits trans-
late into significant performance and maintenance advantages. On the other hand,
if chosen incorrectly, the performance may degrade and the space utilization could
be significantly worse. There are a number of tuning knobs that can be exploited
to organize the table. These include varying the number of dimensions, varying the
granularity of one or more dimensions, varying the block size (extent size) and page
size of the tablespace containing the table. One or more of these techniques can be
used jointly to identify the best organization of the table.

28.5.4 lmpoct on Existing Techniques
It is natural to ask whether the new MDC feature has an adverse impact or dis-
ables some existing features of OP2 for normal tables. All existing features such as
secondary RID indices, constraints, triggers, defining materialized views, and query
processing options, are available for MDC tables. Hence, MDC tables behave just like
normal tables except for their enhanced clustering and processing aspects.

28.6 Query Processing ond Optimizqtion
DB2 queries are transformed into a tree of operations by the query comPiler. The
query operator tree is used at execution time for processing. DB2 supports a rich
set of query operators that enabies it to consider the best processing strategies and
provides the flexibility to execute complex query tasks.

Figures 28.72 and 28.13 show a query and its associated query plan in DB2' The
query is a representative complex quely (query 5) from the TPC-H benchmark and
contains several joins and aggregations. The query plan chosen for this particular
example is rather simple since many indices and other auxiliary structures such as
materialized views were not defined for these tables. DB2 provides various "explain"
facilities including a powerful visual explain feature in the Control Center that can
help users understand the details of a query-execution plan. The quely plan shown
in the figure is based on the visual explain for the query. Visual explain allows the
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- -'TPCD Local Supplier Volume Query (Q5)';
select n-name, sam(l-extendedprice* (1,-Uiscount)) as reaenue
from tp c d. cus t 0m er, tp c d. or d er s, tp c d.lin eit em,

tpcd.supplier, tpcd.nation, tpcd.region
where ctustkey = o-custkey and

o-orderkeY = l-orderkeY and
l-suPPkeY = s-suq7keY and
c-nationkey = s-nntionkey and
s-nationkey = n-nationkey and
n-regionkeY = r:regionkeY a1.d
r-nnme ='MIDDLE EAST' and
o_orderdate > : date(' 1.995-01-01') and
o-orderdnte < date(' 1.995-01-01') + 1 year

group by n-nnme
order by reaenue desc;

Figure 28.12 SQL query.

user to understand cost and other relevant properties of the different operations of
the query plan.

All SQL queries and statements, however complex they may be, are transformed
into a query tree. The base or leaf operators of the query tree manipulate records in
database tables. These operations are also called as access methods.Intermediate op-
erations of the tree include relational-algebra operations such as join, set operations,
and aggregation. The root of the tree produces the results of the query or SQL state-
ment.

28.6.1 Access Methods
DB2 supports a comprehensive set of access methods on relational tables. The list of
access methods include:

o Thble scan. This is the most basic method and performs a page-by-page access
of all records in the table.

o Index scan. An index is used to select the specific records that satisfy the
query. The qualifying records are accessed using the RIDs in the index. DB2
detects opportunities to prefetch data pages when it observes a sequential-
access pattern.

o Block index scan. This is a new access method for MDC tables. One of the
block indices is used to scan a specific set of MDC data blocks. The qualifying
blocks are accessed and processed in block table scan operations.

o Index only. In this case, the index contains all the attributes that are required
by the query. Hence, a scan of the index entries is sufficient. The index-only
technique is usually a good performance solution.
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Figure 28.13 DB2 query plan (graphical explain).

List prefetch. This access method is chosen for an unclustered index scan with
a significant number of RIDs. DB2 has a sort operation on the RIDs and per-
form a fetch of the records in sorted order from the data Pages. Sorted access
changes the I/O pattern from random to sequential and also enables prefetch-
ing opportunities. List prefetch has been extended to deal with block indices
as well.

Block and record index ANDing. This method is used when DB2 determines
that more than one index can be used to constrain the number of satisfying
records in a base table. The most selective index is processed to generate a
list of BIDs or RIDs. The next selective index is then processed to return the
BIDs or RIDs that it qualifies. A BID or RID qualifies for further processing only
if it is present in the intersection (AND operation) of the index scan results.
The result of an index AND operation is a small list of qualifying BIDs or RIDs
which are used to fetch the corresponding records from the base table.
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o Block and record index ordering. This strategy is used if two or more block
or record indices can be used to satisfy query predicates that are combined by

. using the OR operator. DB2 eliminates duplicate BIDs or RIDs by performing
a sort and then fetching the resulting set of records. Index ORing has been
extended to consider block and RID index combinations.

All the selection and projection predicates of a query are usually pushed down to
the access methods. In addition, DB2 performs certain operations such as sorting and
aggregation in "pushed down" mode in order to reduce instruction paths.

This MDC feature takes advantage of the new set of access-method improvements
for block index scans, block index prefetch, block index ANDding, and block index
ORing to process blocks of data.

28.6.2 foin, Aggregotion, ond Set Operotions
DB2 supports a number of techniques for these operations. For join, DB2 can choose
between nested-loop, sort-merge and hash-join techniques. In describing the join and
set binary operations, we use the notation of "outer" and "inner" tables to distinguish
the two input streams. The nested-loop technique is useful if the inner table is very
small or can be accessed by using an index on a join predicate. Sort-merge-join and
hash-join techniques are used for joins involving large outer and inner tables. Set
operations are implemented by using sorting and merging techniques. The merging
technique eliminates duplicates in the case of union while duplicates are forwarded
in the case of intersection. DB2 also supports outer-join operations of all kinds.

DB2 processes aggregation operations in early or "push-down"'mode whenever
possible. For instance, a group by aggregation can be performed by incorporating
the aggregation into the sort phase. The join and aggregation algorithms can take
advantage of superscalar processing in modern CPUs using block-oriented and cache-
conscious techniques.

28.6.3 Support for Complex SQL Processing
One of the most important aspects of DB2 is that it uses the query-processing infra-
structure in an extensible fashion to support complex SQL operations. The complex
SQL operations include support for deeply nested and correlated queries as well as
constraints, referential integrity, and triggers. Because most of these actions are built
into the query plan, DB2 is able to scale and provide support for a larger number
of these constraints and actions. Constraints and integrity checks are built as query
tree operations on insert, delete, or update SQL statements. DB2 also supports main-
tenance of materialized view by using built-in triggers.

28.6.4 Multiprocessor Query-Processing Feqtures
DB2 extends the base set of query operations with control and data exchange prim-
itives to support SMP, MPP, and SMP cluster modes of query processing. DB2 uses a
"tablequeue" abstraction for data exchange between threads on different nodes or on
the same node. The tablequeue is used as a buffer that redirects data to appropriate
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SQL query: select * from sales where qauntity > 10

. Distribute subsection
o Tablequeue (TQ) receive
. Bind out

Subsection
o Table access (sales)
. Predicate (quantity > 10)
. TQ send to coordinator

Filter quantity > 10 Filter quantity > 10 '

Send to coordinator Send to coordinator

Figure 28.14 DB2 MPP query processing using function shippinS.

receivers using broadcast, one-to-one, or directed multicast methods. Control oper-
ations are used to create threads and coordinate the operation of different processes
and threads.

In all these modes, DB2 employs a coordinator process to control the query opera-
tions and final result gathering. Coordinator processes can also perform some global
database-processing actions if required. An example is the global aggregation oper-
ation to combine the local aggregation results. Subagents or slave threads perform
the base database operations in one or more nodes. In SMP mode, the subagents use
shared memory to synchronize between themselves when sharing data. In an MPP,
the tablequeue mechanisms provide buffering and flow control to synchronize across
different nodes during execution. DB2 employs extensive techniques to optimize and
process queries efficiently in a MPP or SMP environment. Figure 28.14 shows a simple
query executing in a 4-node MPP system. In this example, thesnles table is partitioned
across the four nodes Pt, . . ., Pa. The quely is executed by spawning agents that exe-
cute at each of these nodes to scan and filter the rows of the Sales table at that node
(called function shipping) and the resulting rows are sent to the coordinator node.

28.6.5 Query Optimizction
DB2's query compiler uses an internal representation of the query, called the query-
graph model (QGM), in order to perform transformations and optimizations. After
parsing the SQL statement, DB2 performs semantic transformations on the QGM to
enforce constraints, referential integrity, and triggers. The result of these transforma-
tions is an enhanced QGM. Next, DB2 attempts to perform query rewrite transforma-
tions that are considered mostly beneficial. Rewrite rules are fired if applicable to
perform the required transformations. Examples of rewrite transformations include
(1) decorrelation of correlated subqueries, (2) transforming certain subqueries into
joins using early-out processing, (3) pushing the group by operation below joins if
applicable, and (4) using materialized views for portions of the original query.

The query optimizer component uses this enhanced and transformed QGM as its
input for optimization. The optimizer is cost based and uses an extensible, rule-
driven framework. The optimizer can be configured to operate at different levels

W @
Scan sales Scan sales

Receive

Bind out
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of complexity. At the highest level, it uses a dynamic programming algorithm to
consider all query-plan options and chooses the optimal cost plan. At an interme-
diate level, the optimizer does not consider certain plans, access methods (e.g., index
ORing), or rewrite rules. At the lowest level of complexity, the optimizer uses a simple
greedy heuristic to choose a good but not necessarily optimal query plan. The opti-
mizer uses detailed models of the query-processing operations, including memory
sizes and prefetching, to obtain accurate estimates of the I/O and CPU costs. It relies
on the statistics of the data to estimate the cardinality and selectivities of the opera-
tions. DB2 allows the user to obtain detailed histograms of column level distributions
and combinations of columns using the runstats utility. The detailed histograms con-
tain information about the most frequent value occurrences as well as quantile-based
frequency distributions of the attributes. The optimizer generates an internal query
plan that is considered the best query plan for the particular optimization level. This
query plan is converted into threads of query operators and associated data struc-
tures for execution by the query-processing engine.

28.7 Mqteriqlized Query Tqbles
Materialized views are supported in DB2 version 8 in Linux, Unix, and Windows as
well as on the z/OS platforms. A materialized view can be any general view defini-
tion on one or more tables or views. A materialized view is useful since it maintains
a persistent copy of the view data to enable faster query processing. In DB2 these
materialized views are called materialized query tables (MQTs). VtQfs are specified
by using create table statement as shown by the example in Figure 28.15

In DE2, MQTs can reference other MQTi to create a tree or forest of dependent
views. These MQTs are highly scalable as they can be partitioned in an MPp envi-
ronment and can have MDC clustering keys. MQTs are most valuable if the database
engine can route queries to them seamlessly and also if the database engine can main-
tain them efficiently whenever possible. DB2 provides both of these features.

28.7.1 Query Routing to MQiIs
The query compiler infrastructure in DB2 is ideally suited to leverage the full power
of MQTs. The internal QGM model allows the compiler to match the input query
against the available MQT definitions and choose appropriate MQTs for considera-

create table emplept(dept-id integer, emp-id integer,
emp-name varchar(l0O), mgr-id integer) as

select dept-id, emp-id, emp-nnme, mgrjd
fuonn. employ ee, dep artment

data initially deferred
refresh immediate - - (or deferred)
maintained by user * - (or system)

Figure 28.15 DB2 materialized query tables.
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MQT definitions

Figure 28.16 MQT matching and optimization in DB2'

tion. After matching, the compiler considers several options for optimization. They
include the base query as well as suitable MQT reroute versions. The optimizer loops
through these options before choosing the optimal version for exection. The entire
flow of the reroute and optimization is shown in Figure 28.16.

28.7.2 Mqintenqnce of MQTs

MQTs are useful only if the database engine provides efficient techniques for main-
tenance. There are two dimensions to maintenance: time and cost. In the time di-
mension, the two choices are immediate or deferred. DB2 supports both these choices. If
one selects immediate, then internal triggers are created and compiled into the insert,
update, or delete statements of the source objects to process the updates to the depen-
dent MQTs. In the case of deferred maintanence, the updated tables are moved into
an integrity mode and an explicit refresh statement must be issued to perform the
maintenance. In the size dimension, the choices are incremental or full. Incremental
maintenance implies that only the recently updated rows should be used for main-
tenance. Full maintenance implies that the entire MQT be refreshed from its sources.
The matrix in Figure 28.17 shows the two dimensions and the options that are most
useful along these dimensions. For instance, immediate and full maintenance are not
compatible unless the sources are extremely small. DB2 also allows for the MQTs to
be maintained by user. In this case, the refresh of the MQTs is determined by users
performing explicit processing using SQL or utilities.



yes,

After insert/update / delete

28.8 Autonomic Features in DB2

Figure 28.17 Options for MQT maintenance in DB2.

The following commands provide one simple example of performing deferred
maintenance for the emp-dept materialized view after a load operation to one of its
sources.

load from newdata.txt of type del
insert into employee;

refresh table empdept

28.8 Autonomic Feqtures in DB2
DB2 UDB version 8.2 provides features for simplifying the design and manageabil-
ity of databases. Autonomic computing encompus"r u set of te"chniques that allow
the computing enviroment to manage itself and reduce the external dependencies in
the face of external and internal changes in security, system load, or other factors.
Configuration, optimization, protection, and monitoring are examples of subject ar-
eas that benefit from autonomic-computing enhancements. The following sections
briefly describe the configuration and optimization areas.

28.8.1 Configurction
DB2 is providing support for automatic tuning of various memory and system config-
uration parameters. For instance, parameters such as buffer pool sizes and sort heap
sizes can be specified as automatic. In this case, DB2 monitors the system and slowly
Srows or shrinks these heap memory sizes depending on the workload characteris-
tics.

28.8.2 Optimizotion
Auxiliary data structures (indices, rraQTs) and data organization features (partition-
ing, clustering) are important aspects of improving the performance of database pro-
cessing in DB2. In the past, the database administrator (DBA) had to use experience
and known guidelines to choose meaningful indices, Mers, partition keys, and clus-
tering keys. Given the potential number of choices, even the best experts are not ca-
pable of finding the right mix of these features for a given workload in a short time.
DB2 version 8.2 introduces aDesign Adaisor that provides workload-based advice for
all of these features. The Design Advisor tool automatically analyzes a workload, us-
ing optimization techniques to present a set of recommendations. The design advisor
command syntax is:
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db2advis -d <DB name> -i <workloadfile> -m MICP

The "-m " parameter allows the user to specify the following options:

o M-Materialized querv tables

o I-Indices

o C-Clustering, namely, MDC

o P-Partitioning key selection

The advisor uses the full power of the DB2 query-optimization framework in these

recommendations. It uses an input workload and constraints on size and time of ad-

vise as its parameters. Given that it leverages the DB2 optimization framework it has

full knowledge of the schema and statistics of the underlying data. The advisor uses

several combinatorial techniques to identify indices, MQTs, MDCs, and partitioning

keys to improve the performance of the given workload.

Another aspect of optimization is balancing the processing load on the system.

In particular, utilities tend to increase the load on a system and cause significant

reduction in user workload performance. Given the trend toward on-line utilities,

there is a need to balance the load consumption of utilities. DB2 version 8.2 introduces

a utility load-throttling mechanism. The throttling technique is based on feedback

controi theory. It continually adjusts and throttles the performance of the backup

utiliry using specific control parameters.

28.9 Tools qnd Utilitites
DB2 provides a number of tools for ease of use and administration. This core set of

toolJis augmented and enhanced by a large number of tools from vendors.
The DBi Control Center is the primary tool for use and administration of OeZ

databases. The Control Center runs on many workstation platforms. It is organized
from data objects such as servers, databases, tables, and indices. It contains task-

oriented interfaces to perform commands and allows users to generate SQL scripts'

Figure 28.18 shows a a screen shot of the main panel of the Control Center' This

r.i""n shot shows a list of tables in the Sample database in the DB2 instance on node

Cranksrm.The administrator can use the menu to invoke a suite of component tools.

The main components of the Control Center include command center, script cen-

ter, journal, license management, alert center, performance monitor, visual explain,

remote database management, storage management, and support for replication.

The command center allows users and administrators to issue database commands

and SeL. The script center allows users to run SQL scripts constructed interactively

or from a file. The performance monitor allows users to monitor various events in

the database system and obtain snapshots of performance. "SmartGuides" provide

help on configuring parameters and setting up the DB2 system. A stored-procedure

builder helps the user to develop and install stored procedures. Visual explain allows

the user to obtain graphical views of the query-execution plan. An index wizard helps

the administrator by suggesting indices for performance.
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Figure 28.18 DB2 Control Center.

While the Control Center is an integrated interface for many of the tasks, DB2 also
provides direct access to most tools. For users, tools such as the explain facility, ex-
plain tables, and graphical explain provide a detailed breakdown of the query plans.
lJsers are also allowed to modify statistics (if permitted) in order to generate the best
query plans.

28.9.1 Utilities
Administrators are supported by a number of tools. DB2 provides comprehensive
support for load, import, export, reorg, redistribute, and other data-related utilities.
In version 8, most of these support incremental and on-line processing capability.
For instance, one can issue a load command in on-line mode to allow applications to
access the original contents of a table concurrently. DB2's utilities are all fully enabled
to run in parallel mode.

Additionally,DB2 supports a number of tools such as:

o Audit facility for maintaining the audit trace of database actions
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o Governor facility for controlling the priority and execution times of different

applications

o Query patroller facility for managing the query jobs in the system

o Tiace and diagnostic facilities for debugging

r Event monitoring facilities for tracking the resource and events during system

execution

DB2 for OS/390 has a very rich set of tools. QMF is a widely used tool for generating

ad-hoc queries and integrating it into applications.

28.10 Concurrency Control qnd Recovery
DB2 supports a comprehensive set of concurrency-control, isolation, and recovery

techniques.

28.10.1 Concurrency qnd lsolqtion

For isolation, DB2 supports the repeatable read (RR), read stability (RS), cursor stability
(CS), and uncommitted read (UR) modes. R& CS, and UR modes need no further ex-

planation. The RS isolation mode locks only the rows that an application retrieves in

i unit of work. On a subsequent scan, the application is guaranteed to see all these
rows (like RR) but might also see new rows that qualify. However, this might be an

acceptable trade-off for some applications with respect to strict RR isolation. TVpi-

cally, the default isolation level is CS. Applications can choose their level of isolation
at the binding stage. Most commercially available applications are bound using most

isolation levels, enabling users to choose the right version of the application for their
requirement.

The various isolation modes are implemented by using locks. DB2 supports record-
level and table-level locks. A separate lock-table data structure is maintained with the

lock information. DB2 escalates from record-level to table-level locks if the space in

the lock table becomes tight. DB2 implements strict two-phase locking for all update

transactions. Write locks or update locks are held until commit or rollback time. Fig-
ure28.19 shows the different lock modes and their description. The set of lock modes

supported includes intent locks at the table level in order to maximize concurrency.

aGo, tlnz implements next-key locking and variant schemes for updates affecting
index scans to eliminate the Halloween and phantom read problems.

The transaction can set the lock granularity to table level by using the lock table

statement. This is useful for appiications that know their desired level of isolation is

at the table level. Also, DB2 chooses the appropriate locking granularities for utilities

such as reorg and load. The off-line versions of these utilities usually lock the table

in exclusive mode. The on-line versions of the utilities allow other transactions to

proceed concurrently by acquiring row locks.
A deadlock detection agent is activated for each database and periodically checks

for deadlocks between transactions. The interval for deadlock detection is a config-
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Figure 2A.19 DB2lock modes.

urable Parameter. In case of a deadlock, the agent chooses a victim and aborts it with
a deadlock SQL error code.

28.10.2 Commit qnd Rollbqck
Applications can commit or roll back by using explicit commit or rollback state-
ments. Applications can also issue begin transaction and end transaction statements
to control the scope of transactions. Nested transactions are not supported. Normally,
DB2 releases all locks that it holds on behalf of a transaction at commit or rollback.
However, if a cursor statement has been declared by using the with hold clause, then
some locks are maintained across commits.

28.10.3 Logging qnd Recovery
DB2 implements strict ARIES logging and recovery schemes. write-ahead logging is
employed to flush log records to the persistent log file before data pages are written
or at commit time. DB2 supports two types of log modes: circular logging and archive
logging. In circular logging, a predefined set of primary and s""o.dury log files are
used. Circular logging is useful for crash recovery or application failure reiovery. In
archival logging, DB2 creates new log files and the old log fites must be archived in
order to free up space in the file system. Archival logging is required to perform roll-
forward recovery. In both cases, DB2 allows the user to configure the number of log
files and the sizes of the log files.

In update-intensive environments,DB2 can be configured to look for group com-
mits in order to bunch log writes.

IN (intent none)
iS (intent share)
NS (next key share)

S (share)
IX (intent exclusive)
SIX (share with

intent exclusive)
U (update)

NX (next-key exclusive)

X (exclusive)

Z (superexclusive)

Tablespaces,
Tablespaces, tables
Rows

Rows, tables
Tablespaces, tables
Tables

Rows, tables

Rows

Rows, tables

Thblespaces, tables

Read with no row locks
Read with row locks
Read locks for RS or CS
isolation levels
Read lock
Intend to update rows
No read locks on rows but
X locks on updated rows
Update lock but allows others
to read
Next key lock for inserts/deletes
to prevent phantom reads
during RR index scans
Only uncommitted readers
allowed
Complete exclusive access
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DB2 supports transaction rollback and crash recovery as well as point-in-time or

roll-forward recovery. In the case of crash recovery,DB2performs the standard phases

of undo processing and redo processing up to and from the last checkpoint in order to

re"orr"tlhe proper committed state of the database. For point-in-time recovery, the

database can be restored from a backup and can be rolled forward to a specific point

in time, using the archived logs. The roll-forward recovery command supports both

database and tablespace levels. It can also be issued on specific nodes on a multi-

node system. Recently, a parallel recovery scheme has been implemented to improve

the peiformance in SMP systems by utilizing many CPUs. DB2 performs coordinated

recovery across MPP nodes by implementing a global checkpointing scheme.

28.11 System Architecture
Figure 28.20 shows some of the different processes or threads in a DB2 server. Remote
client applications connect to the database server by using communication agents
such as db2tcpcm. Each application is assigned an agent (coordinator agent in MPP or

SMp environments) called the db2agent thread. This agent and its subordinate agents
perform the application-related tasks. Each database has a set of processes or threads
ihat perform tisks such as prefetching, page cleaning from buffer pool, logging, and
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Fenced
+ + tlDFc ft7->" aV?-\ ' Fenced Stored
Remote ! sutu". i/otiut KC9tp K9tt Procedure ProcessesRemote i  Server

9]i"ll ! Machine I
M;;il""1''--"'-Jtriow+ Per-mstancenoqtlll--l-

rprocesses 
lltrjjjj!?)O:l-cu;rle,iion 

otit\ffi;; 
i 

\

wli,?g @,\tffii::*:?

! lttnreaas// i 
to?Xi"". 

/??--,. 
i database 

I (--,, r.--)
.  ^  .  / r  j i < ' " ' 0 b ? u g n t p l  i  ' - - ' _
2 ( )r--+l-*( ) X ; /z-> 1db2w-dogdb2gds

i f f i  @*" i  9 " ' i *du lo , .un!ttt"r lf;rtu i @n'

!i""i*i:'LO- i axiu,,,bog,,t i @"' i:tu
aazasenr*^,^i @0. i l[[,ir,*,' ^  '  \ U U Z P T L I I I  ,  E n l  l .

/ J l o ^ - L r ' ^ :  \ \ S - - - /  ;  L U U )

\SS.9--- r :  ^  i  ^
I
I

S Q L a l i a g e n t t d l e db2loggi db2dlock j db2bm, db2med, ...

Connect i " subagentsgi
toProd"  iAPPC 

-  
iDatabase"PRoD"

;+s\;#i' f!!;: i cio l^^?,.
o N",f 1i "E* 9'o i oo*-s8' dbiaoct :'X"I \-/- labzio.l''i U m^,^i i ffii"n'

iffi" l-X rtrg Yl':?":oi:"::'T Iwu*,io',nt,anp
lconnectl rj i  i  /7-\ i agents

database

db2dart

Figure 28.20 Process model in DB2.
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Agent Private Memory
. private sorts (sortheap, sheapthresh)
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o query heap (query_heap_sz)
. statement heap (stmtheap)
o statistics heap(stat_heap_sz)

Figure28.21 DB2 memory model.

deadlock detection. Finally, there are a set of agents at the level of the server to per-
form tasks such as crash detection, license server/ process creation and control of
system resources. DB2 provides configuration parameters to control the number of
threads and processes in a server. Almost all the different types of agents can be con-
trolled by using the configuration parameters.

Figure 28.21 shows the different types of memory segments in DB2. private mem-
ory in agents or threads is mainly used for local variables and data structures that
are relevant only for the current activity. For example, a private sort could allocate
memory from the agent's private heap. Shared memory is partitione d. into seraer
shared memory, dstabase shared memoly, and application shared memory. The database-
level shared memory contains useful data structures such as the buffer pool, lock
lists, unplt"ution package caches, and shared sort areas. The server and application
shared memory areas are primarily used for common data structures and iommuni-
cation buffers.

DB2 supports multiple buffer pools for a database. Buffer pools can be created
by using the create bufferpool statement and can be associafed with tablespaces.
Multiple buffer pools are useful for a variety of reasons but they should be defined
after a careful analysis of the workload requirements. DB2 supports a comprehensive
list of memory configuration and tuning parameters. This includes parimeters for
all the large data structure heap areas such as the default buffer pool, the sort heap,
package cache, application control heaps, and the lock list area.

28.12 Replicotion, Distribution, qnd Externql Dqtq
DB2 Replication is a product in the DB2 family that provides replication capabilities
among DB2 other relational data sources such as Oracle, Microsoft SQL Server, Sybase

Instance Shared Memory
. includes FCM (fast

Database Shared Memory
o buffer pools (buffpage or ALTERBUF..)
o lock list (locklist)
r package cache(pckcachesz)
o shared sorts(sortheap, sheapthresh)
o database heap(dbheap)

o loo  hn f fe r r lnohr r fcz f

. ca falog cache(catalogcache_sz)
. utility heap(util_heap_sz)

Database Shared Memory



Chapter 28 IBM DB2 Universal Database

SQL Server, and Informix, as well as nonrelational data sources such as IBM's IMS.
It consists of capture and apply components, which are controlled by administration
interfaces. The change-capture mechanisms are either "log-based" for DB2 tables or
"trigger-based" in the case of other data sources. The captured changes are stored
in temporary staging table areas under the control of DB2 Replication. These staged
intermediate tables with changes are then applied to destination tables using regu-
lar SQL statements: inserts, updates, and deletes. SQl-based transformations can be
performed on the intermediate staging tables by using filtering conditions as well as
aggregations. The resulting rows can be applied to one or more target tables. All of
these actions are controlled by the administration facility.

In version 8.2,DB2supports a new feature called queuereplication.Queue (Q) repli-
cation creates a queue transport mechanism using IBM's message-queue product to
ship captured log records as messages. These messages are extracted from the queues
at the receiving end and applied against tafgets. The apply process can be paral-
lelized and allows for user-specified conflict resolution rules.

Another member of the DB2 family is the DB2 information-integrator product,
which provides federation, replication (using the replication engine described above),
and search capabilities. The federated edition integrates tables in remote DB2 or other
relational databases into a single distributed database. Users and developers can ac-
cess various nonrelational data sources in tabular format, using wrapper technology.
The federation engine provides a cost-based method for query optimization across

the different data sites.
DB2 supports user-defined table functions that enable access to nonrelational and

external data sources. User-defined table functions are created by using the create
function statement with the clause returns table. Using these features, DB2 is able to

participate in the OLE DB protocols.- 
Finatly, DB2 provides full support for distributed transaction processing using the

two-phase commit protocol. DB2 can act as the coordinator or agent for distributed
XA support. As a coordinator, DB2 can perform all stages of the two-phase commit

protocol. As a participant,DB2 can interact with any commercial distributed transac-
tion manager.

28.13 Business Intelligence Feotures
DB2DataWarehouse Edition is an offering in the DB2 family that incorporates busi-

ness intelligence features. Data Warehouse Edition has at its foundation the DB2 en-

gine, and eohances it with features for ETL, OLAP, mining, and on-line reporting. The

DB2 engine provides scalability using its MPP features. In the MPP mode, DB2 can

support configurations that can scale to several hundreds of nodes for large database

sliei (terabytes). Additionally, features such as MDC and MQT provide support for

the complex query-processing requirements of business intelligence.
Another aspect of business intelligence is on-line analytical processing or OLAP.

The DB2 family includes a feature called cube aiews that provides a mechanism to

construct appropriate data structures and MQTs inside DB2 that can be used for rela-

tional OLAp proiessing. Cube views provide modeling support for multidimensional
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cubes and provides a mapping mechanism to a relational star schema. This model is
then used to recommend appropriate Mers, indices, and MDC definitions to improve
the performance of OLAP queries against the database. In addition, cube vier,ris can
take advantage of DB2's native support for the cube by and rollup operations for
generating aggregated cubes. Cube views is a tool that can be used to integrate DB2
tightly with oLAP vendors such as Business objects, Microstrateg!, andCognos.

In addition, DB2 also provides multidimensional oLAp support using the DB2
OLAP server. The DB2 OLAP server can create a multidimensional data i-rart from
an underlying DB2 database for analysis by OLAP techniques. The OLAp engine from
the Essbase product is used in the DB2 OLAp server.

DB2 Alphablox is a new feature that provides on-line, interactive, reporting, and
analysis capabilities. A very attractive feature of the Alphablox feature is the ibility
to construct new Web-based analysis forms rapidly, using a building block approacil
calIedblox.

_ For deep analytics, DB2 Intelligent Miner provides various components for mod-
eling, scorin}, and visualizing data. Mining enables users to perform classification,
prediction, clustering, segmentation, and association against large data sets.
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IBM Research contributions include areas such as transaction processing (write-ahead
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ing a series of books on enrichment and certification for various aspects of o3z.

Chamberlin 119981, Zikopoulos et al. [2004] and the DB2 documentation library
provide a complete description of the SeL support.





Microsoft SQL Server is a relational database-management system that scales from
laptops and desktops to enterprise servers, with a compatible version, based on the
PocketPC operating system, available for handheld devices such as PocketPCs and
bar-code scanners. SQL Server was originally developed in the 1980s at Sybase for
UNIX systems and later ported to Windows NT systems by Microsoft. Since 7994,Mi-
crosoft has shipped sQL server releases developed independently of Sybase, which
stopped using the SQL Server name in the late 1990s. The latest release, SeL Server
2005, is available in express, standard, and enterprise editions and localized for many
languages around the world. In this chaptel, the term SQL Server refers to atl of thes-e
editions of SQL Server 2005.

SQL Server provides replication services among multiple copies of SeL Server and
with other database systems. Its Analysis Services, an integral part of the system,
includes on-line analytical processing (OLAP) and data-mining facilities. SeL Server
provides a large collection of graphical tools and "wizards" that guide database ad-
ministrators through tasks such as setting up regular backups, replicating data among
servers, and tuning a database for performance. Many development environments
support SQL Server, including Microsoft's Visual Studio and related products, in par-
ticular the .NET products and services.

29.1 Monogement, Design, qnd Querying Tools
SQL Server provides a suite of tools for managing all aspects of SeL Server devel-
opment, querying, tuning, testing, and administration. Most of these tools center
around the sQL server Management Studio (formally known as Enterprise Manager).
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The Management Studio provides a common shell for administering all services as-

sociated with SQL Server, which includes Database Engine, Analysis Services, Report-

ing Services, SQL ServerMobile, and Integration Services.

29.1;1 Dqtobqse Developmentqnd Visuql DqtqbqseTools

While designing a database, the database administrator creates database objects such

as tables, coln*ns, keys, indices, relationships, constraints, and views. To help create
these objects, the SQL Server Management Studio provides access to visual database
tools. These tools provide three mechanisms to aid in database design: the Database

Designer, the Tab1e Designer, and the View Designer.
Tlie Database Designer is a visual tool that allows the database owner or the

owner's delegates to create tables, columns, keys, indices, relationships, and con-

straints. Within this tool, a user can interact with database objects through database
diagrams, which graphically show the structure of the database. The View Designer
provides a visual query tool that allows the user to create or modify SQL views

ihrough the use of Windows drag-and-drop capabilities. Figure 29.1 shows a view

opened from the Management Studio'

29.1.2 Dqtqbqse Query qnd Tuning Tools

SeL Server Management Studio provides several tools to aid the application devel-

opment process. Queries and stored procedures can be developed and tested using

the integrated Query Editor that replaces the SQL Server Query Analyzet. The Query
Editor supports creating and editing scripts for T-SQL, SQLCMD, MDX, DMX, XMLA,

and SeL Serrrer Mobile. Further analysis can be done using the SQL ServerProfiler'
Database tuning recommendations are provided by a third tool, the Database Tuning

Advisor.

29.1.2.1 Query Editor
The integrated Query Editor provides a simple graphical user interface for running

SQL queiies and viewing the results. The Query Editor also provides a graphical

repreientation of showplan, the steps chosen by the optimizer for query execution.

The Query Editor is integrated with Management Studios Object Explorer that iets a

user drag and drop object or table names into a query window and helps build select,

insert, update, or delete statements for any table.
A database administrator or developer can use Query Editor to:

o Analyzequeries: Query Editor can show a graphical or textual execution plan

for any query, as well as displaying statistics regarding the time and resources

required to execute any query.

o Format SQL queries; Including indenting and color syntax coding.

o IJse templates for stored procedures, functions, and basic SQL statements: The

Management Studio comes with dozens of predefined templates for building

DDL commands, or users can define their own.



29.1 Management, Design, and Querying Tools

Figure29.1 The view Designer opened for the HumanResources.vEmployee
view.

Figure 29.2 shows the Management studio with the euery Editor displaying the
graphical execution plan for a query involving a four-table join and an aggregation.

29.1.2.2 SQL Profiler
SQL Profiler is a graphical utility that allows database administrators to monitor and
record database activity of the SQL Server Database Engine and Analysis Services.
SQL Profiler can display all server activity in real time, or it can create filters that focus
on the actions of particular users, applications, or types of commands. sel profiler
car-r display any SQL statement or stored procedure sent to any instance of SeL Server
(if the security privileges allow it) as well as performance data indicating how long
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Figure29.2 A showplan for a four-table join with group by aggregation'

the query took to lun, how much CPU and I/O was needed, and the execution plan

that the query used.
SeL profiler allows drilling down even deeper into SQL Server to monitor every

statement executed as part of a stored procedure, every data modification oPeration,

every lock acquired or released, or every occurrence of a database file growing auto-

matically. Dozens of different events can be captured, and dozens of data items can

be captured for each event. SQL Server actually divides the tracing functionality into

two separate but connected components. The SQL Profiler is the client-side trace facil-

ity. Using SeL profiler, a user can choose to save the captured data to a file or a table,

in addition to displaying it in the Profiler User Interface (UD. The Profiler tool dis-

plays every eventlhat meets the filter criteria as it occurs. Once trace data are saved'

SQL Profiler can read the saved data for display or analysis purposes'
On the server side is the SQL trace facility, which manages queues of events gener-

ated by event producers. A consumer thread reads events from the queues and filters

them before sending them to the process that requested them. Events are the main

unit of activity as far as tracing is concerned, and an event can be anything that hap-
pens inside SQL Serve4, oI between SQL Server and a client. For example, creating or
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dropping an object is an event, executing a stored procedure is an event, acquiring
or releasing a lock is an event, and sending a Transact-SQl batch from a client to the
SQL Server is an event. There is a set of stored system procedures to define which
events should be traced, what data for each event are interesting, and where to save
the information collected from the events. Filters applied to the events can reduce the
amount of information collected and stored.

SQL Server guarantees that certain critical information will always be gathered,
and can be used as a useful auditing mechanism. SQL Server is certified for C2-
level security, and many of the traceable events are available solely to support C2-
certification requirements.

29.1.2.3 The Dqtqbqse Tuning Advisor
Queries and updates can often execute much faster if an appropriate set of indices
is available. Designing the best possible indices for the tables in a large database is
a complex task; it not only requires a thorough knowledge of how sel- server uses
indices and how the query optimizer makes its decisions, but how the data will actu-
ally be used by applications and interactive queries. The SQL Server Database Tuning
Advisor (DrA) (which replaces the sel- server 2000 Index Tuning wizard) is a pow-
erful tool for designing the best possible indices and indexed (materialized) views
based on observed query and update workloads.

DTA can tune across multiple databases and it bases its recommendations on a
workload that can be a file of captured trace events , a file of SQL statements, or an
XML input file. SQL Profiler is designed to capture all SQL statements submitted by
all users over a period of time. DTA can then look at the data access patterns for ail
users, for all applications, for all tables, and make balanced recommendations.

29.1.3 SQL Server Mcncaement Studio
In addition to providing access to the database design and visual database tools,
the easy-to-use SQL Server Management Studio supports centralized management
of all aspects of multiple installations of the SQL Server Database Engine, Analysis
Services, Reporting services, Integration services, and sel- server Mobile, includ-
ing security, events, alerts, scheduling, backup, server configuration, tuning, full-text
search, and replication. SQL Server Management Studio allows a database adminis-
trator to create, modify, and copy sQL server database schemas and objects such as
tables, views, and triggers. Because multiple installations of SQL Server can be orga-
nized into groups and treated as a unit, sel, server Management Studio can manage
hundreds of servers simultaneously.

Although it can run on the same computer as the sel, server engine, sel- Server
Management Studio offers the same management capabilities while running on any
Windows 2000 (or later) machine. In addition, the efficient client-server architectuie
of SQL Server makes it practical to use the remote-access (dial-up networking) capa-
bilities of Windows for administration and management.
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Figure 29.3 The SQL Server Management Studio interface.

SeL Server Management Studio relieves the database administrator from having

to know the specific steps and syntax to complete a job. It provides wizards to guide
the database administrator through the process of setting up and maintaining an
installation of SQL Server. Management Studio's interface is shown in Figure 29.3 and

illustrates how a script for database backup can be created directly from its dialogs.

29.2 SQL Vqriqtions qnd Extensions
SeL Server allows application developers to write server-side business logic using

Transact-SQl or a .NET programming language such as C#, Visual Basic, COBOL, or
j++. Tiansact-SQl- is a complete database programming language that includes data-

definition and data-manipulation statements, iterative and conditional statements,

variables, procedures, and functions. Transact-SQl supports most of the mandatory

DDL query and data modification statements and constructs in the SQL-2003 stan-

dard.-See Section29.2J. for the list of SQL-2003 data types supported. In addition

to the mandatory features, Transact-SQl also supports many optional features in

the SQL-2003 standard such as recursive queries, common table expressions, user-

defined functions, and relational operators such as intersect and except among

others.
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29.2.1 Dqtq Types
SQL Server supports all the mandatory scalar data types in the SQL-2003 standard ex-
cept date and time. It supports the timestamp data type (also called datetime) which
allows storing both date and time components. SQL Server also supports the ability to
alias system types using user-supplied names; the aliasing is similar in functionality
to the SQL-2003 distinct types, but not fully compliant with them.

Some primitive types unique to SQL Server include:
o Large character and binary string types of variable size up to 231 - 1 bytes

(text/ntexVimage, varchar/nvarchar/varbinary(max)). Text/ntext/image data
types require the use of a specialized textptr which acts as a handle or a
pointer to LOB values. Varchar/nvarcharf varbinary(max) data types have the
same byte capacity as text,/ntex / image,but the programming model is similar
to that of the small character and byte string types.

o An XML type, described in Section 29.71, that is used to store XML data inside
a table column. The XML type can optionally have an associated XML schema
collection specifying a constraint that the instances of the type should adhere
to one of the XML types defined in the schema collection.

o Sql-variant is a scalar data type that can contain values of any SQL scalar type
(except large character and binary types and sql-variant). This type is used
by applications that need to store data whose type cannot be anticipated at
data-definition time. Sql-variant is also the type of a column formed from the
execution of an unpivot relational operator (see Section 29.2.2).Internally, the
system keeps track of the original type of the data. It is possible to filtea joirg
and sort on sql-variant columns. The system function sql-variant-property
refurns details on the actual data stored in a column of type sql-variant, in-
cluding the base type and size information.

In addition, SQL Server supports a table type and a cursor type that cannot be used
as columns in a table, but can be used in the Tiansact-sel language as variables:

o A table type enables a variable to hold a set of rows. An instance of this type
is used primarily to hold temporary results in a stored procedure or as the
return value of a table-valued function. A table variable behaves like a local
variable. It has a well-defined scope, which is the function, stored procedure,
or batch in which it is declared. Within its scope, a table variable may be used
like a regular table. It may be applied anywhere a table or table expression is
used in select, insert, update, and delete statements.

o A cursor type that enables references to a cursor object. The cursor type can
be used to declare variables, or routine input/output arguments to reference
cursors across routine calls.

29.2.2 Query Longuoge Enhqncements
In addition to the sQL relational operators such as inner join and outer join, sel-
Server supports the relational operators pivot, unpivof and apply.
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o pivot is an operator that transforms the shape of its input result set from two
columns that represent name-value pairs into multiple columns, one for each
name from the input. The name column from the input is called the pivot-
column. The user needs to indicate which names to transpose from the input
into individual columns in the output. Consider thetable MonthlySales(Product-
lD, Month, salesQty). The following query using the pivot operator returns the
SalesQty for each of the months Jan, Feb, and Mar as separate columns. Note
that the pivot operator also performs an implicit aggregation on all the other
columns in the table and an explicit aggregation on the pivot-column.

select *

from MonthlySales pivot( sam(SalesQty) for month in ('Jan', 'Feb' ,'Mar')) T

The inverse operation to pivot is unpivot.

o The apply operator is a binary operator that takes two table-valued inputs,
of which the right input is typically a table-valued function invocation that
takes as arguments, one or more columns from the left input. The columns
produced by the operator is the union of the columns from its two inputs.
The apply operator can be used to evaluate its right input for each row of its
left input and perform a union all of the rows across all these evaluations.
There are two flavors of the apply operator similar to join, namely, cross and
outer. The two flavors differ in terms of how they handle the case of the right
input producing an empty result-set. In the case of cross apply, this causes
the corresponding row from the left input to not appear in the result. In the
case of outer apply, the row appears from the left input with NULL values
for the columns in the right input. Consider a table-valued function called
FindReports that takes as input the ID of a given employee and returns the
set of employees reporting directly or indirectly to that employee in an or-
ganization. The following query calls this function for the Manager of each
department from the Departments table:

select *

fuolnr. Departments D cross apply FindReports(D .ManagerlD)

29.2.3 Routines
Users can write routines that run inside the server process as scalar or table functions,

stored procedures, and triggers using Transact-SQl or a .NET language. All these rou-
tines are defined to the database by using the corresponding create [function, Proce-
dure, trigger] DDL statement. Scalar functions can be used in any scalar expression
inside an SQL DML, or DDL statement. Table-valued functions can be used anywhere
a table is allowed in a select statement. Transact-SQl table-valued functions whose
body contains a single SQL select statement are treated as a view (expanded inline)
in the query that references the function. Since table-valued functions allow input

arguments, inline table-valued functions can be considered parameterized views.
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29.2.3.1 Indexed Views
In addition to traditional views as defined in ANSI SQL, SQL Server supports indexed
(materialized) views. Indexed views can substantially enhance the performance of
complex decision support queries that retrieve large numbers of base table rows and
aggregate large amounts of information into concise sums, counts, and averages. SQL
server supports creating a clustered index on a view and subsequently any number
of nonclustered indices. Once a view is indexed, the optimizer can use its indices in
queries that reference the view or its base tables. Existing queries can benefit from the
improved efficiency of retrieving data directly from the indexed view without having
to be rewritten to reference the view. Update statements to the view's base tables are
propagated automatically to the indexed views.

29.2.3.2 Updotoble Views and Triggers
Generally, views can be the target of update, delete, or insert statements i{ the data
modification applies to only one of the view's base tables. Updates to partitioned
views can be propagated to multiple base tables. For example, the following update
will increase the prices for publisher "0736" by 10 percent.

update titleaiew
set price = price * 1.L0
where pub-id ='0736'

For data modifications that affect more than one base table, the view can be up-
dated if there is an instead trigger defined for the operation: instead triggers for
insert, update, or delete operations can be defined on a view, to specify the updates
that must be performed on the base tables to reflect the corresponding modifications
on the view.

Triggers are Transact-SQl or .NET procedures that are automatically executed when
either a DML (update, insert, or delete) or DDL statement is issued against a base
table or view. Triggers are mechanisms that enable enforcement of business logic au-
tomatically when data are modified or when DDL statements are executed. Triggers
can extend the integrity checking logic of declarative constraints, defaults, and rules,
although declarative constraints should be used preferably whenever they suffice.

Triggers can be classified into DML and DDL triggers depending on the kind of
event that fires the trigger. DML triggers are defined against a table or view that is
being modified. DDL triggers are defined against an entire database for one or more
DDL statements such as create table, drop procedure, etc.

Triggers can be classified into after and instead triggers according to when the
trigger gets invoked relative to the action that fires the trigger. After triggers exe-
cute after the triggering statement and subsequent declarative constraints are en-
forced. Instead triggers execute instead of the triggering action. Instead triggers can
be thought of as similar to before triggers, but they actually replace the triggering
action. In sQL servel, DML after triggers can be defined only on base tables, while
DML instead triggers can be defined on base tables or views. Instead triggers allow
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practically any view to be made updatable-
any DDL statement.

DDL instead triggers can be defined on

29.3 Storoge qnd Indexing
In SeL Server, a database refers to a collection of files that contain data and are suP-
ported by a single transaction log. The database is the primary unit of administration
in SQL Server and also provides a container for physical structures such as tables and
indices and for logical structures such as constraints and views.

29.3.1 FileGroups
In order to manage space effectively in a database, the set of data files in a database is
divided into groups called filegroups. Each filegroup contains one or more operating
system files.

Every database has at least one filegroup known as the primary filegroup. This
filegroup contains all the metadata for the database in system tables. The primary
filegroup may also store user data.

If additional, user-defined, filegroups have been created, a user can explicitly con-
trol the placement of individual tables, indices, or the large-object columns of a table
by placing them in a filegroup. For example, the user may choose to store a table
in filegroupA, its nonclustered index in filegroupB, and the large-object columns of
the table in filegroupC. Placing these tables and indices in different filegroups allows
the user to control the use of hardware resources (that is, disks and the I/O subsys-
tem). One filegroup is always considered the default filegroup; initially, the default
filegroup is the primary filegroup, but any user-defined filegroup can be given the

defiukpVoperty.I? a table or index is not placed specifically in a filegroup, it is created
in the default filegroup.

29.3.2 Spoce Monogement within Filegroups

One of the main purposes for filegroups is to allow for effective space management.
All data files are divided into fixed-size 8 kiiobyte units called pages. The allocation
system is responsible for allocating these pages to tables and indices. The goal of the

allocation system is to minimize the amount of space wasted while, at the same time,

keeping the amount of fragmentation in the database to a minimum to ensure good
scan performance. In order to achieve this goal, the allocation manager usually allo-
cates and deallocates all the pages in units of eight contiguous pages called extents.

The allocation system manages these extents through various bitmaps. These bit-
maps allow the allocation system to find a page or an extent for allocation quickly'
These bitmaps are also used when a fuIl table or index scan is executed. The ad-
vantage of using allocation-based bitmaps for scanning is that it allows disk-order
traversals of all the extents belonging to a table or index leaf level, which significantly
improves the scan performance.
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If there is more than one file in a filegroup, the allocation system allocates extents
for any object on that filegroup by using a "proportional fill" algorithm. Each file is
filled up in the proportion of the amount of free space in that file compared to other
files. This fills all the files in a filegroup at roughly the same rate and allows the
system to utilize all the files in the filegroup evenly.

One of the biggest decisions in setting up a database is to determine how big to
make it. SQL Server allows data files to change in size after the database is created.
The user can even choose to have the data file automatically grow if the database
is running out of space. Thus, the user can configure the database to a reasonable
approximation of the expected size but set the database files to grow and adjust to
the usage Patterrl if the initial approximation is wrong. SQL Server allows files to
shrink. In order to shrink a data file, SQL Server moves all the data from the physical
end of the file to a point closer to the beginning of the file and then actually shrinks
the file, releasing space back to the operating system.

29.3.3 Tqbles
SQL Server supports heap and clustered organizations for tables. In a heap-organized
table, the location of every row of the table is determined entirely by the system and is
not specified in any way by the user. The rows of a heap have a fixed identifier known
as the row (RID), and this value never changes unless the file is shrunk and the row is
moved. If the row becomes large enough that it cannot fit in the page in which it was
originally inserted, the record is moved to a different place but a forwarding stub is
left in the original place so that the record can still be found by using its original RID.

In a clustered index organization for a table, the rows of the table are stored in a
B+-tree sorted by the clustering key of the index. The clustered index key also serves
as the unique identifier for each row. The key for a clustered index can be defined to
be nonunique, in which case SQL Server adds an additional hidden column to make
the key unique. The clustered index also serves as a search structure to identify a row
of the table with a particular key or scan a set of rows of the table with keys within a
certain range. A clustered index is the most common type of table organizatron.

29.3.4 Indices
SQL Server also supports secondary (nonclustered) B+-tree indices. Queries that re-
fer only to columns that are available through secondary indices are processed by
retrieving pages from the leaf level of the indices without having to retrieve data
from the clustered index or heap. Nonclustered indices over a table with a clustered
index contain the key columns of the clustered index. Thus, the clustered index rows
can move to a different page (via splits, defragmentation, or even index rebuilds)
without requiring changes to the nonclustered indices.

sQL server supports the addition of computed columns to a table, A computed
column is a column whose value is an expression, usually based on the value of
other columns in that row. SQL Server allows the user to build secondary indices on
computed columns.
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29.3.5 Pqrtitions
SQL Server supports range partitioning on tables and nonclustered indices. A parti-

tioned index is made up of multiple B+-trees, one per partition. A partitioned table

without an index (a heap) is made up of multiple heaps, one per partition. For brevity,

we refer only to partitioned indices (clustered or nonclustered) and ignore heaps for

the rest of this discussion.
Partitioning a large index allows an administrator more flexibility in managing

the storage for the index and can improve some query performance because the par-

titions act as a coarse-grained index.
The partitioning for an index is specified by providing both a partitioning function

and a partitioning scheme. A partitioning function maps the domain of a partition-

ing column (any column in the index) to partitions numbered 1 to l[. A partitioning

scheme maps partition numbers produced by a partitioning function to specific file-

groups where the partitions are stored.

29.3.6 On-line Index Build

Building new indices and rebuilding existing indices on a table can be performed
online, i.e., while select/insert/delete/update operations are being performance on
the table. The creation of a new index happens in three phases. The first phase is

simply creating an empty B+-tree for the new index with the catalog showing the
new index is available for maintenance operations. That is, the new index must be

maintained by all subsequent insert / delete/tpdate operations, but it is not available
for queries. The second phase consists of scanning the table to retrieve the index
columns for each row, sorting the rows and inserting them into the new B+-tree.

These inserts must be careful to interact with the other rows in the new B+-tree placed

there by index maintenance operations from updates on the base table. The scan is a

snapshot scan that, without locking, ensures the scan sees the entire table with only
the results of committed transactions as of the start of the scan. This is achieved by
using the snapshot isolation technology described in Section 29.5.1'. The final phase of

the index build involves updating the catalog to indicate the index build is complete
and the index is available for queries.

29.3.7 Scqns qnd Reod-qheqd

Execution of queries in SQL Server can involve a variety of different scan modes on

the underlying tables and indices. These include ordered versus unordered scans/

serial versus parallel scans, unidirectional versus bidirectional scans, forward versus

backward scans, and entire table or index scans versus range or fiitered scans.
Each of the scan modes has a read-ahead mechanism, which tries to keep the

scan ahead of the needs of the query execution, in order to reduce seek and latency
overheads and utilize disk idle time. The SQL Server read-ahead algorithm uses the

knowledge from the query-execution plan in order to drive the read-ahead and make

sure that only data that are actually needed by the query are read. Also, the amount
of read-ahead is automatically scaled according to the size of the buffer pool, the
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amount of I/O the disk subsystem can sustain, and the rate at which the data are
being consumed by query execution.

29.4 Query Processing ond Optimizqtion
The query Processor of SQL Server is based on an extensible framework that allows
rapid incorporation of new execution and optimization techniques. Any sel- query
can be expressed as a tree of operators of SQL Server's extended relational alge-
bra. Abstracting operators of this algebra into iterators, query execution encapsulaies
data-processing algorithms as logical units that communicate with each other by us-
ing a GetNextRow0 interface. Starting out with an initial query tree, sel- server's
query optimizer generates alternatives by using tree transformations and estimates
their execution cost by taking into account iterator behavior and statistical models to
derive selectivities.

29.4.1 Overview of Optimizqtion Process
Complex queries present significant optimization opportunities that require reorder-
ing operators across query block boundaries and selecting plans solely on the ba-
sis of estimated costs. To go after these opportunities, SeL server's query optimizer
deviates from traditional query-optimization approaches used in other commercial
systems in favor of a more general, purely algebraic framework that is based on the
Cascades optimizer prototype. Query optimization is part of the query-compilation
process, which consists of four steps:

o Parsing/binding. The parser resolves table and column names by using the
catalogs. SQL Server utilizes a plan cache to avoid repeated optimization of
identical or structurally similar queries. If no cached plan is available, an ini-
tial operator tree is generated. The operator tree is simply a combination of
relational operators and is not constrained by concepts such as query blocks
or derived tables, which typically obstruct optimization.

o Simplification/normalization. The optimizer applies simplification rules on
the operator tree to obtain a normal, simplified form. During simplification,
the optimizer determines and loads statistics required for cardinality estima-
tion.

o Cost-based optimization. The optimizer applies exploration and implemen-
tation rules to generate alternatives, estimates execution cost, and chooses the
plan with the cheapest anticipated cost. Exploration rules implement reorder-
ing for an extensive set of operators, including join and aggregation reorder-
ing. Implementation rules introduce execution alternatives such as merge join
and hash join.

o Plan preparation. The optimizer creates query-execution structures for the
selected plan.
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To achieve best results, SQL Server's cost-based optimization is not divided into

phases that optimize different aspects of the query independently; also, it is not re-

stti.t"d to a single dimension such as join enumeration. Instead, a collection of trans-

formation rules defines the space of interest, and cost estimation is used uniformly to

select an efficient plan.

29.4.2 Query Simplificqtion
During simplification, only transformations that are guaranteed to generate less costly
substitutes are applied. The optimizer pushes selects down the operator tree as far as
possible; it checks predicates for contradictions, taking into account declared con-
straints. It uses contradictions to identify subexpressions that can be removed from
the tree. A common scenario is the elimination of union branches that retrieve data
from tables with different constraints.

A number of simplification rules are context dependent; that is, the substitution is

valid only in the context of utilization of the subexpression. For example, an outer join

can be simptified into an inner join if a later filter operation will discard nonmatching
rules that were padded with null. Another example is the elimination of joins on
foreign keys, which need not be performed if there are no later uses of columns from
the referenced table. A third example is the context of duplicate insensitivity, which
specifies that delivering one or multiple copies of a row does not affect the query
result. Subexpressions under semijoins and under distinct are duplicate insensitive,
which allows turning union into union all.

For grouping and aggregation, the GbAgg operator is used, which creates grouPs

and oplionally applies an aggregate function on each grouP. Duplicate removal, ex-

pressed in SQL by the distinct keyword, is simply a GbAgg with no aggregate func-

iions to compute. During simplification, information about keys and functional de-

pendencies is used to reduce grouping columns.
Subqueries are normalizedby removing correlated query specifications and us-

ing some join variant instead. Removing correlations is not a "subquery execution
stialegy," but simply a normalization step. A variety of execution strategies is then

considered during cost-based optimization.

29.4.3 Reordering qnd Cost-Bqsed Optimizqtion

In SeL Server, transformations are fully integrated into the cost-based generation and

selection of execution plans. SQL Server's query optimizer includes about 350 logical

and physical transformation rules. In addition to inner-join reordering, the query op-

timiier employs reordering transformations for the operators outer joirg semijoin,

and antisemijoin, from the standard relational algebra (with duplicates, for SQL).

GbAgg is reordered as well, by moving it below joins where possible. Partial aggre-
gation, that is, introducing a new GbAgg with grouping on a superset of the columns

6f a subsequent GbAgg, is considered below joins and union all, and also in parallel

plans. see the references given in the bibliographical notes for details.
Correlated execution is considered during plan exploration, the simplest case be-

ing index-Iookup join. SQL Server models correlated execution as a single algebraic
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operator/ called apply, which operates on a table T and a parameterized relational
expression E(t), Apply executes E for each row of 7, which provides parameter val-
ues. Correlated execution is considered as an execution alternative, regardless of the
use of subqueries in the original SQL formulation. It is a very efficient strategy when
the table 7 is small and indices support efficient parameterized execution-of E(t).
Furthermore, we consider reduction on the number of executions of E(t\ when there
are duplicate parameter values, by means of two techniques: Sort ? on parameter
values so that a single result of E(t) is reused while the parameter value remains the
same/ or else use a hash table that keeps track of the result of E(t) for (some subset
of) earlier parameter values.

Some applications select rows on the basis of some aggregate result for their group.
For example, "Find customers whose balance is more than twice the average tor tneir
market segment." The SQL formulation requires a self-join. During exploiation, this
pattern is detected and per-segment execution is considered as an alternative to self-
join.

Materialized view utilization is also considered during cost-based optimization.
View matching interacts with operator reordering in that utilization may not be ap-
parent until some other reordering has taken place. When a view is found to matih
some subexpression, the table that contains the view result is added as an alterna-
tive for the corresponding expression. Depending on data distribution and indices
available, it may or may not be better than the original expression-selection will be
based on cost estimation.

To estimate the execution cost of a plan, the model takes into account the number
of expected rows to process, called the row goal, as well as the nurnber of times a
subexpression is executed. The row goal can be less than the cardinality estimate, in
cases such as Applylsemijoin. Applylsemijoin outputs row I from ? as soon as a single
row is produced by E(t) (that is, it tests exists E(t)). Thus, the row goal of the output
of E (t) is 1, and the row goals of subtrees of E (t) are computed foi this row goal for
E(t) andused for cost estimation.

29.4.4 Updote Plqns
Update plans optimize maintenance of indices, verify constraints, apply cascading
actions, and maintain materialized views. For index maintenance, instead of takin;
each row and maintaining all indices for it, update plans apply modifications pe"r
index, sorting rows and applying the update operation in key order. This minimizes
landom I/o, especially when the number of rows to update is large. Constraints are
handled by an assert operator, which executes a predicate and raises an error if the
result is false. Referential constraints are defined by exists predicates, which in turn
become semijoins and are optimized by considering all exeiution algorithms.

The Halloween problem is addressed by using cost-based choices. The Halloween
problem refers to the following anomaly: Suppose a salary index is read in ascending
orde1, and salaries are being raised by 10 percent. As a result of the update, rows wil"l
move forward in the index and will be found and updated again, leading to an infi-
nite loop. One way to address this problem is to separate processing into two phases:
First read all rows that will be updated and make a copy of them in some 1"*po-
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rary place, then read from this place and apply all updates. Another alternative is to

read?rom a different index where rows will not move as a result of the update. Some

execution plans provide phase separation automatically, if they sort or build a hash

table on the rows to be updated. In SQL Server's optimizer, Halloween protection is

modeled as a property of plans. Multiple plans that provide the required property

are generated, and one is selected on the basis of estimated execution cost'

29.4.5 Dqtq Anolysis ot Optimizqtion Time

SQL pioneered techniques to perform gathering of statistics as part of an ongoing op-

timiiation. The computation of result size estimates is based on statistics for columns

used in a given expression. These statistics consist of max-diff histograms on the col-

umn values and a number of counters that capture densities and row sizes, among

others. Database administrators may explicitly create statistics by using extended

SQL syntax.
If no statistics are available for a given column, however, SQL Server's optimizer

puts the ongoing optimization on halt and gathers statistics as needed. As soon as the

itutirtics are computed, the original optimization is resumed, leveraging the newly

created statistics. Optimization of subsequent queries reuses previously generated

statistics. Typically, ifte, ushort period of time, statistics for frequently used columns

have been cieated and interruptions to gather new statistics become infrequent. By

keeping track of the number of rows modified in a table, a measure of staleness is

maintained for all affected statistics. Once the staleness exceeds a certain threshold

the statistics are recomputed and cached plans are recompiled to take changed data

distributions into account.
SeL Server 2005 can conduct automatic statistic computation asynchronously. This

avoids potentially long compile times caused by synchronous gathering of statis-

tics. The optimization that triggers the computation of statistics uses potentially staie

statistics. Ho-"rret, subsequent queries are able to leverage the recomputed statistics-

This allows striking an acieptable balance between time spent in optimization and

the quality of the resulting query plan'

29.4.6 Pqrtiql Seqrch qnd Heuristics

Cost-based query optimizers face the issue of search space explosion because appli-

cations do issue queries involving dozens of tables. To address this, SQL Server uses

multiple optimizltion stages, each of which uses query transformations to explore

successively larger regions of the search space.
There are simple and complete transformations geared toward exhaustive opti-

mization, as well as smart transformations that implement various heuristics. Smart

transformations generate plans that are very far apart in the search space, while sim-

ple transformatio=ns exploie neighborhoods. Optimization stages apply a mix of both

tinds of transformations, first emphasizing smart transformations, and later transi-

tioning to simple transformations. Optimum results on subtrees are preserved, so

that later stages can take advantage of results generated earlier. Each stage needs to

balance opposing plan generation techniques:
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o Exhaustive generation of alternatives: To generate the complete space, the
optimizer uses complete, local, nonredundant transformations-a transfor-
mation rule equivalent to a sequence of more primitive transformations only
introduces additional overhead.

r Heuristic generation of candidates: A handful of interesting candidates (se-
lected on the basis of estimated cost) are tikely to be far apart in terms of
primitive transformation rules. Here, desirable transformations are incom-
plete, global, and redundant.

Optimization can be terminated at any point after the first plan has been gener-
ated. Such termination is based on the estimated cost of the best plan found ar-td the
time spent already in optimization. For example, if a query requires only looking
up a few rows in some indices, a very cheap plan will be produced quickly in the
early stages, terminating optimization. This approach enabled adding new heuris-
tics easily over time, without compromising either cost-based selection of plans, or
exhaustive exploration of the search space, when appropriate.

29.4.7 Query Execution
Execution algorithms support both sort-based and hash-based processing, and their
data structures are designed to optimize use of processor cache. Hash operations
support basic aggregation and join, with a number of optimizations, extensions, and
dynamic tuning for data skew. The flow-distinct operation is a variant of hash dis-
tinct, where rows are output eatly, as soon as a new distinct value is found, instead of
waiting to process the complete input. This operator is effective for queries that use
distinct and request only a few rows, say using the top n construct. Correlated plans
specify executing E(t), often including some index lookup based on the parameter,
for each row f of a table T. Asynchronous prefetching a7lows issuing multiple index-
lookup requests to the storage engine. It is implemented this way: A nonblocking
index{ookup request is made for a row t of T, then r is placed in a prefetch queue-.
Rows are taken out of the queue and used by apply to execute t(l). Execution of
E(t) does not require that data be already in the buffer poof but having outstanding
prefetch operations maximizes hardware utilization and increases performance. The
size of the queue is determined dynamically as a function of cache hits. If no ordering
is required on the output rows of apply, rows from the queue may be taken out o?
order, to minimize waiting on I/O.

Parallel execution is implemented by the exchange operator, which manages mul-
tiple threads, partitions or broadcasts data, and feeds the data to multiple piocesses.
The query optimizer decides exchange placement on the basis of estimited cost. The
degree of parallelism is determined dynamically at runtime, according to the current
system utilization.

fndex plans are made up of the pieces described earlier. For example, we con-
sider the use of an index join to resolve predicate conjunctions (or index union, for
disjunctions), in a cost-based way. such a join can be done in parallel, using any of
SQL Server's join algorithms. We also consider joining indices for the sole purpose
of assembling a row with the set of columns needed on a query, which is sometimes
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faster than scanning a base table. Taking record ids from a secondary index and lo-
cating the corresponding row in a base table is effectively equivalent to performing
indexlookup join. For this, we use our generic correlated execution techniques such
as asynchronous prefetch.

Communication with the storage engine is done through OLE-DB, which allows
accessing other data providers that implement this interface. OLE-DB is the mecha-
nism used for distributed and remote queries, which are driven directly by the query

processor. Data providers are categorized according to the range of functionality
ihey provide, ranging from simple rowset providers with no indexing capabilities
to providers with full SQL support.

29.5 Concurrency qnd Recovery
SQL Server's transaction, logging, locking, and recovery subsystems realize the ACID

properties expected of a database system'

29.5.1 Trqnsqctions
In SeL Server all statements are atomic and applications can specify various lev-

els of isolation for each statement. A single transaction can include statements that

not only select, insert, delete, or update records, but also create or drop tables, build

indices, and bulk-import data. Transactions can span databases on remote servers.

When transactions are spread across servers, SQL Server uses a Windows operating

system service called the Microsoft Distributed Transaction Coordinator (MS DTC) to

perform two-phase commit processing. MS DTC supports the XA transaction proto-

col and, along with OLE-DB, provides the foundation for ACID transactions among

heterogeneous systems.
Concurrency control based on locking is the default for SQL Server. SQL Server

also offers optimistic concurrency control for cursors. Optimistic concurrency con-

trol is based on the assumption that resource conflicts between multiple users are un-

Iikely (but not impossible), and allows transactions to execute without locking any re-

ro.tttur. Only whbn attempting to change data does SQL Server check resources to de-

termine if any conflicts have occurred. If a conflict occurs, the application must read

the data and attempt the change again. Applications can choose to detect changes

either by comparing values or by checking a speciai rowversion column on a row.

SeL Server supports the SQL isolation levels of read uncommitted, read commit-

ted, repeatable reid, and serializable. Read committed is the default level. In addi-

tion, SQL Server supports two snapshot-based isolation levels.

o Snapshot: Specifies that data read by any statement in a transaction will be

the transactionally consistent version of the data that existed at the start of the

transaction. The transaction can see only data modifications that were com-

mitted before the start of the transaction. Data modifications made by other

transactions after the start of the current transaction are not visible to state-

ments executing in the current transaction. The effect is as if the statements in
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a transaction see a snapshot of the committed data as it existed at the start of
the transaction.

o Read committed snapshoh specifies that each statement executed within a
transaction sees a transactionally consistent snapshot of the data as it existed
at the start of the statement. Data modifications made by other transactions
after the start of the statement are not visible to the statement. This contrasts
with read committed isolation where the statement may see committed up-
dates of transactions that commit while the statement is executing.

29.5.2 Locking
Locking is the primary mechanism used to enforce the semantics of the isolation lev-
els. All updates acquire sufficient exclusive locks held for the duration of the transac-
tion to prevent conflicting updates from occurring. Shared locks are held for various
durations to provide the different SeL isolation levels for queries.

SQL Server provides multigranularity locking that allows different types of re-
sources to be locked by a transaction (see Figure 29.4, where the resourceJare listed
in order of increasing granularity). To minimize the cost of locking, SeL Server locks
resources automatically at a granularity appropriate to the task. Locking at a smaller
granularity, such as rows, increases concurrency, but has a higher overhead because
more locks must be held if many rows are locked.

The fundamental SQL Server lock modes are shared (S), update (U), and exclusive
(X); intent locks are also supported for multigranularity locking. Update locks are
used to prevent a common form of deadlock that occurs when multiple sessions are
reading, locking, and potentially updating resources later. Additional lock modes-
called key-range locks-are taken only in serializable isolation level for locking the
range between two rows in an index.

29.5.2.\ Dynomic Locking
Fine-granularity locking can improve concurrency at the cost of extra CpU cycles
and memory to acquire and hold many locks. For many queries, a coarser loiking

RID I Row identifier; used to lock a single row within a table

5"y I Row lock within an index; protects key ranges in serializable transactions
Page I S-titoUyte table or index page

!x19nt I Contiguous group of eight data pages or index pages'lable 
I Entire table, including all data and indices

DB I Database

Figure29.4 Lockable resources.
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granularity provides better performance with no (or minimal) loss of concurrency.

Database ryite*r have traditionally required query hints and table options for appli-

cations to specify locking granularity. In addition, there are configuration parameters
(often static) for how much memory to dedicate to the lock manager.

In SeL Server, locking granularity is optimized automatically for optimal perfor-

mance and concurrency for each index used in a query. In addition, the memory

dedicated to the lock manager is adjusted dynamically on the basis of feedback from

other parts of the system, including other applications on the machine.

Lock granularity is optimized before query execution for each table and index

used in the query. The lock optimization process takes into account isolation level

(that is, how long locks are held), scan type (range, probe, or entire table), estimated

number of rows to be scanned, selectivity (percentage of visited rows that qualify for

the query), row density (number of rows per page), operation type (scan, update),

user limits on the granularity, and available system memory.

Once a query is executing, the locking granularity is escalated automatically to

table level ii the system acquires significantly more locks than the optimizer expected

or if the amount of available memory drops and cannot support the number of locks

required.

29.5.2.2 Deqdlock Detection

SeL Server automatically detects deadlocks involving both locks and other resources.

For example, if transaction A is holding a lock on Tablel and is waiting for memory to

become available and transaction B has some memory it can't release until it acquires

a lock on Tablel, the transactions will deadlock. Threads and communication buffers

can also be involved in deadlocks. When SQL Server detects a deadlock, it chooses

as the deadlock victim the transaction that would be the least expensive to roll back,

considering the amount of work the transaction has already done.
Frequenl deadlock detection can hurt system performance. SQL Server automati-

cally adjusts the frequency of deadlock detection to how often deadlocks are occur-

ring. If deadlocks are infrequent, the detection algorithm runs every 5 seconds. If they

arelrequent it will begin checking every time a transaction waits for a lock.

29.5.2.3 Row Versioning for Snopshot lsolqtion

The two snapshot-based isolation levels use row versioning to achieve isolation for

queries whil-e not blocking the queries behind updates and vice versa. Under snap-

shot isolation, update and delete operations generate versions of the affected rows

and store them in a temporary database. The versions are garbage-collected when

there are no active transactions that could require them. Therefore, a quely lun

under snapshot isolation does not need to acquire locks and instead can read the

older versions of any record that gets updated/deleted by another transaction. Row

versioning is also used to provide a snapshot of a table for on-line index buiid oper-

ations.
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29.5.3 Recovery qnd Avqilobility
SQL Server is designed to recover from system and media failures, and the recov-
ery system can scale to machines with very large buffer pools (100 gigabytes) and
thousands of disk drives.

29.5.3.1 Crqsh Recovery
Logically, the log is a potentially infinite stream of log records identified by log se-
quence numbers (LSNs). Physically, a portion of the stream is stored in log files. Log
records are saved in the log files until they have been backed up and are no longei
needed by the system for rollback or replication. Log files grow and shrink in size to
accommodate the records that need to be stored. Additional log files can be added
to a database (on new disks, for example) while the system is running and without
blocking any current operations, and all logs are treated as if they were one continu-
ous file.

SQL Server's recovery system has many aspects in common with the ARIES recov-
ery algorithm (see Section 17.8.6), and some of the key differences are highlighted in
this section.

SQL Server has a configuration option called recovery interval, which allows an
administrator to limit the length of time SQL Server should take to recover after a
crash. The server dynamically adjusts the checkpoint frequency to reduce recovery
time to within the recovery interval. Checkpoints flush atl dirty pages from the buffer
pool and adjust to the capabilities of the I/O system and its current workload to
effectively eliminate any impact on running transactions.

Upon start-up after a crash, the system starts multiple threads (automatically scaled
to the number of CPUs) to start recovering multiple databases in parallel. The first
phase of recovery is an analysis pass on the log, which builds a dirty page table and
active transaction list. The next phase is a redo pass starting from the last checkpoint
and redoing all operations. During the redo phase, the dirty page table is used to
drive read-ahead of data pages. The final phase is an undo phase where incomplete
transactions are rolled back. The undo phase is actually divided into two parts as
SQL Server uses a two-level recovery scheme. Tiansactions at the first level (those in-
volving internal operations such as space allocation and page sptits) are rolled back
first, followed by user transactions. Once the transactions at the first level are rolled
back, the database is brought online and is available for new user transactions to start
while the final rollback operations are performed. This is achieved by having the redo
pass reacquire locks for all incomplete user transactions that will be rolled back in the
undo phase.

29.5.3.2 Mediq Recovery
SQL Server's backup and restore capabilities allow recovery from many failures, in-
cluding loss or corruption of disk media, user errors, and permanent loss of a server.
Additionally, backing up and restoring databases is useful for other purposes, such
as copying a database from one server to another and maintaining standby systems.
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SeL Server has three different recovery models that users can choose from for each

database. By specifying a recovery model, an administrator declares the type of re-

covery capabilities required (such as point-in-time restore and log shipping) andthe

requiied backups to achieve them. Backups can be taken on databases, files, file-

gronps, and the transaction log. All backups ate fuzzy and completely online; that

is, they do not block any DML or DDL operations while they execute. Restores can

also be done online such that only the portion of the database being restored (e.8.,

a corrupt disk block) is taken offline. Backup and restore operations are highly opti-

mized ind limited only by the speed of the media onto which the backup is targeted.

SeL Server can back up to both disk and tape devices (up to 64 in parallel) and has

high-performance backup APIs for use by third-party backup products.

29.5.3.3 Dqtobqse Mirroring
Database mirroring involves immediately reproducing every update to a database
(the principal database) onto a separate, complete copy of the database (the mirror

data6ase) generally located on another machine. In the event of a disaster on the pri-
^ury r"trr". or even just maintenance, the system can automatically failover to the
mirior in a matter of seconds. A tight coupling between the primary database and

the mirror is achieved by sending blocks of transaction log to the mirror as it is gen-

erated on the primary and redoing the log records on the mirror. In full-safety mode,

a transaction cannot commit until the log records for the transaction have made it to

disk on the mirror. The communication library used by applications is aware of the

mirroring and will automatically reconnect to the mirror machine in the event of a

failover.

29.6 System Architecture
A single SeL Servef instance is a single operating system process that is also a named

endpoint for requests for SQL execution. Applications interact with SQL Server via

various client-side libraries (like ODBC and OLE-DB) in order to execute SQL.

29.6.1 Threqd Pooling on the Server

In order to minimize the context switching on the server and to control the degree of

multiprogramming, the SQL Server process maintains a pool of threads that execute

client reqlests. As iequests arrive from the client, they are assigned a thread on which

to execuie. The thread executes the SQL statements issued by the client and sends the

results back to it. Once the user request completes, the thread is returned back to the

thread pool. In addition to user requests, the thread pool is used to assign threads for

internal background tasks such as:

o Lazywfiter: This thread is dedicated to making sure a certain amount of the

buffer pool is free and available at all times for allocation by the system.

The thread also interacts with the operating system to determine the optimal

amount of memory that should be consumed by the SQL Server process.
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o Checkpoint This thread periodically checkpoints all databases in order to
maintain a fast recovery interval for the databases on server restart.

o Deadlock monitor: This thread monitors the other threads,looking for a dead-
lock in the system. It is responsible for the detection of deadlocks and also
picking a victim in order to allow the system to make progress.

When the query processor chooses a parallel plan to execute a particular query,
it can allocate multiple threads that work on behalf of the main thread to execute
the query. Since the Windows NT family of operating systems provides native thread
support, SQL Server uses NT threads for its execution. However, SQL Server can be
configured to run with user-mode threads in addition to kernel threads in very high
end systems to avoid the cost of a kernel context switch on a thread switch.

29.6.2 Memory Monogement
There are many different uses of memory within the SQL Server process:

o Buffer pool. The biggest consumer of memory in the system is the buffer
pool. The buffer pool maintains a cache of the most recently used database
pages. It uses a clock replacement algorithm with a steal, no-force policy; that
is, buffer pages with uncommitted updates may be replaced ("stolen"), and
buffer pages are not forced to disk on transaction commit. The buffers also
obey the write-ahead logging protocol to ensure correctness of crash and me-
dia recovery.

o Dynamic memory allocation. This is the memory that is allocated dynami-
cally to execute requests submitted by the user.

o Plan and execution cache. This cache stores the compiled plans for various
queries that have been previously executed by users in the system. This allows
various users to share the same plan (saving memory) and also saves on query
compilation time for similar queries

o Large memory grants. For query operators that consume large amounts of
memory such as hash join and sort.

SQL Server uses an elaborate scheme of memory management to divide its mem-
ory among the various uses described above. A single memory manager centrally
manages all the memory used by SQL Server. The memory manager is responsible
for dynamically partitioning and redistributing the memory between the various
consumers of memory in the system. It distributes this memory in accordance with
an analysis of the relative cost benefit of memory for any particular use. A gener-
aLized LRU infrastructure mechanism is available to all components. This caching
infrastructure tracks not only the lifetime of cached data but also the relative CPU
and I/o costs incurred to create and cache it. This information is used to determine
the relative costs of various cached data. The memory manager focuses on throwing
out the cached data that have not been touched recently and were cheap to cache.
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As an example, complex query plans that require seconds of CPU time to compile are

more likely to stay in memory than trivial plans, given equivalent access frequencies.

The memory manager interacts with the operating system to decide dynamically

how much memory it should consume out of the total amount of memory in the sys-

tem. This allows SQL Server to be quite aggressive in using the memory on the sys-

tem but still return memory back to the system when other programs need it without

causing excessive page faults.

29.5.3 Security
SQL Server provides comprehensive security mechanisms and policies for authen-
tication, authorization, and encryption. TWo things are even more critical to users'
security: (1) the quality of the entire code base itself and (2) the ability of users to
determine if they have secured the system properly.

The quality of the code base is enhanced by having all developers and testers of
product go through security training. Wherever possible, SQL Server utilizes the un-
derlying security features of the operating system rather than implementing its own.
Furthermore, numerous internal tools are utilized to analyze the code base, looking
for potential security flaws.

A number of features are provided to help users secure the system properly. One
such feature is a fundamental policy called "off-by-default" where many less com-
monly used components or those requiring extra care for security are completely
disabled by default. Another feature is a "best-practices analyzer" that warns users
about configurations of system settings that could lead to a security vulnerability.

29.7 Dqto Access
SQL Server supports the following application programming interfaces (APIs) for
building data-intensive applications:

o ODBC. This is Microsoft's implementation of the standard SQL:1999 call-level
interface (CLD. It includes object models-Remote Data Objects (RDO5) and
Data Access Objects (DAOs)-that make it easier to program multitier database
applications from programming languages like Visual Basic.

o OLE-DB. This is a low-level, systems-oriented API designed for programmers
building database components. The interface is architected according to the
Microsoft Component Object Model (COM), and it enables the encapsulation
of low-level database services such as rowset providers, ISAM providers, and
query engines. OLE-DB is used inside SQL Server to integrate the relational
query processor and the storage engine and to enable replication and dis-
tributed access to SQL and other external data sources. Like ODBC, OLE-DB in-
cludes a higher-level object model called ActiveX Data Objects (ADO) to make
it easier to program database applications from Visual Basic.

o ADO.NET. This is a newer API designed for applications written in.NET lan-
guages such as C# and Visual Basic.NET. This interface simplifies some com-
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mon data access patterns supported by ODBC and OLE-DB. In addition, it pro-
vides a new dats sel model to enable stateless, disconnected data access appli-
cations.

DB-Lib. The DB-Library for C API that was developed specifically to be used
with earlier versions of SQL Server that predate the SQL-92 standard.

HTTP/SOAP. Applications can use HTTP/SOAP requests to invoke SQL Server
queries and procedures. Applications can use URLs that specify Internet In-
formation Server CIIS) virtual roots that reference an instance of SeL Server.
The URL can contain an XPath query, a Tlansact-SQl statement, or an XML
template.

29.8 Distributed Heterogeneous Query Processing
SQL Server distributed heterogeneous query capability allows transactional queries
and updates against a variety of relational and nonrelational sources via OLE-DB
data providers running in one or more computers. SQL Server supports two meth-
ods for referencing heterogeneous OLE-DB data sources in Transact-SQl statements.
The linked-server-names method uses system-stored procedures to associate a server
name with an OLE-DB data source. Objects in these linked servers can be referenced in
Transact-SQl statements using the four-part name convention described below. For
example, if a linked server name of DeptSQLSrar is defined against another copy of
SQL Servel, the following statement references a table on that server:

select *

from D ept S QLSrar.N orthutind.dbo.Employ ees

An OLE-DB data source is registered in SQL Server as a linked server. Once a linked
server is defined, its data can be accessed using the four-part name

<linked- server>. <catalog>. <schema>. < object>

The following example establishes a linked server to an Oracle server via an OLE-DB
provider for Oracle:

exec sp -addlinkedserver OraSvr,' Oracle 7 .3',' }r1lSD AORA',' OracleServer'

A query against this linked server is expressed as:

select *

from Or aSar.CORP.AD MIN.S ALES

In addition, SQL Server supports built-in, parameterized table-valued functions
called openrowset and openquery, which allow sending uninterpreted queries to a
provider or linked server, respectively, in the dialect supported by the provider. The
following query combines information stored in an Oracle server and a Microsoft
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Index Server. It lists all documents and their author containing the words Data and
Access ordered by the author's department and name.

select e.dept, f .DocAuthor, t'.FileName
from Or aSur.Corp.Admin.Employ ee e,
openquery(EmpFiles,

'select DocAuthor, FileName
from scope("c:\EmpDocs")
where contains(' ' "Data" nearO "Access" ' ')>0') as f

where e.name = t'.DocAuthor
order by e.dept, f .DocAuthor

The relational engine uses the OLE-DB interfaces to open the rowsets on linked
servers, to fetch the rows, and to manage transactions. For each OLE-DB data source
accessed as a linked server, an OLE-DB provider must be present on the server run-
ning SQL Server. The set of Transact-SQl operations that can be used against a specific
OLE-DB data source depends on the capabilities of the OLE-DB provider. Whenever
it is cost-effective, SQL Server pushes relational operations such as joins, restrictions,
projections, sorts, and group by operations to the OLE-DB data source. SQL Server
uses Microsoft Distributed Transaction Coordinator and the OLE-DB transaction in-
terfaces of the provider to ensure atomicity of transactions spanning multiple data
sources.

29.9 Replicotion
SQL Server replication is a set of technologies for copying and distributing data and
database objects from one database to another, tracking changes, and synchronizing
between databases to maintain consistency. Newer versions of SQL Server replication
also provide inline replication of most database schema changes without requiring
any interruptions or reconfiguration.

Data is typically replicated to increase availability of data. Replication can roll up
corporate data from geographically dispersed sites for reporting purposes and dis-
seminate data to remote users on a local-area network or mobile users on dial-up
connections or the Internet. Microsoft SQL Server replication also enhances applica-
tion performance by scaling out for improved total read performance among replicas,
as is common in providing midtier data-caching services for Web sites.

29.9.1 Replicotion Model
SeL Server introduced tlne Publish-Subscribe metaphor to database replication and
extends this publishing industry metaphor throughout its replication administration
and monitoring tools.

The publisher is a server that makes data available for replication to other servers.
The publisher can have one or more publications, each representing a logically re-
lated set of data and database objects. The discrete objects within a publication, in-
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cluding tables, stored procedures, user-defined functions, views, materialized views,
and more, are called articles. The addition of an article to a publication allows for
extensive customizing of the way the object is replicated, e.g., restrictions on which
users can subscribe to receive its data and how the data set should be filtered on
the basis of a projection or selection of a table, by a "horizontal" or a "vertical" fiIter,
respectively.

Subscribers are servers that receive replicated data from a publisher. Subscribers
can conveniently subscribe to only the publications they require from one or more
publishers regardless of the number or type of replication options each implements.
Depending on the type of replication options selected, the subscriber either can be
used as a read-only replica or can make data changes that are automatically prop-
agated back to the publisher and subsequently to all other replicas. Subscribers can
also republish the data they subscribe to, supporting as flexible a replication topology
as the enterprise requires.

The distributor is a server that plays different roles, depending on the replication
options chosen. At a minimum it is used as a repository for history and error state in-
formation. In other cases it is used additionally as an intermediate store-and-forward
queue to scale up the delivery of the replicated payload to all the subscribers.

29.9.2 Replicotion Options
Microsoft SQL Server replication offers a wide spectrum of technology choices. To
decide on the appropriate replication options to use, a database designer must de-
termine the application's needs with respect to autonomous operation of the site in-
volved and the degree of transactional consistency required.

Snapshot replication copies and distributes data and database objects exactly as
they appear at a moment in time. Snapshot replication does not require continuous
change tracking because changes are not propagated incrementally to subscribers.
Subscribers are updated with a complete refresh of the data set defined by the pub-
lication on a periodic basis. Options available with snapshot replication can iilter
published data and can enable subscribers to modify replicated data and propagate
those changes back to the publisher. This type of replication is best suited for smaller
sizes of data and when updates typically affect enough of the data that replicating a
complete refresh of the data is efficient.

With transactional replication, the publisher propagates an initial snapshot of
data to subscribers, then forwards incremental data modifications to subscribers as
discrete transactions and commands. Incremental change tracking occurs inside the
core engine of SQL Server, which marks transactions affecting replicated objects in
the publishing database's transaction log. A replication process called the log reader
agent reads these transactions from the database transaction log, applies an optional
filter, and stores them in the distribution database, which acts as the reliable queue
supporting the store-and-forward mechanism of transactional replication. (Reliable
queues are the same as durable queues, described in Section 25.1,.1.) Another repli-
cation process/ called the distribution agent then forwards the changes to each sub-
scriber. Like snapshot replication, transactional replication offers subscribers the op-
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tion to make updates that either use two-phase commit to reflect those changes con-

sistently at the publisher and subscriber or queue the changes at the subscriber for

asynchronous retrieval by a replication process that later propagates the change to

the publisher. This type of replication is suitable when intermediate states between

multiple updates need to be preserved.
Merge replication allows each replica in the enterprise to work with total au-

tonomy whether online or offline. The system tracks metadata on the changes to

published objects at publishers and subscribers in each replicated database, and the

replication agent merges those data modifications together during synchronization

between replicated pairs and ensures data convergence through automatic conflict

detection and resolution. Numerous conflict resolution policy options are built into

the replication agent used in the synchronization process, and custom conflict resolu-

tion can be written by using stored procedures or by using an extensible component

object model (COVI) interface. This type of replication does not replicate all interme-

diate states but only the current state of the data at the time of synchronization. It

is suitable when replicas require the ability to make autonomous updates while not

connected to any network.

29.10 Server Progromming in .NET
SQL Server supports the hosting of the .NET Common Language Runtime (CLR) in-

side the SQL Server process to enable database programmers to write business logic as
functions, stored procedures, triggers, data types, and aggregates. The ability to run

application code inside the database adds flexibility to the design of application ar-
chitectures that requires business logic to execute close to the data and cannot afford
the cost of shipping data to a middle-tier process to perform computation outside the

database.
The .NET Common Language Runtime (CLR) is a run-time environment with a

strongly typed intermediate language that executes multiple modern programming
languages such as C#, Visual Basic, C++, COBOL, and J++ among others, has garbage-
collected memory/ preemptive threading, metadata services (type reflection), code
verifiability, and code access security. The runtime uses metadata to locate and load

classes, lay out instances in memory, resolve method invocations, generate native
code, enforce security, and set run-time context boundaries.

Application code is deployed inside the database by using assemblies which are

the units of packaging, deployment, and versioning of application code in .NET. De-

ployment of application code inside the database provides a uniform way to admin-
istet back-up, and restore complete database applications (code and data). Once an
assembly is registered inside the database, users can expose entry points within the

assembly via SQL DDL statements, which can act as scalar or table functions, proce-
dures, triggers, types, and aggregates, by using well-defined extensibility contracts
enforced during the execution of these DDL statements. Stored procedures, triggers,

and functions usually need to execute SQL queries and updates. This is achieved
through a component that implements the ADO.NET data-access API for use inside

the database process.
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29.10.1 Bqsic .NET Concepts
In the .NET framework, a programmer writes program code in a high-level program-
ming language that implements a class defining its structure (e.g., the fields or prop-
erties of the class) and methods. Some of these methods can be static functions. The
compilation of the program produces a file, called an Assembly, containing the com-
piled code in the Microsoft Intermediate Language (MSIL), and a Manifesl containing all
references to dependent assemblies. The manifest is an integral part of every assem-
bly that renders the assembly self-describing. The assembly manifest contains the
assembly's metadata, which describes all structures, fields, properties, classes, inher-
itance relationships, functions, and methods defined in the program. The manifest
establishes the assembly identity, specifies the files that make up the assembly imple-
mentation, specifies the types and resources that make up the assembly, itemizes the
compile-time dependencies on other assemblies, and specifies the set of permissions
required for the assembly to run properly. This information is used at runtime to re-
solve references, enforce version binding policy, and validate the integrity of loaded
assemblies. The .NET framework supports an out-of-band mechanism called custom
attributes for annotating classes, properties, functions and methods with additional
information or facets the application may want to capture in metadata. All .NET com-
pilers consume these annotations without interpretation and store them in the assem-
bly's metadata. All these annotations can be examined in the same way as any other
metadata by using a common set of reflection APIs. Managed code refers to MSIL exe-
cuted in the CLR rather than directly by the operating system. Managed-code applica-
tions gain common-language run-time services such as automatic garbage collection,
run-time type checking, and security support. These services help provide uniform
platform- and language-independent behavior of managed-code applications. At ex-
ecution time, a just-in-time 0IT) compiler translates the MSIL into native code (e.g.,
Intel X86 code). During this translatiory code must pass a verification process that
examines the MSIL and metadata to find out whether the code can be determined to
be type safe.

29.10.2 SQL CLR Hosting
SQL Server and the CLR are two different runtimes with different internal models for
threading, scheduling and memory management. sQL server supports a cooperative
non-PreemPtive threading model in which the DBMS threads voluntarily yield execu-
tion periodically or when they are waiting on locks orI/O, whereas the CLR supports
a preemptive threading model. If user code running inside the DBMS can directly call
the operating-system (OS) threading primitives, then it does not integrate well with
the SQL Server task scheduler and can degrade the scalability of the system. CLR does
not distinguish between virtual and physical memory, while SQL Server directly man-
ages physical memory and is required to use physical memory within a configurable
limit.

The different models for threading, scheduling, andmemory management present
an integration challenge for a DBMS that scales to support thousands of concurrent
user sessions. sQL server solves this challenge by becoming the operating system
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Figure 29.5 Integration of CLR with SQL Server operating system services.

for the CLR when it is hosted inside the SQL Server process. The CLR calls low-level

primitives implemented by SQL Server for threading, scheduling, synchronization,
ind memory management (see Figure 29.5). This approach provides the following

scalability and reliability benefits.
Common threading scheduling and synchronization. CLR calls SQL Server APIs

for creating threads both for running user code and for its own internal use such as

the garbage collector and the class finalizer thread. In order to symchronize between

mullipte threads, the CLR calls SQL Server synchronization objects. This allows SQL

Server scheduler to schedule other tasks when a thread is waiting on a slmchroniza-
tion object. For instance, when the CLR initiates garbage collection, all of its threads
wait for garbage collection to finish. Since the CLR threads and the slmchronization
objects tliey are waiting on are known to the SQL Server scheduler, it can schedule
threads that are running other database tasks not involving the CLR. Further, this
enables SQL Server to detect deadlocks that involve locks taken by CLR synchroniza-
tions objects and employ traditional techniques for deadlock removal. The SQL Server

scheduler has the ability to detect and stop threads that have not yielded for a signif-
icant amount of time. The ability to hook CLR threads to SQL Server threads implies

that the SQL Server scheduler can identify runaway threads running in the CLR and

manage their priority, so that they do not consume significant CPU resources, thereby

affecting the throughput of the system. Such runaway threads are suspended and put

back in ihe qnun". Repeat offenders are not allowed timeslices that are unfair to other

executing workers. If an offender took 50 times the ailowed quantum, it is punished
for 50 "rounds" before being allowed to run again because the scheduler cannot tell

when a computation is long and runaway versus long and legitimate.
Common memory management. The CLR calls SQL Server primitives for allocat-

ing and deallocating its memory. Since the memory used by the CLR is accounted
foi in the total memory usage of the system, SQL Server can stay within its config-

ured memory limits and ensure the CLR and SQL Server are not competing with each

other for memory. Also, SQL Server can reject CLR memory requests when the system

is constrained and ask CLR to reduce its memory use when other tasks need memory.
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29.10.3 Extensibility Contrqcts
All user-managed code running within the SQL Server process interacts with DBMS
components as an extension. Current extensions include scalar functions, table func-
tions, procedures, triggers, scalar types, and scalar aggregates. For each extension
there is a mutual contract defining the properties or services user code must im-
plement to act as one of these extensions as well as the services.the extension can
expect from the DBMS when the managed code is called. SQL CLR leverages the class
and custom attributes information stored in assembly metadata to enforce that user
code implements these extensibility contracts. All user assemblies are stored inside
the database. All relational and assembly metadata are processed inside the SQL en-
gine through a uniform set of interfaces and data structures. When data-definition
language (DDL) statements registering a particular extension function, type, or ag-
gregate are processed, the system ensures the user code implements the appropriate
contract by analyzing its assembly metadata. If the contract is implemented, then the
DDL statement succeeds, otherwise it fails. The next subsections describe key aspects
of the specific contracts currently enforced by SQL Server.

29.10.3.1 Routines
we classify scalar functions, procedures, and triggers generically as routines.
Routines, implemented as static class methods, can specify the following properties
through custom attributes.

o IsPrecise. If this Boolean property is false, then it indicates the routine body
involves imprecise computations such as floating-point operations. Expres-
sions involving imprecise functions cannot be indexed.

o UserDataAccess. If the value of this property is read, then the routine reads
user-data tables. Otherwise, the value of the property is None indicating the
routine does not access data. Queries that do not access any user tables (di-
rectly or indirectly through views and functions) are not considered to have
user-data access.

o SystemDataAccess. If the value of this property is read, then the routine reads
system catalogs or virtual system tables.

o IsDeterministic. If this property is true, then the routine is assumed to pro-
duce the same output value given the same input values, state of the local
database, and execution context.

o IsSystemVerified. This indicates whether the determinism and precision prop-
erties can be ascertained or enforced by SQL Server (e.g., built-ins, Transact-
SQL functions) or it is as specified by the user (e.g., CLR functions).

I HasExternalAccess. If the value of this property is true, then the routine ac-
cesses resources outside sQL server such as a files, network, Web access, and
registry.
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29.10.3.2 Tqble Functions
A class implementing a table-valued function must implement an interface IEnumer-

able to enable iteration over the rows returned by the function, a method to describe

the schema of the table returned (i.e., columns, tyPes), a method to describe what

columns can be unique keys, and a method to insert rows into the table.

29.10.3.3 Types
Classes implementing user-defined types are annotated with a SqlUserDefinedType0
attribute that specifies the following properties:

o Format. sQL Server supports three storage formats: native, user-defined, and
.NET serialization.

o MaxByteSize. This is the maximum size of the serialized binary representa-
tion of type instances in bytes.

o IsFixedlength. This is a Boolean property specifying whether the instances of

the type have fixed or variable length.

o IsByteOrdered. This is a Boolean property indicating whether the serialized

binary representation of the type instances is binary ordered. when this prop-

erty is true, the system can perform comparisons directly against this repre-

sentation without the need to instantiate type instances as objects.

o Nullability. Atl UDTs in our system must be capable of holding the NULL
value by supporting the INullable interface containing the Boolean IsNull

method.

. Type conversions. All UDTs must implement conversions to and from char-

acter strings via the ToString and Parse methods.

29.10.3.4 Aggregotes
In addition to supporting the contract for types, user-defined aggregates must imple-

ment four methods required by the query-execution engine to initialize the computa-

tion of an aggregate instance, to accumulate input values into the function provided

by the aggregate,to merge partial computations of the aggregate, and to retrieve the

final aggregate result. Aggregates can declare additional properties, via custom at-

tributei, in their class definition; these properties are used by the query optimizer to

derive alternative plans for the aggregate computation.

r IslnvariantToDuplicates. If this property is true, then the computation deliv-

ering the data to the aggregate can be modified by either discarding or intro-

ducing new duplication-removal operations.

o IslnvariantToNulls. If this property is true, then NULL rows can be discarded

from the input in some cases, but care must be taken not to discard entire

groups.
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o IslnvariantToOrder. If this property is true, then the query processor can ig-
nore order by clauses and explore plans that avoid having to sort the data.

29.11 XML Support in SQL Server 2005
Relational database systems have embraced XML in many different ways over the
last couple of years. First-generation XML support in relational database systems was
mainly concerned with exporting relational data as XML ("publish XML"), and to im-
port relational data in XML markup form back into a relational representation ("shred
XML"). The main usage scenario supported by these systems is information exchange
in contexts where XML is used as the "wire format" and where the relational and XML
schemas are often predefined independently of each other. In order to cover this sce-
nario, Microsoft SQL Server 2005 provides and extends the extensive functionality
first introduced in sQL server 2000 such as the for xml publishing rowset aggrega-
tor, the openXML rowset providel, and the XML view technology based on annotated
schemas. See the bibliographical notes for references providing more information on
XML features in SQL Server 2000.

Shredding of xiiat data into a relational schema can be quite difficult or inefficient
for storing semistructured data whose structure may vary over time, and to store
documents. To support such applications sQL server 2005 adds native XML support
based on the SQL:2003 xml data type. Figure 29.6 provides a high-level architectural
diagram of SQL Server's native XML support in the database. It consists of the ability
to store XML natively, to constrain and type the stored XML data with collections of

OpenXML/nodes0

FOR XML with
TYPE directive

rvalue0

- L _
XQuery and tpdate e xecution

Figure 29.6 Architectural overview of the native XML support in SeL Server.
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XML schemas, and to query and update the XML data. In order to provide efficient

query executions, several types of XMl-specific indices are provided. Finally, the na-

tirre XVI. support also integrates with the "shredding" and "publishing" to and from

relational data.

29.11.1 Notively Storing cnd Orgonizing XML

The xml data type can store XML documents and content fragments (multiple text

or element nodes at the top) and is defined on the basis of the XQuery 1.0/XPath
2.0 data model. The data type can be used for parameters of stored procedures, for

variables, and as a column type. For example, the following SQL statement creates a
table where one of the columns is of type XML:

create table TripRep or ts (id int,
tripdate datetime,
Reportxml)

A database system can choose to store an instance of type xml in any of a variety of

formats, such as a binary or character iarge object, decomposed into tables or a mix-

ture of these. SQL Server 2005 stores data of type xml in an internal binary format as

a blob and provides indexing mechanisms for executing queries. The internal binary

format provides efficient retrieval and reconstruction of the original XML document,

in addition to some space savings (on average,20 percent). The indices support an

efficient query mechanism that can utilize the relational query engine and optimizer;
more details are provided later, in Section 29;1"1.4.

29.11.2 Vqlidqtin g snd Typing qn XML Dqtq Type

SeL Server provides the ability to constrain an XML data-type with a collection of

XML schemas. SQL Server 2005 provides a database metadata concept called an XML

schema collection that associates an SQL identifier with a collection of schema com-

ponents of one or multiple target namesPaces. For example, the expression

create xml schema collection 51 as @s

creates a SQL Server XML schema collection with name 51 that consists of the XML

schemas contained by the SQL variable @s. Each such collection contains all the nec-

essary information to perform validation and typing and is stored in the database

schema's metadata.
SeL Server 2005 then allows you to associate a schema collection with an XML

data type, and to specify if the type can contain only a document (by default, it can

contain document fragments). The following example shows a table definition that

constrains the instances in the Report XML column to a well-formed document (i.e.,

it can only have a single top-level element) that is valid according to a ReportSchema

schema collection in the same database:
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create table Tr ip Rep or ts (id int,
tripdate datetime,
Report xml(docum ent Report Schema))

Dropping the keyword document would allow content multiple fragments to be
stored.

Schema collections can also be used to validate previously untyped XML data dur-
ing execution by performing a type cast:

cast (@x as xml(Sl))

29.11.3 Querying ond Updcting the XML Dqtq Type
SQL Server 2005 provides several XQuery-based query and modification capabilities
on the XML data type. These query and modification capabilities are supported by
using methods defined on the xml data type. Some of these methods are described in
the rest of this section.

Each method takes a string literal as the query string and potentially other argu-
ments. The XML data type (on which the method is applied) provides the context
item for the path expressions and populates the in-scope schema definitions with
all the type information provided by the associated XML schema collection (if no
collection is provided, the XML data is assumed to be untyped). The sel- server
2005 XQuery implementation is statically typed, thereby supporting early detection
of path expression typing mistakes, type errors, and cardinality mismatch, as well as
some additional optimizations.

The query method takes an XQuery expression and returns an untyped XML data
type instance (that can then be cast to a target schema collection if the data needs to
be typed). In XQuery specification terminology, we have set the construction mode to
"strip." The following example shows a simple Xeuery expression that summarizes
a complex Customer element in a trip report document that contains among other
information a name, an id attribute, and sales-lead information that are contained
in the marked-up actual trip report notes. The summary shows the name and sales
Ieads for Customer elements that have sales leads.

select Report.query('
declare namespace c = "urn:example,/customer";

for $cust in / c:doc/ c:customer
where $cust,/ c:notes/ /c:saleslead
return

<customerj l=" $cust / @id" > {
$cust/c:name,
gcust/ c:notes / / c:saleslead

]<,/customer>')
fuomTripReports
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The above XQuery query gets executed on the XML value stored in the doc attribute

of each row of the table TripReports. Each row in the result of the SQL query contains

the result of executing the XQuery query on the data in one input row.

The aalue method takes an XQuery expression and an SQL type name/ extracts a

single atomic value from the result of the XQuery expression, and casts its lexical form

into the specified SQL type. If the XQuery expression results in a node, the typed value

of the node will implicitly be extracted as the atomic value to be cast into the SQL type

(in XQuery terminology the node will be "atomized"; the result is cast to sQL). Note

that the palue method performs a static type check that at most one value is being

returned. Since the static type of a path expression often may infer a wider static

type, even though the dynamic semantics returns only a single value, we recommend

tb-use the positional predicate to retrieve at most one value. The following example

shows a simple XQuery expression that counts the sales-lead elements in each XML

data type instance and returns it as a SQL integer value:

select Report.aslue(
' declare namespace c = "urn:example/ customer";
count(/c:doc/c:customer/ /c:salesle ad)',' int' )

fuomTripRePorts

The exist method takes an XQuery expression and returns 1 if the expression pro-

duces a nonempty result and 0 otherwise. The following expression retrieves every

row of theTripReports table,where the document contains at least one customer with

a sales lead:

select Reoort
fromTripReports
where 7 = Report.exlsf ('declare namesPace c = "urn:example/ customer";

/ c;doc / c:customer/ / c:saleslead')

So far, the expressions always map from one XML data type instance to one result

value per relational row. Sometimes, however, you want to split one XML instance

into rnultiple subtrees, where each subtree is in a row of its own, for further relational

and Xeueiy processing. This functionality is provided by the nodes method, which

takes an XQuery expression and generates a table containing single-column rows/

with one row per t od" that the expression returns. Each row contains a reference to

one of the nodes. Since the resulting type is a reference type that does not exist in

SeL Server outside the context of a single query, one of the query methods has to be

applied to materialize the result. The query method is applied like any other XML

dala type, with the difference that the context item for the path expressions is not at

the document root of the XML data type but at the referenced node. The following

example extracts for every customer order in the XML column a row that contains the

XML iepresentation of its customer, the name of the customer, the order id, and the

id of the document that contains the customer:
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select N1 .cr,l st omer. qu ery (' .' ) as Cust omer,
Nl.customer.aalue(

'declare namespace c = "urn:example/ customer";
c :name [ 1 ]','nvarchar(20)' ) as Cust omerN ame,

N2." order" .aalue(' @id','int') as OrderID,
NT.customer.anlue(' .. / @id' ,'nvarchar(5)') as DocID

fu om Tr ip Rep ort s cross apply
T ripRep or ts.Rep or t.no des (

'declare namespace c = "urn:example/customer";
/ c:doc f c:customer') as Nl(customer)

cross apply Nl.customer.no des(
'declare namespace c = "urn:example/customer";
. / c:order') as N2(" order")

Note that this is similar to the OpenXML functionality that is provided by both
SQL Server 2000 and 2005, with the difference that the nodes method expression is
integrated into the XQuery processing.

To access SQL data inside an XQuery expression, SQL Server 2005 provides two
functions called sql:aariable($oarname fts xs:string) and sql:column($colname ss xs:string).
Each function takes a constant string literal to refer to the SQL variable or correlated
column value.

Finally, the modify method provides a mechanism to change an XML value at the
subtree level. SQL Server 2005 provides for inserting new subtrees at specific locations
inside atree, changing the value of an element or attribute, and deleting subtrees. The
following example deletes all customer saleslead elements of years previous to the
year given by an SQL variable or parameter with the name @year:

update TripReports
set Report.modit'y(

'declare namespace c = "urn:example/customer";
delete / c:doc / c;customer/ /c:saleslead[@year < sql:variable("@ye a{')l')

29.11.4 Execution of XQuery Expressions
As mentioned earliel, the XML data is stored in an internal binary representation.
However, in order to execute the XQuery expressions, the XML data type is inter-
nally transformed into a so-called node table. The internal node table basically uses
a row to represent a node. Each node receives an OrdPath identifier as its node id
(an OrdPath identifier is a modified Dewey decimal numbering scheme; see the bib-
liographical notes for references to more information on OrdPath). Each node also
contains key information to point back to the original SQL row to which the node be-
longs, information about the name and type (in a tokenized form), values, and more.
Since the OrdPath encodes both the document order and the hierarchv information.
the node table then is clustered on the basis of the key information and OrdPath, so
that a path expression or recomposition of a subtree can be achieved with a simple
table scan.
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All Xeuery and update expressions are then translated into an algebraic operator

tree against this internal node table; the tree uses the common relational operators

and some operators specifically designed for the XQuery algebraization. The result-

ing tree is then grafted into the algebra tree of the relational expression so that in the

end, the query-execution engine receives a single execution tree that it can optimize

and execute. In order to avoid costly run-time transformations, a user can premate-

rialize the node table by using the primary XML index. SQL Server 2005 in addition

provides three secondary XML indices so that the query execution can take further

advantage of index structures:

o The path index provides support for simple types of path expressions'

o The properties index provides support for the common scenario of property-

value comparisons.

r The oalue indexis well-suited if the query uses wild cards in comparisons.

See the bibliographical notes for references to more information on XML indexing

and query processing in SQL Server 2005.

29.12 SQL Server Service Broker
Service Broker helps developers create loosely coupled distributed applications by

providing support for queued, reliable messaging in SQL Server. Many database ap-

plications use asynchronous processing to improve scalability and response times

for interactive sessions. One common approach to asynchronous processing is to use

work tables. Instead of performing all of the work for a business process in a sin-

gle database transaction, an application makes a change indicating that outstanding
work is present and then inserts a record of the work to be performed into a work ta-

ble. As rirorrt""r permit, the application processes the work table and completes the

business process. Service Broker is a part of the database server that directly supports

this approach for application development. The tansact-SQl language includes DDL

and DML statements for Service Broker.
Previous message-queuing technologies concentrated on individual messages. With

Service Broker, the basic unit of communication is the conttersstion - a persistent, reli-

able, full-duplex stream of messages. SQL Server guarantees that the messages within

a conversation ate delivered to an appiication exactly once, in order. Each conversa-

tion is part of a conoersation group. Related conversations can be associated with the

satt e 
"btlrrersation 

group. Conversations occur between two services. A serrtice is a

named endpoint for a conversation.
Conversations and messages are strongly typed. Each message has a specific type.

SeL Server can optionally validate that messages are well-formed XML, that messages

are empty, or thit the message conforms to an XML schema. A contrnct defines the

-usugi types that are allowable for a conversation, and which participant in the

converiation may send messages of that type. SQL Server provides a default contract

and message type for applications that only need a reliable stream'



29.12 SQL Server Service Broker

SQL Server stores messages in internal tables. These tables are not directly accessi-
ble; instead, SQL Server exposes queues as views of those internal tables. Applications
receive messages from a queue. A receive operation returns one or more messages
from the same conversation group. By controlling access to the underlying table, SQL
Server can efficiently enforce message ordering, correlation of related messages, and
locking. Because queues are internal tables, queues require no special treatment for
backup, restore, failover, or database mirroring. Both application tables and the asso-
ciated, queued messages are backed up, restored, and failed-over with the database.
Broker conversations that exist in mirrored databases continue where they left off
when the mirrored failover is complete - even if the conversation was between two
services that live in separate databases.

The locking granularity for Service Broker operations is the conversation group
rather than a specific conversation or individual messages. By enforcing locking on
the conversation group, Service Broker automatically helps applications avoid con-
cuffency issues while processing messages. When a queue contains multiple con-
versations, SQL Server guarantees that only one queue reader at a time can process
messages that belong to a given conversation group. This eliminates the need for the
application itself to include deadlock-avoidance logic - a common source of errors
in many messaging applications. Another nice side effect of this locking semantic is
that applications may choose to use the conversation group as a key for storing and
retrieving application state. These programming model benefits are just two exam-
ples of the advantages that derive from the decision to formalize the conversation
as the communication primitive versus the atomic message primitive found in tradi-
tional message queuing systems.

SQL Server can automatically activate stored procedures when a queue contains
messages to be processed. To scale the number of running stored procedures to the
incoming trafhc, the activation logic monitors the queue to see if there is useful work
for another queue reader. SQL Server considers both the rate at which existing readers
receive messages and the number of conversation groups available to decide when to
start another queue reader. The stored procedure to be activated, the security context
of the stored procedure, and the maximum number of instances to be started are
configured for an individual queue. SQL Server also exposes an event that external
applications can use to start queue readers.

As a logical extension to asynchronous messaging within the instance, Service Bro-
ker also provides reliable messaging between SQL Server instances to allow develop-
ers to easily build distributed applications. Conversations can occur within a single
instance of SQL Server or between two instances of SQL Server. Local and remote con-
versations use the same programming model.

Security and routing are configured declaratively, without requiring changes to the
queue readers. SQL Server uses routes to map a service name to the network address
of the other participant in the conversation. SQL Server can also perform message for-
warding and simple load balancing for conversations. SQL Server provides reliable,
exactly-once in-order delivery regardless of the number of instances that a message
travels through. A conversation that spans instances of SQL Server can be secured at
both the networking level (point to point) and at the conversation level (end to end).
When end-to-end security is used, the contents of the message remain encrypted un-
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til the message reaches the final destination, while the headers are available to each

SQL Server instance that the message travels through. Standard SQL Server permis-

sions apply within an instance. Encryption occurs when messages leave an instance.

SQL Server uses a binary protocol for sending messages between instances. The

protocol fragments large messages and permits interleaved fragments from multiple
messages. Fragmentation allows SQL Server to quickly transmit smaller messages

even in cases where a large message is in the process of being transmitted. The bi-
nary protocol does not use distributed transactions or two-phase commit. Instead,

the protocol requires that a recipient acknowledge message fragments. SQL Server

simply retries message fragments periodically until the fragment is acknowledged
by the recipient. Acknowledgments are most often included as part of the headers of

a return message, although dedicated return messages are used if no return message

is available.

29.13 Dotq Wqrehouse qnd Business Intelligence
The data warehousing and business intelligence component of SQL Server contains
three components:

o SQL Server Integration Services (SSIS), previously known as Data Transforma-
tion Services (DTS), which provides the means to integrate data from multiple
sources, perform transformations related to cleaning the data and bringing it
to a common form, and loading the data into a database system.

o SQL Server Analysis Services (SSAS), which provides OLAP and data-mining
capabilities.

r SQL Server Reporting Services (SSRS).

Integration services, analysis services, and reporting services are each implemented
in separate servers and can be installed independently from one another on the same
or different machines. They can connect to a variety a data sources, such as flat file,
spreadsheets, or a variety of relational database systems, through native connectors,
OLE-DB, or ODBC drivers.

Together they provide an end-to-end solution for extracting, transforming, and
loading data, then modeling and adding analytical capability to the data, and finally
building and distributing reports on the data. The different components of the analy-
sis server can integrate and leverage each others' capability. Here are a few common
scenarios that will leverage a combination of components:

o Build an SSIS package that cleanses data, using patterns generated by SSAS

data mining.

o Use SSIS to load data to an SSAS cube, process it, and execute reports against

the SSAS cube.

o Build an SSRS report to publish the findings of a mining model or the data

contained in SSAS OLAP component.
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The following sections give an overview of the capabilities and architecture of each
of these server components.

29.13.1 SQL Server Integrotion Services
Microsoft SQL Server 2005 Integration Services (SSIS) is an enterprise data transfor-
mation and data integration solution that you can use to extract, transform, aggre-
gate, and consolidate data from disparate sources and move it to single or multiple
destinations. You can use SSIS to perform the following tasks:

o Merge data from heterogeneous data stores.

o Refresh data in data warehouses and data marts.

o Cleanse data before loading it into destinations.

o Bulk-load data into online transaction processing (OUIP) and online analytical
processing (OLAP) databases.

o Send notifications.

o Build business intelligence into a data transformation process.

o Automate administrative functions.

SSIS provides a complete set of services, graphical tools, programmable objects, and
APIs for the above tasks. These provide the ability to build large, robust, and com-
plex data transformation solutions without any custom programming. However, an
API and programmable objects are available when they are needed to create custom
elements or integrate data transformation capabilities into custom applications.

The SSIS data-flow engine provides the in-memory buffers that move data from
source to destination and calls the source adapters that extract data from files and
relational databases. The engine also provides the transformations that modify data
and the destination adapters that load data into data stores. Duplicate elimination
based on fuzzy (approximate) match is an example of a transformation provided by
SSIS. Users can program their own transformations if required. Figure 29.7 shows an
example of how various transformations can be combined to cleanse and load book
sales information; the book titles from the sales data are matched against a publica-
tions database, and in case there is no match, fuzzy Iookup is performed to handle
titles with minor errors (such as spelling errors). Information about confidence and
data lineage is stored with the cleansed data.

29.13.2 SQL Server Anolysis Services
The Analysis Services component delivers on-line analytical processing (OLap) and
data-mining funclionality for business intelligence applications. Analysis Services
supports a thin client architecture. The calculation engine is on the server, so queries
are resolved on the server, avoiding the need to transfer large amounts of data be-
tween the client and the server.
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Figure29.7 Loading of data by using fuzzy Iookup.

29.13.2.1 SQL Server Anolysis Services: OLAP

The Analysis Server 2005 introduces a Unified Dimensional Model (Uolf) which
bridges the gap between traditional relational reporting and OLAP ad-hoc analysis.
The role of a Unified Dimensional Model (UDM) is to provide a bridge between the
user and the data sources. A UDM is constructed over one or more physical data
sources, and then the end user issues queries against the UDM, using one of a variety
of client tools, such as Microsoft Excel.

More than simply a dimension modeling layer of the DataSoulce schemas, the
UDM provides a rich environment for defining powerful yet exhaustive business
logic, rules, and semantic definition. Users can browse and generate reports on
the UDM data in their native language (for example, French or Hindi) by defin-
ing local language translation of the metadata catalog as well as the dimensional
data. Analysis Server defines complex time dimensions (fiscal, reporting, manufac-
turing, etc.), and enables the definition of powerful multidimensional business logic
(year-to-year growth, year-to-date) using the multidimensional expression (MDX)
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language. The UDM allows users to define buginess-oriented perspectives, each one
presenting only a specific subset of the modpl (measures, dimensions, attributes,
business rules. and so forth) that is relevant to 4 particular group of users. Businesses
often define key performance indicatsls (KPI$), which are important metrics used
to measure the health of the business. Examplgs of such KPIs include sales, revenue
per employee, and customer retention rate. The UDM allows such KPIs to be defined,
enabling a much more understandable groupi{rg and presentation of data.

29.13.2.2 SQL Server Anolysis lervices: Dqtq Mining
SQL Server 2005 provides a variety of mining tpchniques, with a rich graphical inter-
face to view mining results. Mining algorithmg supported include:

o Association rules (useful for cross-sales applications)

o Classification and prediction techniquesf such as decision trees, regression trees,
neural networks, and naive Bayes

o Time series forecasting

o Clustering techniques such as expectatlon maximization and k-means (cou-
pled with techniques for sequence clustpring).

SQL Server also supports the Data-Mining Extensions (OWX) extensions for SQL.
DMX is the language used to interact with dapa-mining models just as SQL is used
to interact with tables and views. With DMX, rnodels can be created and trained and
then stored in an Analysis Services database. The model can then be browsed to look
at patterns or, by using a special prediction joln syntax, applied against new data to
perform predictions. The DMX language suppgrts functions and constructs to easily
determine a predicted class along with its confidence, predict a list of associated items
as in a recommendation engine, or even rettirn information and supporting facts
about a prediction. Data mining in SQL Server 2005 can be used against data stored
in relational or multidimensional data sources. Other data sources are supported as
well through specialized tasks and transformsf allowing data mining directly in the
operational data pipeline of Integration ServicQs. Data-mining results canbe exposed
in graphical controls, special data-mining dimlensions for OLAP cubes, or simply in
Reporting Services reports.

29.13.3 SQL Server Reporting Services
Reporting Services is a new server-based repo{ting platform that can be used to cre-
ate and manage tabular, matrix, graphical, an$ free-form reports that contain data
from relational and multidimensional data sorhrces. The reports that you create can
be viewed and managed over a Web-based connection. Matrix reports can summa-
rize data for high-level reviews, while providi]ng supporting detail in drilldown re-
ports. Parameterized reports can be used to filter data on the basis of values that are
provided at runtime. Users can choose from a variety of viewing formats to render
reports on the fly in preferred formats for data manipulation or printing. An API is
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also available to extend or integrate report capabilities into custom solutions. Server-
based reporting provides a way to centralize report storage and management, set
policies and secure access to reports and folders, control how reports are processed
and distributed, and standardize how reports are used in your business.

Bibliogrophicol Notes
Detailed information about using a C2 certified system with SQL Server is available
at www. microsoft.com/Downloads/Release.asp? Releasel D=25503.

SQL Server's optimization framework is based on the Cascades optimizer proto-
type, which Graefe [19951 proposed. Simmen et al.17996] discuss the scheme for re-
ducing grouping columns. Galindo-Legaria and ioshi [2001] present the variety of
execution strategies that SQL Server considers during cost-based optimization. Addi-
tional information on the self-tuning aspects of SQL Server are discussed by Chaud-
huri et al. 179991. Chaudhuri and Shim 11.9941 and Yan and Larson [1995] discuss
partial aggregation.

Chatziantoniou and Ross [1997] and Galindo-Legaria and Joshi [2001J proposed
the alternative used by SQL Server {or SQL queries requiring a self-join. Under this
scheme, the optimizer detects the pattern and considers per-segment execution. Pel-
lenkoft et al. [1.997] discuss the optimization scheme for generating the complete
search space using a set of transformations that are complete, local and nonredun-
dant. Graefe et al. [1998] offer discussion concerning hash operations that support
basic aggregation and join, with a number of optimizations, extensions, and dynamic
tuning for data skew. Graefe et al. [1998] present the idea of joining indices for the
sole purpose of assembling a row with the set of columns needed on a query. It argues
that this sometimes is faster than scanning a base table.

Blakeley [7996] and Blakeley andPizzo [2001] offer discussions concerning com-
munication with the storage engine through OLE-DB. Blakeley et al. [2005] detail
the implementation of the distributed and heterogeneous query capabilities of SQL
Server. Acheson et at. [2004] provide details on the integration of the .NET CLR inside
the SQL Server process.

The SQL:2003 standard is defined in SQL/XML [2004]. Rys [2001] provides more
details on the SQL Server 2000 XML functionality. Rys [20041 provides an overview of
the extensions to the for xml aggregation. For information on XML capabilities that
can be used on the client side or inside CLR, refer to the collection of white papers
at MSDN: XML Developer Center . The XQuery l.O/XPath 2.0 data model is defined
in Walsh et al. [2004]. Rys [20031 provides an overview of implementation techniques
for XQuery in the context of relational databases. The OrdPath numbering scheme is
described in O'Neil et al. [2004]; Pal et al. [2004] and Baras et al. [2005] provide more
information on XML indexing and XQuery algebraization and optimization in SQL
Server 2005.
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decision support, 723-725, 809, 892-493
decision trees, 742

best splits and, 74!745
blxldng ot,743,745-746
coretruction algoritlun fq, 7 45-7 46
overhftng a\d,74W46

declae orso4, 135
decomposition

axioms for, 280
BCNF,288 293
dependency-preseruing, 28G288
fouth nomal fom and, 272173, 296-298
frmctional dependen cies and, 27 0-293
lossless, 285-286
multivalued dependencies and, 293-298
3NE 29i-293

decorrelatiory 592
DEC Rdb,29
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dedupliction, 738
deferrable clauses, 131
defened-modification technique, 69(H93
deletton, 68, 7 8-79, 703-704, 737

authodzation and, 10, 133
B-link tree protocol an4 671
conffrency control and, 664467
oabbing protocol and, 669470
indices and, 487 488,493498
Post$eSQL an4 98975, 982-984, 991'-993
referencing an4 330-333
R-trees and, 919
time of, 482
triggers and, 331

delta relatiom,33!334
demmd-driven pipeline, 561
denormalization, 301, 886
dense indices, 483-485
derived relafions, 97-98
desigo 201

altematives to, 203-204
application migration and, 899-900
archiiectues and, 796J97 (see also

architectures)
authorization requirements and, 250,

335-343
banking database and, "15-76, 23G240,

247148
bottom-sp,229- 0
cachhg techniques an{ 328
c AD, 3 61, 905-9 06, 908-917
conceptual, 14 202
comection pooling and, 328
data constrahts and,248 249
DB2 Universal Dat ab ase and., 7027 -"1029

E-R model and, 1G17,20+210 (see also entity-
relationship (E-R) nodel)

generalization and, 229-230
hash fu nctiom and, 50G508
incompleteness an{ 20}204
legacy systems and, 899-900
logical, 15, 203
Microsoft SQL SeNer and, 1057-1062
normalization and, 17-19
Orade and,997-998 (see also Oracle)
performance and, 249)50, 301, 897-895
phases of 15, 202 203
physical" 15, 203
process of 14 15
redmdancy and, 203
relational, 263-310 (see nlso relational database

desigr)
report generators, 31!314
requirement specfiotion and, 202
response time and, 249-250
security and, 343-350 (see also secuity)
standardization and, 895-899
top-dom,229-230
triggers md" 329 334
tming and,881-891
usage requirements and, 249 -!250

user tools and, 311-314
workflow and, 250
World Wide Web and,31G379 (see also World

Wide Web)
design grid, 179
deviatioru 750
DHers, Thierry 1057-1060
di{ference operation, 67
differentials, 594
Dagicash,94G947
Digital Audio Tape (DAT) format, 460
digital certi{icates, 347148, 9 46
Digital Linear Tape (DLI) format, 460
digital sigratwes, 347
digital versatile disk, 443

digital video disks (DVDI), 442-443,920
directed acyclic gadPhs (DACs) 775
dlrectories,773-776

access protocols fot 865+66
data manipulation md, 867J68
disiributed databases and, 865-870
distuibuted trees and, 868-870
LDAR 865-870
referral an4 868
white pages, 865
X.500 protocol,866
yellow pages, 865

directory information trees (DITs), 867-369
DirtyPage Tablg 709
dirty read, 980
disable trigger, 332
discomectivity, 925-927
disqiminator, 226
disjmctior; 538-539, 581
disk-am-scheduling, 44&449
distinct fmctiory 62, 90-91
distinct types, 123
distinct values, 583-584
disthguished name,866
distributed databases, 797-300

availability and, 854-359
comit protocols and, 840-846
conruffency control and, 843, 84G854
deadlock and, 848, 852-854
directodes and, 865-870
heterogeneous, 833 -a3 4, 862-865
homogeneous, 833-334
Oracle and, 1023
partitiore and, 839-840
queries and, 859-862
replication and, 83G837
storage and,834-&10
system failue and, 839-840
timestmps and,849-350
transparenry and, 836-837
updates and, 835

distributed virtual-memory architectrres, 797
distributors, 1083
dorummt management. See Extensible Markup

Language 0G4L)
Document Object Model (DOM), 31&

420421
document type definition (DTD), 402-408
domain-key normal fom (DKNF), 298
domain rela(ional calrulus, 168 -17.

domains,38,972
atomic,26&-270
attributes and, 207-210
Boyce-Codd nomal fom (BCNF) and,

272 276
coNhahts and, 10
data types and, 121-126
first normal lorm and,26U270
higher normal foms and.,277-278
indices and,1007 1008
integrity constmints and, 12G 132
SQL and,77, 12G132
thtud normal fom and,27G277
World Wide Web and, 320-3.21 (sre qlso Wuld

Wide Web)

drill dowru 728
drop inde>; 524
drop table, 79-80
drop trigger, 332
drcp t:ype,724
drop view,98
dumpin& 703
duplicates, SGST
dw ability, 22, 61O-672, 61,ffi1 6
durable queue, 936

dynamic SQL,137
IDBC,140 145
ODBC,138-140

e-commerce
e-catalogs and, 944-945
marketplaces and, 945-946
order settlement and, 94G947

801.11 standardization, 924
802.16 standardizatiorL 924
election algorithms, 858
element, 399-400
elevator algorithm, 44& 449
ellipses, 909-910
Ellison, Larry, 997-1 026
emai! 923
embedded SQL, 134-137
enpty relations, 95 97
Encina, 933
encryption, 343-346, 97 5
enterpdse resouce plaming (ERP) systems, 943
entity-relationship (E-R) model, & 1G17

aggregation and, 233-234, 247
altemative notations, 23t'236
attributes and, 205, 207-210, 230-231, 245,

362165
banking database aad, 23G240, 247 +48
constraints in, 210-214, 237-233
design issues and, 220-225
diagr ams ot, 2I4 220, 239140
entity sets, 204-206, 220-227, 241-242
extended featwes ot, 227 -236

generalization and, 229 43, 245147
normalization and, 299-300
relational database d esign aad, 268 (su also

relational database design)
relational schena reduction and, 241-248
relationship sets, 20 G208, 213-21 4, 222123,

242-243
specialization and, 227-2q, 232133

entity sets, 16
defined,204
disqiminator and, 226
qistence depmdent, 226
identifying,226
keysa d,212173
mapping cardinalities and, 17, 21t1211.
owner,226
stro\8,2:25,241-242
subclass, 230
superdass, 230
wak,2125-227,242

enhopy measure, 744
enviroments, 12t126
eqwhty,294, 53G537
equality-generating dependencieg 294
equi-depth histogram, 579
equi-jofi 542
equivalence nrles, 570-573

enmeration of, 52-578
join ordedng and, 57G577
minimal, 575
tnnsf ormatiom and, 57 4-577

equi-width histogram, 579
evaluatioD 531-533

cost-based,586 588
interesting sort order, 587-588
pipelining and, 560 563
plan choice and, 584-593
techdque hteractions and, 585 586

event-condition-action model, 329
exception conditions, 148
except operation, 89, 153
exchange, 945, 1073
exeotion plary 533
exists construct, 95-96



utensibitty, 97 5-97 8, 1087
Extensible Markup Language (XML), 8, 29,

1 ,324
APIs and,42U427
applicatiom of, 428-431
attributes and, 401
content fmction and, 395-396
data exchange formats and., 428-429
data mediation and, 43G431
data structure of 399-402
data t)?es and, 416,1089-1094
DB2 Universal Database md, 1029-1030
document management and, 395-399
docment type definition and, 402-408
element,399 400
FLWOR expressions, 4124'15
f ^ : f i r + 6 h r . n j  ? O L ? O ?

furctions and, 416
HTML and,397
joins and, 413-414
keys md,418-420
mappng,424
Microsoft SQL Sewer and, 1089-1094
nesting and, 398-400, 474415
Oracle and" 998, 1000
organizing in, 1090
publishing and,424425
quedes, 408 420, 7097-1093
recusion,418
root,399
schema of, 402-408
shredding and, 424-425
SOAP and" 429-430
SQLand,425428
standards for, 898-899
Stylesheet Language (XSL), 477
stonge, 421428,1090
tags and,397
hansfomation an4 40H20
TIDDI and,430
Web services and, 429 430
wapper software and, 430-431
XPath a\d,409412,420
XQuery and, 412-4"17,420, 425
XSI:I and,417420

extents, 1066
extemal language routines, 150-151
external sorting, 540
extemal writes, 614 615

tact tables,739
failure-atomiciry 941
failues. See recovery
false cycles,853-854
false positives, 770
false urknoms, 92
fault tolermce, 796
terchng, 135 '137, 

1042
Fibre Chamel interface, 446
file header, 465'.166
file manager, 21
file-processing systen, 3
files, 21,. See also indices; storage

fixed-length records, 464466
free list, 466
hashing,468
heap, 468
multitable dusiering, 470472
queries and, 534 539 (see also queries)
record relocation and, 505-506
rcor garuzation of , 469 47 0
sequential, 458-470
slotted-page structure, 467
tablespaces and, 1001-1002
variable-length records, 467 468

fhal clause, 365

fine-granularity par alleksm, 785, 790
Firel4ire interface, 446
S-minute ruie, 885
fixed-length records, 464466
fixed point,154,190
flash menory 442
float,77
flow-distinct, 1073
FLWOR expressions, 412415
forced output, 462
for each statement, 330, 332
forms,312-315
Forhan, 135
tuagment-and-replicate joins, 819-821
fragmentatiory 449, 834-836
tueeIist,466
from clause, 102!1024

complex queries and, 97-99
database modiJication and, 103-109
joined relations and, 112
nested subqueries a^d, 93-97
scalar subqueries and, 156-157
SQLmd,80-87

tull outer toir, 66 114
full replication, 834
full text retrieval, 760
fimctional dependencles, 77, -126, 267, 270

Armstrong's d\joru and, 279-28.
, rhihr+6. rni  ,Cl-?R?

BoyceCodd normal form (BCNF) and,
272-276,288-293

canonical cover and, 282-285
fourth nomal fom and,296 298
higher normal forms and,277178
lossless decompositi on atd, 28128 6
normal forms and, 2bB 278, 28U2a3, 2qF29q
presewation of, 27!27 6, 286-288
set crosure and, z/Hdz
temporal, 302-304
iheory o1,278 288
third normal form and, 276-277,291-293
transitive, 276n3
trivlal,271

tusion,376
tuzzy checLpoinring. 707
tuzzy lookup,738
fMzy string matchin& 975

generalizatiory 6G{^1, 67, 229-233, 245-247
geographic data, 36"1, 905-906, 909, 972-973, 923
geometdc ifl[omation, 909-977, 972
gigabyte,20
Gini measue,74!744
GiST indice, 982 990
Global Positioning System (GPS), 913, 923
global waitfor graph, 853
CNU library 969
Google, 429-430,765
gr ants, 133134, 337 138, 644
$anulariq/, 65H56

coarse-granularity parallelism and, 785, 790
fhe-granularity parallelism an4 785, 790

graph-based protocols, 645-647, 951
graphical query-by-example (GQBE), 179
graphical user htufaces (GtIs), 312 313
geedy algodthms,743
gromd imtantiation, 184
groups, 62

group by clause, 9G-91, 97, 709, 731J35
group-comit clause, 948

handlers, 14&-149
handoff,923
hard disks, 28
hardware RAID,45B
hardware swizzling, 384, 387n3
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hamonic mean, 892
hashin& 482, 100!1004

bucket overflows and, 509-510, 552-553
closed, 509
data structure md, 512
dynamic, 511-518
fi le organization and, 468, 506
index organization and, 506, 510-511, 518-519,

989-990
joim and, 549-555, 821J22
lineaq, 517
opeD 509
Oracle and,1009
partitioning and, 810-812, 827-a22, 1009
PostgreSQl and, 989-990
queries and, 513-515
random distribution and, 507
skew md,509
statrc, 50G571, 517
miJorn distribution and, 507
updates and, 513-516

having clause, 90, 97, 109, 780
heap file organizatiory 468
heterogeneous distdbuted databases, 799,

833+34,862+65
hienrchical data model, 8
Hinson, Cerald, 1057-1060
histogramq 579, 813
homogeneos distributed databases, 833-834
hononyms, 768-769
horizontal fngmentatlon, 835436
hot swapping,458
hou1, 122
householding, 738
hub prestige,767
hman resources, 2
hybrid merge-join algorithm, 548
hyperobes,794
hyperlinkg 315

inJomation retrieval and, 7 63J 68
PageRank and, 765-766
popularity ranking and, 764-7 65

HyperText Markup Language (HTML), 315-312
325 328

HypterText Transfer Protocol (HTTP), 319,
321n2,1081

IBN4 29,1s0 151
CICS,935
SQL and,75
System R proiect and,75, 589, -1027-1028

TP monitoF and,933,935
triggers and, 330
WebSphue Application Servet 324

IBM DB2 Universal Database, 590, 598, 725
autonomic features in,7047 1048
business intelligence feahrres and, 1054-1055
concurency control and, 1050 1052
configuration and, 1047
conshaints and, 1032-1033
Control Cente4 1029
cuoe vlews mo, tu5Ftu55
database-design tools and, 1029
data t'?e support of 1030-1031
Data Warehouse Edition, 1054-1055
deadlock and, 1050-1051
design advisor and, 1028
development of, 7027 1028
distribution and, 1053-1054
external data and, 10511054
indices and, 1032-1039, 1042-7043
isolation and, 1050 1052
large obiects and, 1032
locks and,1050-1051
logging and, 1051-1052
materialized query tables and, 1028
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IBM DB2 Universal Databas*Coni.
message queues and, 1034
nultidimensional clustering and, 1028,

1037-1040
optimization and" 1047-1048
queries and,1040-1046
recovery and,1051 1052
replication and, 1053-1054
rollback and, 1051
scalability and, 1028
SQL and, 1029-1034
storage and, 1034-1037
system architectue of, 1052-1053
System R prcject and,7027-1028
tools and,1048 1050
triggers and, 1065-1066
updates and, 1065-1066
user-defined functions and, 1031-1032
utilities and, 1049-1050
version 8.2 and, 1028
views and, 1065-1065
Web services and, 1033
)04L and" 7029-7030

idempotent operation, 697492
identifiers

diectoies and,773-776
queries and, 53&539
recovery and" 689
)Ol4L standardization and, 898-399

iJ-then-elsq 148
imediate-modification technique, 69&-695
implementation dia gmm, 252
incompleteness, 20!204
in comective, 93
incremental view naintenance, 593-597
index entry, 483
index-sequential files, 483
indices, 21

6 dlwrr PaL,'r, JJFrl

bitmap, 504, 520 523, 1005-1006
block,1041-1043
B-tree, 50-l-502, 670-677, 88G887,914 975,

989,7004
B' -tree, 489 507, 522-523, 53G537, 670471,

9'tu919, 1067-1068
clustering, 482-483
composite, 538
cono trenry conlrol and, 669-677
coverhg, 505
DB2 Universal Database and, 1032-1039,

1042-1043
deletion and, 487 488
dense, 483485
desoiption of 481-482
domair, 1007-1008
equality and, 53G537
on exPressions, 990
furction-based, 1006
GisT,987,990
hashing and, 506, 510 511, 518-519, 989-990
infomation retrieval and, 7 69-770
insertion and, 487
inverted,769J70
joins and, 54F-547, 100G1007
k-d-B tree, 915
k-d trees and, 914-915
locking techniques and, 66G467
Micosoft SQL SeNer md, 1065-1069
multicolumn, 990
multilevel, 48.H86
multiple-key access and, 502-506
nested-loop join and, 545-547
nonclmtering, 483
N-h'ee, 1004
operator classes and, 990-991
Oracle and,1004 1010

ordered,482-489
partial,991
partitioning an4 1008*1009
PostgreSQl and, 97$ 987,989-991
pnmary,483,536-537
quadtrees, 91F916
queries and, 503-504, 535-539
raord relocation md, 505-506
R-tree, 976-919 , 987 , 990
scans and, 536
searches and, 482-483, 917-918
secondary 483, 488-489, 505-506 537-538
segments and, 1002-1003
sParse,48H85
spatial data and, 914-919
SQL definition m4 523-524
strings and, 50G 501
support routines and, 978
tming of,88G887
unique,990
updates and, 487-488
views and, 597

inJormation content, 744
information extraction, Z/2
in{ormtion retrieval, 24

dvectories nd,773J76
extraction and, 772
fetching and, 135-^137, n2
fulltext,760
homonlms and,768-769
hyperJinks and, 763-768
lndices and,769J70,913-979 (see also ndices;

a*_,._"
inverse dorument frequenry ard, 762, 767
ke)ryord-based, 760
hbraians and.,775-776
measwing effectiveness of , 770-771
mulhmedia, 906, 919-922
ontologies and, 768-769
PageRa* nd,765-767
populaity ranking and., 7 64-7 68
proximity and, 762
question answering and, 773
relevance ranking and, 7 6'l-7 63
similarity-based, 762-7 63, 922
spammng and,767J68
structured. dala and, 77 2J 73
synonlm and,768-769
term Frequency and ,7b0-762,767
TF-IDF approach ard, 7 6'I-7 62
vector space model and, 763
World Wide Web and, 759, 7 65-766, 771-772

Ingres,29,967
inheritance

SQLand,368-371
tables and, 369-371

inner join, 111, 113
imertion, 6$ 78, 10,1-106, 

-133-734, 137
authorization fol 10
Blink tuee protocol md, 671
concwrency contrcl and, 664-$67
crabbhg protocol and, 669-670
hdices and,48Z 493-498
multiple,999
phantom phenomeno\ and., 66ffi67
PostgresQl and, 973 -97 5, 982-9U, 991-993
re{erencing and, 330-333
R-tree and, 918-919
tine of, 482
triggers and, 331

nstances, 7, 4HL 323-324
instantiations, 18,1-185
Institute of Eltrtriol and Electronics Engineers

(rEEE),895
int domairr 77
integrated ddve electronics (IDE) interface, '146

integdty. See constraints
intention lock modes, 655
intercomection networks, 793-794
interesting sort ordet 587-588
Interface Description Language (IDL), 898
intefiaces,14,2G27

APr, 1.38,3121-13, 42tH21, 898, 1099:1100
.ATA,,T45
cachhg techniques md, 328
CLI standards md, 897
comon gateway, 319
comection pooling and, 328
design of 311-314
Fibre Chamel,445
Firewire,445
g apttrcal, 3'12-373, 97 0
IDE,446
interactive teminal, 969
libmries and, 326
NAg 447
.NET CLR programing and" 1084-1089
. ^^ r -^d^-  ^ - l  11r

PATA,l45
persistent C** and, 384
PostgreSQl and, 968-971
progrming langua ge, 970-971
RPC,937-938
SAT,{,445
sAx,421
SCSI,,I45
sewer programing, 979
standardization and, 897-899
trading partners and, 899
Web,374128 (see also World I{ide Web)
XNILa d,42M21

Intemational Organization for Standardiation
oso),75,895

Internet. See World Wide Web
interquery parallelism, 814-815
intersection operation, 67, 88, 376, 91 4
intervals, 907-908
intraquery parallelism, 815-816
invalidation reports, 926
inverse dooment frequency (IDF), 762
IPvA,973
1Pv6,973
isochronous data, 906, 920
isolation, 4, 6L0, 627 428

DB2 Universal Database and, 105G-1052
levels o1,979-980
Mmsoft SQL Sewer Md,1076
PostgresQl an4 979-980
row veruioning and, 1076

item shipping,789
iteratiory 148

tramitive closure and, 151-155

Jakobssory Hakan, 997-1026
Java, 13, 135, 150-151,367, 609

DB2 Universal Database an4 1031
tx)M,420
hashing and, 508

JDeveloper and,998
Oracle and, 998
persistenl 38F387
TP monitors and, 93F936
virtual machine, 323

Java 2 Enterprise PlaIfom 02EE), 324, 998

Java Database Comecrivity (JDBC), 14, ,745
directory prctocols and, 865
metadata featues and, "14-7M

opening a connection, "140-142

PostgreSQl and, 994
prepared statements and, 142-743
prcgramirg lmguage intedaces md 970-971
queries and, 140-142



standardization and, 896
World Wide Web and,319120,326-328

Java Database Objects QDO), 385-387
Javascript, 318, 327
Java Server Pages qSP), 372, 325-326
I av a Sewlets, 372, 32'1-326
Java Swing, 312
IBoss,324
jons, 67

associative property and, 573
block nestedloop, 544-545
comutative property and, 572-573, 577
compler; 555
cost measuement of 553-554
DB2 Universal Database and 143
dependencies, 298
distributed databases and,861 862
equivalence rules and, 576-577
fragment-and-replicate, 819-821
hashing and, 549-555, 827-a22
hybrid,554-555
indices and, 545 547,700G-1007
interesting sort order, 587-588
left deep 589
merged,547-549
natural, 5G58, 113
rcste d-lo op, 5 42-547, 822
optimization and, 58G588
Oracle and, 100G1007
oderng oI, 576-577
oute\ 6M6, 68,113, 557-558
overlow and, )52-55J
parallelism and, 818-a22, 862
partitioned, 552, 818-822
queries and, 413-41 4, 542-558, 86U867
reorsion and, 552
relations and, 110-114
semijoins and" 861-852
size estimation and, 581-583
spat|al,974
temporal, 908
theta, 58,572-573
views and, 594

Joint Pictue Experts Group QPEG),920
joumaling file systems, 450
jukeboxes, 443, 460

k-d-B tree, 915
k-d hees, 914-915
Kerberos, 3,18
keys,42,45

caldidate, 43,272
challenge-response systems and, 346
corehaints and, 248
digital certificates and, 347 148
digital signatures md" 347
encryption and, 34!346, 975
entity-relationship (F-R) model and, 212 -21 l
foreig+ 44, 729-132,248
tunchonal dependencies and,270 272
indices and, 502-506
lossless decomposition and, 285-286
multiple-key access and, 502-506
primary,43-44,78
ref erential integdty and, 129 -132
relational model and, 42-45
search keys and, 468469, 482483,5O3,505
9QL and, 78
suPel,212
svperkey, 43, 212,270
valuelocking and, 672473 (sre nlso locks)
)C\4L and, 418 420

ke)ryords,760

large itemsets, 749
ldge-object types, 124-125

lateral dausg 15G157
lazy propagation, 851
luywriter,1078
Ieast recently med (LRU) scheme 461-462
leave statement 147-148
left-deep join orders, 589
left outer join, 65, 113
legary systems, 899-900
legal relations, 270
letcographic ordering, 503
libraians,775-776
Lightweight Dirtrtory Access Protocol (LDAP),

348,865370
like operatior! 85
mear nasfrng, )1/
Linear scaleup 792
linear search, 535
Iinear speedup, 791
line segments, 909-910
linestring,910
Linux,1028
local-area networks (LANs), 801-402, 924
Iocal autonomy, 798
localtime, 122
local wait-for graph, 852
location transparenry, 837
locks, 627. See also concurrenry control

Blink hee protocol and,670-677
caching an4 790
compatibility function and, 636
consistency and, 667-669
conversions and, 642
data servers and, 789-790
DB2 Universal Database and, 1050-1051
deadlock and, 639, 659464 (see also

deadlock)
distributed databases and, 84ffi48
domgrades and,642-643
dlmamic, 1075-1076
exclusive, 635, 654
granting and, 640
ganularity and,65H56
graph-based protocols and, 64M47
implementation of, 64.1-645
implicit,654
indexJocking technique a d,66ffi67
intention lock modes and, 655
key-value, 672-473
manager, 643-645,788
Microsoft SQL Seruer and,7075-1076
\ext-key,672473
PostgreSQl and, 985-987
pdmary copy and, 848
protocols fot 63H47
request of, 636
shared,635,654
single lock-manager approach, 847
table, 643 444,985 987
timeouts md, 661
tree protocol and, 64F647
two-phasg 640-643, 65U659, 957
upgrades and,642-&3

log disl 449-450
logging, 956

DB2 Univqsal Database and, 1051-1052
dedicated servers and, 1020-7021
logical,7D4, 955
reader agent, 1083
sequence number, 708-709
witer process, 788

logging out, 321
logical counter, 538
logical-design phase, 15, 203
logical implication, 279
rogrcaL levet, 5-7
logical logging, 704, 955

Index 1't35

logical schema, 7
logical undo logging, 704
long-duration hansactions, 950-95b
iossless decomposition, 285 286
iossy decompositiory 285
lossy-join decomposition, 285

machine learning, 23
Masomedia Flash, 318
magnetic disks, 442

access time/ 447
ATA interface, ,146
average latency time, 447
average seek time, 447
checksm,446
cylinder, 445
data-transfer rate, 447
disk am,445
disk-block access optimization and, 448 450
disk conholler, 446
elevator algodthm, 448
file organization and, 449
fragmentafion and, 449
head-disk assemblies, 445
IDE interface, 446
jomaling file system, 450
log disk, 449-450
mean time to failure, 447 448
NAS interface, 447
nonvolatile storage, 449
PATA interface, 446
perfomance of, 447 448
physical characteristr.cs of, 444 447
platte\ 444
RAID and, 45G 458
read-write head, 445
remapping of bad sectots, 446
rotational latency time, 447
SAN architecture, 446
SATA hterface, 446
schedulir& 448-449
SCSI interface, 446
sectors, 444
seek time, 447
tracks, 444

magnetic tapes, 28, 459-460
majority protocol, 848
L ' r 4 r ' u a r r u I r S /  z

many-seryer/ many-router model, 936
many-sewer, singlerouter model, 935
mapping. See also indices

bitmapr 504, 520-523, 972, 100V7006
block, 1039-1040
cardinalities, 1Z 210-211
pvel,912
remapping of bad sectors, 446

narketplaces, 945-946, 1025
mrkup language 395
master-slave replication, 850-851
natch, 41,7
material2ation, 559-560, 595-598, 1045-7046
mathematics, 38

domain relational calculus, 168 171
relational algebra, 4G68
tuple relational calolus, 16!168

max function, 61, 89-9-1,558,596
mean time to failure (MTTF),447-448
Media Access Control MAC), 973
mediator systems, 864-865
megabyte,20
memory See storage
merge,158
merge-joio 547-549
merge-purge operatiory 738
meshing,793J94
metadata, 11, 143-144
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Office,31}-314
OLE-DB,897
Passport service, 348
standardization and, 895-897
Tiansaction Server, 933
Windows Media Online, 920

Mioosoft SQtseryer, 757, 373, 328, 4:25,
597-598,890

aggregation and, 1088-1089
Analysis Savices, 1097 1099
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concurency control and, 707 4-"1078
data access and, 108G-1081
data mining md, 1099
data types an4 1063
data warehousing and, 109G1100
deadlock and, 1076, 1079
design Lools of, 1057 1062
indices and,1065-1069
Integration Seryices, 109G1100
locking and, 1075-1076
Management Studio, 1061-1062
memory management and, 1079-1080
.NET CLR programing and, 108,{-1089
OLAP and,109G1100
partial search and, 1072-1073
partitioning and, 1068
ProfiIer, 1059-1061
queries and, 1057-1064, 106U7074, 1079-1082,

1091-1093
read-ahead and, 1068-1069
recovery and, 1074-1078
replication and, 1082-1084
Reporting Seroices, 1099 1100
routhes and, 1064
scans and, 1058-1069
seority and, 1080
Service Broket 1094-1096
snapshots and, 1075, 1083
SQlvariations in, 1062 1066
storage and, 106G7069
ttuead pooling and, 707V1079
triggers and, 7064, 1087
tming and 1057-1062
Unified Dimensional Model, 1098-1099
updates and, 1077-7072

Mnq,Bob,997-1026
min frmction, 61, 89-91, 558, 596
minibatch transactions, 890
minpctused,1036
minus, 1011
nilute, 122
mirroring, 451, 1078
mobile computin& 922 927
monotonic quedes, 15+1.55
monotonic views, 193
month, 122
most recently used (MRLJ) strategy, 463
Movirg Picture Experts Group (MPEG), 920
MP3 files,920
multidatabase systems, 799, 862-865
multilevel indices, 485486
multimedia databases, 906, 919-922
multiple granularity, 653{56
multiplekey access, 502-506
multiprograming, 617
multisets, 61, 371-376
multitable clusterin g, 470472
multitaskirg, 934
multithreaded process, 935
multiuser systems, 784

multivalued dependencies, 291298
multiversion conrurency control (MVCC),

979-985
multiversion schemes, 556659
multiway splits, 745
mutual exclusion, 788
Myers, Dir19 1057-1060

naive users, 26-27
name seryer, 837
natual joins, 5G58, 113
nearest-neighbor quedes, 913
negation, 581
nesting

joins and, 542-547, 822
queries and, 93-97, 374376, 414475,591-593
XML and, 39H0O 414-415

.NET Comon Language Runtime (CLR),

1084-1089
Netscape, 324-325
network attached storage (NAS) interface, '147

network data model, 8
NewWare, 935
next-key lo cktng, 67247 3
nodes

B-tIe indices and, 501-502
BLtree indices md, 489-501
coalescence and, 493, 671
cononency control and, 671 (sre also

conrurency control)
distributed systems nd' 797-800
indices and, 913-919 (see also indices)
splittng, 493,671

nonacceptable temination states, 941
nonclustering indices, 483
nonprocedrual langua ge, 45, 763
nonrepeatable rea4 980
nonserializable exeotions, 951-952
nonmiform memory architectue (NLMA), 797
nonmique seach keys, 505
nonvolatile random-access memory

(NV-RAM),449
nor fmctiory 67
normal forms

BCNF,272-276,288.293
donah-key,298
hfth,298
first,268-270
furth,296-298
tugher,277 278
prcject-join,298
second, 299
taud,27G277,297-293

normalization, 17 19, 299-300, 1069
not fimction,92,940

not final, 365
not for replicatiory 334
not fomd, 149
not in connective, 93, 95
null constraint, 12G127

Novel,935
nnll values, 1&19, 6ffi8, 1070

attributes and, 210
bitmaps and, 1005-1006
Microsoft SQL Server an4 1088-1089
negation and, 581
.NET CLR and,1088-1089
OI,AP and,73l-732
rel'erentidl inte$ity and. 12q-132
SQL an4 91-92

numeric domain, 77
N-way merge,540-542

Oates, Ed, 997-1026
object-based databases, 8, 19-20

collection values and" 372 374

complex data t'?es and,362165
feature implementatton and, 378379
inheritance and, 368-371
Java and,38F387
\es|'ng and,374-376
object identity md, 37G378
object-oriented vs. object-relational,

387 388
Oracle and,999-1000
pe$istent programing languages and,

379187
relational model md, 361-362
q?e systere and, 361162, 365-378

object classes, 867
Object Database Management GrouP

(oDMG),898
object-identity t)?e s, 37 6-37 8
Object Management Architecture (OMA), 898
Object Management Group (OMG), 251, 898
Object Operations benchmarl 894-895
object-oriented database (OODB), 89't-895
object-odented data model, 19
object-relational data model, 19, 361
Object Request Broker (ORB), 898
Objectstore,384
obsenable external writes, 614
OLE (object Linking and embedding),

31!314, 1080
on condition, 113
on delete cascade, 130
l-mirute rule, 885
online analytical processing (OLAP), 892

allvalue and.,726-728
attributes and, 725-726
cross-tabulation and, 726
data csbe and,727
dimereional hierarchy and, 729
dimension attributes and, 725
drill dom and,728
extended aggregation and, 731-733
hybrid" 730
implementation of 729-731
Microsoft SQL Sener and, 109G1100
multidimensional, 729-730
Oracle and,100G-1001
pivoting and,727-728
Post$eSQL and, 971
ranking and, 733-735
relational, 730
r ollup and, 7 28, 731, 773
windowhg and,735 736

on-line retailers, 2
online transactions processing (OLIP), 892
ontologles,768J69
on update cascade, 130
open clause,135 136
Opm Database Comectivity (ODBC), 14 25,

138-140
directory prctocols and, 865
Microsoft SQL Sewer and, 1080
persistent Java systems and, 385
PostgreSQl and, 994
programing language interfaces and,

970-97"1
standardization and, 895 897
World Wide Web and,379-320,32G328

open hashing, 509
openquery 1081 1082
openrowsel 1081-1082
operator dass, 978
operator tree, 559
optical storage, 442-443, 45U59
optimization

associative proPerty and, 573
ca Lalog infomation and, 578-q7q
comutative propetty and, 572-573, 577



cost-base4 571, 58G588
DB2 Universal Database and" 1047-1048
equivalence rules and., 570-577
evaluation plan choice and, 584-593
expression result statistics and, 57&-584
heuristics i4 588-591
interesthg sort order, 587-588
materialized views and 593-598
Microsoft SQL Seruer and, 1069-1071
nesting and, 591-593
Oracle and, 1010-1016
queries and, 21, 53i-533, 58+593, 825-826,

q92 qql, t0 t0-t016, 1 040-t045,
1069-'1077

Orade, 2, 29 , 15V751, 330, 590, 598, 890
Annlirerinn qanar a)A

Automatic Workload Repository 1024
con&uency control and, 1017-1019
cost conhol and, 1013-1014
database administration and, 1024 L025
database design and, 997 -998
data mining and, L025-1026
dedicated servers an4 1020-1021
Designeq,998
Developer Suite, 998
distribution and, 1023
Enterpdse Manager, 1025
extemal data and, 1023-1024
Forms,313
fomding of,997
HTML-DB and,313
hdices and,1004-1010
JDeveloper and, 998
OLAP and, 1000-1001
parallel execution and, 1015-1016
quedes and, 1010 1016
Real Application Clusters, 1022
recovery and, 1018-1019
replication and, 1022-1023
Repository,998
shared servers and, 7021--1022
SQL and" 998-1001
storage and, 1001-1004 1008-1010
system architecture a\d, 1079-7022
triggers and, 1001
tuning and, 1014-1015
views and,1009 1010
].?D342-3q3
Warehouse Builde1, 998

order by clause, 86, 375, 733J35
FLWOR expressions and' 472415
XML and" 415-416

or tunction, 67, 92, 940, 1071
outer joiJts,6M6,68, 113, 557-558
outer re]ailon, 5+z-54J
oYertuttjng,74W46
ovedows, 509-510, 552-553
overloading, 383

raomanaonan, )fi ram, lull-1u55
PageLSN,708-709
PageRar*,765-767
pages, 1066
page shippin& 789
paginatiory 325
parallel ATA (PATA) inteface, 446
parallelism

aggregation and, 822-823
coarse-granularilr and, 785, 790
data replication and, 834-835
design fo1, 826-827
duplicate elimiration md, 822
finegranularity and, 785, 790
independent 825
input/output 810+14
intercomection networks and, 793-79 4

intprnner:tinn R?LR)6

intraoperation, 81G824
r/o,870-874
joins and,81&$22
marketing of, 809-810
operations cost and, 823-824
partitioning and, 810-a72, g6-A17
pipelined, 824-825
prcjection an4 822
queries and, 814-81 6, 825-826
scalqp and,79"1193
selection md, 822
shared disk and, 796
shared memory and, 795-796
shared-nothing system, 796
skew and, 812-814, 823
sorting and, 81G818
speedap and,797-793
systems architecture and, 790-797

parameterized views, 146

Parameter style general, 150
panty,453456
parsin& 531-533, 1069
partitioning

composite, 1009
data minirg and, 743
distfibuted databases and, 839-840
has\ 810-812, 821-822, 1009
indices and, 1008 1009
joins and,552,818 822
list, 1009
Microsoft SQL Sewer and, 1068
Oracle and, 1008 1009
parallelism and, B10 B'12,87G817
range, 810-813, 816-812 1008 1009
round-rcbin, 810-811
windowing and,735-736

Pascal, 6, 135
path ex?ression, 409 412
pctfree, 1036
percent_rank, 734-735
performance

benchmarks and, 891-895
bottleneck location and, 882-883
design and, 249-250, 301, 89 l+q5
hardwae and,884-885
indices and, 88ffi87
matedalized views, 887
magnetic disks and, 447-448
RAID and, 452453, 456457
schemas and, 885 886
simulation ol 890 891
standardization and, 895-899
TPC and,892-894
transactions and, 889-890,950 (see qlso

transachons)
tming of 881-891

P erl, 325, 979, 994, 7037
persistent messages, 844-846
persistent programming languages, 362

access and, 382-383
C++ systeru,383 385
by class, 381
by qeatiorL 381
defined, 379-380
embedded SQL and, 379-380
identifiers and, 381-382
Java,385-387
by marking,381
obiect percistence m4 380 381
OODBs and,388
overloadhg and, 383
pointers and,381-384
by reachabiliry 381
storage and, 382-383

Persistent Storage Module (PSM), 147
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person-in-the-middle attacks, 946
phantom phenomenon, 665467
phantom read, 980
PHP,324-325
physical data hdependence, 7
physical-design phase, 15, 203
physical level, F7
physical schema, 7
pimed blocks,461-462
pipehdng, 560 563, 824-825
Pirzada, VaqaL 1057 1060
piv oting, 727, 7063-70 64
pixel maps, 912
PL/7,735
pointers, 381-384. See also hdices

indices and" 483-485
polygons, 909-910
polylines,910
polymorphic fmctions, 972
popularity rarking, 764-768
populatior! 748
positive literals, 183
lostgreSQL

ANSI complimce and,971
BSD license and, 967
catalogs and, 975
concurrency control and, 979-985
DML comands and" 980 981
extensibility and, 975 978
tuacnore and,976-9n
ndlces and, 978,987491
isolation levels an4 979-980
locking and, 985-987
OLAP and,971
queries and, 991-994
recovery and, 987
releases of, 967-968
rules fo+ 973-975
SQL variations and, 971-979
storage and,988 991
system architectue of, 994-995
transacfions and, 979 987
triggers and,974-975

|tl;es and,97'l-976
user interfaces of, 968-971
varum and, 985

poshnastet 994
post metho4 31G317
power test re, 894
precision,77V771
ptedlction,740-747
presentation facilities, 936
prestige ranking, 764-76B
primary copy,848
primary indices, 483
prnnary key,43-44,78
pdvacy, 349-350
privileges, 133

exeete, 335
granthg of, 335-338
revoking of, 340
roles and, 338-340
usage/ 335

probes, 551
procedural constru c.s, 1 46--1 49
procedural languages, 9, 45, 97U979
process monitor process, 788
process-per-client model, 934
producer-driven pipeline, 561
projection operatiory 67, 583, 595
proiect-ioin normal fom (PJNF), 298
prcject operatior! 497
Prolog,180
PR quadhee,916
pseudotransitivity rule, 280
public-key enoypiion, 344-345
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public users, 134
publishiry, 424-425, 1082-1083, 1089
puched card decks, 28
Pytho,325,979

^" " l roHr  cn l i+  a1La1a

quadtrees, 915-916
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access methods md, "1041 f043
aggregation and, 558-559
d r 6 u r r ( r u r L D  r u ,  J J r

associative property and, 573
B'-trex and, 492493
Li-"-. co:rah t?(

bhding and, 1069
catalog hfomation and, 578-579
collection values and, 373-374
comutative prcper ty and, 572-57 3, 57 7
comparisons and, 537-538
complex,9T-99,53t539
cmcept-based,768-769
conjunction md, 538-539
constraints and, 99!994
cost measrement ot, 533-534
Datalog md, 18G-194
data mining and" 2!24
DB2 Universal Database an4 1040-1046
l o d c i a n - c r r n n n r t  R O 9

derived relatioru and, 97-98
disjunction an4 538-539, 581
distribute4 859-€62, 864-465, 1087-1082
domair relational calculus and, 158-171
duplicate elimhation and, 556
editor for, 105&1059
equality and,53G537
equivalence rules and, 57V5n
orur l ra r inn  ano inp  ? l

exmtor fot 993
expression evaluation and, 559-563, 578-584
hashing and,51!516
heterogeneous, 1081-1082
homon)rc and,768-769
indices an4 50!504, 535-539
itention and, 151-153
IDBC and,140-1,12

,oins md 41H14, 542*558, 86H61
language, 9, 72-13, 45, 75
linear searc[ 535
location-dependent, 923
materialized" 559-5 60, 593-598, 1045-7046
measuing effectiveness of , n0-m7
Micrcsoft SQL Seruq and,"l057-7064,

106U107 4, 1079 -"t 082, "1097-7093
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narrpct neiohhnr 913

negation and, 53$ 581
nested, 93-97, 37 4-376, 4L4'41.5, 591-593
nomalization and, 1069
N-way msge and,54G-542
OLAP and,73lJ33
optimization an{ 21, 537-533, 5W-593,

82ffi26, 992-993,'10 4c_10 45, "1069 -707 1,
Orade nd, 997-998, 1010-1016
paallelism and, 814-876, 825-826
parsing and, 531-533, 1069
partitioning and, 81G€12
persistent C* and, 38!385
pipelining an4 560-563
plaming and,992-993
point, 811
PostgreSQl and, 991-994
n r  i 6 . 6 ^ n . n i  E E 6

range, 811
read-ahead and, 1068-1069
rrosive 151-155
relational algebra and, 4648, 569-577

reordering and, 107G-1071
response time and, 249-250
rewite md,991-1000
rcuting and,924-925
selection operation nd' 534-539, 571 -574

selection size and, 579-581
seletivity probability and, 58G-581
server systems an4 786-790
setrlets and, 321-326
set operations and, 55G557 , 57"1-574, 809 , 91'4
simplification and, 1069-1070
sorting and, 539-542
spaming and" 767-768
spatial,9l!919
SQL and, 80-82 53!534 (see also Struchrred

Query Language (SQL))
struchrred data m4 773
subquedes and, 15G1 57, 591-593, "1012-"1073

slnonyms and,768-769
temporal, 908
T?C benchmarks and, 892-39 4
transfomations and, 859+60, 1012-1013
transitive closure and, 151-155
triggus and,993-994
tuple relational calolus and, 163-168
usage requirements and, 249-250
wappers and, 864
)OvIL and, 40&420, 1097-1093

Query-by-Example (QBE), "l 63, 17 1
condiiion bo)t 17G178
Miaosoft Access an{ 17&180
one relaaon, 172-775
result relatior! 178
seveml relations, 175-176
skeleton tables and, 172-178

query lmguage, 9, 12-73,45,75
query processor, 20-22, 27
question answering, 773
queuelng systero, 882, 936, 1034. I059-1 051
quotm consensus protocol, 849

Rmos, Bilt 1057-1060
random walk nodel, 76F766
mnge partitioning, 810-813, 87ffi17, 1008-1009
rarJ<ng,733-735
rapid application develoPment (RAD), 27
raster data, 912
Rathakrishnan, Bal aji, 1057 -1060

reads,980
authorization, 10
committed,669
read one, write all aPPrcach, 85ffi57
read-only uansactions, 658
uncomitte4 66M69

ready state, 841
real, double precisiory Z/
RealAudio,920
real-time systems, 949-950
rccall,770-n7
receiving site protocol, 846
recovery,926

advanced techniques for, 703-777
ARIES method and, 707-711
atomicity and, 68k89
buffer management and, 699-102
checkpoints md" 69ffi98, 705-707, 709
with coneilent transacltons, 697499
cras}v1077
data access an4 68ffi88
DB2 Universal Database and, 1051-1052
defered-modification technique and, 69H93
disk failue an4 684
dumping md,703
failure classifi cation and, 683484
high availability and" 683, 711
idempotent operations and, 691492
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immediate-modif ication technique and,

693-495
log-based, 689497 , 704, 955-956
logical ercr and, 683
with loss of nonvol atile storage, 702103
media,7O77-1078
Microsoft SQL Seruer and,'1074-7078
Oracle and, 1018-1019
PostgreSQl and, 987
RAID systems and,685
remote backup system ffid,711-713
repeating history and, 706
restart, 698499,706
storage structure and, 684{88
system crash and, 58M84
traroaction rollback and, 697498, 704-705
workIlow,943

recovery-management comPonent/ 612
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Datalog and" 189-192
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structual,418
XML and, 418
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redo, 955
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bit-level striping an4 452
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hardware issues and, 457-458
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mean time to repait 451
mirrorhg and, 451
parallelism and, 452-453
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recovery m{ 685
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re-engineering, 900
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relational model and, 4G55
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higher normal foms and, 277178
larger schemas and, 264-266
normal f orm and, 2 6V27 8, 288-293, 29 G300
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